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Abstract—Program comprehension is an important, but hard to measure cognitive process. This makes it difficult to provide suitable
programming languages, tools, or coding conventions to support developers in their everyday work. Here, we explore whether
functional magnetic resonance imaging (fMRI) is feasible for soundly measuring program comprehension. To this end, we observed 17
participants inside an fMRI scanner while they were comprehending source code. The results show a clear, distinct activation of five
brain regions, which are related to working memory, attention, and language processing, which all fit well to our understanding of
program comprehension. Furthermore, we found reduced activity in the default mode network, indicating the cognitive effort necessary
for program comprehension. We also observed that familiarity with Java as underlying programming language reduced cognitive effort
during program comprehension. To gain confidence in the results and the method, we replicated the study with 11 new participants and
largely confirmed our findings. Our results encourage us and, hopefully, others to use fMRI to observe programmers and, in the long
run, answer questions, such as: How should we train programmers? Can we train someone to become an excellent programmer? How
effective are new languages and tools for program comprehension?

Index Terms—Functional magnetic resonance imaging, program comprehension
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1 INTRODUCTION

A RE learning natural languages and learning programming
languages related? It may seem strange at first sight, but

long ago, Dijkstra stated that “an exceptionally good mastery
of one’s native tongue is the most vital asset of a competent
programmer” [22]. In Kentucky and several other US states, the
legislative changed, such that school kids are now allowed to
take a programming-language course instead of learning a foreign
language.1 Establishing a foundational theory of comprehension
and cognitive processes associated with programming will funda-
mentally inform the design of software tools and programming
languages as well as education policy for learning programming
across multiple STEM disciplines. For example, we may be
able to determine whether there is a critical age associated with
programming skills. The results may also provide insights into
how teaching programming practices, such as object-oriented
languages, design patterns, or functional programming, are factors
of how programmers comprehend code.

Research on the behavior of programmers has lead to interest-
ing but limited insights in the context of program comprehension,
the main activity of software developers. Theories of program
comprehension have proposed two primary mechanisms: top-
down and bottom-up program comprehension. Top-down com-
prehension is a hypothesis-driven process, in which developers
initially form hypotheses about the source code and, by looking at
more and more details, refine these hypotheses subsequently, until
they form an understanding of the program [13]. With bottom-
up comprehension, developers start with details of the source code
and group these details to semantic chunks, until they have formed

1. http://www.lrc.ky.gov/record/14rs/SB16.htm: KRS 156.160 Section 1.a.1:
If a school offers American sign language or computer programming language,
the courses shall be accepted as meeting the foreign language requirements and
the computer programming language course shall be accepted as an elective
course in common schools notwithstanding other provisions of law.

a high-level understanding of the program [96]. Thus, there are
plausible models available that describe how developers proceed
when understanding source code. However, the underlying cogni-
tive processes of top-down and bottom-up program comprehension
are still unclear—the programmer’s head is still far from being
understood.

To unravel the mysteries of program comprehension, we need
to take a closer look at the underlying cognitive processes. Since
functional magnetic resonance imaging (fMRI) has proved suc-
cessful for observing internal cognitive processes, such as reading
comprehension, concentration, object identification, and decision
making, it is promising to apply it in the context of program-
comprehension research.

In our experiment, 17 participants performed two types of
tasks inside an fMRI scanner. In the first type, referred to as
comprehension tasks, developers comprehended code snippets and
identified the program’s output. In the second type, referred to as
syntax tasks, developers identified syntax errors in code snippets,
which is similar to the comprehension tasks, but does not require
actual understanding of the program. To gain confidence in the
results and the method, we replicated the experiment with 11 new
participants. As a result of our studies, we found:

• evidence that distinct cognitive processes took place when
performing the comprehension tasks, as compared to the
syntax tasks,

• activation of functional areas related to working memory,
attention, and language comprehension, and

• a dominant activation of the left side, i.e., speech hemisphere.
• a relationship between source-code complexity and concen-

tration level,
• a reduced cognitive effort with increased programming lan-

guage familiarity, but

http://www.lrc.ky.gov/record/14rs/SB16.htm
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• no correlation between programming experience and cogni-
tive effort.

Our results provide evidence of the involvement of working
memory and language processing in program comprehension, and
they imply that, during learning programming, training working
memory (necessary for many cognitive tasks) and language skills
(which Dijkstra already claimed as relevant for programming)
might also be essential for programming skills. Furthermore, our
results suggest that the more complex the source code is, the
more the participants need to concentrate during comprehension
tasks. Such results can help to validate or invalidate particular
theories of program comprehension, such as data-flow measures
that hypothesize an increasing need for concentration with a rising
number of exchanged information between variables [8]. Although
a single study is not sufficient to answer general questions, we
can strengthen the confidence in our methodology and begin to
ask probing questions and outline a path toward answering them:
If program comprehension is linked to language comprehension,
does learning and understanding a programming language require
the same struggles and challenges as learning another natural
language? If program comprehension dominantly activates the left
hemisphere (often referred to as analytical), can we derive better
guidelines on how to train students?

This article extends our paper presented at ICSE [99] and
incorporates results from a replication performed as part of a
different study [100]. Specifically, we

• expand our discussion and relation to other recent results, and
discuss the history of and other alternative methods to fMRI
(Section 2);

• show neural correlates of the effort participants put into
comprehension task, and that the concentration level depends
on the complexity of a source-code snippet (RQ2);

• show the effect of different levels of programming experience
on a programmer’s cognitive load (RQ3);

• show additional ways to analyze fMRI data (RQs 2 and 3).
With the extensions of the first fMRI study in the context of soft-
ware engineering, this paper makes the following contributions:

• We present the first fMRI study to observe brain activity
during bottom-up program comprehension tasks. By sharing
our experience, we have already inspired other researchers to
follow in our footsteps [15], [24], [33].

• We demonstrate the potential of fMRI studies to increase our
understanding of the human factor in software-engineering
research.

• We were able to successfully replicate our first fMRI study
with different participants, which strengthens the validity of
our experiment design [100].

Taking a broader perspective, our studies demonstrate the feasi-
bility of using fMRI experiments in software-engineering research
and has already led to other studies applying this technique [15],
[24], [33]. With decreasing costs of fMRI studies, we believe
that such studies will become a standard tool also in software-
engineering research.

2 FMRI, ITS USES, AND LIMITATIONS

To understand the principle of fMRI studies and why we designed
our study the way we did, we shortly outline the development,
limitations, and alternatives of fMRI.2

2. See Huettel et al. [48] for more details on the development of fMRI.

2.1 History
In the 1920s to the 1940s, researchers discovered that atomic
nuclei have magnetic properties, which can be manipulated with
magnetic fields. To this end, the magnetic field needs to oscillate
with the resonant frequency of the atomic nuclei, which is re-
ferred to as nuclear magnetic resonance (NMR). In the following
years, NMR was primarily used in chemistry to better understand
chemical composition of homogeneous substances. In the 1970s,
researchers discovered that water molecules behave differently in
different biological tissues, leading to the hypothesis that these dif-
ferences also occur in cancerous vs. non-cancerous cells. In studies
with rat cells, this hypothesis could be confirmed, opening the
door to medical application of NMR. In 1977, the first magnetic
resonance image of a human’s (a postdoctoral fellow) heart, lungs,
and surrounding muscles was taken, which took 4 hours back then.
NMR was a healthier alternative to computed tomography (CT),
because it does not require exposure to concentrated X rays. In
the early 1980s, NMR was renamed to MRI (magnetic resonance
imaging) to remove the negative connotation of the word “nuclear”
regarding health. Since then, it has been used in medicine to create
structural images of the human body, which are used as diagnosis
tool. The success in medicine ushered further research on MRI,
which eventually led to functional MRI (fMRI), as we are using
it in our study. In the 1990s, researchers observed that changes
in blood oxygenation could be measured with MRI imaging. This
is based on the different magnetic properties of oxygenated and
deoxygenated blood. Oxygenated blood is diamagnetic and does
not affect a magnetic field. Deoxygenated blood, however, is
paramagnetic and does affect magnetic fields. This difference is
exploited in fMRI by observing the BOLD signal.2

2.2 BOLD Signal
In a nutshell, fMRI observes magnetic properties of the blood.
When a brain region is activated, its oxygen need increases, and
so does the amount of oxygenated blood in this region. At the same
time, the amount of deoxygenated blood decreases. Thus, the ratio
of oxygenated and deoxygenated blood in a brain region changes
compared to a resting state—this is referred to as the BOLD (blood
oxygenation level dependent) effect. The BOLD effect needs a
few seconds to manifest. Typically, about 5 seconds after stimulus
onset, it peaks; after a task is finished, the oxygen level returns to
the baseline level after 12 seconds. Often, before returning to the
baseline, the oxygen level briefly dips below the baseline [47]. A
longer task duration allows the BOLD signal to accumulate, which
produces better observed differences between tasks. To reliably
measure the BOLD effect (i.e., the activation of a brain region),
typical fMRI studies consist of an alternating sequence of task,
control, and rest conditions without externally triggered mental
activity.

2.3 Uses of fMRI Studies
When studying cognitive processes in the brain, scientists often
follow a pattern of research that begins with a single case of brain
injury that interferes with a cognitive behavior, followed by further
studies locating and isolating brain activity. To identify a region
of the brain, scientists use instruments with high spatial precision,
such as fMRI scanners. After having established a general idea
of which brain areas are involved in a given cognitive process,
scientists further try identifying the timing and interaction of brain
activity among brain regions.
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Complex behaviors, such as understanding a spoken sentence,
require interactions among multiple areas of the brain. Eventually,
to create a model of behavior, scientists use techniques to dissoci-
ate activated brain areas to understand how a particular brain area
contributes to a behavior. For instance, scientists found that the left
medial extra striate cortex was associated with visual processing
of words and pseudo words that obey English spelling, but not
activated by unfamiliar strings of letters or letter-like forms [80].

To reference an identified brain location, Brodmann areas have
proved useful as a classification system, and cognitive processes,
such as seeing words or retrieving meaning from memory, can be
mapped to these areas [12]. Through extensive research in this
field over the past 25 years, there is a detailed and continuously
growing map between Brodmann areas (and further subdivisions)
and associated cognitive processes (e.g., www.cognitiveatlas.org
shows an atlas).

When studying a new task, such as program comprehension,
we can identify which brain regions are activated and consequently
hypothesize which cognitive processes are involved. For example,
we found that one of the activated regions in our study is related
to language recognition, so we can hypothesize that language
recognition is an integral part of program comprehension, which
was not certain a priori (see Section 6.1).

2.4 Limitations of fMRI

fMRI has now existed for more than 25 years and has provided
valuable insights into the human brain [37]. However, fMRI also
has limitations [83], [84]. First, the temporal resolution is limited,
because changes in the BOLD contrast take longer than the
underlying neural activity, which can occur as fast as 500 times
per second [38]. We can currently tolerate this limitation, as many
cognitive processes of interest to software engineering researchers
(e.g., comprehension, maintenance, bug finding) are rather long-
lasting (i.e., minutes). Temporal dynamics, for example, how the
brain activation changes throughout a task, may be of interest
once there is an established body of knowledge about cognitive
processes and their activated brain areas. At this point, the limita-
tion regarding temporal resolution will become relevant. However,
while this kind of research is compelling, it is beyond the scope
of this exploratory study to locate relevant brain areas of program
comprehension.

