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Equivariant quantum cohomology of the

Grassmannian via the rim hook rule

Anna Bertiger, Elizabeth Mili¢evi¢ & Kaisa Taipale

ABSTRACT A driving question in (quantum) cohomology of flag varieties is to find non-recursive,
positive combinatorial formulas for expressing the product of two classes in a particularly nice
basis, called the Schubert basis. Bertram, Ciocan-Fontanine and Fulton provided a way to
compute quantum products of Schubert classes in the Grassmannian of k-planes in complex n-
space by doing classical multiplication and then applying a combinatorial rim hook rule which
yields the quantum parameter. In this paper, we provide a generalization of this rim hook rule
to the setting in which there is also an action of the complex torus. Combining this result with
Knutson and Tao’s puzzle rule then gives an effective algorithm for computing all equivariant
quantum Littlewood—Richardson coefficients. Interestingly, this rule requires a specialization of
torus weights modulo n, suggesting a direct connection to the Peterson isomorphism relating
quantum and affine Schubert calculus.

1. INTRODUCTION

Quantum cohomology grew out of string theory in the early 1990s. Physicists Cande-
las, de la Ossa, Green, and Parkes proposed a partial answer to the Clemens conjecture
regarding the number of rational curves of given degree on a general quintic threefold,
and this brought enormous attention to the mathematical ideas being used by string
theorists. A rigorous formulation of (small) quantum cohomology as the deforma-
tion of cohomology in which the structure constants count curves satisfying certain
incidence conditions was soon developed and extended to a wide class of algebraic
varieties and symplectic manifolds; see the survey by Fulton and Pandharipande [9].
In the mid-1990s Givental proved the conjecture proposed by physicists counting the
number of rational curves of given degree on a general quintic threefold [10]. Simul-
taneously, Givental and Kim introduced equivariant Gromov-Witten invariants and
the equivariant quantum cohomology ring [11].
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1.1. EQUIVARIANT QUANTUM COHOMOLOGY OF THE GRASSMANNIAN. When study-
ing the special case of the Grassmannian of k-dimensional subspaces of C", the four
variants of generalized cohomology discussed here (classical cohomology, quantum co-
homology, equivariant cohomology and quantum equivariant cohomology), all have a
basis of Schubert classes indexed by partitions with at most k parts each of size at most
n — k. There are beautiful combinatorial Littlewood-Richardson rules for computing
the structure constants in products of this favored basis in classical cohomology. These
Littlewood—Richardson coefficients are known to be non-negative integers, and there
is an analog of this positivity result in each of the other three contexts. Since the
structure constants for (small) quantum cohomology are enumerative, counting the
number of stable maps from rational curves to Gr(k,n) with three marked points
mapping into three specified Schubert varieties, they are clearly positive. Graham
proved an analog of classical positivity in the equivariant case [13], and Mihalcea
proved an analogue for equivariant quantum Littlewood—Richardson coefficients [22].

Prior to the completion of this paper, all known algorithms for computing arbitrary
equivariant quantum Littlewood—Richardson coefficients were either recursive or relied
on doing computations in a related two-step flag variety. Mihalcea gave the first algo-
rithm for calculating equivariant quantum Littlewood—Richardson coefficients in [22]
in the form of a (non-positive) recursion. An extension of the puzzle rule of Knut-
son and Tao [15] to two-step flag varieties has been proved in [4], and Buch recently
generalized this two-step puzzle rule to the equivariant case [3]. The two-step puzzle
rule can thus be combined with Buch and Mihalcea’s equivariant generalization in [6]
of the “quantum equals classical” phenomenon of Buch, Kresch, and Tamvakis [5],
in order to compute Schubert structure constants in QH}(Gr(k,n)) in a positive,
non-recursive manner. While this paper was near completion, the authors discovered
that Gorbounov and Korff had established a different non-recursive formula for the
equivariant quantum Littlewood—Richardson coefficients, which also does not appeal
to two-step flags [12].

In addition to nice Littlewood-Richardson rules, there are analogs of the ring pre-
sentation for H*(Gr(k,n)) in terms of Schur polynomials in each of the equivariant
and/or quantum contexts. For an overview of the Schur presentation in the classical
case, we refer the reader to Fulton’s book and the references therein [8]. The equivari-
ant presentation is also established via the Borel isomorphism, but with the additional
perspective of GKM theory as in [15]. Bertram proved a quantum analogue of the Gi-
ambelli and Pieri formulas for the quantum cohomology ring of the Grassmannian [1],
while the equivariant quantum ring presentation was given by Mihalcea [23]. In that
paper, Mihalcea proves a Giambelli formula which shows that the factorial Schur
polynomials of [24] represent the equivariant quantum Schubert classes.

1.2. STATEMENT OF THE MAIN THEOREM. In [2], Bertram, Ciocan-Fontanine, and
Fulton proved a delightful rule for computing the structure constants in the quantum
cohomology of Gr(k,n) from the structure constants of the classical cohomology ring
of Gr(k,2n). More specifically, they provide an explicit formula for the quantum
Littlewood-Richardson coefficients as signed summations of the classical Littlewood—
Richardson coefficients ¢} u that appear in the expansion of a product of Schubert
classes in terms of the Schubert basis. The algorithm involves removing rim hooks
from the border strip of the Young diagram for v in exchange for picking up signed
powers of the quantum variable ¢, and thus became known as the rim hook rule.
The main theorem in this paper is an equivariant generalization of the rim hook
rule in [2]. In contrast to the pre-existing methods for computing equivariant quan-
tum Littlewood—Richardson coefficients, the method presented in this paper is not
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recursive and does not rely on related calculations in any two-step flag variety. In
particular, this equivariant rim hook rule can be used together with any method of
computing equivariant Littlewood—Richardson coefficients, including the Knutson—
Tao puzzle package for the computer program Sage [28]. The following is an informal
statement of Theorem 2.6 in the body of this paper.

THEOREM 1.1. The equivariant quantum product of two Schubert classes oy x o, in
QH(Gr(k,n)) can be obtained by computing the equivariant product of corresponding
classes in H3(Gr(k,2n — 1)) and then reducing in a suitable way. This reduction
involves both rim hook removal and a specialization of the torus weights modulo n.

Here the choice to lift classes to Gr(k,2n — 1) is actually quite deliberate, made for
reasons of computational convenience in the proof. This is discussed in Remark 2.4.
To prove this theorem we show that the product defined by this lift and reduction is
both associative and coincides with equivariant quantum Chevalley—Monk formula for
multiplying by the class corresponding to a single box. Mihalcea’s Theorem 3.1 says
that these two conditions suffice to yield a ring isomorphic to QH}(Gr(k,n)). The
proof of the equivariant quantum Chevalley-Monk rule is straightforward; the real
difficulty lies in proving the associativity statement. There are two key combinatorial
ingredients in the proof of associativity. The first tool is the abacus model for Young
diagrams, which we use to understand the reduction modulo n on the torus weights
in Section 4. In addition, in Section 5 we develop a modification of factorial Schur
polynomials, which we call cyclic factorial Schur polynomials, in order to relate the
classical product in H;(Gr(k,2n — 1)) to the quantum product in QH}(Gr(k,n)).

1.3. DIRECTIONS FOR FUTURE WORK. A stunning result of Peterson proved by Lam
and Shimozono [17] proves that the equivariant quantum cohomology of any partial
flag variety G/P is related to the equivariant homology of the affine Grassmannian.
In particular, Peterson’s isomorphism says that, up to localization, there is an algebra
homomorphism

H*T(GTG)loc - QH%(Gr(kyn))loc-

The reduction of torus weights modulo n in the main theorem of this paper also
appears in Lam and Shimozono’s work [18] relating double quantum Schubert poly-
nomials to k-double Schur polynomials, which are known to represent equivariant
homology classes of the affine Grassmannian [19]. It is the expectation of the authors
that cyclic factorial Schur polynomials are the image of the k-double Schur polyno-
mials under the Peterson isomorphism. This connection suggests that the equivariant
rim hook rule is a shadow of Peterson’s isomorphism and can shed further light on
what has become known as the “quantum equals affine” phenomenon.

