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Abstract— We consider the problem of coverage planning
for a particular type of very simple mobile robot. The robot
must be able to translate in a commanded direction (specified
in a global reference frame), with bounded error on the
motion direction, until reaching the environment boundary.
The objective, for a given environment map, is to generate
a sequence of motions that is guaranteed to cover as large a
portion of that environment as possible, in spite of the severe
limits on the robot’s sensing and actuation abilities.

We show how to model the knowledge available to this kind
of robot about its own position within the environment, show
how to compute the region whose coverage can be guaranteed
for a given plan, and characterize regions whose coverage
cannot be guaranteed by any plan. We also describe a heuristic
algorithm that generates coverage plans for this robot, based
on a search across a specially-constructed graph. Simulation
results demonstrate the effectiveness of the approach.

I. INTRODUCTION

The problem of robotic coverage planning —that is, of
designing strategies for robots that ensure that they pass
near to every point in the environment— has generated
sustained interest from the research community [15], [26].
Solutions to such problems have applications in environmen-
tal monitoring [47], cleaning and lawncare [52], humanitar-
ian demining [48], and painting [6]. Most of the existing
coverage techniques rely on precise control of the robot’s
motion. For example, techniques based on the boustrophedon
decomposition [16], [50] require the robot to be able to travel
accurately in straight lines along the coverage passes, and
also to be able to transit precisely between the passes. The
primary alternative, realized with great success in the original
Roomba [56], is to move with some degree of randomness. In
that case, one expects the probability of complete coverage
to increase as the robot continues its movement, though any
guarantees are only probabilistic.

In contrast, this paper considers a coverage problem in
which a robot that is very simple —with no feedback sensing,
and with highly error-prone actuation— can nonetheless
guarantee to cover a certain portion of its environment.
Specifically, we consider a robot model with only two
movement primitives. First, the robot can rotate in place
to face a given direction, though this rotation is subject
to some unknown bounded disturbance. Second, the robot
can move forward from its current position until reaching
the environment boundary. The robot cannot measure the
distance traveled (it has no odometer nor clock) nor does it
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Fig. 1.
guaranteed to cover particular regions of the environment. Results from
several runs of the algorithm, showing the region guaranteed to be covered
by the plans for error bounds ranging from 0.5 degrees to 4.5 degrees of
error on each motion, are shown in corresponding colors: | 0.5°, 1°,

A maze-like environment. Our algorithm generates plans that are

1.5, 20 W25 M 3° M3.5° M40, and M 4.5°. Layers are stacked
by increasing error because the lower (more precise) layers cover everything
the layers above them cover. For example, very little red is visible because
very little area covered at 0.5 degrees is not also covered at 1 degree.

have any other sensors to provide feedback about its motion
through the world. Our interest in such simple robot models
derives both from a practical desire to limit the complexity
and expense of robots deployed for such tasks, but also
from a desire to understand the underlying information
requirements of important robotic tasks.

We describe an algorithm that computes a sequence of
motions for this robot to attempt to cover as much of the
environment as possible before returning to its start state. The
algorithm must confront the dual challenges of navigation
and coverage. Navigation with this robot model can be
challenging because the available sensor data is so limited,
the robot may easily lose track of its own position; coverage
with this robot model can be challenging because if the robot
does not know its own position with relatively high accuracy,
it cannot be certain of which parts of the environment are
being covered.

Figure 1 shows an example of our algorithm’s output,
in which the differently-colored shaded regions illustrate
regions that can be covered by this approach for varying
bounds on the amount of rotational error. The idea of the al-
gorithm is to construct a directed graph. Vertices of the graph
represent contiguous sets of possible states, represented as



line segments along the boundary, in which the robot might
know its true state lies. Edges of the graph correspond to
achievable transitions between these segments, labeled with
the region that is guaranteed to be covered by that transition.
After constructing this graph, the planning algorithm is then
a process of identifying edges that (a) would be beneficial
to cross because they would cover some new portion of the
environment, (b) can be reached from the starting position,
and (c) can be returned from.

