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Abstract 

Transcriptional factor-based biosensor has been widely used to reprogram and adjust 

cellular activity to the changing environment. These biosensors translate an internal 

cellular signal to a transcriptional reporter output. Previous examples have demonstrated 

transcriptional factor cross-talk could lead to complex gene expression dynamics. In this 

report, we formulated a mechanism-based kinetic model to simulate and predict how TF 

cross-talk reshape the transcriptional dynamics of an engineered biosensor. Our model 

comprises TF cross-talk and Hill-type equation to quantify the degree of gene repression 

and de-repression; it also accounts for protein degradation, cell growth (dilution) effect 

and the carrying capacity of the system. Our simulation fits well with the biphasic parabolic 

gene expression pattern of an experimentally validated malonyl-CoA sensor. We 

discovered that exponential growth could lead to hysteresis in the TF cross-talk model. 

With Logistic growth to limit the carrying capacity, we find that bimodal gene expression 

pattern could arise, and this phenomenon is rooted in the hysteresis characteristics of the 

TF cross-talk model. The computational insights obtained in this study will guide us to 

design accurate, sensitive TF-based biosensors and may serve as a diagnostic platform 

to troubleshoot the complex transcriptional dynamics in biosensor design. The 

computational framework developed here will also provide an educational toolbox for 

synthetic biologist and biochemical/biomolecular engineering students to understand 

biosystem design and transcriptional regulation. 

Keywords: malonyl-CoA sensor, transcriptional factor cross-talk, FapR, kinetic model, 

hysteresis, bimodal gene expression 
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Introduction 

Biosensors are indispensable tools to detect or respond to a specific biochemical signal [1-3]. 

These sensors have been used to report environmental pollutants or diagnose disease markers. 

Most of the biosensors are constructed on the basis of biomolecular interactions, including 

protein-ligand binding (i.e. enzyme-substrate ) [4, 5], protein-protein binding (i.e. immunological 

interaction or GPCR receptor) [6], protein-DNA-RNAP (i.e. transcriptional regulation) [7], RNA-

RNA (i.e. riboregulators and toehold switches) [8-11] and DNA/RNA-ligand (i.e. aptamers) 

interactions [12, 13]. 

Transcriptional factor (TF) based biosensors consist of both repressor or activator proteins 

regulating the transcriptional activity of a specific promoter. These TF-based sensors contain a 

N-terminal DNA-binding domain (DBD) and a C-terminal ligand-binding domain (LBD). The DBD 

of a transcriptional factory typically interacts with a cis-regulatory DNA sequence (generally called 

operator or enhancer) to restrict or enhance the formation of RNA polymerase (RNAP)-promoter 

complex. For instance, a repressor binds to the operator and prevents RNAP proceeding forward 

to decrease transcription; on the opposite, an activator binds to the enhancer and promotes the 

formation of more stable RNAP-promoter complex to increase transcription [14]. Apart from the 

DNA-binding domain (DBD), the C-terminal ligand-binding domain forms the sensing parts that 

can respond to metabolite (small molecule) concentration change and environmental stress 

signals (salt, osmotic pressure, pH, oxygen, redox, light or radiation et al). This unique structure 

allows the TF-based biosensor to transduce a C-terminal ligand-binding activity to the N-terminal 

DNA-binding activity. Upon interaction with a small molecule or environmental stress signal, TFs 

will undergo a conformational change to decrease or increase its DNA-binding affinity. The 

occupancy of TF binding states will instead affect the transcriptional activity of the RNAP-promoter 

complex. To detect the transcriptional activity, the RNAP is designed to drive (actuate) the 

expression of a reporter protein that outputs an easily measured optical signal (absorbance, 
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fluorescence or luminescence) [15]. In principle, small molecule or environmental stimuli input will 

form a quantitative dose-response curve with the reporter output. From a structural perspective, 

the C-terminal ligand-binding domain of TFs determines the specificity of the input-output 

relationship, while the N-terminal DNA-binding domain of TFs determines the leakiness 

(background noise) and sensitivity of the input-output relationship, the promoter strength 

determines the dynamic response range of the dose-response curve. 