The authors expect this work to yield equivariant generalizations of several results
of Postnikov in [25] connecting quantum and affine Schubert calculus. For example,
Postnikov provides a quantum Pieri formula, expressed as a sum over cylindric shapes
using the Jacobi-Trudi formula and an algebraic formulation of the rim hook rule
in [2]. While the authors’ equivariant rim hook rule can be combined with any available
equivariant Pieri rule for the Grassmannian (e.g. from [27], [16], [20], among others)
to obtain an equivariant quantum Pieri rule, this approach does not provide a non-
negative combinatorial formula. Instead, the goal would be to find an appropriate
combinatorial object which generalizes cylindric shapes to the equivariant context. In
fact, the authors suspect that the cyclic factorial Schur polynomials introduced in this
paper are the equivariant analog of the toric Schur polynomials in [25], which yield
quantum Littlewood—-Richardson coefficients when expressed in terms of the usual
Schur polynomials.
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Gorbounov and Korff take an integrable systems approach to studying the equivari-
ant quantum cohomology of the Grassmannian, including an explicit determinantal
formula for the equivariant quantum Littlewood—Richardson coefficients; see Corol-
lary 6.29 in [12]. It is consistent with our rim hook rule and illuminates another as-
pect of the connection between these non-recursive formulas for equivariant quantum
Littlewood-Richardson coefficients and integrable systems. Moreover, Gorbounov and
Korff prove that their vicious and osculating walkers have a concrete representation in
the affine nil-Hecke ring, which plays a key role in the proof of Peterson’s isomorphism
in [17].

1.4. ORGANIZATION OF THE PAPER. We begin with a brief review of Schubert calcu-
lus on the Grassmannian, with particular emphasis on the equivariant and quantum
cohomologies and their polynomial representatives. In Section 2, we discuss the rim
hook rule of [2], and then provide a precise statement of the equivariant generaliza-
tion, which is the main result of the paper. The proof of Theorem 2.6 is contained
in Section 3, although we postpone the proofs of three key propositions required for
associativity in order not to interrupt the flow of the exposition. Abacus diagrams,
which are the first of two important tools for proving associativity, are introduced in
Section 4. Cyclic factorial Schur polynomials are then defined in Section 5.

2. THE EQUIVARIANT RIM HOOK RULE

2.1. THE GRASSMANNIAN AND FACTORIAL SCHUR POLYNOMIALS. The Grassman-
nian Gr(k,n) is the complex variety whose points are k-planes in C". In this paper,
we are interested in the equivariant quantum cohomology of the Grassmannian.

The cohomology of the Grassmannian is governed by the intersection theory of
Schubert varieties. A Schubert variety X is a subvariety of Gr(k,n) satisfying the
condition:

Xy :={V € Gr(k,n) : dim(V N C"~F=2i+8) > 4 v i}
The Schubert varieties of Gr(k,n) are indexed by partitions A = (A1,...,\,) with
n—k =X 2 X > ... 2 A = 0. We denote the set of such partitions by Pg,.
We visualize partitions X as Young diagrams of k rows with ); boxes in the i** row,
counting the top row as the first row (this is the English convention), and we shall use
this correspondence between partitions and Young diagrams freely. A semi-standard
Younyg tableauz (SSYT) of shape A is a filling of the boxes in the Young diagram with
the numbers 1 to k, one number per box, such that the numbers are weakly increasing
in rows proceeding left to right and strictly increasing in columns proceeding top to

bottom. Define the Schur polynomials sy in the variables x1, ...,z as
S = Z H IT(a)>
T «€eT

where the T are all of the semi-standard fillings of shape A by the numbers 1 through
k, the number T'(«) is the filling in the box «, and the product runs over all boxes
in the SSYT. Define e; to be the elementary symmetric polynomials in zy,...,xg,
which can be thought of as s(1y:, and define h; to be the homogeneous symmetric
polynomials s(;y. Then there is an isomorphism

(1) H*(Gr(k,n)) 2 Zley,...,ex]/{hn—k+1,---,hn)
(2) o)\ > Sx.

There is a natural (C*)™-action on Gr(k,n). Let T,, = (C*)™ act on Gr(k,n)
with weight ¢; on the " coordinate of C". The T),-equivariant cohomology ring
Hf (Gr(k,n)) is an algebra over the ring A := Z[t1,...,t,]. As a A-module,
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Hr, (Gr(k,n)) again has an additive basis indexed by A € Py, which we will also
denote by {ox}. The factorial Schur polynomial sy (z|t) corresponding to a Schubert
class o) can then be defined as follows.

DEFINITION 2.1. The factorial Schur polynomial sy(z|t) corresponding to o) €
Hy (Gr(k,n)) is

sa(zlt) = Z H (Tr(a) = tr(a)+e(a))-

T a€T
The sum is again over all SSYT of shape X\ filled by the numbers 1 through k, and
the product is over all bozes a in T. Again T(«) gives the filling of o in T, and
c(o) = j — i when « is the box in the j** column and i™ row.

We can then define the factorial elementary symmetric functions e; (z|t) = s¢y: (|t)
and the factorial homogeneous complete symmetric functions h;(z|t) = s¢;(z[t). No-
tice that if all ¢; = 0, then the polynomial sy(x|t) specializes to sy(z). Corollary 5.1
and Proposition 5.2 [23] then give an isomorphism which generalizes (1) to the equi-
variant setting:

Alex(zlt),. .., ex(x]t)]
(hn—r1(z]t), ..., ho(z]t))
(4) ox — sx(z]t).

3) Hr, (Gr(k,n)) =

In Theorem 1.1 of [23], Mihalcea proves that the T),-equivariant quantum cohomology

ring QH7, (Gr(k,n)) of the Grassmannian Gr(k,n) is isomorphic to the quotient ring:
A[q7 61(.’E|t), ) ek(x|t)]

(i1 (2[t), - By (2]t), P (2]2) 4 (—1)%q)

In this case we realize the s)(z|t) as elements of QHF. (Gr(k,n)) using the factorial

Jacobi-Trudi formula due to Chen and Louck; see Theorem 3.3 in [7], or alternatively
p. 56 in [21] for this particular formulation:

(6) sxa(z|t) = det (h>\i+j_i(;1:\t))1<i_’j<k.

() QHr, (Gr(k,n)) =

%

* | %

X % %

FIGURE 1. An 11-hook (left) and the corresponding 11-rim hook (right).

2.2. THE RIM HOOK RULE. In [2], Bertram, Ciocan-Fontanine, and Fulton estab-
lished a delightful rule presenting quantum Littlewood—Richardson coefficients as
signed sums of classical Littlewood-Richardson coefficients. The rim hook algorithm
as phrased in [2] does not use the language of lifting Schubert classes, rather carry-
ing out multiplication in the ring of Schur polynomials in the variables z1,...,z.
We rephrase the main result from [2] below to draw the most natural parallel to our
result.
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First we briefly review some required combinatorial terminology. Any box in a
Young digram has an associated hook, consisting of all boxes to the right and below
the given box, including the box itself. If the number of boxes in such a hook equals
n, then we call this an n-hook. Each n-hook corresponds to an n-rim hook, consisting
of the n contiguous boxes running along the border of the Young diagram, starting
from the top rightmost box and ending at the bottom-most box of the n-hook; see
Figure 1 for an example. Removing all possible n-rim hooks from a partition v in any
order results in the n-core for v. We illustrate the process of obtaining the n-core of a
partition in Figure 2. Note that there are often multiple ways to remove n-rim hooks
from a Young diagram; however, the n-core is unique.

[P [ R[]

* [

[ k| [k

* *

x| [ [x[x

* [k [*

*|%

* %

*|%

]|

FIGURE 2. The 11-core for (10, 9, 6, 5, 5, 3, 2, 2, 2, 1) is the partition (1).

DEFINITION 2.2. Define ¢ : H*(Gr(k,2n — 1)) —QH*(Gr(k,n)) to be the Z-module
homomorphism determined by

[T (DS Ma)on if v € Pr,
(7) Oy — {0 if v & Prn,

for any v € Py an—1. Here, we define v to be the n-core of v, noting that v = v if
Y € Pyn. If v € Pip, the index set for the product is empty, and so the product is 1
in this case. The integer d is the number of n-rim hooks removed to get from v to v,
and €; is the height of the " rim hook removed.