After a brief review of related work in Section II, this
paper makes several new contributions. (i) We introduce,
in Section III, a new coverage planning problem, suitable
for a robot equipped with only an error-prone compass, a
contact sensor, and a map of the environment. (ii) We show,
in Section IV, how to model the incomplete knowledge
that this kind of robot has about its position within the
environment. (iii) We characterize, in Section V, the regions
whose coverage can be guaranteed for a given plan. We
also characterize regions that cannot be covered by any plan.
(iv) We describe, in Section VI, an algorithm that generates
state space graphs and searches them to find coverage plans.
(v) We present, in Section VII, simulation results demonstrat-
ing the effectiveness of the approach. Concluding discussion
appears in Section VIII.

II. RELATED WORK
A. Coverage

The various flavors of coverage problems have been stud-
ied so extensively that a full review is impossible here.
Recent research has studied the role of environment de-
composition [1], [25], [30], [59], particularly on grids [2],
[23], [29], [51]; coordination of multiple robots [7], [33],
[34], [36], [49], [50], [61]; and different path types such as
spirals [12], [28] or Dubins curves [34], [39], [53], [58],
[60]. Alam, Bobadilla, and Shell [S] consider probabilistic
coverage of grid cells using weighted random movement
with a very similar minimal robot. Our work is unique in
guaranteeing coverage of particular regions using a robot
with such limited sensing and actuation capacities.

We refer the reader to the surveys by Choset [15] and by
Galceran and Carreras [26] for a more complete picture.

B. Minimalism in planning

This work draws inspiration from the significant body of
prior work on minimalism in robotics. This work, which
builds from pioneering work by Erdmann, Mason, and Gold-
berg, and others [19], [20], [27], [43], has been applied to
problems in manipulation [3], [4], [8], [21], [41], [44], [57],
navigation [9], [18], [31], [32], [37], [42], and mapping [13],
[14], [35], [45], [55]. The robust coverage work of Bretl and
Hutchinson [10] might also be viewed as minimalist, as it
forms plans guaranteed to succeed despite motion accuracy
limitations. Das, Becker, and Bretl likewise considered cov-
erage problems for robots with uncertainty [17].

Perhaps most closely related is prior work that considers
localization [22], [46] and navigation [40] problems for robot
models very similar to the one we use here. We build upon

Fig. 2. An illustration of the basic notation. At stage k, the robot moves in
direction uj, + 0}, from xj, to x4 1, covering a portion of the environment
W along the way. Both x;, and xj_; are points along the boundary of C.
However, the robot does not necessarily know z, and certainly does not
know 6y,

those results to show how coverage planning problems can
also be solved under this robot model.

III. PROBLEM STATEMENT

This section formalizes our robot model and the coverage
problem we address in the paper.

A. Robot model

A disk-shaped robot with radius p moves through a known,
bounded, planar, polygonal environment W C R2. Using the
center of the robot as its reference point, the configuration
space C is the set of positions within W with distance at
least p from the boundary of the environment:

C={zxeW|B(z,p) C W}

We follow the usual convention by writing B(p, r) to denote
the open ball in R2 with radius r, centered at p. Note that,
though W has a polygonal boundary, the boundary of C may
include both line segments and circular arcs. See Figure 2.
Informally, the robot’s goal is ‘drive over’ —that is, to move
within distance at most p of— as much of W as possible.

We model time as a series of discrete stages k =
1,2,..., K. The robot’s state at stage k is denoted = €
C. In each stage, the robot selects a movement direction
uy, € [0,27]/~, in which ~ is an equivalence relation that
identifies O with 2. This motion is perturbed by an unknown
error 0, € [—Omax, Omax), in Which Op,,x is a known bound
on the accuracy of the robot’s angular orientation. Because
we are interested in guarantees of coverage, we do not
assume that any probability model applies to the selection
of each 0y; the disturbances may be selected at random, or
adversarially, or through any other mechanism.

From a given state xy, the robot moves in direction uy, +
0r. The motion continues until the edge of the robot’s body
reaches the boundary of W (or, equivalently, until the center
of the robot reaches the boundary of C.) The state resulting
from from this motion is denoted x1, and we denote this
state transition function by f, so that

Try1 = f@g, uk, Or).



The starting state x; is assumed to be known.

This robot model could be implemented, for example, with
a robot equipped with a noisy compass and a contact sensor,
but no way of measuring the distances it travels. An unusual
feature of the model is that, because there is no meaningful
feedback from any sensors, the robot’s strategy can be fully
described as a sequence of motion directions. There is no
need to consider any branching or looping in plans executed
by this robot.