Second, depending on the goal of a measurement, it requires
averaging across a number of comparable events and participants
to reduce unavoidable noise during data collection. The number
of comparable events depends on the expected effect size: the
larger the effect size, the fewer measurements are necessary. For
example, for determining the speech hemisphere, the effect size
is rather large, so that fMRI is capable of determining the speech
hemisphere of individual participants within a few minutes [7].
To further increase temporal resolution, real-time approaches are
currently developed that are able to determine the BOLD response
of the whole brain online. However, determining subtle differences
between very similar conditions still requires many averages as
well as group data to determine meaningful and statistically
significant results. Finally, we cannot make a causal inference,
but only collect correlational data. That is, we can observe that a
cognitive process occurs simultaneously with activation in a brain
area, but we cannot conclude that this cognitive process caused
the activation or that this activation caused the cognitive process.
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Fig. 1. Workflow of our fMRI study.

2.5 Alternatives
Since fMRI has a rather low temporal resolution and is currently
quite expensive to conduct, other neuro-imaging techniques have
also been used when observing cognitive processes (see Section 10
related studies).

Other techniques to measure brain activation also each have
strengths and weaknesses. Electroencephalography (EEG) mea-
sures the electrical impulses of a neuron’s activation and, thus,
has a high temporal resolution, but at the cost of lacking the
high spatial resolution of fMRI. Moreover, extracting event-related
brain activation with EEG requires much more averaging than
in fMRI. The same pertains to magnetoencephalography (MEG),
which measures the magnetic properties of the electrical impulses
of a neuron. Both techniques also have similar disadvantages in
that they cannot collect signals from deep neural structures, but
mainly from the surface of the brain. The same disadvantage
holds for functional near-infrared spectroscopy (fNIRS). fNIRS
also measures the BOLD effect, but the measurement is based
on changes of light-absorbtion properties of oxygenated and de-
oxygenated blood [16]. However, an fNIRS device is much more
light-weight than an fMRI scanner, making it much cheaper to
apply.

3 FMRI STUDIES IN A NUTSHELL

The sophisticated technical foundations of fMRI provide special
challenges for the design of according studies. In the this section,
we introduce the specific rationale of such studies on a high level.
We describe the details of our study in Section 4.

3.1 General Challenges of fMRI Studies
Studies using fMRI face general challenges due to the tech-
nologies involved, which are very different from, say, controlled
experiments in empirical software engineering.

To unambiguously determine the brain region in which the
BOLD effect took place, we need to avoid motion artifacts, that
is, noise that occurs when participants move their head. To this

www.cognitiveatlas.org
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end, participants are instructed to lie as motionless as possible
during the measurement, and their head is fixed with cushions.
Furthermore, communication and interaction with participants is
limited, because speaking or pressing buttons may also cause mo-
tion artifacts. In such a restricted setting, the experiment duration
should not exceed one hour, because after that, participants start
getting restless or fatigued.

Additionally, participants can only view a relatively small
screen reflected through a mirror (illustrated in Figure 1b), on
which a limited number of lines of text can be displayed. We
could support scrolling to show more text, but this is also prone
to motion artifacts. This constraints us regarding the complexity
of source code that we can present to participants. For example,
studying how programmers comprehend an entire software com-
ponent with many classes may increase motion artifacts due to
the necessary actions to navigate the source code, and would also
mean a high load on working memory, since not much can be
shown on the screen. In the same vein, letting participants actually
write code with a keyboard will be rather difficult, as participants
are in a lying position, and because of the risk of elevated
motion artifacts. Letting participants speak code is technically
possible, but would cause additional language-related activation
overlapping and diluting the activation of interest of program
comprehension. Less restrictive techniques, such as fNIRS or
EEG, are more suitable when it comes to observe writing code.

Finally, an fMRI study needs to be designed in a way to be
able to distinguish brain activations caused by the experimental
tasks from other non-specific activations. For example, in tasks
that require participants to watch a screen or listen to a signal,
there will be activations caused by visual or audio processing. To
filter activations that are not specific for the experimental tasks
(e.g., visual processing for program comprehension), we need to
design control tasks that allow us to compare brain activations
between two conditions. The control tasks need to be as similar as
possible to the experimental tasks and differ only in the absence
of the targeted cognitive process. Ideally, the control tasks only
differ in a single isolated aspect relevant to the research question,
while keeping all other variables constant.3

3.2 Requirements for Our fMRI Study

With the goal of our study to find neuronal correlates of bottom-
up program comprehension, the general fMRI challenges translate
into a specific set of requirements.

First, we decided to start with short code snippets that fit
on one screen to avoid motion artifacts by excessive usage of a
computer mouse.

Second, we need source-code fragments with a suitable level
of difficulty. If the source code is too easy to understand, partici-
pants may finish too early, such that the BOLD activation returns
to baseline before the end of a trial. On the other hand, if source
code is too difficult, participants cannot finish understanding it.
In this case, we cannot be sure that the cognitive process actually
took place long enough to be measured. The challenge is to find
the right level of difficulty—short code fragments that require 30
to 120 seconds to understand. In a one-hour experiment, we can
perform about a dozen repetitions, for which we need comparable
tasks.

3. Amaro and Barker [1] give a detailed overview on the basics of fMRI
study design.

Finally, as an fMRI study requires a control task to filter out
irrelevant brain activation (cf. Section 3.1), we needed to find
a task that ideally differs from the comprehension tasks only
in the absence of comprehension, nothing else. In our context,
control tasks are different from typical control tasks in software-
engineering experiments, where a baseline tool or language is
used; in fMRI, the similarity is defined at a low, fine-grained level,
such that we can observe the activation caused by comprehension
only.

These constraints—short code fragments of controlled dif-
ficulty and limited repetitions—impair external validity, as we
discuss in Section 9. Results of fMRI studies can be generalized
to realistic situations only with care.

3.3 Overview of Our fMRI Study

Given the constraints and our goal to observe bottom-up program
comprehension, we selected short algorithms that are taught in
first-year undergraduate computer-science courses as comprehen-
sion tasks, such as the word-reversal code in Figure 2. We asked
participants to determine the output of the program ("olleH", in our
example), which they can accomplish only if they understand the
source code. The programs we used included sorting and searching
in arrays, string operations, and simple integer arithmetic. We
obfuscated identifiers to enforce program comprehension that
required understanding code with a bottom-up approach, that is,
from syntax to semantics (see Section 4.1).

For control tasks (syntax tasks), we introduced syntax errors,
such as quotation marks or parentheses that do not match and
missing semicolons or identifiers, into the same code fragments as
the comprehension tasks (illustrated in Figure 3). Then, we asked
participants to locate syntax errors (Lines 1, 2, and 8). Comprehen-
sion and syntax tasks are similar, yet sufficiently different: Both
require the participants to look at almost identical pieces of text,
but for the syntax tasks, participants do not need to understand the
code.

To find suitable comprehension and syntax tasks, we con-
ducted pilot studies in a computer lab (see Figure 1a). We let a total
of 50 participants solve 23 comprehension tasks and search for
more than 50 syntax errors. For the syntax-error tasks, we asked
participants whether they needed to understand the source code in
order to locate the errors, which occurred only occasionally. Based
on our observations, we selected 12 source-code snippets and
corresponding syntax errors with suitable duration and difficulty.

For the actual fMRI study (see Figure 1b), we conducted the
experiment with 17 participants. Although initial fMRI studies
often do not yield conclusive results because of missing empirical
evidence (e.g., related studies, hypotheses about involved areas),
we measured a clear activation pattern (Figure 1c), which is an
encouraging result that we discuss in Section 6.

4 STUDY DESIGN

Having provided a high-level overview, we now present the tech-
nical details of our study. Additional material (e.g., all source-code
snippets) is available at the project’s website.4

4. tinyurl.com/ProgramComprehensionAndfMRI/

tinyurl.com/ProgramComprehensionAndfMRI/
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1 public static void main(String[] args) {
2 String word = "Hello";
3 String result = new String();
4
5 for (int j = word.length() - 1; j >= 0; j--)
6 result = result + word.charAt(j);
7
8 System.out.println(result);
9 }

Fig. 2. Source code for one comprehension task with expected
output ‘olleH‘.

1 public static void main(String[] ) {
2 String word = "Hello’;
3 String result = new String();
4
5 for (int j = word.length() - 1; j >= 0; j--)
6 result = result + word.charAt(j);
7
8 System.out.println{result);
9 }

Fig. 3. Source code for a syntax task with errors in Line 1, 2, and 8.

4.1 Objective
To the best of our knowledge, we performed the first fMRI
study to measure program comprehension. Since we are exploring
functional mappings of program comprehension a priori, we do
not state research hypotheses about activated brain regions, but
instead, pose three research questions about bottom-up program
comprehension, code complexity, and programmer experience:
RQ1: Which brain regions are activated during bottom-up pro-

gram comprehension?
We focused on bottom-up program comprehension to avoid any
possible additional activation that is caused by participants relying
on their domain knowledge. Recalling this knowledge might
cause activation in memory-related areas, which could make
the interpretation of the results more difficult. With bottom-up
comprehension, we reduce such possible additional noise. Further-
more, we focused on a rather homogeneous level of programming
experience and homogeneous difficulty of source-code snippets
to reduce any noise caused by it. Of course, this higher internal
validity of the design limits the external validity, which we discuss
in Section 9.

The following research questions are intended to show the
potential of fMRI and explore ways to maximize the output of
expensive fMRI studies. To demonstrate this, we performed a
secondary analysis of our data collected in our original study to
answer two new research questions. However, we would like to
note that, with our focus on internal validity (i.e., comparable
source-code snippets and homogeneous level of programming
experience), the results should be treated with caution, and the
analysis should rather be seen as procedure for hypotheses gener-
ation.
RQ2: Does source-code complexity correlate with concentration

levels during bottom-up program comprehension?
With increasing complexity of source code, it seems plausible that
developers need a higher level of concentration to understand it.
With fMRI, we can use the deactivation strength as an indicator
of concentration levels [63]. Thus, with additional analysis, it
is promising to explore this kind of question and evaluate its
potential for future, dedicated studies.
RQ3: Does programming experience correlate with brain activa-

tion strength during bottom-up program comprehension?
Previous research showed that the brain activation (measured with
EEG) differs for novices and experts [55], [59]. With fMRI, we
can also differentiate between novices and experts for different
activities (see Section 11). Thus, we show how we can look for
such an effect in our fMRI study.

4.2 Operationalization of Variables
To answer RQ1, we need to ensure that participants use bottom-
up comprehension only. At the same time, we did not want to

TABLE 1
Correlation values between the four chosen software measures for our

twelve source-code snippets (cf. Table 2).

Correlation

DepDegree LOC 0.19
DepDegree McCabe 0.44
DepDegree Halstead 0.63
LOC McCabe 0.41
LOC Halstead 0.62
McCabe Halstead 0.59

increase the load on working memory unnecessarily. To balance
the meaningfulness of identifier names, we conducted pilot studies
(cf. Section 4.4), which showed that naming variables according
to their purpose provides an optimal balance. For example, in
Figure 2, variable result provides a hint of its purpose (i.e., that
it contains the result), but does not reveal its content (i.e., that
it holds the reversed word), and is also not completely unrelated
(e.g., aaaa).

For RQ2, we need to find a measure of complexity for source
code. Various software complexity measures have been proposed,
which can be categorized into four groups:

• Size measures quantify the length of source code. The ratio-
nale is that, the more lines source code has, the more complex
it is. We selected the commonly used LOC measure (without
white spaces) as a representative measure [46].

• Control-flow measures quantify the complexity of the control
flow of a program. The more possible execution paths exist,
the higher the complexity. As representative, we selected
McCabe’s cyclomatic complexity, which counts the number
of possible execution paths [62].

• Another category of software measures aims at the vocabu-
lary size of source code: The more variables and operations
exist, the more cognitive effort is required to understand a
program. As representative, we selected Halstead’s complex-
ity [43].