Choose the identity map to lift classes in H*(Gr(k,n)) to H*(Gr(k,2n — 1)) and
denote this lift of oy by ox. We also denote by oy x 0, the quantum product in
QH*(Gr(k,n)). The theorem below then follows from [2].

THEOREM 2.3 (Main Lemma and Corollary in [2], rephrased). Consider A, pi € Pn,
and write o) -7, = Y ¢} 0y in H*(Gr(k,2n —1)). Then,

(8) OxkOy = Z (o)) € QH™(Gr(k,n)).

YEPk,2n—1

REMARK 2.4. The choice to lift to H*(Gr(k,2n — 1)) is quite deliberate, but not
obvious from the combinatorial description using Young diagrams. When expressing
QH*(Gr(k,m)) using generators and relations analogous to (1), the relations in the
quantum ideal include the homogeneous function of degree m. If we were to lift to
H*(Gr(k,2n)), the reduction map from H*(Gr(k,2n)) to QH*(Gr(k,n)) would re-
quire that ho, = 0 € H*(Gr(k,2n)) map to 0 # ¢> € QH*(Gr(k,n)). Choosing 2n—1
avoids this problem. These same subtleties arise implicitly in Rietsch’s description of a
subvariety of GL,,(C) whose coordinate ring is isomorphic to QH*(Gr(k, n)); indeed,
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Definition 3.2 and Remark 3.3 in [26] provided the inspiration for many of the ideas
in Section 5.

2.3. THE EQUIVARIANT GENERALIZATION. Our theorem generalizes the rim hook rule
of [2] to the context in which there is also an action of the torus T,, = (C*)™. The
equivariant cohomology ring Hy (Gr(k,n)) also has a Schubert basis indexed by
Young diagrams, and (using the conventions adopted in this paper) the equivari-
ant Littlewood—Richardson coeflicients are homogeneous expressions in non-negative

sums of polynomials in Z[ts —t1,...,t, — tn—1]. There are combinatorial formulas for
explicitly computing the expansions
(9) oxou =Y &0 € Hy (Gr(k,n)),

where now each of the cofficients cj , is a homogeneous polynomial in A. One com-
binatorially pleasant formula is the equivariant puzzle rule of Knutson and Tao [15],
illustrated in Figure 3.

FIGURE 3. Puzzles for computing products in H}(Gr(2,4))

The three puzzles shown correspond to the three terms, respectively, in the follow-

ing product:

om - om = oy + (ta — t3)ogn + (ta — t3)(ts — t2)om.
In particular, the yellow puzzle pieces correspond to the three terms of the form ¢; —t;
appearing in this expansion. (Note that our conventions on the indices for the torus
weights are the reverse of those of Knutson and Tao.)

We again denote the lift of oy from Hy (Gr(k,n)) to Hy, _ (Gr(k,2n — 1)) by
ox. We define this lift algebraically using factorial Schur polynomials. Namely, the lift
ox € Hy,  (Gr(k,2n—1)) of ox € Hy, (Gr(k,n)) corresponds to the factorial Schur
polynomial sy (z|t) in the quotient from (3) isomorphic to Hy, — (Gr(k,2n —1)). By
our choice of conventions for the torus weights, if A € Py, then none of the weights
tn+1,- - -, tan—1 appear in the expansion given by (5) for the factorial Schur polynomial
sa(z|t). Therefore, on factorial Schur polynomials, our lift is again simply the identity
map.

We will now extend the map of Z-modules ¢ : H*(Gr(k,2n—1))—QH*(Gr(k,n))
given in [2] to a map on equivariant cohomology

(10) w:Hy,  (Gr(k,2n—1)) — QHF (Gr(k,n)).

In the equivariant case, the structure constants in H7,  (Gr(k,2n — 1) are polyno-
mials in ty,...t2,—1, but in QHF (Gr(k,n)) the structure constants are polynomials
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in only t1,...%,, so we cannot merely use the identity on the structure constants;
instead, we use the map t; — t;(mod n)-

DEFINITION 2.5. For any t; with i € {1,2,...,2n — 1} and v € Py an—_1, define the
map ¢ from Equation (10) to be the Z-module homomorphism determined by

ti— ti(mod n)

d S .
R -1 (ei—k) v
(11) o, — H’L:l (( ) q) g ZfV S Pkm
0 if v & Prn.
Here, we take the representatives of the congruence classes mod n to be {1,2,...,n}.

The partition v and the statistics d and €; are defined exactly as in Definition 2.2.

This map ¢ is precisely the same as the non-equivariant version in Definition 2.2
except that we now also act on the torus weights which appear in the structure
constants; this fact justifies our use of the same notation for both maps.

We now state our main result, which we refer to as the Equivariant Rim Hook
Rule.

THEOREM 2.6 (Equivariant Rim Hook Rule). Let T,, = (C*)" and Ta,—1 = (C*)?"~ L.
Consider any partitions A, u € Py, and the product expansion oy -7, = CK’H07 n
H; ~ (Gr(k,2n —1)). Then,

Ton-1

(12) o= > ¢(A,) () € QL (Grikm)).

YEPk,2n—1

In Section 5, we also provide an algebraic interpretation of Theorem 2.6 and the
map ¢ in terms of corresponding rings of factorial Schur polynomials, including provid-
ing a direct equivariant analog of the original statements from [2] in Proposition 5.3.

ExaMPLE 2.7. We now provide an example which illustrates how to use this theo-
rem to compute quantum equivariant Littlewood—Richardson coefficients. The com-
putations in equivariant cohomology to provide these examples were done using the
Knutson-Tao puzzles package in Sage [28].

For example, to compute om * omm € QHF(Gr(2,4)), we first lift the classes to
HZ.(Gr(2,7)) via the identity map. We then use Knutson and Tao’s equivariant puzzle
method to compute this product in H}(Gr(2,7)) :

(13) om- om = (ta — t3)(ts — t2)om + (ta — t3)ogn + o
+ (t5 + t4 — t3 — t2)oam + ogm + oo

The map ¢ on torus weights takes ¢; = t;(mod4), S0 that ¢5 — t1 while the rest of the
torus weights are unchanged. Now, ¢ acts as the identity on om, opn, and o, since
all three of these Young diagrams already fit into a 2 x 2 box. On the other hand,
omm — 0, since this Young diagram neither fits into a 2 X 2 box nor contains any
removable 4-rim hooks. Finally, our rim hook rule says that

(14) ogm — (71)2’2q =q and O — (71)172q = —q.
Altogether, Theorem 2.6 says that in QH>(Gr(2,4)),

(15) Oom* Om = (t4 — t3)(t4 — tg)O’Dj + (t4 — tg)OE] + O'EB + 0 -+ q—q
(16) = (ts — t3)(ta — t2)om + (ta — t3)om + o
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3. EQUIVARIANT LITTLEWOOD—RICHARDSON COEFFICIENTS

We prove Theorem 2.6 using the following slight strengthening of Corollary 7.1 in [22].
This result follows directly by combining several statements in [22], but we provide a
short proof for the sake of completeness.

THEOREM 3.1 (Mihalcea [22]). Let A = Z[t1, ..., t,]. Suppose that (A,o) is a graded,
commutative, possibly non-associative Alq]-algebra with unit satisfying the following
three properties:

(a) A has an additive A[q]-basis {Ax | X € Prn}.

(b) The equivariant quantum Pieri rule holds; i.e.

(17) Apo Ay =Y A+ ApAx +qAs-,
pn—A
where . — A denotes a covering relation in Py, and we define

k
(18) Cﬁ,m = Z ti — th7
i€U(N) Jj=1
where U(X) indexes the upward steps in the partition \, recorded from south-
west to northeast. Here, Ax— equals the basis element corresponding to \ with
an (n — 1)-rim hook removed if such a partition exists, and Ay- equals 0 if
such a partition does not exist.
(¢) Multiplication by one box is associative; i.e.