Malonyl-CoA is an essential building block molecule involved in the biosynthesis of a range of 

important molecules, including fatty acids  [16-19], phenylpropanoids [20], flavonoids [21], and 

non-ribosomal polyketides [22-24]. As a result, several genetically-encoded malonyl-CoA sensors 

have been developed in E. coli [15, 16, 25], S. cerevisiae [26-28] and mammalian cells [29] for 

sensing or regulating the level of malonyl-CoA inside the cell for various biotechnological 

applications. These malonyl-CoA sensors were built with the transcriptional repressor FapR, the 

primary regulator protein controlling the gene expression of fatty acid biosynthetic pathway in 

gram-positive bacteria [30, 31]. Taking the mostly characterized FapR as an example, B. subtilis 

FapR contains two domains: the C-terminal ligand-binding domain specifically recognizes 

malonyl-CoA, and the N-terminal DNA-binding domain specifically binds with the DNA sequence 

fapO (27bp, TAGAATTAGTACCTGATACTAATAATT) [32]. Binding of FapR with fapO will block 

the access of RNAP to transcribe the downstream gene, the process so called repression; 

malonyl-CoA binds with the C-terminal of FapR and causes FapR dissociate from fapO to restore 

transcription, the process so called de-repression.  

Previously, we have developed a malonyl-CoA sensor and observed cross-talk effect between 

FapR and LacI. Unexpectedly, the engineered malonyl-CoA sensors displayed biphasic gene 

expression dynamics [15]. In this study, we formulated a mechanistic biophysical model to 

simulate the cross-talk between FapR and LacI repressor, and predict the transcriptional output 

of the engineered malonyl-CoA sensors. Our model comprises transcriptional factor competitive 
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inhibition, Hill-type equation to quantify the degree of gene repression and de-repression, it also 

incorporates protein degradation and cell growth (dilution) effect and the carrying capacity of the 

system. We modeled the unintended interactions of transcriptional factor cross-talk and our 

simulation is in good agreement with the biphasic parabolic gene expression pattern of an 

experimentally validated malonyl-CoA sensor. We expanded this model and elucidated that the 

bimodal (or double-hump) gene expression pattern is deeply rooted in the hysteresis 

characteristic of the TF cross-talk model under Logistic growth constraint. We formulated a few 

design principles underlying transcriptional factor-based sensor design. The computational 

insights obtained in this study will guide us to design more accurate, sensitive TF-based 

biosensors and will serve as a diagnostic platform to understand the complex transcriptional 

dynamics of the engineered sensor. The computational framework developed here will also 

provide an educational toolbox for synthetic biologist and biochemical/biomolecular engineering 

students to understand biosystem design and transcriptional regulation. 

Results and discussion 

A rational explanation of the parabolic kinetics of the malonyl-CoA sensor 

One critical factor to control the dynamic response range of FapR-based biosensor is the amount 

of repressor protein FapR and the saturation constant between FapR and malonyl-CoA. To 

control the amount of FapR, we previously constructed a genetically encoded malonyl-CoA 

sensor [15, 25] using a titratable promoter (T7) to drive the expression of FapR, which can be 

induced by the amount of inducer IPTG present to the cell (Figure 1a). We then inserted the FapR 

binding site fapO (27bp) downstream of the T7 promoter to drive the reporter gene eGFP (Figure 

1a). Interestingly, instead of observing a linearly increasing or monotonically increasing dynamic 

response (Figure 1b), we observed a biphasic parabolic type response kinetics (Figure 1c). Our 

first explanation is that there might be saturation effect due to the limited number of T7 RNAP to 
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occupy the T7 promoter. It perfectly explains the first phase of the kinetics: increasing the amount 

of IPTG will rapidly increase eGFP output and the green fluorescence signal reaches a plateau 

at some timepoint (from 250 min to 300 min).  However, this RNAP occupancy and promoter 

saturation couldn’t support the kinetics of the second half of the parabolic curve: the plateau 

doesn’t persist and the eGFP output plummets off with increasing amount of IPTG after 300 min.  