• Data-flow measures quantify how much information is moved
between program variables. The more information is moved,
the more a developer has to consider and the more difficult
it is to understand it, that is, where and what information
is passed. We selected DepDegree as representative, which
counts how often information is passed between program
elements [8].

We selected one representative of each group, so that we do
not miss potential interesting relationships between source-code
complexity and concentration (i.e., to increase construct validity).

While there is a long-lasting discussion about the benefits and
drawbacks of software measures, they are nevertheless used as



REVISION 1 FOR TSE 6

indicator to assess the maintainability, extensibility, or compre-
hensibility of source code [30]. The benefit of software measures
is that they are relatively easy to compute, but as drawback,
their expressiveness for such aspects is unclear [27], [94], [107].
Additionally, with the plethora of software measures, it is not quite
clear to what extent software measures actually describe different
aspects of source code, or in other words, are independent. With
our selection from different categories, we intend to mitigate
this issue. However, the correlation of the software measures is
quite high (see Table 1), except for DepDegree and LOC. Thus,
the software measures are not independent for our source-code
snippets. Nevertheless, we need to keep in mind that the snippets
were not designed for this kind of analysis, and that the main
purpose of conducting this analysis is to show a way to relate
software measures to cognitive effort using fMRI.

To operationalize concentration, we evaluate changes in blood
flow of the default mode network, which comprises several brain
areas (e.g., cingulate cortex, prefrontal midline regions) and which
is related to self-referential processing [37], [88]. When left to
think about nothing specific (e.g., in the rest conditions), we often
think about self-related aspects, for example, our plans for after
the scanner session or previous experiences. This is reflected
in an increased blood flow within the default mode network,
that is, the default mode network shows high activation during
rest states. When we concentrate on tasks, the default mode
network deactivates, so that this self-referential processing does
not interfere with the task. Hence, with the level of deactivation
of the default mode network, we can measure the concentration
level of participants: the stronger the deactivation, the higher the
concentration level.

To address RQ3, we need to operationalize programming
experience. To this end, we selected two measures:

• Program experience score as determined by our questionnaire
(i.e., a combination of self-estimated experience with logic
programming and self-estimated experience compared to
class mates) [28].

• Java knowledge based on self estimation of the participants,
because we used Java as underlying programming language.

4.3 Experimental Design

All participants completed the experiment in the same order.
Before the measurement, we explained the procedure to each
participant and they signed an informed consent form. Each
session started with an anatomical measurement stage that lasted
9 minutes. This was necessary to map the observed activation to
the correct brain regions. Next, participants solved tasks inside
the fMRI scanner in the Leibniz Institute for Neurobiology in
Magdeburg. We had 12 trials, each consisting of a comprehension
task and a syntax task, separated by rest periods:

1. Comprehension task [60 seconds]
2. Rest [30 seconds]
3. Syntax task [30 seconds]
4. Rest [30 seconds]

The rest periods, in which participants were instructed to do
nothing, was our baseline (i.e., the activation pattern when no
specific cognitive processes take place). To familiarize participants
with the setting, we started with a warm-up trial, a hello-world
example that was not analyzed. Instead of saying or entering
the output of source-code snippets, participants indicated when
they have determined the output in their mind or located all

syntax errors by using the left of two keys of a response box
with their right index finger. With this procedure, we minimized
motion artifacts during the fMRI measurement. To ensure that
comprehension took place, we showed the source code again
directly after the scanner sessions, and participants entered their
answer.

4.4 Material

Initially, we designed 23 standard algorithms that are typically
taught in first-year undergraduate computer-science education at
German universities. For example, we had algorithms for sorting
or searching in arrays, string operations (cf. Figure 2), and simple
integer arithmetic, such as computing a power function (see
project’s Web site for all initially selected source-code snippets).
The selected algorithms were different enough to avoid learning
effects from one algorithm to another, but yet similar enough (e.g.,
regarding length, difficulty) to elicit similar activation, which is
necessary for averaging the BOLD effect over all tasks.

We created a main program for each algorithm, printing the
output for a sample input. All algorithms are written in imperative
Java code inside a single main function without recursion and with
light usage of standard API functions. To minimize cognitive load
caused by complex operations that are not inherent to program
comprehension, we used small inputs and simple arithmetic (e.g.,
2 to the power of 3).

We injected three syntax errors into every program to derive
control tasks that are otherwise identical to the corresponding
comprehension tasks, as illustrated in Figure 3. The syntax er-
rors can be located without understanding the execution of the
program; they merely require some kind of pattern matching.

In a first pilot study [98], we determined whether the tasks
have suitable difficulty and length. In a lab session, we asked
participants to determine the output of the source-code snippets
and measured time and correctness. 41 undergraduate computer-
science students of the University of Passau participated. To
simulate the situation in the fMRI scanner, participants were not
allowed to make any notes during comprehension. Based on the
response time of the participants, we excluded six snippets with
a too high mean response time (> 120 seconds) and one snippet
with a too low response time (< 30 seconds) to maximize the
BOLD response in the fMRI scanner (cf. Section 3.2). Regarding
correctness, we found that, on average, 90 % of the participants
correctly determined the output, so none of the snippets had to be
excluded based on difficulty.

In a second pilot study, we evaluated the suitability of syn-
tax tasks, so that we can isolate the activation caused only by
comprehension. Undergraduate students from the University of
Marburg (4) and Magdeburg (4) as well as one professional Java
programmer located syntax errors. We analyzed response time and
correctness to select suitable syntax tasks. All response times were
within the necessary range, and most participants found, at least,
two syntax errors. Thus, the syntax tasks had a suitable level of
difficulty.

For the session in the fMRI scanner, we further excluded four
tasks to keep the experiment time within one hour. We excluded
one task with the shortest and one with the longest response time.
We also excluded two tasks that are similar to other tasks (e.g.,
adding vs. multiplying numbers). We defined a fixed order for the
source-code snippets to maximize the distance between snippets
being shown for comprehension and locating syntax errors, while
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also preferably being shown as comprehension first. Whenever
possible, we let participants first comprehend a snippet, then, in
a later trial, locate syntax errors in the corresponding snippets,
with a large as possible distance between both. This was not
possible for three snippets (reverse array, cross sum, decimal to
binary). With this fixed order, we attempted to minimize learning
effects.5 In Table 2, we give a high-level description of the source-
code snippets, including the four different software complexity
measures that we correlated with concentration.

Furthermore, we assessed the programming experience of
participants with an empirically developed questionnaire to assure
a homogeneous level of programming experience [28], and we
assessed the handedness of our participants with the Edinburgh
Handedness Inventory [72], because the handedness correlates
with the role of the brain hemispheres [56] and, thus, is necessary
to correctly analyze the activation patterns.

4.5 Participants

To recruit participants, we used message boards of the University
of Magdeburg. We recruited 17 computer-science and mathematics
students, two of them female, all with an undergraduate level of
programming experience and Java experience (see project’s Web
site for details), comparable to our pilot-study participants. Thus,
we can assume that our participants were able to understand the
algorithms within the given time frame. We selected students,
because they are rather homogeneous; this way, the influence
of different backgrounds is minimized. While it seems counter-
intuitive to select a homogeneous sample in terms of programming
experience, the specific population will be programmers, and even
novice programmers represent a relevant sample. In future studies,
we will also recruit more experienced programmers.

All participants had normal or corrected-to-normal vision. One
participant was left handed, but showed the same lateralization
as right handers, as we determined by a standard lateralization
test [7]. The participants gave written informed consent to the
study, which was approved by the ethics committee of the Uni-
versity of Magdeburg. As compensation, the participants received
20 Euros. The participants were aware that they could end the
experiment at any time.

4.6 Imaging Methods

The imaging methods are standard procedure of fMRI studies and
are described in detail in this section.

4.6.1 Source-Code Presentation

For source-code presentation and participant-response recording,
we used the Presentation software (www.neurobs.com) running
on a standard PC. Source code was back-projected onto a screen
that could be viewed via a mirror mounted on the head coil (cf.
Fig. 1b). The distance between the participant’s eyes and the
screen was 59 cm, with a screen size of 325 × 260mm, which
is appropriate for an angle of ±15◦. The source-code snippets
were presented in the center of the screen with a font size of 18,
as defined in the Presentation software. The longest source-code
snippet had 18 lines of code.

5. A randomized order, which is usually used to minimize learning effects,
may have shown the same snippet as comprehension and locate syntax error
directly after each other and as such not been effective for this study.

4.6.2 Data Acquisition
We carried out the measurements on a 3 Tesla scanner (Siemens
Trio, Erlangen, Germany) equipped with an eight channel head
coil. The 3D anatomical data set of the participant’s brain (192
slices of 1mm each) was obtained before the fMRI measurement.
Additionally, we acquired an Inversion-Recovery-Echo-Planar-
Imaging (IR-EPI) scan with the identical geometry as in the fMRI
measurement, to obtain a more precise alignment of the functional
to the 3D anatomical data set.

For fMRI, we acquired 985 functional volumes in 32 minutes
and 50 seconds using an echo planar imaging (EPI) sequence
(echo time (TE), 30 ms; repetition time (TR), 2000 ms; flip angle,
±80◦; matrix size, 64 × 64; field of view, 19.2 cm×19.2 cm; 33
slices of 3mm thickness with 0.45mm gaps). During the scans,
participants wore earplugs for noise protection.

4.6.3 Data Preparation
We analyzed the functional data with BrainVoyager™ QX 2.1.2.6

We started a standard sequence of preprocessing steps, including
3D-motion correction (where each functional volume is coregis-
tered to the first volume of the series), linear trend removal, and
filtering with a high pass of three cycles per scan. This way, we
reduced the influence of artifacts that are unavoidable in fMRI
studies (e.g., minimal movement of participants). Furthermore, we
transformed the anatomical data of each participant to a standard
Talairach brain [105].

Next, we spatially smoothed the functional data with a
Gaussian filter (FWHM=4mm). Furthermore, we normalized the
BOLD response to the baseline that is defined by averaging the
BOLD amplitude 15 seconds before the onset of the comprehen-
sion and syntax condition, respectively. Then, we averaged the
BOLD response over all participants.

Additionally, we thoroughly inspected the functional data for
strong signal intensity fluctuations resulting from head motion. For
this purpose, we analyzed the automated head-motion-correction
procedure, which resulted in estimated translation and rotation
parameters for each spatial direction. In particular, we checked the
data for jerky movements, as these can lead to signal artifacts. We
defined a jerky move as a translation or rotation of the head from
one volume to the next in the magnitude of 0.5 mm or 0.5° in one
spatial direction or of 1.0 mm or 1.0° as the sum of all directions.
We eliminated the respective volumes to correct for outliers.

4.6.4 Analysis Procedure
We conducted a random-effects GLM analysis, defining one pre-
dictor for the comprehension tasks and one for the syntax tasks.
These were convolved with the model of a two-gamma haemody-
namic response function using the default parameters implemented
in BrainVoyager™ QX. We averaged the haemodynamic response
for each condition (comprehension, syntax) across the repetitions.

Next, we contrasted comprehension with the rest condition
using a significance level of p< 0.05 (FDR-corrected [6]), to
determine the voxels that showed a positive deflection of the
BOLD response, compared to the rest period. This way, we were
able to exclude voxels that were deactivated, which we analyzed
separately. The activated voxels comprised a mask, which was
used in the subsequent contrast, where we directly compared com-
prehension with syntax tasks at a significance level of p< 0.01
(FDR-corrected) and a minimum cluster size of 64mm3.