(19) (ADQAA)QAHZADO(A,\OAH).
Then A is canonically isomorphic to QH3(Gr(k,n)) as Alq]-algebras.

Proof. If A is a commutative Alg]-algebra with an additive A[g]-basis indexed by A €
Prr in which the equivariant quantum Pieri rule (17) and one box associativity (19)
both hold, then the proof of Proposition 5.1 in [22] shows that the equivariant quantum
Littlewood-Richardson coefficients satisfy the recursion in Equations (5.2) and (6.1)
in [22]. If further A is a graded algebra with unit, then Theorem 2 in [22] implies that
A is canonically isomorphic to QH}(Gr(k,n)). O

In this paper, we denote by o our multiplication in QH7. (Gr(k,n)) carried out
by lifting basis classes, which are the same as the basis classes in Hy, (Gr(k,n)), to
Hi,  (Gr(k,2n — 1)) and reducing to QH7, (Gr(k,n)). That is, for A, 0 € Prn,
(20) 0300, = ¢(T3 - 7).

As before, the notation - denotes classical equivariant multiplication in the appro-
priate ring, and x will denote the quantum product. An alternative interpretation of
Theorem 2.6 is that o = *.

We will therefore be interested in the algebra A with additive basis {o} indexed
by A € Pin, and the operation defined by this lift-reduction map o. To prove that
(A, o) satisfies the hypotheses of Theorem 3.1, we have two primary tasks: to prove
the Pieri rule and one box associativity.

3.1. THE EQUIVARIANT QUANTUM PIERI RULE. We begin by reviewing Mihalcea’s
quantum equivariant Pieri rule, and we then show that our lift and reduction map
agrees with Mihalcea’s formula. Denote by A~ the Young diagram obtained by remov-
ing an (n — 1)-rim hook from A. Throughout this paper, we shall use the convention
that if no such rim hook exists, then oy- = 0. When \; = n — k, we also need the
related partition X := ((n — k + 1), A2, ..., A). Note that A and A~ are related by
removal of a single n-rim hook.
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THEOREM 3.2 (Theorem 1 [22]). The following Pieri formula holds in QHy, (Gr(k,n)):

(21) OnxON= D Out Ao+ qor-
>
HEPrkn
In particular, specializing ¢ = 0 in (21) recovers the equivariant Pieri rule in

Hi (Gr(k,n)).

PROPOSITION 3.3 (Equivariant rim hook Pieri). For any Young diagram A € Py, we
have:

(22) o(0n-ox) = oo*oy.

Proof. If \y # n — k then the result is immediate: we appeal to the non-quantum
equivariant Pieri rule by setting ¢ = 0 in Theorem 3.2 to say that

(23) @(0/—1\:15;): Z 0M+C§,DUA:UD*0'A-
p—>A
HEPkn

If \; = n — k, recall that X is the Young diagram (n —k +1) > Xy > ... > M\ in
Pr.2n—1. Then

(24) p@@-ax)=¢| Y, outcno
p>=A
HEPk,2n -1
(25) =@ Z (/T; + Cipa + O—X
p>A
HEPkn
(26) = Z op+ Ci\,ma)\ + qox-
pn—=>2X
HEPkn
(27) = op* 0. O

3.2. ONE BOX ASSOCIATIVITY. Recall that we denote by o the composition of lifting
two Schubert classes from Hi. (Gr(k,n)) to Hy,  (Gr(k,2n — 1)), multiplying the
classes, and then performing n-rim hook reduction as in Equation (20).

THEOREM 3.4. For any Young diagrams A and p in Py, we have
(28) (onooy) oo, =ono(oro0y,).

The proof of Theorem 3.4 requires three fairly serious technical results, which we
state now and prove later in order not to interrupt the flow of the exposition.

PROPOSITION 3.5. Suppose that v rim hook reduces to v by removing d rim hooks each
of size n. Let ¢] o be a coefficient in Hy, _ (Gr(k,2n—1)) and ¢, g be a coefficient in
Hi (Gr(k,n)). Then
,0
plcyp) =cyp=cp€ A
In particular, this implies

(29) ol S )= 3w

ieU(y) i€U(v)
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PROPOSITION 3.6. Suppose that v € Py on—1 reduces to the n-core v € Pyy, by remov-
ing d rim hooks. Then

(30) Yoowlos)= Y dloc+qo-=q¢" D ploo)

5—>~ e—>v e—>v
0€Pk,2n—1 €€Pxk,n €EPk 2n—1

In particular, note that if e —v and v € Py, then the n-core of € equals v~ if and
only if vy =n—k and v; >0 for all 1 < i < k and e = T; otherwise, € is an n-core.

PROPOSITION 3.7. In QH}, (Gr(k,n)), when Ay = n — k, then we have ¢ (o5 - 7,) =
qox-00y.

The proof of Propositions 3.5 and 3.6 require the use of abacus diagrams, which we
discuss in Section 4. Proving Proposition 3.7 inspired the authors to develop a new
polynomial model for equivariant quantum cohomology, which we call cyclic factorial
Schur polynomials. Cyclic factorial Schur fuctions are discussed in Section 5. Assuming
these propositions for the moment, we will now proceed with the proof of one box
associativity.

Proof of Theorem 3.4. First we establish some notation. Suppose that A\, u € Py.
We will write

—~ 5
(31) Ox- 0, = E Cx 0
YEPk,2n—1

. d . . .
and then define the coefficients CK’ ,, Via rim hook reduction as

v,d
(32) © Z c}\yﬂaﬁyz = Z cxyﬂqdal,.

YEPk,2n—1 VEPkn
d>0

We will do a direct calculation, using the two previously stated crucial lemmas, in
order to prove the desired equality. We have

(5003) 00,

= Z o5 +qox- + cipa)\ ooy, Prop. 3.3 & Thm. 3.2

>\
0€EPkn

A
= E 0500, +qox- 00y, +cxpox o0y,
s—>=X
6E€EPkn

= Z gsoo,+ (o5 -0,)+ C&\’DJ)\ ooy Prop. 3.7.

d—>=X
0E€EPkn

Note that this middle term equals zero if A\~ does not exist, so this last step is
nontrivial only when A; = n — k. Now since p € Py, then we may replace o, by 7,
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to obtain

E 0500, +¢ (05 0u) + CApor 0 oy

§—>2\
6EPkn
— —~ A~ —
=@ E 05Oy +‘P(US\'UM)+<P(C/\,DU/\'UM)
§—> 2\
SEPkn
o A~ —~
=@ E Os +Chmox | " 0p
§—> A
0EPk,2n—1

= ((0n-0x) ,)-

Multiplication in the classical cohomology ring H;.(Gr(k,2n — 1)) is associative,
and so here we may write

@((f?m-&})f;)

oa- (ox-ou))

CK’H07 Eq. (31)
€73k 2n—1

= Z c)\ H(O'D o)

YEPk,2n—1
= 7 2 Thm. 3.2
= Cap o5 + Cy, 00y m. o.
YEPk,2n—1 §—>~
0EPK,2n—1
_ vy v
=eo| Y Q. 2 ou|tel| Y Gudom
YEPk,2n—1 §—>1~ YEPk,2n—1
0€Pk,2n—1
d
=p E Ap E os | + E ey #qdc” oo Prop. 3.5 & Eq. (32)
YEPk,2n—1 §—>r vEPkn,d
0E€Pk,2n—1
l/d d /l:E d
= E W E oe | + E W'l ¢y o0y Prop. 3.6
VEPkn,d e—>v VEPkn,d
€€EPk,2n—1
ud d —~
= > &% > ot g0y
E—V
VEPkn,d €€Pr 2n—1
. od d g~ o~
= E gt (on-o) Thm. 3.2
VEPkn,d
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- Y &t lmea

VEPkn,d
R
VEPkn,d
=opop Z ex 0y Eq. (32)
YEPk,2n—1
=ogo (or00,). Eq. (31)
Altogether we have thus shown that (ono o)) oo, =ono(or00,), as desired. O

Proof of Theorem 2.6. Consider the graded, commutative A[g]-algebra (A,o) with
an additive basis of Schubert classes o) for all A € Py, and product defined by
ox oo, = ¢(ox - 0,). By Proposition 3.2, the equivariant quantum Pieri rule holds
in (A, o). Theorem 3.4 says that multiplication by the class of a single box is asso-
ciative. Therefore, by Theorem 3.1, the algebra (A4,o) is canonically isomorphic to
QH%. (Gr(k,n)). O

4. ABACUS DIAGRAMS AND CORE PARTITIONS

4.1. ABACUS DIAGRAMS, PARTITIONS, AND n-CORES. This section is devoted to the
proof of the first two key propositions in the proof of one box associativity, Proposi-
tions 3.5 and 3.6. The main tool for proving these propositions is the abacus model
for a Young diagram; see Section 2.7 in [14] for more details. The abacus model links
covers in Young’s lattice to the n-cores in Py, , the two key players in Propositions 3.5
and 3.6.