The 27bp fapO binding site is a pseudo-palindromic (inverted repeat) sequence, which could form 

an intra-strand self-complementary structure that can specifically bound with FapR. Due to the 

sequence synergy between fapO and lacO, we hypothesize that there might be transcription 

factor cross-talk between the repressor protein FapR and the non-cognate DNA-binding site lacO. 

That said malonyl-CoA repressor protein FapR and lactose repressor protein LacI will compete 

for the same binding site of lacO, in addition to the specific interaction of FapR with fapO. This is 

not counter-intuitive as fapO has the DNA sequence 5’TAGAATTAGTACCTGATACTAATAATT3’, 

which shares a large portion of sequence synergy with lacO 5’AATTGTGAGCGGATAACAATT3’. 

Indeed, recent studies have demonstrated the leakiness and stringency of T7-lacO system is 

determined by the exact sequence of the LacI binding site (lactose operator lacO)[33]. 

A model captures the parabolic gene expression dynamics of malonyl-CoA sensor 

Synthetic biology community has developed Pigeon as a design visualization tool for complex 

genetic circuits design [34]. Pigeon uses simple syntax to translate DNA/RNA/protein interaction 

into a genetic circuit image. Connected to a web-server (http://pigeoncad.org/), we input the text 

descriptions of T7 promoter, DNA-binding site (fapO and lacO), transcriptional repressor (FapR 

and LacI) and their interactions, Pigeon automatically output a hieroglyphic image that describes 

LacI and FapR’s competition for the lacO/fapO site upstream of the reporter gene eGFP (Figure 

2a). Then we deconvolute the interactions and rearrange the image layout to better describe TF 

cross-talk between FapR and LacI (Figure 2b), for simple display, we omitted the lacO site in 

Figure 2b. This figure could be further simplified using systems biology graphic language [35] for 
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easy mathematical description and modeling (Figure 2c). This procedure serves an example to 

teach biochemical/biomolecular engineering students how to abstract the essential information 

from a specific genetic circuitry and facilitate the understanding of biosystem design with 

simplified systems/synthetic biology language. 

To better understand how transcriptional factor cross-talk reshapes the transcriptional dynamics, 

we built a biophysical model that accounts for TF competitive binding, gene expression repression 

and derepression, protein degradation and cell dilution effect. A detailed explanation of the 

equation parameters can be found in Table 1.  

Without considering cell growth (i.e. in cell-free systems), we use a first-order exponential decay 

to describe the production and degradation of the repressor protein LacI (y1), as described in 

Equation 1. This is consistent with the fact that LacI is coupled with cell growth and its expression 

is controlled by a constitutive promoter in most E. coli expression system. Similarly, a Hill-type 

inhibition kinetics was used to describe the net production rate of the repressor FapR (y2), which 

is repressed by the amount of repressor LacI (y1) and this repression could be removed (or 

antagonized) by the amount of the inducer IPTG (y4), as described in Equation 2. A competitive 

Hill-type inhibition kinetics was used to describe the net production rate of the reporter protein 

GFP (y3), which is repressed by both the repressor protein FapR (y2) and LacI (y1); and the 

repression could be removed by the effector molecule IPTG (y4) and malonyl-CoA (y5), as 

described in Equation 3. Equation 4 and Equation 5 simply describe the exponential decay 

(degradation) of the two effector molecules IPTG (y4) and malonyl-CoA (y5), respectively. 

MATLAB was used to simulate the time-dependent species concentration change. A set of protein 

synthesis rate (alpha) and degradation rate (gamma), repressor protein saturation constant (K) 

and Hill coefficient (m, n, p, q, r and s) were assigned to frame the biophysical parameter of the 

proposed model (Eq1 to Eq 5). Then initial species concentration (y1_0 for LacI initial 

concentration, y2_0 for FapR initial concentration, y3_0 for GFP initial concentration and y5_0 for 
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malonyl-CoA initial concentration) with varying concentration of the inducer IPTG (y4_0) was set 

as the starting point to model the gene expression dynamics. Detailed biophysical parameters 

have been presented in the Methods and Computational Framework section. 