6. Brain Innovation B.V., Netherlands, brainvoyager.com

www.neurobs.com
brainvoyager.com
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TABLE 2
Description of source-code snippets used in the study, ordered by the appearance of the comprehension task. One row represents the snippets of

one trial. Column Comprehension denotes a snippet to be comprehended, column Syntax denotes the snippet of the same trial for which
participants should locate syntax errors. The middle columns show the software measures of each comprehension snippet.

Comprehension LOC McCabe Halstead DepDegree Syntax

Factorial 9 2 8.88 11 Decimal to binary
Check substring 15 3 15.28 14 Cross sum
Largest number 8 3 11.19 17 Reverse array
Reverse word 7 2 10.71 13 Check substring
Swap 9 1 6.77 5 Maximum in array
Power 9 2 10.40 12 Reverse word
Median 11 2 16.12 8 Factorial
Reverse array 11 3 18.35 25 Swap
Cross sum 9 2 11.50 11 Median
Largest of three numbers 11 7 15.86 15 Power
Count same chars 15 4 17.29 15 Largest of three numbers
Decimal to binary 12 3 14.00 16 Count same chars

To identify areas with task-induced deactivation within the
default network, we contrasted program comprehension with the
resting condition. To test whether there are systematic differences
in task-induced deactivation elicited by the different program
codes, we calculated for each of the resulting regions of interest
the beta values from the general linear model for the 12 different
code snippets. We then performed a two-sided Pearson correlation
between these beta values and the different software measures, i.e.,
LOC, McCabe, Halstead, and DepDegree (RQ2). For RQ3, we
computed the Spearman correlations of programming experience
with the activation strength of the significant Brodmann areas.

As the last step, we determined the Brodmann areas based
on the Talairach coordinates with the Talairach daemon (client
version, available online at www.talairach.org). The Talairach
space is used for the technical details of the analysis, and the
Brodmann areas are used to map activated areas to cognitive
processes.

5 RESULTS

In this section, we present the results, separated by the three
research questions. For each research question, we first present
the results, directly followed by the interpretation of the results.
We discuss the implications of the results in Section 6.

5.1 RQ1: Which Brain Regions Are Activated during
Bottom-Up Program Comprehension?

In Figure 4, we show the resulting activation pattern of the
analysis, including the time course of the BOLD responses for
each cluster. The activation picture and BOLD responses are
averaged over all tasks per condition (comprehension, syntax)
and participants; the gray area around the time courses shows
the standard deviation based on the participants’ averaging.

We did not exclude any data from participants, since all
showed comprehension of the source-code snippets by at least
one of three ways: entering the correct output of the source code
after the experiment, correctly describing what the source code
was doing, or by ensuring that they attempted to comprehend the
source code (based on the questionnaire after the measurement;
see project’s Web site for details).

In essence, we found five relevant activation clusters, all in the
left hemisphere. For each cluster, we show Talairach coordinates,
the size of the cluster, related Brodmann areas, and relevant

associated cognitive processes (note that deciding which cognitive
processes are relevant belongs to the interpretation, not results; see
Section 6). Thus, we can answer our first research question:
RQ1: During bottom-up program comprehension, Brodmann ar-

eas 6, 21, 40, 44, and 47 are activated.

5.2 RQ2: Does Source-Code Complexity Correlate with
Concentration Levels during Bottom-Up Program Com-
prehension?

In Figure 5, we show the significantly deactivated areas and their
BOLD responses. The left part of Figure 5 shows the areas that
are significantly deactivated during the comprehension task, that
is, areas with less activation compared to the rest condition (color-
coded with blue). The deactivated areas, that is, the prefrontal
midline areas and posterior cingulate cortex, are both key compo-
nents of the default mode network. The BOLD responses of the
deactivated areas show a drop between 5 and 15 seconds after
task onset. This indicates that participants concentrated during the
comprehension tasks.

Next, we looked at the correlation between the strength of
deactivation and complexity of source code for the set of software
measures. Figure 6 visualizes the correlation of the software
measures with the beta value for each deactivated areas averaged
across participants. By using the mean, we can reduce the influ-
ence of peculiarities of individual participants. Each dot in the plot
indicates one comprehension task. We found that all deactivated
areas correlate negatively with DepDegree and Halstead; that is,
the higher the value for these complexity measures, the lower the
level of the beta value for the deactivated areas (indicating more
concentration). One correlation, that is, the correlation of BA 32
with DepDegree (−0.591, bottom right) is statistically significant.
Given our small sample size, we can actually expect that although
some of the correlations have a high value, these are not neces-
sarily statistically significant (cf. Section 4.1). Interestingly, the
correlation with McCabe is positive, indicating that with a higher
control-flow complexity, the deactivation of the found areas is
less pronounced, or in other words, requires less concentration of
participants. However, these correlations are not significant. The
weakest correlations are with lines of code, indicating that there
is no relationship between lines of code and concentration in our
sample. However, it is important to note the source-code snippets
were designed to be similar in length and complexity. Thus, while
we demonstrated what such an analysis looks like, the source-code

www.talairach.org
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Fig. 4. Observed activation pattern for program comprehension and time
courses of the BOLD response for each cluster. The time course in light
gray is the BOLD response for the contrasting syntax condition. The
shaded area around each time course depicts the standard deviation
based on the participants. BA: Brodmann area.

snippets need to show a higher variation in length and complexity
to reliably evaluate whether a relationship between concentration
and length/complexity exists.

Another important issue to consider is the correlation of the
software measures amongst themselves (cf. Table 1). For example,
since Halstead and DepDegree exhibit a high correlation, it is only
natural that both also have a high correlation with the deactivation
strength. However, at the same time, Halstead also has a high
correlation with LOC, yet LOC has almost no correlation with the
deactivation strength. However, since we have a small sample and
the snippets are not designed to actually provide an answer to this
question, we are not digging deeper into explaining this result. The
purpose of this analysis is to merely show how software measures
can be related to cognitive effort.

5.3 RQ3: Does Programming Experience Correlate with
Brain Activation Strength during Bottom-Up Program
Comprehension?

We found five activated brain areas during program comprehen-
sion, which are shown in Figure 4. For RQ3, we computed the
Spearman correlation between the strength of activation in the five
activated brain areas during program comprehension and a partic-
ipant’s programming experience and Java knowledge (visualized
in Figures 7 and 8).

The distribution of programming experience scores is clustered
around a low score value of 2.0. This can be explained by the ho-
mogeneous participant group of computer science students, which
are rather novice programmers. Nevertheless, it is noteworthy that
the correlations are different between the five brain areas. BA 21
shows a weak positive correlation (0.211). BA 6, BA 40, BA 44,
and BA47 show a weak negative correlation (−0.089, −0.027,
−0.202, and −0.148, respectively). However, the correlation
between programming experience score and activation strength is
not statistically significant for any of the five activated brain areas.

Self-estimated Java knowledge provides a more varied dis-
tribution. That means while the participants are overall rather
inexperienced, their individual Java knowledge is diverse. The
correlation between the Java knowledge and the activation strength
is negative for all five activated brain areas. Hence, participants
with more Java experience tend to have a lower activation strength.
In other words, the data indicate that programmers familiar with
Java require less cognitive effort to understand Java source code.
In particular, BA 6 and BA 21 show a strong and significant
negative correlation (−0.514, and −0.601, respectively). The
activation strength of BA 40, BA 44, and BA 47 is also negatively
correlated with the Java knowledge (−0.219, −0.379, and −0.21,
respectively), but not statistically significant.

6 DISCUSSION

6.1 RQ1: Which Brain Regions Are Activated during
Bottom-Up Program Comprehension?

In our study, we found a distinct activation pattern of five Brod-
mann areas. In an initial study with such limited understanding
of the role of different cognitive processes for bottom-up program
comprehension, finding such a clear pattern is not the norm and
demonstrates that the results (and our methodology) are very
promising. To clarify the role of the activated brain areas and
associated cognitive processes, we look at other fMRI studies that
found the same areas activated as we did.
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Fig. 5. Significant deactivation during program comprehension in the default mode network. The figure on the left visualizes the significantly
deactivated areas and their location in the brain. The three graphs to the right show BOLD responses of each deactivated area. The deactivation
slopes upwards after the peak, because some participants finish early. This effect is similar in the activated brain areas (cf. Figure 4).
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Fig. 6. Scatterplot of software measures and strength of deactivation of BA 31ant, BA 31post, and BA 32. Each dot represents one comprehension
task. The strength of deactivation is the average beta value across all participants.
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Fig. 7. Scatterplot of programming experience and activation strength of BA 6, BA 21, BA 40, BA 44, and BA 47. Each dot represents one participant.
The strength of activation for each cluster is the average beta value across all snippets.
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Fig. 8. Scatterplot of Java knowledge and activation strength of BA 6, BA 21, BA 40, BA 44, and BA 47. Each dot represents one participant. The
strength of activation for each cluster is the average beta value across all snippets.
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Brodmann areas 6 and 40 are often activated in cognitive
tasks that require attention, working memory, or problem solving.
In recent studies regarding typical problem-solving tasks for
words and numbers (e.g., solving 4 + 1 = x − 1 for x or
April+1 = favorite−1 for favorite), BA 40 in the left inferior
parietal cortex has been found to be consistently activated, indicat-
ing its important role in such activities [2], [69], [90]. Especially
when applying algorithmic strategies to mathematical problems
(e.g., for multiplying multi-digit numbers), the left inferior parietal
cortex plays an important role [2], [90]. Its activation is modulated
by the sophistication of strategies (e.g., the school strategy of
multiplication from right to left vs. the expert strategy used in
high-speed expert calculation, which goes from left to right), such
that higher activation occurred in the posterior superior parietal
lobule when applying the school strategy [90]. In our studies,
participants also needed to solve problems based on numbers
and words, that is, manipulating numbers or words in their mind
according to the algorithms they identified in the source-code
snippets. This also requires working memory in order to not forget
the values of the manipulated words or numbers. Different studies
consistently locate working memory, among others in BA 40 in the
inferior parietal cortex [10], [11], [70], independent of whether
numbers or words were manipulated. Common tasks that lead
to activation in these areas include memorizing several numbers,
consisting of pairs of numbers with mathematical structure (e.g.,
BAs 21, 32, 43, and 54) and without mathematical structure
(e.g., BAs 18, 63, 90, and 47), or comprehending sentences with
different syntactic structure that put different load on working
memory. These kinds of tasks are comparable to comprehending
source code, in particular regarding their working memory load.

Brodmann area 6 in the middle frontal gyrus is linked with
tasks that require divided attention and is part of the attentional
network [68], [102]. Like in our study, participants need to split
their attention, for example, on two information streams and at
the same time perform a one-back task (i.e., recall an item in a
sequence of items that was shown before the current item) [68].
For comprehending source code, participants also need to keep in
mind the value of variables and at the same time process control
flow. These two processes each require attention.

What is also noteworthy here is that often, both BA 6 and
BA 40 are found to be jointly activated for tasks that require
high working-memory load [10], [11]. Especially for tasks, such
as memorizing pairs of numbers or processing sentences with or
without grammatical structure, which can pose a high load on
working memory, a joint activation can be found, indicating that
both areas are connected via neural pathways. In future studies,
we will explore to what extent both areas in the frontal and
parietal lobe play a joint or distinct role in bottom-up program
comprehension.