DEFINITION 4.1. An abacus is an arrangement of the integers into n columns called
runners, together with a placement of beads on the integers. The integers are written
in order, from left to right and top to bottom, so that each runner is labelled by an
equivalence class of the integers modulo n. Our convention is to place zero on the
left-most runner. The beads satisfy the condition that there exists an integer N so
that there is a bead on every integer before —N and no beads after N. A gap is any
non-beaded integer g which precedes some beaded integer b > g. Note that consecutive
non-beaded integers count as multiple gaps, not just one. A bead is said to be active
if there exist gaps preceding it. In our context, only the last k beads are permitted to
be active, as this paper only concerns Gr(k,n).

Figure 4 illustrates two examples of abacus diagrams on n = 3 runners. The left
abacus has gaps at 2 and 4 with active beads on 3 and 5, while the right abacus has
no active beads.

To obtain the Young diagram X corresponding to an abacus A, we define its parts
by counting the number of gaps before each of the last k beads. More precisely, \; is
the number of gaps before the bead which has exactly ¢ — 1 beads after it, allowing us
to construct a partition A = (Ay,...,\;). For example, counting the number of gaps
before each of the two active beads in the left abacus in Figure 4 gives A = (2,1).
Note that if m of the last k£ beads are inactive, as in the right abacus in Figure 4, then
the last m parts of A will equal 0. Conversely, one way to create an abacus A from a
partition A = (A1,..., Ax) is to place a bead on every negative integer, and then for 4
from 1 to k, place a bead on location A\g_;1 + 7 — 1.

REMARK 4.2. There are many abaci which correspond to the same partition A. For
example, constructing an abacus for the partition A = (2,1) by beading the negative
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FIGURE 4. An abacus for A = (2,1) on the left, and an abacus for
A = (0,0) on the right.

integers and placing beads at Ay_;+1 +¢— 1 as just described, gives a different abacus
than the one shown in Figure 4. Similarly, any abacus in which we translate all beads
on the abacus vertically by the same amount produces the same partition. Often
any abacus diagram corresponding to a fixed partition will suffice for our purposes,
but later we do refine this construction in order to make the correspondence one-to-
one; see Lemma 4.7 below, which constructs a unique preferred abacus diagram for
elements of Py,,.

We can now translate much of the requisite combinatorics on partitions into the
language of abaci. For example, the following lemma describes in terms of abacus
diagrams the covering relation in Young’s lattice given by adding a single box to a
partition.

LEMMA 4.3. When \ = ()\1, ey Ak) and N = ()\1, D VEETD VI = )‘i-‘rlv RN )\k) are
both valid Young diagrams, an abacus for X' can be obtained from an abacus for \ by
moving a bead on the abacus for X to the next integer.

Proof. The number of boxes in row ¢ of a Young diagram A corresponds to the number
of gaps before the i** from the last active bead in an abacus for A. We can add a box
in the i** row if and only if there are at least A; + 1 boxes in the (i + 1)** row of \.
This is the case if and only if there is a gap between the i** and (i + 1) active bead
in the abacus for A. d

DEFINITION 4.4. An abacus is called flush if each bead has another bead directly
above it.

For example, the abacus on the left in Figure 4 is not flush, but the abacus on the
right in Figure 4 is flush. The abacus shown for A = (0, 0) is obtained by making the
abacus for A = (2, 1) in Figure 4 flush by moving a bead upwards from 5 to 2. As the
following result shows, this corresponds to removing a 3-rim hook from the partition
(2,1), resulting in the partition (0,0).

THEOREM 4.5 (Lemma 2.7.13 and Theorem 2.7.16 [14]). A is an n-core if and only if
every (equivalently any) abacus corresponding to A is flush. Additionally, removing a
single n-rim hook from X corresponds to moving one bead up one row on an abacus
runner.

Algebraic Combinatorics, Vol. 1 #3 (2018) 340



Equivariant rim hook rule

We now present two lemmas which use this connection between n-cores and abacus
diagrams. Lemma 4.6 gives a necessary criterion on abaci for a partition to have n-
core in Py,, and Lemma 4.7 shows that it is possible to choose a unique preferred
abacus diagram for elements of Py,. We remark that Lemma 4.7 is part of a more
general phenomenon, and we refer the interested reader to the discussion of balanced,
flush abaci in [14].

LEMMA 4.6. If a Young diagram ~ of at most k parts has n-core in Py, then any
abacus for vy has each of its last k beads on distinct runners.

Proof. First suppose that ~ is itself a Young diagram in Py,, and hence an n-core.
Assume one of the last k beads occurs on the same runner as another of the last &
beads. With at most & — 2 remaining beads between them, we know that there are
n—1—(k—2)=n—k+1 gaps between them, giving a partition of width greater
than n — k. This contradicts the assumption that the partition was in Pk,,.

If v ¢ Py, we first observe by Theorem 4.5 that taking an n-core does not change
the runners on which the active beads of an abacus appear. Therefore, if v has n-core
in Py, the active beads on 7’s abacus must also be on distinct runners, and therefore
so must the last k& beads. O

LEMMA 4.7. If v € Py, then there is a unique abacus for v with the last k beads in
the row containing 0 and the last bead on integer n — 1. Further, such an abacus must
necessarily have inactive beads at every integer j for j < —1.

Proof. By Lemma 4.6, the last k beads in any abacus for v are on k different runners.
Build an abacus A, for v by starting with an unbeaded set of runners. Place a bead
on integer n — 1. Then, for each ¢ from 2 to k& place a bead on location n — 1 —
(1 —vi) — (i — 1). Note that we have now placed k beads on integers between n — 1
and n—1— (v —vg) — (k—1). Since v1 — v, < n—k, the k beads we have placed are
between n —1 and n—1— (n—k) — (k—1) = 0, all on the row containing 0. Finally,
place an inactive bead on every integer j for j <n—1—1v; — k.

We have now created an abacus A, for v with last bead at location n — 1 and
all beads in the row containing 0. There is also an inactive bead at every location
7 <n—1—uv; —k, and since v; < n — k, there is an inactive bead at every integer
j < —1. Further, if A/, is another abacus for v with last bead at integer n — 1, it must
be exactly the same abacus as A,. O

4.2. COEFFICIENTS IN EQUIVARIANT COHOMOLOGY AND n-CORES. We are now pre-
pared to prove two of the three key propositions which arise in the course of our proof
of one box associativity in Section 3.2. In the proof of Proposition 3.5, we describe the
equivariant Littlewood-Richardson coefficient Cz’m as sums over active beads on aba-
cus diagrams and hence prove that the equivariant Littlewood—Richardson coefficient
C;,D behaves predictably under the map t; — ¢; modn- As a reminder, Proposition 3.5
says that if v € Py 2,1 rim hook reduces to v by removing d rim hooks of size n,
then