Based on the hypothesis of TF cross-talk model (Eq 1 to Eq5), our simulation results clearly 

demonstrate the parabolic biphasic transcriptional output (Figure 3b) as we vary the level of the 

inducer IPTG (y4). The net rate of the repressor protein LacI (y1) displays an exponential decay 

(plot not shown here), which is not surprising as we define our system here is a cell-free system 

without LacI re-synthesis. In addition, the net accumulation of the repressor protein FapR (y2) 

displays a sigmoidal increase pattern as we increase the level of IPTG (y4) in the system (Figure 

3a), which is reasonable as the expression of FapR is repressed by LacI and IPTG abolishes this 

repression. At the first phase (i.e. t < 25 in Figure 3), the accumulation of FapR is negligible 

compared to the amount of LacI existing in the system; as a result, LacI (y1) will dominate the 

repression of fluorescence output (y3). Indeed, as we increased the level of IPTG, we obtained 

rapidly increased fluorescence output (y3). At the second phase (i.e. t > 25 in Figure 3), the 

expression of FapR (y2) reaches a critical amount which is comparable to the level of LacI existing 

in the system, this corresponds to a flipped gene expression pattern: a transition from an 

increasing GFP output to a decreasing GFP output in Figure 3b. As time persists, FapR 

outcompetes LacI to repress expression of the fluorescence reporter, which could explain the fact 

that fluorescence output undergoes a rapidly decreasing GFP signal. Taken together, our TF 

competitive binding model perfectly matched our experiment data and explained the parabolic 

biphasic kinetics: more IPTG leads to stronger GFP expression in the first phase due to LacI 

dominance, and this pattern is flipped into the opposite scenario that more IPTG leads to weaker 

GFP expression in the second phase due to FapR dominance. The weakness of our model is that 

reporter output is always proportionally increased with the level of malonyl-CoA in the system 
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(Figure 3c), as we didn’t specify the carrying capacity of this cell-free system. This model will be 

refined by our cell-dilution model in the following section. 

Stretch and flip the input-output relationship of malonyl-CoA sensor 

We then explored what the GFP output would change if we tweak the kinetic parameters of the 

proposed model (Equation 1 to Equation 5). Our previous model doesn’t account for the 

replenishing rate of malonyl-CoA (𝛼5 is 0 in Eq5). We added an additional constraint to specify 

the replenishing rate of malonyl-CoA (𝛼5 is 0.15 in Eq 5). Due to the persistent supply of malonyl-

CoA, GFP output kinetic curve (Figure 4a) in the second phase (t > 50) is stretched, indicating 

that supply of malonyl-CoA is critical to remove the FapR repression in the second phase. This 

stretched kinetic curve also confirms our previous explanation that FapR dominates the GFP 

output at the second phase. 

We also explored how the GFP output would change if we vary the Hill coefficients of the system. 

In the previous models (Figure 3), the Hill coefficient m=n=1, which means IPTG (y4) has the 

same de-repression effect on FapR (y2) and GFP (y3). We then changed the Hill coefficients m=1, 

but n=0.5, which means IPTG (y4) will pose relatively weaker de-repression effect on GFP (y3) 

compared to FapR (y2). Interestingly, our model predicts flipped GFP expression kinetics (Figure 

4b) compared to Figure 3b: more IPTG leads to decreased GFP expression plateau in Figure 4b 

versus more IPTG leads to increased GFP expression plateau in Figure 3b. It could be simply 

interpreted as relative expression of FapR (y2) is larger than the relative expression of GFP (y3) 

at same level of inducer IPTG (y4). Due to the fact that FapR (y2) also represses the expression 

of GFP, the reporter output (y2) will be remarkably reduced when we raise the concentration of 

IPTG (y4). As the result, the gene expression kinetic curve is flipped as illustrated in Figure 4b. 

Not surprisingly, posing further constraints on the system (malonyl-CoA replenishing rate 𝛼5 is 

set as 0.15) lead to a stretched and flipped gene expression pattern, as shown in Figure 4c. 
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This part concludes that gene expression kinetics could be completely different from the desired 

gene expression pattern in biosensor design. It also highlights the importance to choose the 

appropriate operators and transcriptional factor pairs to make the system behave as it is designed. 

Should the TF-based biosensor not functional or unexpected reporter output arising, it is always 

an effective way to retrofit the kinetic parameters and repeat the design-build-test cycle. 