In addition to other cognitive processes, BA 21, 44, and 47
are related to different facets of language processing. Numerous
studies showed the involvement of all three Brodmann areas in
artificial as well as natural-language processing [4], [81], [101]. In
particular, artificial-language processing is interesting, because ar-
tificial languages are based on formal grammars and limited sets of
symbols, such as words or graphemes, from which letter or word
sequences are created. Participants of typical artificial-language
studies are asked to decide based on their intuition, after a learning
period, whether sequences are grammatical or not, resulting in
activation in BA 21, 44, and 47. Artificial-language processing and
program comprehension are similar, since both usually built on a

limited set of elements and rules; in the syntax tasks, participants
apply pattern matching in order to locate the syntax errors. Based
on the similarity of program comprehension to artificial-language
processing, which is in turn similar to natural-language processing,
we conjecture that one aspect of program comprehension involves
language processing.

The posterior middle temporal gyrus (MTG) (BA 21) is closely
associated with semantic processing at the word level. Both
imaging and lesion studies suggest an intimate relation between
the success or failure with accessing semantic information and
the posterior MTG [9], [23], [108]. In our study, participants also
needed to identify the meaning of written words in the source code
to successfully understand the source code and its output, which
was not necessary for the syntax tasks. Thus, we found evidence
that understanding the meaning of single words is a necessary part
of program comprehension. This may not sound too surprising,
but we actually observed it in a controlled setting.

The inferior frontal gyrus (IFG) (BA 44 and BA 47) is related
to combinatorial aspects in language processing, for example, pro-
cessing of complex grammatical dependencies in sentences during
syntactic processing [29], [40]. Several studies suggest that real-
time combinatorial operations in the IFG incorporate the current
state of processing and integrates incoming information into a new
state of processing [42], [82]. Hence, the IFG was proposed to be
involved in the unification of individual semantic features into an
overall representation at the multi-word level [108]. This is closely
related to bottom-up program comprehension, where participants
combine words and statements to semantic chunks to understand
what the source code is doing. In the syntax tasks, participants did
not need to group anything to succeed.

While we discussed several activation clusters consistently
found in studies on language comprehension and processing
(i.e., BAs 21, 44, 47), we also need to discuss the fact that not
the entire network that is associated with language processing
was activated [87]. Specifically, we did not detect an activation in
the anterior medial temporal lobe, which is commonly associated
with semantic processing of language [87]. Similarly, we did
not observe an activation in the left temporal pole, which is
attributed to higher-level discourse processing [60]. In the same
vein, additional areas for working memory might be observed in
different studies, depending on the task (e.g., BAs 32, 43, and
54), indicating that not the entire network is recruited for program
comprehension. Most likely, our tasks share not all cognitive sub
processes of the other tasks reported in literature, indicating that
the sub processes of program comprehension might be unique and
tailored to comprehending source code. However, we need further
studies to dissociate program comprehension and its sub processes
from other cognitive processes.

In addition to the individual Brodmann areas, there is evidence
for a direct interaction among the activated areas of our compre-
hension task. Two separate clusters were activated in the IFG, one
in BA 44 and one in BA 47, which is also suggested by other
fMRI studies. BA 44 was mainly associated with core syntactic
processes, such as syntactic structure building [29], [34], [35].
In contrast, BA 47 is assumed to serve as a semantic executive
system that regulates and controls retrieval, selection, and evalu-
ation of semantic information [91], [108]. Accordingly, program
comprehension requires the participants to build up the underlying
syntactic structures, to retrieve the meanings of the words and
symbols, and to compare and evaluate possible alternatives; none
of these processes is necessary to locate syntax errors.
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Moreover, reciprocal connections via a strong fiber pathway
between BA 47 and the posterior MTG—the inferior occipito-
frontal fasciculus—have been claimed to support the interaction
between these areas, such that appropriate lexical-semantic repre-
sentation are selected, sustained in short-term memory throughout
sentence processing, and integrated into the overall context [108].
Regarding program comprehension, we conjecture that, to com-
bine words or symbols to statements, and statements to semantic
chunks, the neural pathway between the MTG and IFG is involved.

6.2 RQ2: Does Source-Code Complexity Correlate with
Concentration Levels during Bottom-Up Program Com-
prehension?
With our rather small sample size and low number of snippets,
the results are difficult to interpret. Nevertheless, we the analysis
is very promising: The high correlation values with DepDegree
and Halstead indicate that data-flow complexity and vocabulary
size as operationalized by these measures modulate concentration
levels of participants, which is in line with McKiernan’s result
of a stronger deactivation during more difficult tasks [63]. This
also fits well to bottom-up comprehension, because there are no
beacons to act as cues that could relieve cognitive load during
comprehension. Instead, variable names remain rather abstract,
and data-flow cannot easily be associated with certain variables.

In the past, many attempts have been made to measure the
complexity of source code. For each complexity category from
which we selected a representative measure (cf. Section 4.1), a
plethora of code and software measures has been proposed [46].
However, it is still largely unclear why a certain measure works
in a certain context and how to design a comprehensive and
feasible set of measures to assist software engineering. Which
properties should a code complexity measure address? Our data
indicate that data-flow aspects and possibly vocabulary size affect
concentration levels of participants, but not other aspects, such as
syntactic properties or control flow. While not a definite answer,
the hypothesis of a connection between data-flow complexity and
vocabulary size, on the one hand, and required concentration of
participants, on the other hand, is an intriguing hypothesis for
future research, and our experimental design and analysis show a
way to investigate this in more detail.

6.3 RQ3: Does Programming Experience Correlate with
Brain Activation Strength during Bottom-Up Program
Comprehension?
The missing correlation between programming experience (based
on the experience score) and brain activation strength indicates
that a higher general programming experience does not lead to
a reduced cognitive effort. A follow-up study showed that top-
down comprehension leads to a much lower activation strength
(neural efficiency) than bottom-up comprehension [100]. However,
our analysis here indicates that experienced programmers do not
automatically show higher neural efficiency for a comprehension
task in any programming language. Only experience in the spe-
cific programming language leads to a lower cognitive effort, as
indicated by the negative correlation between knowledge of the
Java programming language and brain activation. In other words,
programming skills might not be efficiently transferred [79] to
any domain, so an expert programmer might fall back to the
neural efficiency of a novice when working with an unfamiliar
language or domain. Floyd and others found a similar result in

Fig. 9. Brodmann-area activation in replication study.

their fMRI study to analyze the difference in brain activation
across programming-experience levels [33]. Their results show
that program comprehension becomes increasingly similar to
prose reading with higher programming experience.

The strength of the correlations, especially for BAs 6 and 21, is
surprising, as the experimental design was not primarily developed
to address this question. This indicates that it is a very promising
direction to further look into the role that the familiarity of a
programming language plays for neural efficiency. The reduced
activation strength in BA 21 indicates that being familiar with
Java allowed our participants to be more efficient in analyzing
the words and symbols of the source code. Consequently, the
amount of values the participants had to keep in their working
memory was reduced as well, which would explain the lower
activation in BA 6. In conclusion, specific programming knowl-
edge seems to have a strong effect on reading source code, and
transferring knowledge between different programming languages
is not that trivial. However, analyzing higher-level semantics,
which is represented in BAs 40, 44, and 47, seems only moderately
affected by familiarity with programming languages, indicating
that this cognitive process is rather independent of the underlying
programming language.

It is important to note that our interpretation of the data
has to be treated with caution. The sample is small and rather
homogeneous, and the strength of brain activation does not nec-
essarily equal cognitive effort. To specifically examine cognitive
effort, a parametric design or an independent measure (e.g.,
psycho-physiological parameters of EEG) is needed. Nevertheless,
RQ3 shows the opportunities that fMRI provides for software-
engineering research and how this kind of analysis can be used
as hypothesis-generating procedure. Follow-up studies dedicated
to this research question can build on our framework and a spe-
cialized design to fully understand the relationship between brain
activation strength, cognitive effort, and programming experience.
Can we identify expert programmers with fMRI? How transferable
are programming skills between domains and languages? Our ap-
proach to fMRI data analysis gives researchers a new perspective
and tool to answer these kinds of questions.

7 REPLICATION STUDY

To gain confidence in the validity of our results for RQ1 regarding
neural correlates of bottom-up program comprehension, we con-
ducted a non-exact replication of our study. To this end, we made
a few alterations, with the aim of increasing external validity (in
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Fig. 10. Visualization of how bottom-up program comprehension might take place.

the original paper [100], we present details on the study design).
First, we added new code snippets as compared to the original
version, but kept a similar level of length and complexity (e.g.,
finding the largest number in an array of numbers or double the
entries in an array). To still be able to compare the results to
our original study, we also kept a subset of the original snippets.
On the supplementary Web site,7 we show all the snippets that
we used. Second, we shorten the comprehension condition to
30 seconds to reduce the chance of participants finishing a task
and starting to rest early, which reduces contrast strength. Third,
we randomized the snippet order to exclude learning effects.
Lastly, we recruited 11 new participants who did not participate
in the first study. The number of participants may seem low for
conventional or other neuro-imaging methods. However, because
program comprehension yields a high percentage signal change,
the sample size is sufficiently large to find these effects [20].
To ensure comparability, we drew the sample from the same
population. The participants’ mean age was 25.3 ± 3.82 years,
and all were familiar with Java or C at a medium level or higher.

The replication study was performed on a different MRI
scanner (3 Tesla Philips dStream) using comparable measurement
parameters. Because of the differences in experiment design and
execution, we separately analyzed the data. We executed the
same preprocessing and analysis steps, and found very promising
results, such that essentially the same areas activated with a
similar BOLD response (shown in Figure 9). Specifically, we
could replicate the activation in BAs 21, 40, and 44. However,
there are a few differences. First, we found that Brodmann area
39 was activated, which we did not find in the first study. We
suspect one reason for missing this activation in the first study due
to the small difference between comprehension and syntax-error
finding, which we could not detect due to the rather low statistical
power. In the replication, the activation was actually stronger than
in the original study, so it was significant despite even smaller
statistical power. BA 39 plays a crucial role as semantic hub to
integrate multi-sensory information to form an understanding of
events and solve familiar problems [95]. Thus, in future studies,
we will specifically look at BA 39, even if it is not significantly
activated, to further pinpoint the strength of the activation and
identify its role for program comprehension. Second, we did not
find an activation in BAs 6 and 47. For BA 6, it might be that
subtle anatomical differences of participants might cause it to be
attributed to different voxels. This assumption is strengthened by

7. github.com/brains-on-code/paper-esec-fse-2017/

the fact that we found an activation, which can also be attributed
to BA 6, in the same region close to the activation cluster of the
original study. Mapping voxels to according Brodmann areas is
not trivial [31], and it may be that subtle differences lead to a
different mapping. For BA 47, the size of the area that the original
study revealed was very small. In conjunction with the larger
statistical power due to more participants and more comprehension
tasks in the original study, this might explain why we could not
replicate the activation of BA 47. Thus, to answer RQ1, we can
state that BAs 6, 21, 40, and 44 are neuronal correlates of bottom-
up program comprehension. BAs 39 and 47 also seem to play a
role, but it is not as clear as for the other Brodmann areas.

Looking at the deactivated areas during the comprehension
condition, we also found the same areas deactivated as in the
original study, that is BA 31ant, BA 31post, and BA 32 (cf. Fig. 5).

We were not the only ones to replicate our study. Based on
the same snippets, but with EEG, Lee and others found BAs 6
and 44 activated, indicating their consistent role during bottom-up
program comprehension (see Section 10 for more details) [59].
Thus, the results our replication and of the study by Lee and
others are very encouraging and strengthen the validity of our
experimental design. They encourage us to keep using fMRI (and
other neuro-imaging techniques) to better understand program
comprehension and other related cognitive processes.

We did not analyze RQs 2 and 3 in the replication study, be-
cause the purpose of these RQs was to show the potential of fMRI.
Although we increased external validity with the replication, we
still did not design enough variability in the source-code snippets
and sample to meaningfully answer these questions. In the future,
we will further carefully increase external validity to also answer
such questions.