(33) e(cyn) = o
and in particular,
(31) ol T )=
i€U(v) ieU(v)
Proof of Proposition 3.5. Recall that U(y) indexes vertical steps for the Young dia-
gram . The j** element of U(7y) is j — 1 + g(j), where g(j) is the number of gaps
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before the j** active bead in any abacus for . Recall that we count active beads in
the same order as the integers they are placed on, and so the first active bead gives the
smallest nonzero part in the partition. Thus, the equivariant Littlewood—Richardson
coefficient Cz,m can be written as a sum over locations of active beads on an abacus,
independently of the number of runners:

k k
(35) A= (ti—tagl) —t) = | D ti-reg() | = (1t + ).
j=1 j=1

Notice that the sum ¢ + - - - + ¢ is constant under the map ¢. By Theorem 4.5,
removing an n-rim hook corresponds to moving a bead up one row on its runner. We
therefore see that moving a bead up or down one row on a runner changes the index
j—14g(j) of a torus weight by n. Thus, under rim hook reduction indices are constant
modulo n, and under the map ¢ the two summands of C:YY’D remain constant. Since ¢
does nothing in the case the abacus is flush, we conclude that ¢(c]n) = ¢ o O

Finally, we prove Proposition 3.6. Recall that Proposition 3.6 states that if v €
Pr,2n—1 reduces to the n-core v € Py, by removing d rim hooks each of size n, then

(36) Yo elos)= Y, qloc+q™o,=q DY el

§—>~ e—>v e—>v
6€Pk,2n-1 €€Pr,n €EPk,2n—1

Proof of Proposition 3.6. We show the first equality in Equation (36) by showing that
each term in the second expression appears in the first expression and that each term
appears at most once.

Let A, be an abacus for v on n runners. We obtain an abacus A, for v by making
A, flush as in Theorem 4.5. From A, we can obtain A¢ for any cover ¢ —v by
moving an active bead on .4, one runner to the right, according to Lemma 4.3. This
will be an n-core unless it is the last bead that is moved, making the largest part of
the partition € of length n — k + 1. In this case, taking the n-core of ¢ we must get
v~ . In either case, for each € we can reverse the process of obtaining A, from A, to
obtain an abacus for a partition § which is a cover of v and has n-core e.

Now we show that each term in the second expression appears at most once in
the first expression. We assume for sake of contradiction that two distinct covering
partitions §; —~ and d;—=~ both rim hook reduce to the same e¢ € Py,,. Consider an
abacus A, for v as constructed in Lemma 4.7, and fix A, an abacus for y that reduces
to A, by making the abacus flush. By Lemma 4.3, abaci As, and Aj, corresponding
to 61 and d2 can be obtained by moving a bead from A, one runner to the right.

If neither bead moved was on the n'" runner in A,, then when As, and As, are
made flush to obtain an abacus for €, we must get the unique abacus for e constructed
in Lemma 4.7. Since As, and A, differed only in two beads, in order to satisfy
Lemma 4.6 we must have A5, = Aj, and hence d; = J2, a contradiction.

Now suppose that to create A;, we move the bead on the n'" runner in A, to the
leftmost runner, while to create As, we only moved a bead right one runner in the
same row. If there is no inactive bead on integer 0 in A,, then again all of the active
beads will be in row 0 when As, and Aj, are made flush. However, these two flush
abaci will have unequal k' parts and thus cannot rim hook reduce to the same e,
contradicting our assumption. If there is an inactive bead at 0 in .A,, then the bead
moved to the first runner to form As, will still correspond to the largest part of e
when Aj;, is made flush. In this case the n-cores of J; and J; do not have equal first
parts, contradicting the assumption that both rim hook reduce to e.

The second equality in Equation (36) follows from the proof of Proposition 3.3. O
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5. CYCLIC FACTORIAL SCHUR POLYNOMIALS

5.1. POLYNOMIAL PRESENTATIONS FOR EQUIVARIANT COHOMOLOGY. The technical
heart of much of this paper is the proof of Proposition 3.7, for which we introduce the
concept of cyclic factorial Schur polynomials. To complete our proof of the equivariant
rim hook rule, we use the fact that the reduction map ¢ on the equivariant cohomology
ring with the Schubert basis gives rise to a corresponding map on factorial Schur
polynomials.

Applying the isomorphism from Equation (3) to Gr(k,2n — 1), we have

A[€1($|t), ceey ek($|t)]
<h2n,k(l’|t)7 ey hgnfl(l"t».

As discussed in Section 2, the e;(z|t) are the factorial elementary symmetric polyno-
mials, and the h;(x|t) are the factorial homogenous complete symmetric polynomials

(37) Hy,  (Gr(k,2n — 1)) =

in the variables z1,..., 2 and 1, ..., t2,_1. For brevity, we denote the relevant poly-
nomial ring and ideal by

(38) R=Aer(aft), ..., ex(z[t)]

(39) J = (hon_r(z|t), ... hon_1(x|t))

so that H7, — (Gr(k,2n — 1)) = R/J. Note that R is gencrated by the factorial
elementary symmetric polynomials in z1,...,z; and tq,...,t9,_1. Similarly, recall

from Equation (5) that
A[q7 61(1'|t), ) ek(‘I't)]
(g1 (zft), o o (2[t) + (=1)*q)’

where now the e; (z|t) and h;(z|t) are the factorial elementary symmetric and homoge-

(40) QHr, (Gr(k,n)) =

nous complete symmetric polynomials in the variables zi,...,z; and ¢1,...,t,. We
will often write this polynomial ring and its associated “quantum ideal” as

(41) R =Ag,ex(xlt),... ex(x]t)]

(12) J = (b1 (@lt), . hn(alt) + (1))

so that QH7, (Gr(k,n)) = R/J. Note that R is generated by the factorial elemen-
tary symmetric polynomials in z1,...,2, and tq,...,t,. Under each of the isomor-

phisms (37) and (40), we know by Proposition 5.2 in [23] that the class o corresponds
to the factorial Schur polynomial sy (x|t).

DEFINITION 5.1. Given a partition X\ € Py on—1, we define the cyclic factorial Schur
polynomial corresponding to A to be the polynomial in R obtained from the factorial
Schur polynomial sx(x|t) in the variables t1,ta, ..., tan—1 by applying the reduction
ti ¥ timodn- We denote the cyclic factorial Schur polynomial corresponding to A by
Sx(z|t) to differentiate it from the original sy (z|t).
Algebraically, the reduction map from Definition 2.5
p: H{’,i%’il(Gr(k, 2n—1)) — QH;‘«H(GT(IC, n))
then corresponds to a surjective Z-module homomorphism ¢ : R — R determined
by
ti — ti(mod n)

d S .

L (—D)ERg) s, (2t fv € Prn,
(43) o (aft) s | ima (FDE0) s alt) il e Py

0 if v & Prn,
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where v is the n-core of «. This map passes to a map on the quotient, which we also
denote by ¢ : }N%/j — R/J. Notice that t; — t;modn acts as the identity on any
sx(z|t) in R with A € Pp,, since the torus weight with largest index occurring in a
such a factorial Schur polynomial is k +n —k —1 =n —1 (the filling T'(«) of a box «
in the Young diagram is bounded by k and the content ¢(«) is bounded by n—k —1).
Thus we can view sy(z|t) as an element of both R and R whenever A € Py,. To
clarify the domain when necessary, we write S)(z|t) to denote the polynomial s (z|t)

viewed as an element of the larger ring R.

ExXAMPLE 5.2. We illustrate the construction of the cyclic factorial Schur polynomials
by rewriting Example 2.7 in these terms. In ]:]E/j with & = 2 and n = 4, which
is isomorphic to the equivariant cohomology ring of Gr(2,2-4 — 1) = Gr(2,7), we
multiply sm - s to obtain

(44) Sm - St = (t4 — t3)(t4 — tz)SD:l + (t4 — tg)SBj + SBH
+ (t5 + ity — 13— tQ)S[ID+ Sgm + St
Then, we reduce the ¢; via t; — t;mod4
(ta — t3)(ta — t2)5mm + (ta — t3)5p + 55 + (t1 + ta — t3 — t2)50m + S + 5o,

where 5, denotes the cyclic factorial Schur polynomial corresponding the partition
A obtained by reducing the torus weights present in s,. In the ring R/J, which is
isomorphic to the equivariant quantum cohomology ring of Gr(2,4), this expression
is equal to

(ts — t3)(ta — ta)smm + (ta — ta)spp+ s+ (t1 +ta — t3 — £2)0+ ¢ + (—q)

This example thus illustrates how cyclic factorial Schur polynomials provide a sys-
tem of polynomial representatives for equivariant quantum cohomology which do not
explicitly contain a quantum parameter.