B. Minimalist coverage

We can now consider the coverage problem for this type
of robot.

Definition 1: A point p € W is covered by a given
sequence of actions uq, ..., uxk and disturbances 61,...,0k
if there exist k € {1,...,K} and « € [0, 1] such that

Ip — (azs + (1 — a)arsn)]| < p.

Note that Definition 1 refers to a specific sequence of
disturbances, and recall that the specific disturbance values
are unknown to the robot. Thus, we are interested, as the
next definition clarifies, in points that we can guarantee
are covered, regardless of the specific disturbances in any
particular execution.

Definition 2: A point p € W is certainly covered by a
given sequence of actions u1,...,ug if p is covered by that
action sequence under any disturbance sequence 64, . ..,0k.

Definition 3: The certainly covered region, denoted
CCR(uq,...,uk), is the set of points in W that are certainly
covered by uq,...,uk.

The goal is to select actions that certainly cover some
desired fraction of the environment. Specifically, the problem
is:

Given an environment W, a start state 1, a
robot radius p, and the error bound 6,,,x, select
a sequence of actions wuj,...,ux to maximize
Area(CCR(uq,...,ux))/ Area(W).
In the remainder of the paper, we describe a specific heuristic
approach to this algorithmic problem.

IV. SAFE ACTIONS AND POSSIBLE STATES

Because of the unknown disturbances, as the robot moves
through W, it will in general be uncertain of its position.
In our approach, we reason about this uncertainty using a
worst-case model. That is, we keep track of which states are
possible, based on the history, and which are not.

Specifically, we say that a state « € C is a consistent with
a series of actions uy,...,uy if there exists some sequence
of disturbances 61, ...,0;, under which the robot’s final
position x is equal to z. In our approach, we follow our
own precedent [40] by considering only plans for which
the set of states consistent with the action history is a line
segment along the boundary of C. We write Drqy to denote
this segment of possible states at stage k. For consistency,
we use the naming convention that a positive rotation of
the vector qr — px about py is into W. When the robot’s
position happens to be known with certainty (as happens, for

Fig. 3. [left] An example of a safe action. [right] This action is unsafe,
because pj41 and giy1 lie on different edges of the boundary.

example, before the first action is executed) then pr = ¢
and the segment is a single point.

We say that an action uy is safe from a segment Prqx
along the boundary of C if the resulting set prrigr+1 of
possible states for stage k£ 4 1 is likewise a segment along
the boundary of C. See Figure 3.

Given a segment of possible states prqx and the next action
uy, we can use the following procedure to simultaneously
test whether uy is safe from prgxr and, if so, to compute
Prt1qk+1- First, we define a function ShootRay (z, w) which
returns the first point of intersection with §C' from a ray
emanating from the point x in the direction w. This is
a standard operation from computational geometry [11],
[54]. To account for all possible disturbances, prr1Gr+1 1S
calculated from pxqy as follows:

pr+1 = ShootRay(qk,u — Omax)

dk+1 = ShOOtRaY(pka U+ emax)

Next, we test to ensure that the area through which a
translating robot may attempt to pass between prqr and
Dk+1Gk+1 is fully within C. A quadrilateral is formed by
Pkqr+1Pk+1qk and each edge is checked against §C to ensure
no intersections exist. It is also necessary to ensure the
quadrilateral contains no vertices of C to ensure no holes
are fully contained within. If the quadrilateral is indeed
empty, and if pyy; and gr4; lie on the same segment of
the boundary of C, then uy, is safe, and we return Pr11qr+1-
Otherwise, we declare uy unsafe. (A similar algorithm orig-
inally appeared in the context of the navigation problem for
a similar robot model [40].)

V. CHARACTERIZING THE CERTAINLY COVERED REGION

Before considering the broader question of choosing se-
quences of actions to cover the environment, we must first
characterize how the CCR changes as the robot moves.
Specifically, in this section, we present two results, one
positive and one negative. First, in Section V-A, we show
how to compute the set of states that are certainly covered a
given motion of the robot. Then, in Section V-B, we state a
condition under which certain points can never be certainly
covered by any action sequence.



Fig. 4. Computing the CCR for a single safe action, as described in
Theorem 1.