8 IMPLICATIONS FOR PROGRAM
COMPREHENSION

Having identified activated and deactivated clusters and discussed
their role for program comprehension in relation to other stud-
ies, we can now discuss the results from a higher level of
abstraction. Specifically, we can hypothesize what a cognitive
model of bottom-up program comprehension can look like. To
understand source code, participants analyzed words and symbols
and grouped them into semantic chunks. To this end, they need
the language network of BAs 21, 44, and 47 that we found
in our study. Additionally, BA 39 in both hemispheres might
play a role during the integration. At the same time, participants

github.com/brains-on-code/paper-esec-fse-2017/
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manipulate the values of numbers and words according to the
intention of the source code. For this, they need to keep the
values of the manipulated words and numbers in their mind,
which is related to BAs 6 and 40. All parts, that is, semantic
analysis of source code, manipulating the values of variables, and
storing them in working memory, happens in parallel, for which
participants need to divide their attention (located in BA 6). At the
same time, with rising concentration levels, parts of the default
mode network deactivated not to interfere with comprehending the
source code. With increasing complexity of source-code snippets,
the deactivation also gets stronger, indicating higher concentration
levels. We illustrate this process in Figure 10.

Based on this model, we can hypothesize what influences
program comprehension. For example, if we increase the number
of variables beyond the working memory capacity of program-
mers, program comprehension should be impaired. Or, if we
increase the complexity of source code, we might observe a
parametrically stronger deactivation of the default mode network
(more discussion in Section 11).

9 THREATS TO VALIDITY

Inherent to our study design, there are threats to specific kinds of
validity, which we discuss next.

9.1 Internal Validity

We performed several steps to interpret the data. Especially,
when deciding which cognitive processes for each Brodmann
area are relevant, we might have missed important processes. As
a consequence, our interpretation might have led to a different
comprehension model. To reduce this threat, we discussed among
the author team, which combines expertise from psychology, neu-
robiology, linguistics, as well as computer science and software
engineering, for each process whether it might be related to our
comprehension tasks. Additionally, all processes that are known
to be associated with these Brodmann areas are available on the
project’s Web site.

9.2 External Validity

The source-code snippets that we selected were comparatively
short, at most, 18 lines of code. Furthermore, we focused on
bottom-up comprehension, and we explicitly avoided scrolling or
typing to reduce any motion-related artifacts as far as possible.
Thus, we focused on only one aspect of the complex comprehen-
sion process and cannot generalize our results to programming
in the large—clearly, more studies have to follow. Nevertheless,
it is conceptually possible to use a more complex setting, even
tasks that last for several hours, and our results encourage us to
try such larger settings in future studies, possibly also with other
neuro-imaging techniques (see Section 2.5).

Another threat is that we kept the background of our partici-
pants, such as their programming experience and culture, constant
to reduce the variability of the outcome. Furthermore, we did not
control for gender of participants, which might bias the results,
in that women show a tendency to prefer bottom-up comprehen-
sion [32]. Thus, we can generalize our results only carefully. In
the next section, we outline, among others, how such personal
differences might affect program comprehension.

9.3 Construct Validity
Furthermore, we cannot be entirely certain to what extent we
ensured bottom-up comprehension. It is possible that participants
recognized some algorithms, as they were taken from typical
introductory courses. However, since we obfuscated identifier
names and the time per source-code snippet was relatively short,
we can assume that participants used bottom-up comprehension
most of the time; this conjecture is supported by the fact that we
did not observe activation in typical memory-related areas.

10 RELATED WORK

10.1 Neuroscience
In the neuroscience domain, several studies exist that also study
tasks related to comprehension and detection of syntax errors.
However, these studies, several of which were discussed in Sec-
tion 6, use tasks involving only English words and sentences,
not programs. The following studies are particularly interesting,
because they revealed the same Brodmann areas as our study: In
studies related to reading comprehension and language processing,
participants had to understand text passages or decide whether
sequences of letters can be produced with rules of a formal
grammar [4], [9], [23], [29], [34], [35], [40], [42], [81], [82], [101],
[108]. Regarding working memory, participants had to identify and
apply rules or memorize verbal/numerical material [3], [66], [86],
[103]. In divided-attention tasks, participants had to detect two
features of objects at the same time [109].

Further work is needed to distinguish and dissociate brain
activity related to program comprehension from other similar
activities, such as word comprehension, and to allow us to develop
a full model of program comprehension. Some researchers have
already begun to theorize what a brain-based model of program
comprehension would look like. Hansen and others propose to
use the cognitive framework ACT-R to model program compre-
hension [45]. Parnin compiled a literature review of cognitive
neuroscience and proposed a model for understanding different
memory types and brain areas exercised by different types of
programming tasks [75]. Both approaches are similar to our work
by exploring knowledge of the neuroscience domain.

10.2 Software Engineering
With our fMRI study paving the way, other studies have followed.
Specifically, Floyd and others conducted an fMRI study based on
comprehension of source code and natural-language text [33]. In
contrast to our work, the authors used the resulting activation pat-
tern to predict the tasks that participants were completing. Duraes
and others used fMRI to record activations during defect detection
of software [15], [24]. The results indicate that initially finding
and confirming a defect leads to different activation strength,
especially in the right anterior insula.

Additionally, researchers are using other neuro-imaging tech-
niques to observe programmers. Nakagawa and others used near-
infrared spectroscopy (fNIRS) to measure changes in blood flow
while programmers mentally executed source code. They found
activation in the prefrontal cortex (a brain area that is necessary
for higher-order cognitive processes), which correlated with the
difficulty of a task [67]. In a similar study, Ikutani and Uwano
found that activation in the frontal pole increases when partic-
ipants memorized variables names, without manipulating their
values [49].
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Kluthe used electroencephalography (EEG) to measure pro-
gram comprehension of participants with varying levels of ex-
pertise [55]. He let participants mentally execute the code and
asked them to determine the output of source-code snippets. He
found that, with lower expertise, program-comprehension tasks
were more difficult to solve, indicating a higher cognitive load,
which was reflected in the EEG signals. Lee and others used a
similar experiment setup as we did, but also used EEG to record
brain activation [59]. They found a subset of brain areas activated
(i.e., Brodmann areas 6 and 44), confirming our findings on the
role of these areas for bottom-up program comprehension.

In a follow-up study, Lee and others combined EEG with
eye tracking to predict task difficulty and programmer exper-
tise [58]. In this study, participants should comprehend source-
code snippets similar to the ones in our study. In the same vein,
we have conducted a further non-exact replication of our study
and integrated eye tracking with the fMRI scanner [77], [78]. We
could successfully map the eye movements of participants to their
BOLD response. Fritz and others used three psycho-physiological
measures—EEG, eye tracker, and electrodermal-activity sensor—
to predict the difficulty of programming tasks [36]. Participants
were required to mentally execute code that drew rectangles and
decide whether rectangles overlap or determine the order in which
rectangles were drawn. The authors found that these measures
are promising to predict task difficulty. Fakhoury and others used
functional near-infrared spectroscopy (fNIRS) and eye tracking
to show how the quality of identifier names affects cognitive
load [26]. They found that unsuitable identifier names increase
cognitive load.

Thus, neuro-imaging studies are becoming more and more
prevalent in software-engineering research.

11 FUTURE DIRECTIONS

With our study, we show that measuring program comprehension
with an fMRI scanner is feasible and can result in a plausible
activation pattern. But, how does our study contribute to software-
engineering research, education, and practice?

While our study provides only limited direct answers, it raises
many interesting and substantial questions for future research:
What are the underlying cognitive processes during top-down
comprehension or the implementation of source code? How should
we train programmers? How should we design programming
languages and tools? Can software measures capture how difficult
source code will be to comprehend?

Top-Down Comprehension: In our experiment, we fo-
cused on bottom-up comprehension to minimize additional acti-
vation. In an ongoing family of experiments, we are evaluating
how participants use top-down comprehension and their memory
to understand source code [100]. To this end, we show similar
source-code snippets without obfuscating identifier names, and
observe to what extent they serve as beacons for participants.
Additionally, we ensure that participants are familiar with the
source-code snippets. In this setting, we would expect activation
of typical memory areas, such as Brodmann areas 44 and 45 in
the inferior frontal gyrus or Brodmann area 10 in the anterior
prefrontal cortex [14]. However, we did not find such an activation.
By adding simultaneous eye tracking to our experiment frame-
work [78], we have been evaluating whether participants fixate
on beacons or familiar elements shorter or longer than unfamiliar
statements, and how that gazing is related to neural activity [77].

Digging deeper in further studies, we may ask at which experience
level beginners start using their previous knowledge? To what
extent does the knowledge of the domain and other concepts, such
as design patterns, influence activation patterns?

Measuring Complexity of Source Code: In the past,
many attempts have been made to use software measures, such
as code complexity [46], to understand why certain programming
constructs or idioms may be more difficult to understand. Recent
studies have tried to predict comprehensibility of source code
based on a combination of software measures, but could only show
small predictive power [94], [107]. All these approaches suffer
from two main limitations: (1) software measures lack justification
for cognitive outcomes; as a result, current software measures
have poor predictive power on program comprehension [27], and
(2) software measures are not explanatory, and cannot provide an
answer to why certain constructs are more difficult than others.

Can we create cognition-based software measures to over-
comes these limitations? We hypothesize that, in the future, such
software measures will provide better predictions for assessing
difficulty of source code.

Measuring Programmer Expertise: Despite similar ed-
ucation or experience, researchers have observed a significant
gap between top developers and average developers, typically
reported as a factor of 10 in terms of productivity [17], [19],
[92]. However, nobody knows exactly how these top developers
became top developers—they just are excellent. This raises many
questions about to what extent we can train programmers at all.
Alternatively, we can ask whether it is possible to predict whether
somebody is inclined to become an excellent programmer [76].

To answer such questions, we need to know how an excellent
programmer differs from an average programmer. Interestingly,
characteristics of experts have been studied in many fields. For
example, in an fMRI study, musicians showed a much lower
activation in motor areas when executing hand tapping than non-
musicians [50], and expert golfers, compared to novices, showed
a considerably smaller activation pattern when imagining hitting a
golf ball, because they have somewhat abstracted the activity [64].
Another example are superior memorizers, who rely on specific
strategies that build on visual information related to spatial land-
marks when encoding large bits of information. Thus, compared to
normal controls, superior memorizers recruit other brain regions,
that is, those involved in visual processing and navigation [61].

In our study, we demonstrated how we can use brain ac-
tivation strength, programming experience, and cognitive effort
to better understand program comprehension. In the future and
with dedicated studies, this may allow an objective assessment
of programmer expertise beyond the standard skill tests and
interviews.

Implementing Source Code: What happens when people
implement source code, instead of only understanding it? Writing
source code is a form of synthesizing new information, compared
to analytical program comprehension. Consequently, we might
observe activation of several right-hemispheric regions, such as
right BA 44 and BA 47 for speech production. It would be
interesting to study whether and how writing source code is similar
to and different from speech production. Initial evidence suggests
that developers had high levels of subvocal speech while editing
code [74].

Training: There are many discussions about the best way
to teach computer science and software engineering [18], [57],
[97]. The close relationship to language processing raises the
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question of whether it is beneficial to learn a programming lan-
guage at an early age or to learn multiple programming languages
right from the beginning, which is often a controversial issue in
designing computer-science curricula.