5.2. DIRECT ANALOG OF THE RIM HOOK RULE. As a reminder, the remaining Propo-
sition 3.7 states that in QH7, (Gr(k,n)), we have
(45) %) (UK' 5;) = qo\- 00y,

where p, A € Pgy, with A\; = n — k. Here we prove a reformulation of this proposition
in terms of factorial Schur polynomials.

Recall that Theorem 2.6 aims to provide a way to calculate the product of two
Schubert classes o) x 0, in QHF, (Gr(k,n)) using the reduction map . In particular,

ox*0, =0x00,=¢ (o) 0,)

where ay is the lift of o) to Hy, _ (Gr(k,2n —1)). This perspective gives rise to the
following commutative diagram:

Hf (Gr(k,2n—1)) ® Hy, | (Gr(k,2n —1)) —— Hyp, | (Gr(k,2n — 1))

Hy (Gr(k,n)) ® Hy, (Gr(k,n)) QHF, (Gr(k,n))

The square above can be viewed as the front side of the following three-dimensional
diagram. The front face of the cube is connected to the corresponding square in
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terms of cyclic factorial Schur polynomials on the back side of the diagram by the
isomorphisms from (3), (37), and (40) and the definition of ¢ in (43).

R/J®R/]————>R|J
H;2n71 ® H;:znfl : H}Zn—l
N @
%)

R/J®R/J ——|—R/J

/ /

Hr, ® Hr, 5 QHr,

As discussed in Section 2, we choose the unique lift of the factorial Schur polynomial
sx(z|t) from R to R given by the identity map. Note that in the diagram above we
abbreviate Hy, (Gr(k,n)) by Hy and QHz. (Gr(k,n)) by QH. .

In order to prove Proposition 3.7, we reformulate Equation (45) using cylic factorial
Schur polynomials. For such a reformulation to suffice, we need to know that the
rightmost square in the above three-dimensional diagram commutes. To this end,
we first prove the following equivariant analog of a key lemma of Bertram, Ciocan-
Fontanine, and Fulton. The referenced version of the Main Lemma is phrased in terms
of cohomology classes oy; we use the commutative cube above to discuss polynomial
representatives sy (z|t) instead.

PROPOSITION 5.3 (Equivariant generalization of Main Lemma in [2]). Let A be any
partition. In the ring R/J,

(a) If My > n—k and X\ contains no n-rim hook, then sx(z|t) = 0.

(b) If A1 > 0, then sy(z|t) = 0.

(¢c) If X contains an illegal n-rim hook, then sx(z|t) = 0. (An illegal n-rim hook
is one which starts at the end of a row, moves down and to the left, and ends
at an inner corner; namely, when removed it leaves a non-valid partition.)

(d) If v is the result of removing an n-rim hook from A, then

sa(z[t) = (=1)"""gs, ([t),
where h is the height of the n-rim hook removed.

From part (d) in particular, we see that the following diagram commutes:

Hy  (Gr(k,2n—1)) —=R/J

<pl "t
QH7, (Gr(k,n)) R/J
Since this fact implies that the entire three-dimensional diagram above is commuta-

tive, to conclude our proof of Theorem 3.4, it suffices to prove the following reformu-
lation of Proposition 3.7 using cyclic factorial Schur polynomials.

PROPOSITION 5.4. For p, A € Py, with \y =n —k,

(46) G(sx(@t)su(x]t)) = qp(Sr- (z[t)5,(2(t))-
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5.3. JACOBI-TRUDI FORMULAS AND CYCLIC FACTORIAL SCHUR POLYNOMIALS. This
section relies heavily on the Jacobi—Trudi formula for expanding factorial Schur poly-
nomials in terms of factorial complete homogeneous polynomials. Set 77°¢ to be the
shifted torus weights 77%t; = t_,4;. Recall the factorial Jacobi—Trudi formula from
Equation (6), which states that

sx(z|t) = det(ha, +j—i(z|T" 7)) 1<ij<k-

For brevity, let M, denote the matrix appearing in the Jacobi-Trudi formula for
su(z]t). The proofs of Propositions 5.3 and 5.4 first require a lemma on quantum
invariance under a shift in torus weights. We then proceed to an argument using an
expansion of the matrices obtained by multiplying the Jacobi-Trudi expansions of
factorial Schur polynomials under consideration.

LEMMA 5.5 (Quantum invariance under shift). In the ring R/J,

(47) ho(z|77%t) =0
for all s and all m such that n —k <m <mn, and
(48) ha(z|77°1) = (~1)**'q
for all s.

Proof. First we establish the base case, invariance under shift of the polynomial
hn—k+1(x|77%t). By Equation 1.1 in [23], it is true for all s and given m that

(49) B (2] 7758) = Py (2|7 757) + (tsiees — t—sp1 ) hm—1 (z|7 75T,
Substituting m = n — k + £ gives the useful equation
(50)

Pt (2| 775) = Mt (@7 7) 4 (bp—ieth—s — t—s1)Pn—ipe—1 (|7
Notice that for ¢ = 1, this simplifies to
(51) By 1 (2] 77°8) = P o1 (2]775) + (Fn g1 — tsq 1) P g (|77 5T10).
Reducing indices on torus weights modulo n, the difference ¢,,_s41 — t_s41 is zero,
giving

(52) P g1 (2])7758) = En_k+1(x‘7-7$+1t)

_s+1t).

for cyclic factorial Schurs. Because hy,_gi1(z|t) = hn_rr1(z|t) € J, we see that any
shift by 7 is also in J. This is the base case for induction.
For 1 < £ < k we use Equation (50) and the assertion that h,, s ¢_1(z|775Ft) =
0 mod J under the inductive hypothesis (invariance of the polynomial under shifting
77%). Note that hy,_g1¢—1(z|t) € J. This establishes the first statement in the lemma.
For the second statement, j = n implies

B (2] 775¢) = (2|7 75T) + (tpghes — t—sp1)hm_1 (x|775TH),
but by our previous computations A, _1 (z|7~*T't) is zero modulo J and so
B (|7 75t) = hy (x| 775 18).
Therefore, in R/J we have
ha(2|77°t) = ha(2]t) = (=1)**q,
for all s. 0

We now prove the two key propositions in this section, starting with the equivariant
generalization of the rim hook rule from [2].
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Proof of Proposition 5.3. Let A\ be any partition.

(a) Suppose A does not contain an n-rim hook and the width of the partition
A1 > n — k. If £ is the height of the partition (the number of non-zero parts in ), we
must have \; + ¢ < n, else A would contain an n-rim hook. The Jacobi—Trudi formula

sa([t) = det(hx,+j—i (|7 77t))1<i i<k
reduces to

sx(alt) = det(ha, 4y 78 1<
by repeated Laplace expansion along the bottom k — ¢ rows of the matrix. Since
n—k < Ay <n —/, the first row of this reduced Jacobi-Trudi matrix consists of the
polynomials hy,4;—1(z|7177¢) for 1 < j < £, which are all elements of J and so zero
in the ring R/J.

(b) If A1 > 0, we have sy(z|t) = 0 by definition.

(c) If X contains an illegal n-rim hook, a determinantal argument shows sy (z|t) = 0.
If an n-rim hook is removed from A starting in row r and ending in row s, the resulting
shape has row lengths

()\1,...,)\7«_1,>\7«+1*1,)\T+271,...,)\5*1,)\T7T+S*TL,AS+1,...,)\]C).