A. The region covered by a single movement

Suppose that, at stage k, we know that the robot’s state
x, lies within some segment pgqy along the boundary of C.
From there the robot executes action ug. What can we say
about the points, if any, that are certainly covered by this
motion?

Definition 2 would appear to require us to reason about
each of the infinitely many possible disturbances 6j to
establish that a point is certainly covered. Fortunately, we
can show that it is sufficient to consider only the extremal
disturbances —0,,,, and +6,,.. instead.

Before stating the result, we need the following prelimi-
nary definition.

Definition 4: Given two points p and p’ and a radius r the
stadium between p and p’ with radius r, denoted Stad(p, q,r)
is the locus of points within distance r of any point along
the segment pp’.

Visually, the stadium between p and ¢ is a rectangle bisected
by the segment pq, capped by two semicircles of radius r
centered at p and ¢ (am).

Now we can describe the region covered by a single
motion.

Theorem 1: Suppose the robot has executed a sequence
of safe actions uq,...,u;—1. Let segment prgx C C denote
the segment of possible states at stage k. Consider a safe
action uy, and let pry1qr+1 denote the segment of possible
states resulting from this motion. Then

CC’R(ul, N ,uk) = C’CR(ul, . ,uk_l)

U (Stad(p, py, p) N Stad(gr, gi, p)) . (1)

Proof: First, note that for any p, if p €
CCR(uy,...,ux—1), then p € CCR(uq,...,u;). Thus, we
need only to consider the points certainly covered by the
motion from x to xi+1. Let R denote this set. We must
show that R = Stad(pg, p},, p) N Stad(g, g, p)-

(©) Let p € R. Note that, since p is certainly covered
by this motion, it must be specifically covered in
the case where x, = pp and 0 = 0p.c. Thus,
p € Stad(pg,p},p). A similar argument shows that
p € Stad (g, gy, p)-

(D) Let p € Stad(ps, p},, p) N Stad(gx, ¢, p). We need to
show that p € R, which means that for every possible
starting point zj € Drqr for the motion, and every
possible disturbance 0y, € [—Omax, +0max], the robot
passes within distance p of p. The set of locations
from which this occurs, for a particular z; and 0,
is Stad(zy, f(zk, uk, 0x), p). Because this must hold
for all x;, and 6, we know that if

p € ([ Stad(xx, f(zk, uk, k), p),

Ty O

then p € R. However, this intersection is fully deter-
mined by the two extremal stadia Stad(pg,pj,, p) and
Stad(gx, g, p), which are known by construction to
contain p. Thus p is also in R. ™

Theorem 1 leads directly to an algorithm for computing the
CCR achieved by any motion sequence: Start from the empty
set, and iterate over the actions. At each step, compute the
union of the previously covered region with the intersection
of stadia described in Equation 1.

B. Regions that cannot be covered

We can use a similar idea to the proof of Theorem 1 to
rule out certain states from being certainly covered by any
sequence of motions.

Theorem 2: Given a point p € W, an error bound 0,,x,
and a robot radius p, let ¢ denote the nearest point on the
boundary of W to p. If

tan Opax + 1
tan 0.«

then p cannot be certainly covered by any motion sequence.

Proof: Theorem 1 characterizes the region certainly
covered at each step as the intersection of two stadia. This
intersection is largest when the robot begins at a known
position (that is, when pr = ¢x) and extends the furthest
into the interior of W when the motion direction w; is
perpendicular to the environment boundary. Thus, if p can be
certainly covered at all, it can be certainly covered starting
at x; and moving directly toward p. It is a simple matter
of trigonometry to determine that the most distant point this
region has distance p% from q. See Figure 5. |
The intuition is that by imagining the robot at the point
nearest to p, with no position uncertainty, we construct the
best-case opportunity to include p in the CCR. If p cannot
be certainly covered under those ideal conditions, then there
is no hope to certainly cover p.

llp—qll > p , (2)



Fig. 5. Point p is too far from the boundary to be certainly covered by
any plan under our robot model. See Theorem 2.

VI. ALGORITHM DESCRIPTION

In this section, we describe a method to maximize
Area(CCR(u1, ..., uk)). The method takes into account the
uncertain nature of the robot model’s motions and constructs
a plan which covers the environment while maintaining a set
of states known to contain the robot’s true state.