The involvement of working memory and attention may indi-
cate that both should be trained during programming education.
So, it is certainly worth exploring whether program compre-
hension can be improved by training specific cognitive abilities
(e.g., through puzzle games). However, researchers disagree to
what extent both can be learned or are rather inborn [25],
[104], [112]. Thus, a test prior to programming education [54],
[71] might reveal which students might struggle with learning
programming. Especially, when thinking of dyslexics, who often
have poorer short-term memory and reading skills compared to
non-dyslexics [85], we may expect they struggle; however, many
dyslexics report that they can work with better focus during pro-
gramming, because of syntax highlighting and other features [85].
Thus, unraveling the mind of dyslexics might give us interesting
insights into program comprehension in general.

Having found a strong involvement of language processing
suggests that we need excellent language skills to become excel-
lent programmers. Thus, if we loved learning new languages, we
might also more easily learn new programming languages. It may
be worthwhile to start learning a new (programming) language
early on during childhood, because studies showed that learning a
second language early can have benefits regarding cognitive flexi-
bility, metalinguistic, divergent thinking skills, and creativity [21].
Similarly, training computational thinking, a fundamental skill for
computer scientists [111], prior to learning programming might
also give novices a better start with learning programming, for
example, to correctly specify unexpected states in a program [41].

Furthermore, excellent programmers may approach program
comprehension differently. Understanding the differences may
offer us insights into how to teach beginners and, in the long run,
develop guidelines for teaching programming.

Programming-Language Design: Traditionally, design-
ing programming languages only marginally involves empirical
evidence of programmers and how they work with source code.
Instead, experience and plausibility are used, such as: “As the
world consists of objects, object-oriented programming is an
intuitive way to program”, “As recursion is counter-intuitive,
recursive algorithms are difficult to understand”, or “Java shall
be similar to C/C++, such that many developers can easily learn
it.” While experience and common sense are certainly valuable
and may hint at some directions on how to design programming
languages, many design decisions that arise from them have—to
the best of our knowledge—only rarely been tested empirically
(e.g., see Hanenberg [44]).

In our experiment, we have explored only small imperative-
style code fragments with only few language constructs. It would
be interesting to investigate whether there are fundamentally
different activations when using more complex language con-
structs or using a functional or object-oriented style. For example,
when we let developers understand object-oriented source code,
we should observe activation in typical object-processing areas
(e.g., BA 19 or 37), if real-world objects and object-oriented
programming are similar, which is a frequently stated claim. The
design of individual programming languages as well as entire
programming paradigms may greatly benefit from insights about
program comprehension gained by fMRI.

Furthermore, having identified a close similarity to language

processing, we can further investigate how different or similar
both processes are. To this end, we envision letting participants
read and comprehend natural-language descriptions as control
tasks, instead of finding syntax errors; computing the difference
in activation patterns, we will see how reading comprehension
and program comprehension differ (if they differ at all). We also
envision studies to explore the influence of natural programming
languages [65] on comprehension, and how comprehension of
natural languages, dead languages (e.g., Latin), and programming
languages differ.

Additionally, some researchers believe that the mother tongue
influences how native speakers perceive the world (Sapir-Whorf
hypothesis) [93], [110]. Since programming languages are typi-
cally based on English, Western cultures, as compared to Asian
cultures, might have a headstart when learning programming [5].
Taking a closer look at how developers from both cultures un-
derstand source code might give us valuable insights for teaching
programming.

Software and Tool Design: Many questions regarding
software design, modularity, and development tools arise in soft-
ware engineering. For instance, the typical approach to hierarchi-
cally decompose a software system is challenged by the presence
of crosscutting concerns [106], but the extent to which developers
naturally decompose a software system is unknown. Ostermann
and others argued that traditional notions of modularity assume
a model based on classical logic that differs from how humans
process information (e.g., humans use inductive reasoning, closed-
world reasoning, and default reasoning, which are all unsound in
classical logic) [73]. Thus, we may need more natural concepts of
modularity.

There has been considerable research in tool-based solutions
for organizing and navigating software [39], [51], [52], [53], [89].
Considering navigation support, understanding how to support
cognitive processes related to spatial abilities and to determine
whether a given tool actually does support those abilities, might
improve comprehension, provide a more disciplined framework
for designing tools, and influence how we design software.

12 CONCLUSION

To shed light on the process of program comprehension, we used a
relatively new technique: functional magnetic resonance imaging
(fMRI). While in cognitive neuroscience it has been used for more
than 25 years now, we explored how fMRI can be applied to
measure the complex cognitive process of comprehending source
code. To this end, we selected twelve source-code snippets that 17
+ 11 participants should comprehend, which we contrasted with
locating syntax errors.

The key results are:
• A clear activation pattern of five different brain regions,

which are associated with working memory (BA 6, BA
40), attention (BA 6), and language processing (BA 21, BA
44, BA 47)—all fit well to our understanding of bottom-up
program comprehension.

• A left-dominant activation, suggesting that language process-
ing seems to be essential for program comprehension, which
Dijkstra already noted [22]. With our study, we found first
empirical evidence that Dijkstra may be right, which may
have implications for teaching, such that training language
skills, in addition to working memory and problem solving,
might make programming education more efficient.



REVISION 1 FOR TSE 17

• An illustration of the potential of fMRI to develop cognitive-
based complexity measures, and to relate programming expe-
rience and knowledge of the Java programming language to
neural efficiency.

• A consistent result in two studies that reused our exper-
imental design, indicating the validity of our experiment
framework.

As a further contribution, our experience and methodology
lowers the barrier for further fMRI studies. We hope that fMRI
becomes a standard research tool in empirical software engi-
neering, so that we and other researchers can understand how
developers understand source code and refine existing models
of program comprehension into a unified theory, so that we can
eventually tackle the big questions in this area: How do people use
domain knowledge? To what extent is implementing source code
a creative process? Can we train someone to become an excellent
programmer? How should we design programming languages
and tools for optimal developer support? Can software measures
predict the comprehensibility of source code?
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on Bioinformatics and Bioengineering (BIBE), pages 350–355. IEEE,
2016.

[60] E. A. Maguire, C. D. Frith, and R. Morris. The Functional Neu-
roanatomy of Comprehension and Memory: The Importance of Prior
Knowledge. Brain, 122(10):1839–1850, 1999.

[61] J. Mallow, J. Bernarding, M. Luchtmann, A. Bethmann, and A. Brech-
mann. Superior Memorizers Employ Different Neural Networks for
Encoding and Recall. Frontiers in Systems Neuroscience, 9(128), 2015.
Published online.

[62] T. McCabe. A Complexity Measure. IEEE Trans. Softw. Eng., SE-
2(4):308–320, 1976.

[63] K. McKiernan, J. Kaufman, J. Kucera-Thompson, and J. Binder. A Para-
metric Manipulation of factors Affecting Task-Induced Deactivation in
Functional Neuroimaging. J. Cognitive Neuroscience, 15(3):394–408,
2003.

[64] J. Milton, A. Solodkin, P. Hlušítk, and S. Small. The Mind of Expert
Motor Performance is Cool and Focused. NeuroImage, 35(2):804–813,
2007.

[65] B. Myers, J. Pane, and A. Ko. Natural Programming Languages and
Environments. Commun. ACM, 47(9):47–52, Sept. 2004.

[66] Y. Nagahama, H. Fukuyama, H. Yamauchi, S. Matsuzaki, J. Konish,
and H. S. J. Kimura. Cerebral Activation during Performance of a Card
Sorting Test. Brain, 119(5):1667–1675, 1996.

[67] T. Nakagawa, Y. Kamei, H. Uwano, A. Monden, K. Matsumoto, and
D. M. German. Quantifying Programmers’ Mental Workload During
Program Comprehension Based on Cerebral Blood Flow Measurement:
A Controlled Experiment. In Proc. Int’l Conf. Software Engineering
(ICSE), pages 448–451. ACM, 2014.

[68] K. Nebel, H. Wiese, P. Stude, A. de Greiff, H.-C. Diener, and M. Keidel.
On the Neural Basis of Focused and Divided Attention. Cognitive Brain
Research, 25(3):760–776, 2005.

[69] S. Newman, G. Willoughby, and B. Pruce. The Effect of Problem
Structure on Problem-Solving: An fMRI Study of Word Versus Number
Problems. Brain Research, 1410:77–88, 2011.

[70] S. Novais-Santos, J. Gee, M. Shah, V. Troiani, M. Work, and M. Gross-
man. Resolving Sentence Ambiguity with Planning and Working
Memory Resources: Evidence from fMRI. NeuroImage, 37:361–378,
2007.

[71] K. Oberauer, H.-M. Süß, R. Schulze, O. Wilhelm, and W. Wittmann.
Working Memory Capacity—Facets of a Cognitive Ability Construct.
Personality and Individual Differences, 29(6):1017–1045, 2000.

[72] R. Oldfield. The Assessment and Analysis of Handedness: The Edin-
burgh Inventory. Neuropsychologia, 9(1):97–113, 1971.

[73] K. Ostermann, P. Giarrusso, C. Kästner, and T. Rendel. Revisiting Infor-
mation Hiding: Reflections on Classical and Nonclassical Modularity.
In Proc. Europ. Conf. Object-Oriented Programming (ECOOP), pages
155–178. Springer, 2011.

[74] C. Parnin. Subvocalization - Toward Hearing the Inner Thoughts of
Developers. In Proc. Int’l Conf. Program Comprehension (ICPC), pages
197–200. IEEE, 2011.

[75] C. Parnin and S. Rugaber. Programmer Information Needs after
Memory Failure. In Proc. Int’l Conf. Program Comprehension (ICPC),
pages 123–132. IEEE, 2012.

[76] C. Parnin, J. Siegmund, and N. Peitek. On the Nature of Programmer
Expertise. In Annual Workshop Psychology of Programming Interest
Group (PPIG). PPIG, 2017.

[77] N. Peitek, J. Siegmund, C. Parnin, S. Apel, and A. Brechmann. Toward
Conjoint Analysis of Simultaneous Eye-Tracking and fMRI Data for
Program-Comprehension Studies. In Proc. Int’l Workshop on Eye
Movements in Programming, pages 1:1–1:5. ACM, 2018.

[78] N. Peitek, J. Siegmund, C. Parnin, S. Apel, J. Hofmeister, and A. Brech-
mann. Simultaneous Measurement of Program Comprehension with
fMRI and Eye Tracking: A Case Study. In Proc. Int’l Symposium
Empirical Software Engineering and Measurement (ESEM). ACM,
2018. To appear.

[79] D. N. Perkins, G. Salomon, and P. Press. Transfer of learning. In
International Encyclopedia of Education (2nd). Pergamon Press, 1992.



REVISION 1 FOR TSE 19

[80] S. Petersen, P. Fox, and M. Snyder, A.and Raichle. Activation of
Extrastriate and Frontal Cortical Areas by Visual Words and Word-like
Stimuli. Science, 249(4972):1041–1044, 1990.

[81] K. Petersson, V. Folia, and P. Hagoort. What Artificial Grammar Learn-
ing Reveals about the Neurobiology of Syntax. Brain and Language,
298(1089):199–209, 2012.

[82] K. Petersson and P. Hagoort. The Neurobiology of Syntax: Beyond
String Sets. Philos. Trans. R. Soc. Lond. B Biol. Sci. , 367:1971–1983,
2012.

[83] R. Poldrack. Can Cognitive Processes Be Inferred from Neuroimaging
Data? . Trends in Cognitive Sciences, 10(2):59–63, 2006.

[84] R. Poldrack. The Role of fMRI in Cognitive Neuroscience: Where Do
We Stand? . Current Opinion in Neurobiology, 18(2):223–227, 2008.

[85] N. Powell, D. Moore, J. Gray, J. Finlay, and J. Reaney. Dyslexia and
Learning Computer Programming. In Proc. Annual Conf. Innovation
and Technology in Computer Science Education (ITiCSE), pages 242–
242. ACM, 2004.