As discussed in Equation (12) of [2], the n-rim hook is illegal when A, —r+s—n =
As+1 — L. Define a factorial Jacobi-Trudi identity

Lo (lt) = det (b, +j—i (2|77t )1<ij<h

for any composition m = (mq,...,my). Apply it to the shape resulting from removing
the illegal n-rim hook from A. Row s in the Jacobi-Trudi matrix is

[h/\,,-fr+sfn+lfs(x|t)a h/\,,.7r+sfn+2fs($|7__1t)7 ey hX,.fr+sfn+szs(x‘Tl_kt)}-
Row s 41 is
[h’)\s+1+1—5—1(x‘t)7 h/\s+1+2—5—1(m‘7_1t)7 EERE} h)\s+1+k—s—1(m|7-l_kt)]'

Since Asy1 = A —r+ s —n+ 1, these are the same, and so the determinant is zero.
(d) If X reduces to v € Py, by removing d rim hooks of length n, we prove that
the factorial Schur polynomial sy (z|t) € R reduces via & to ¢%s, (z|t) in R/.J.
We first prove a version of a formula on p. 2295 of [23]:

(53) Blsx(al) = gsr-(alt)
By the factorial Jacobi—Trudi formula,
hn—rr1(z|t) Rp_pao(z|T7 i) - B (|71 1)

t- 1—k
(54)  sxlalt) = det | Mem2(@l0) : Ptk (! )

-k ([t) ol (TR
Modulo the relations in the ideal J, every entry in the top row is zero except for
hn(z|77Ft) = (=1)""*¢. Expanding the determinant along the top row then gives

hag—1(zlt) - hag+i—2(z|T' 7 )
B(s3(alt) = (~1)*qdet S ; ,
Pei—k(alt) - - ha -1 (x| 75e)

where the matrix is k — 1 x k — 1. Recall that hy,(z|t) + (—=1)¥q = 0mod J, and the
two factors (—1)* cancel. As A~ = (Ao — 1, A3 — 1,..., Ax — 1,0), this right-hand side
is exactly gsy-(4r) by factorial Jacobi-Trudi. This proves that the map ¢ satisfies
Mihalcea’s statement (53).
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Part (d) goes further and says that if A rim hook reduces to v € Py, by removing
one rim hook of size n, then

Plsa(alt)) = (=1)""gsy («[t)

in R/J. Assume Ay > n —k + 1. It is easiest to prove this statement by showing that
(55) P(hnay(@lt)) = (1" Vglh (alt).

We prove (55) inductively below in Lemma 5.6.
Following the proof of the Main Lemma in [2], let m be a sequence of integers
m = (mq,...,my) and set

(56) Tm($|t) = det(hm,i+j,i(l"t))1<i7j<k.

By assumption, there is some Ay for which Ay > n — k; take one of these rows and
call it s. Apply Lemma 5.6 to row s, as every entry in that row will either have
n—k<{l—i+j<norfl—i+j>mnand so each entry will be zero or will be a
multiple of ¢ by Lemma 5.6.

Factor out one ¢ from all such rows, and then notice that then we will have the
identity

(57) Lo (2]t) = (=1)" " g (2]t),

where m” = (mq,...,ms_1,ms —n,Msy1, ..., my). Rearrange the rows of the matrix
to put them “back in order”, recalling that if 1 < r < s < k and the r*® row of the
matrix is swapped with the (r 4 1), then the (r 4+ 2)"!, and so on until the s row,
we have

(58) o (@[t) = (=1)°7" Lo (]t),

where m’ = (mq,...,mp_1,mpy1—1,... ,;ms—1,mp—7r~+8,ms11,...,mg). Combining
these two processes of factoring out ¢ and rearranging rows so that the resulting m'”
is strictly decreasing, we get

(59) T (a|t) = (1) F 7L (2t),

withm” = (my,...,mp_1,mry1—1,...,ms—1,mp—r+s5—n,Ms11,...,Mmy) — A with
a rim hook removed. (If at any point there was no rim hook to remove, the process
would halt, and an illegal rim hook would result in determinant zero.) If another rim
hook can be removed, repeat. This gives part (d). O

LEMMA 5.6. In the ring R/ J,
Bhnaj(lt)) = (1) VgThy (z]t).

Proof. First we present relevant identities and a short example, and then we induct
on the degree of the homogeneous polynomial using degree n as the base case. We
know that h,(z|t) = (—1)¥q in R/J as this is a relation in J.

Use formula (2.10) in [23] to formally write

k

(60) > (=D ep(@t)hep(zl7 ) = 0

r=0
for each positive s. An alternative and equivalent formulation is

k

(61) D (=0 e (@l ) h (x]t) = 0.

r=0
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As an example of how the proof will go, look at the case s = n + 1. Then,

k

(62) S (=1 e (@]t 1 (2l 1)

r=0
= hni1(z[t) — by (z[ter(z]t) + ... & hy_pr1 (@[t)er(z]t) = 0.

The relations in the ideal J eliminate most terms in the middle expression and give

(63) 1 (w]t) = P ([t)ex (x]t).
This can be rewritten using the quantum relation to give
(64) Phngi(zlt) = (~1)*qer (]t).

We now induct. Let m > n, and write m = nd+ j for positive d and 0 < j < n—1.
Use equation (61) again to write

k
(65) Z(_l)reT(I‘Tm_lt)hm_T(ﬂt) _o.
r=0
Move h, (x|t) to the left-hand side to write
k
(%) hon(alt) = 321" eu(alr M Oh —i(alr' ),
r=1

Use the inductive hypothesis on r to write each polynomial h,_;(x|7*~%) on the right-
hand side in terms of ¢q. The above calculations were all written out in the ring of
symmetric functions; in our context this implies

(67) B(hnayj(@|) = (=1)**Vgh; (xlt). O
Proof of Proposition 5.4. To establish Proposition 5.4, we use the Jacobi—Trudi

formula to expand the products of the Schur polynomials sy(z|t)5,(2[t) and
Sx- (z|t)5,(x|t). Then

[ A peyr (z]t) hn,k+2(m|rflt) hn(l"’rlikt)
(68) My = hag—1(zlt) P k-1 (z|T7F)
L Aaet+1—k(]t) s Ry (2] R
h/u(x‘t) hu1+1(90|7'*1t) h/L1+k71(.’E|T17kt)
(69) M, = h#z—.l(xﬁ) huz+k—1§w|7—17kt) )
| Pyt 1—k(|t) huk(xh_l—kt)

and so we can compute that
(70)  sx(x[t)s,(z|t) = det (M5M,,)
k
(71) ~ det (Z hAi+M<x71-f>hw+jAxfl-ft)) .
=1 1<i, i<k

Using Lemma 5.5 above, notice that hy,—g114i—¢(z|75t) is zero modulo the quantum
ideal J when n — k + 1+ 1 — £ takes values between n — k + 1 and n — 1. Since
A1 =n —k+ 1, the only entry in the first row of the matrix M5 M, that is non-zero
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modulo J is the last entry. Expanding the determinant along the first row of the
matrix then gives

k—1
(72) (_1)khn(l'|7'17kt) det (Z h)\i+171+£7i+1(x|7_17€t)huzie+j (fl]|7’1jt)>
=1

k—1
= (_1)kq det <Z h/\i+1*1+f*i+1(‘Z.‘Tl_ét)h/tefﬁrj (le_jt))
=1

where the equality is given by the second part of Lemma 5.5.
By contrast, expanding §y- (z|t)s,(z|t) in a similar fashion gives

(73)  Sx-(x[t)su(xlt) = det (My-M,,)

k
= det (Z hml_W_m(mw-%)hw_gﬂ(x|71—-7‘t)> .

=1

Since Ar41 = 0, the last row of the matrix M- M,, consists of k — 1 zeroes followed
by a one. Expanding the determinant then gives

k—1
(74)  Sx-(a[t)5u(alt) = (—=1)" det (Z hml1+e1:+1(w|71‘£t)hwm(a?THt)) -
(=1

The reduction ¢ applied to equation (72) is the identity, since the indices of ¢; range
only between 1 and n (see the definition of factorial Schur polynomial for A). Thus

(75)  @(5x([t)su(z[t))
k—1

= (—1)kqdet <Z h)\i+11+€7"+1(5U7'1_£t)hwé+j(x7'1_jt)) )

=1

We see that 5 (z[t)5,(z[t) = @(5x- (z[t)5,(2]t)) and @(sx(z]t)5,(x[t)) differ by ex-
actly g. Thus,

Plsx(alt)su(zlt)) = qp(Sx- (@[t)s,(x]t)),

as desired. O
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