The approach is divided into two parts. The first generates
the graph, generating parameter-described layers of line
segments on the boundary of W as nodes, and then adding
edges where there are safe actions between segments. The
second generates the actual action sequence, by determining
which edges in this graph may be traversed in a cycle
(Algorithm 1).

A. Generating the Graph

Our method begins by generating line segments to be
graph nodes, by repeatedly calling a procedure ADD-
LAYER(C, G, 1, Omax). Each call creates a ‘layer’ (set) of
segments all of a given length [ to add as nodes of G. The
segments may overlap, and are placed evenly along each
sufficiently long (at least as long as ) face of C, with the
offset between segment starts (and thus amount of overlap)
based on parameter on,,x. The specific choices of | and op,x
are tunable parameters. The face is filled from one end to the
other with segments of length [, start points spaced o < opax
apart, until the final segment ends at the endpoint of the
face. The idea of how o is calculated is to fill the face with
segments o apart until one includes the end of the face,
then move the segments closer together (preserving uniform
spacing) until the final segment ends exactly on the end of
the face. Specifically, if [; is the length of the face, then

1;—1 . .
0= m See Figure 6. ADDLAYER(C, G, [, Opmax) is

'5

0 < Omax l '

Fig. 6. Placing a layer of segments, along one face of C. The segments
are shown vertically offset from the face, and drawn in different colors, to
distinguish them visually and show their overlap. Each vertex in the graph
corresponds to one such segment.

called several times with different values for [ and op. to
build up several distinct layers of segments.

After the segments are generated and added as nodes to the
graph, edges are found by looping through ordered pairs of
nodes and adding them where appropriate. A directed edge
exists between nodes n; and n; if there exists an action
under which the robot can be guaranteed a safe translation
from n; to n;. Each edge is labeled with this u;;, and also
with the region the action certainly covers as calculated with
Theorem 1.

B. Building cycles in the graph

After the graph is generated, we have a collection of
edges, each labeled with a region of the environment that
would be covered if the robot were to cross that edge. It
might tempting to simply find edges that are reachable from
the start position and greedily attempt to cross them. That
approach is problematic because the graph is unlikely to be
strongly connected; selecting a path that crosses one edge,
without regard for the forward connectivity of the resulting
node to other locations, may leave the robot stuck in a portion
of the graph from which it cannot escape to cover elsewhere.

As a result, our approach to generating the coverage
plans is based on generating a series of cyclical ‘forays’
from a node containing the start position, out through the
environment to cover some new territory, and then back
to the start node. To begin, we first calculate the shortest
paths between all pairs of nodes, using the Floyd-Warshall
algorithm [24]. The resulting shortest path matrix has enough
information to efficiently determine, for any ordered pair of
nodes the graph, whether a directed path exists from the first
node to the second node.

We then iterate over the edges of the graph, maintaining
a sequence of actions uq, ..., u; planned to execute, along
with CCR(uyq, ..., ux). For each each e, we check three
properties:

1) Is the source node of e reachable from the start node?

2) Is e labeled with a non-empty certainly covered region,

which is not already contained in the current CCR?

3) Is the start node reachable from the end node of e?

If all three properties hold, then e represents an opportunity
to cover some new portion of the environment. In that case,
we generate (using the Floyd-Warshall matrix to determine
which states to visit) actions that transit from the start node,
across e, and back to the start. For each of the edges crossed
by these actions, we include the corresponding certainly
covered region in the overall CCR, and remove them from



Algorithm 1 CoMPUTECOVERAGEEDGES (pg, G)

1: P < ALLPAIRSSHORTESTPATH(G)

. for all edges e; € G do

if P(pg, sourcele;]) # 0

and P(target[e],pq) # 0

and CCRle;] — CCR(uq,...,ur) # () then

4: Generate actions that travel to e, cross it, and return
to the start. Update CCR(uq,...,uy) for each of
these actions.

5:  end if

6: end for

W N

Fig. 7.
the lower left corner and became stuck there as Omax reached 3 degrees

(m).

A simple environment with two large holes. The robot began in

consideration in the outer loop. (Note that some of these
edges may be labeled with empty coverage regions, for
example because they correspond to segments of uncertainty
that are too large. This phenomenon explains why the final
CCR produced by the algorithm need not be a connected
set.)