[86] V. Prabhakaran, J. Smith, J. Desmond, G. Glover, and J. Gabrieli.
Neural Substrates of Fluid Reasoning: An fMRI Study of Neocortical
Activation During Performance of the Raven’s Progressive Matrices
Test. Cognitive Psychology, 33(1):43–63, 1996.

[87] C. Price. A Review and Synthesis of the First 20 Years of PET and fMRI
Studies of Heard Speech, Spoken Language and Reading. NeuroImage,
62(2):816–847, 2012.

[88] M. Raichle, A. MacLeod, A. Snyder, W. Powers, D. Gusnard, and
G. Shulman. A Default Mode of Brain Function. Proc. Nat’l Academy
of Sciences, 98(2):676–682, 2001.

[89] M. Robillard and G. Murphy. Concern Graphs: Finding and Describing
Concerns Using Structural Program Dependencies. In Proc. Int’l Conf.
Software Engineering (ICSE), pages 406–416. ACM, 2002.

[90] M. Rosenberg-Lee, M. Lovett, and J. Anderson. Neural Correlates of
Arithmetic Calculation Strategies. Cognitive, Affective & Behavioral
Neuroscience, 9(3):270–285, 2009.

[91] A. Roskies, J. Fiez, D. Balota, M. Raichle, and S. Petersen. Task-
Dependent Modulation of Regions in the Left Inferior Frontal Cortex
During Semantic Processing. J. Cognitive Neuroscience, 13(6):829–
843, 2001.

[92] H. Sackman, W. Erikson, and E. Grant. Exploratory Experimental
Studies Comparing Online and Offline Programming Performance.
Commun. ACM, 11(1):3–11, 1968.

[93] E. Sapir. Culture, Language and Personality. University of California
Press, 1949.

[94] S. Scalabrino, G. Bavota, C. Vendome, M. Linares-Vásquez, D. Poshy-
vanyk, and R. Oliveto. Automatically Assessing Code Understand-
ability: How Far Are We? In Proc. Int’l Conf. Automated Software
Engineering (ASE), pages 417–427. IEEE, 2017.

[95] M. L. Seghier. The Angular Gyrus: Multiple Functions and Multiple
Subdivisions. The Neuroscientist, 19(1):43–61, 2013.

[96] B. Shneiderman and R. Mayer. Syntactic/Semantic Interactions in
Programmer Behavior: A Model and Experimental Results. Int’l J.
Parallel Programming, 8(3):219–238, 1979.

[97] M. Shooman. The Teaching of Software Engineering. In Proc. Technical
Symposium on Computer Science Education (SIGCSE), pages 66–71.
ACM, 1983.

[98] J. Siegmund, A. Brechmann, S. Apel, C. Kästner, J. Liebig, T. Leich,
and G. Saake. Toward Measuring Program Comprehension with
Functional Magnetic Resonance Imaging. In Proc. Int’l Symposium
Foundations of Software Engineering–New Ideas Track (FSE-NIER),
pages 24:1–24:4. ACM, 2012.

[99] J. Siegmund, C. Kästner, S. Apel, C. Parnin, A. Bethmann, T. Leich,
G. Saake, and A. Brechmann. Understanding Understanding Source
Code with Functional Magnetic Resonance Imaging. In Proc. Int’l
Conf. Software Engineering (ICSE), pages 378–389. ACM, 2014.

[100] J. Siegmund, N. Peitek, C. Parnin, S. Apel, J. Hofmeister, C. Käst-
ner, A. Begel, A. Bethmann, and A. Brechmann. Measuring Neural
Efficiency of Program Comprehension. In Proceedings of the 2017
11th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2017, pages 140–150, New York, NY, USA, 2017. ACM.

[101] P. Skosnik, F. Mirza, D. Gitelman, T. Parrish, M. Mesulam, and P. Re-
ber. Neural Correlates of Artificial Grammar Learning. NeuroImage,
17(3):1306–1314, 2008.

[102] D. V. Smith, B. Davis, K. Niu, E. W. Healy, L. Bonilha, J. Fridriksson,
P. S. Morgan, and C. Rorden. Spatial Attention Evokes Similar
Activation Patterns for Visual and Auditory Stimuli. J. Cognitive
Neuroscience, 22(2):347–361, 2010.

[103] E. Smith, J. Jonides, and R. Koeppe. Dissociating Verbal and Spatial
Working Memory Using PET. Cerebral Cortex, 6(1):11–20, 1991.

[104] D. Strayer. Driven to Distraction: Dual-Task Studies of Simulated Driv-
ing and Conversing on a Cellular Telephone. Psychological Science,
12(6):462–466, 2001.

[105] J. Talairach and P. Tournoux. Co-Planar Stereotaxic Atlas of the Human
Brain. Thieme, 1988.

[106] P. Tarr, H. Ossher, W. Harrison, and J. Stanley Sutton. N Degrees of
Separation: Multi-Dimensional Separation of Concerns. In Proc. Int’l
Conf. Software Engineering (ICSE), pages 107–119. ACM, 1999.

[107] A. Trockman, K. Cates, M. Mozina, T. Nguyen, C. Kästner, and
B. Vasilescu. "Automatically Assessing Code Understandability" Re-
analyzed: Combined Metrics Matter. In (MSR) Proc. Int’l Conf. Mining
Software Repositories, pages 314–318. ACM, 2018.

[108] A. Turken and N. Dronkers. The Neural Architecture of the Language
Comprehension Network: Converging Evidence from Lesion and Con-
nectivity Analyses. Frontiers in Systems Neuroscience, 5(1), 2011.

[109] R. Vandenberghe, J. Duncan, P. Dupont, R. Ward, J.-B. Poline, G. Bor-
mans, J. Michiels, L. Mortelmans, and G. Orban. Attention to One
or Two Features in Left or Right Visual Field: A Positron Emission
Tomography Study. J. Neuroscience, 17(10):3739–3750, 1997.

[110] B. Whorf. Language, Thought, and Reality. Chapman and Hall, 1956.
[111] J. Wing. Computational Thinking. Commun. ACM, 49(3):33–35, 2006.
[112] S. Wootton and T. Horne. Train Your Brain. Teach Yourself, 2010.

Norman Peitek is a PhD student at the Univer-
sity of Passau, Germany. He received his mas-
ter’s degree in Business Information Systems
in 2014 from the University of Magdeburg. His
research focuses on studying program compre-
hension with neuro-imaging methods.

Janet Siegmund is currently working at the Uni-
versity of Passau, where she is leading the junior
research group PICCARD, funded by the Cen-
tre Digitisation.Bavaria. She received her Ph.D.
from the University of Magdeburg in 2012 and
she holds two master’s degrees, one in Com-
puter Science and one in Psychology. In her
research, she focuses on the human factor in
software engineering, for example, when writing
source code. Janet Siegmund is the co-author of
more than 30 peer-reviewed journal, conference,

and workshop publications. She regularly serves as program-committee
member for conferences and workshops. From 2014 to 2017, she was
in the steering committee of the International Conference on Program
Comprehension.

Sven Apel holds the Chair of Software Engi-
neering at the University of Passau, Germany.
The chair is funded by the esteemed Emmy-
Noether and Heisenberg Programs of the Ger-
man Research Foundation (DFG). Prof. Apel re-
ceived his Ph.D. in Computer Science in 2007
from the University of Magdeburg, Germany.
His research interests include software product
lines, software analysis, optimization, and evo-
lution, as well as empirical methods and the
human factor in software engineering.



REVISION 1 FOR TSE 20

Christian Kästner is an assistant professor in
the School of Computer Science at Carnegie
Mellon University. He received his PhD in 2010
from the University of Magdeburg, Germany, for
his work on virtual separation of concerns. For
his dissertation he received the prestigious GI
Dissertation Award. His research interests in-
clude correctness and understanding of systems
with variability, including work on implementa-
tion mechanisms, tools, variability-aware analy-
sis, type systems, feature interactions, empirical

evaluations, and refactoring.

Chris Parnin is an assistant professor in North
Carolina State University’s Department of Com-
puter Science. He received his PhD from the
Georgia Institute of Technology and has pub-
lished over 50 articles in software engineering
and HCI.

Anja Bethmann received her diploma and PhD
in linguistics from the Potsdam University in
2004 and 2012, respectively. Her research in-
terest is in the neural mechanisms of semantic
processing in the human brain as studied with
functional MRI with a special focus on anterior
temporal lobe function. Furthermore, she is in-
terested in the rehabilitation of aphasia and ac-
tive in the Saxony-Anhalt’s patient organization
on aphasia.

Thomas Leich received his diploma in Business
Information Systems and his PhD from the Uni-
versity of Magdeburg in 2004 and 2012, respec-
tively. Since 2013 he is general manager of the
METOP GmbH. Since 2014 Thomas Leich is
professor at the chair of Business Information
Systems at Harz University of Applied Sciences.
His research interests include requirements and
software product-line engineering as well as
measurement of program comprehension.

Gunter Saake is a full professor of Computer
Science. He received his PhD in 1988 from
University of Braunschweig. Currently, he is the
head of the Databases and Software Engineer-
ing Group at the University of Magdeburg. His
research interests include database integration,
tailor-made data management, database man-
agement on new hardware, and feature-oriented
software product lines.

André Brechmann is head of the Special-Lab
Non-Invasive Brain Imaging at the Leibniz In-
stitute (LIN) for Neurobiology Magdeburg since
2004. He received his diploma in biology from
the University of Bielefeld in 1997 and his PhD
in Neuroscience in 2002 from the Otto-von-
Guericke University Magdeburg. In 2004 he was
visiting researcher at the Martinos Center for
Biomedical Imaging (MGH in Boston, USA) in
preparation of the installation of Europe’s first 7
Tesla MRI at LIN. Since 2012 he is coordinator of

the Combinatorial NeuroImaging Core Facility (CNI) at LIN. His research
interests include the dynamics and individuality of learning and memory
processes in the human brain with a special focus on auditory cognition
as well as other domains such as human-computer-interaction and
program comprehension.


	Introduction
	FMRI, Its Uses, and Limitations
	History
	BOLD Signal
	Uses of fMRI Studies
	Limitations of fMRI
	Alternatives

	FMRI Studies in a Nutshell
	General Challenges of fMRI Studies
	Requirements for Our fMRI Study
	Overview of Our fMRI Study

	Study Design
	Objective
	Operationalization of Variables
	Experimental Design
	Material
	Participants
	Imaging Methods
	Source-Code Presentation
	Data Acquisition
	Data Preparation
	Analysis Procedure


	Results
	RQ1: Which Brain Regions Are Activated during Bottom-Up Program Comprehension?
	RQ2: Does Source-Code Complexity Correlate with Concentration Levels during Bottom-Up Program Comprehension?
	RQ3: Does Programming Experience Correlate with Brain Activation Strength during Bottom-Up Program Comprehension?

	Discussion
	RQ1: Which Brain Regions Are Activated during Bottom-Up Program Comprehension?
	RQ2: Does Source-Code Complexity Correlate with Concentration Levels during Bottom-Up Program Comprehension?
	RQ3: Does Programming Experience Correlate with Brain Activation Strength during Bottom-Up Program Comprehension?

	Replication Study
	Implications for Program Comprehension
	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Related Work
	Neuroscience
	Software Engineering

	Future directions
	Conclusion
	Acknowledgments
	References
	Biographies
	Norman Peitek
	Janet Siegmund
	Sven Apel
	Christian Kästner
	Chris Parnin
	Anja Bethmann
	Thomas Leich
	Gunter Saake
	André Brechmann