After each edge has been considered, the planning process
terminates. The results is a sequence of actions —the cover-
age plan itself— that crosses every edge that can be crossed
without becoming trapped away from the start vertex, along
with the CCR corresponding to that coverage plan.

VII. SIMULATION RESULTS

We implemented our algorithm using C++. We used robot
with p = 0.3, and the layers of segments specified in Table I
as our graph nodes. We selected four environments. Figure 1
is a maze-like environment to represent a building or office
space. Figure 7 is a simple environment with two large holes
separating the convex vertices of the environment. Figure 8
is a large, mostly empty environment to illustrate points far
from any edge which the robot cannot be guaranteed to cover,
unless O, is very small. Finally, Figure 9 is a more natural
cave-like environment.

To characterize the performance of our algorithm as error
grows, we conducted several coverage tests in each environ-
ment, increasing 0. in each iteration. In all executions, the
robot’s initial position is along the longest possible cycle in
the graph. Figures 1, 7, 8, and 9 show the results as color-

Fig. 8.

An environment with a relatively large open middle. As Omax
increased beyond 0.5 degrees (m), the ability to cover large sections of that
area was lost.

TABLE I
LAYERS OF SEGMENTS USED IN SIMULATION

[ (length)  omax (offset)
3 2
2 1
1.5 1
1 0.5
0.5 0.375
0.25 0.1

coded “heat maps” to illustrate the regions that the plans
guarantee to cover, using differing colors for each value of
Omax: M 0.5°, B0 1°,  1.5°, W 2°, W 2.5°, W 3°, W 3.5°,
M 4°, and M 4.5°. The colors of the heat map are stacked
in order of increasing 6,,,x because the lower layers cover
all the area of all layers above them. Figure 10 shows the
area of the certainly covered region, relative to the areas of
the environment, for each of these tests. In all cases except
the environment in Figure 8, the algorithm achieved close to
100% coverage through 6,,,, = 1 degrees.

VIII. CONCLUSION

This paper introduced a minimalist coverage problem for
an extremely simple class of mobile robots, and showed that
even a robot with only an unreliable compass and a contact
sensor can still be used to generate plans that are certain to
cover significant portions of its environments, in spite of the
uncertainty inherent in its motions. However, we have also
left a number of stones unturned.

It may be helpful to augment how the graph represents
the state space. In particular, it seems likely to be beneficial
to include the vertex nodes and the corner-finding subplans



Fig. 9. A more natural cave-like environment. As error grew, the robot
retained the ability to navigate around most of the environment until Oax
reached 4 degrees (M), but lost the ability to cover the more spacious open
areas past 2 degrees (m). This environment demonstrates the method’s ability
to deal with non-uniform features.

1 M I B BRI
E Maze: Figure 1 —¢— {

09 F Simple: Figure 7
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0.8 F Cave: Figure 9 --®--
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Fig. 10. A plot comparing the ratio of each environment the algorithm can
guarantee to cover as accuracy degrades when Omax is allowed to grow.

from our earlier work on navigation [40]. Including these el-
ements in the graph will provide the robot with opportunities
to re-localize itself at certain points of the environment. This
decrease in position uncertainty may generate opportunities
to cover some regions that cannot be covered by the current
method.

Of perhaps the greatest importance is to improve the mech-
anism by which the graph is generated. The current approach
requires parameter tuning to find segment layers that work
well for an environment, and leaves open the possibility that
adding more particular segments could increase coverage,
either by making edges which cover additional area or by
enabling more cyclical navigation. Instead, we may be able
to generate the graph in a manner aware of what it can cover
and what it can navigate to and from. If we can identify
an uncovered but coverable (as per Section V-B) region,
generate a pair of segments with a safe action that would
certainly cover it, and navigate to and from that edge adding
new graph nodes as necessary, then we could generate the
entire graph by iterating over the uncovered but coverable

regions.

Finally, we focused in this paper solely on the feasibility
of coverage plans for our robot model, to the exclusion of
optimality concerns. One approach to generating short cover-
age paths would be to model the problem as a rural Chinese
postman problem, a known NP-hard problem, in which the
objective is to find the shortest path that crosses each of a
selection of edges in a weighted directed graph [38].
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