 

Exponential growth leads to hysteresis in malonyl-CoA sensor 

Unlike electrochemical biosensors that are normally invasive, most of transcriptional factor-based 

biosensor is designed to be functional inside the cell. Fluorescence reporter output is always a 

function of a multitude of factors: cell growth, temperature, pH conditions and cellular redox state. 

In the following section, we will discuss what the sensor output would change if we couple cell 

dilution effects with the transcriptional factor cross-talk model; specifically, we will explore the 

sensor output dynamics under exponential cell growth and Logistic cell growth conditions, using 

malonyl-CoA sensor model as a prototype. 

To investigate how cell growth impacts the reporter output, we re-defined the cell-free malonyl-

CoA sensor models (Equation 1 to Equation 5). Specifically, we included one more equation (Eq. 

11) to describe how biomass (y6) evolves with time. We then coupled protein and metabolites 

synthesis rate 𝛼𝑖 (i =1, 2, 3, 4 and 5) with the specific growth rate 𝜇. This modification leads to a 

set of six new equations (Equation 6 to Equation 11) accounting for cell growth effects. Since 

IPTG (y4) is an exogenously-added inducer, it is following the logic that we don’t need to couple 

IPTG (y4) with cell growth in Equation 9. Here we used a generalized Logistic growth model as 

this is the most common cell-growth pattern for most organisms in a batch-culture. 

We first considered the exponential growth, supposed that there are unlimited nutrients and no 

growth inhibitors exist in our malonyl-CoA sensor system (Figure 5a). For exponential growth, we 
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simply assign an infinity positive number to the maximal biomass (𝑦6,𝑚𝑎𝑥) to eliminate the inhibitor 

factor (1 − 𝑦6 𝑦6,𝑚𝑎𝑥⁄ ) in the set of differential equations from Eq. 6 to Eq. 11. One change on the 

kinetic parameters is that we set the same synthesis rate and degradation rate for the two 

repressor protein LacI (y1) and FapR (y2), namely 𝛼1 = 𝛼2 = 0.4 and 𝛾1 = 𝛾2 = 0.05. Because of 

the relatively large degradation rate, our model predicts that both LacI (y1) and FapR (y2) will 

undergo exponential decay in the first phase (t < 25). As a result, expression of the reporter gene 

GFP (y3) will undergo exponential increase at this phase (t < 25 in Figure 5a). Total cellular 

malonyl-CoA (y5) will remain linearly increase with time due to the coupling with cell growth. 

Counterintuitively, expression of FapR later undergoes an increase (Figure 5a), this is due to the 

depletion of repressor LacI (y1) or at least the term 𝑦1
𝑝
 is negligible compared to the saturation 

constant K1 in Eq. 7. The expression of FapR (y2) is lagging behind the effector IPTG (y4) 

induction. This phenomenon is so called hysteresis. In another word, the expression of FapR 

reflects the past history of the system: FapR expression has a persistent memory of the past that 

will continue to respond to IPTG even the repressor protein LacI depletes. Due to the persistent 

increase of FapR (y2), the reporter output (y3) will undergo a decay at the second phase (roughly 

60 < t <150 in Figure 5a). Eventually expression of FapR (y2) will undergo steady decay due to 

protein degradation, as a result, reporter output GFP (y3) will undergo steady increase because 

the synthesis rate outcompetes the degradation rate (roughly t > 150 in Figure 5a). 

Logistic growth leads to hysteresis and bimodal gene expression in malonyl-CoA 

sensor 

To model system dynamics, one should always consider the carrying capacity of the system, this 

is especially true for understanding complex biological behavior. When resources are limited, cell 

growth exhibits a logistic sigmoidal-shaped pattern, which stipulates that population expansion 

keeps decreasing as resource becomes scarce, leveling off when the carrying capacity of the 

system is reached [36, 37]. For this reason, we then examined the effect of Logistic growth on the 
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dynamic output of our engineered malonyl-CoA sensor. To model Logistic effect, we simply assign 

a finite positive number to the maximal biomass (𝑦6,𝑚𝑎𝑥 = 20) in the set of differential equations 

from Eq. 6 to Eq. 11. We coupled all the five biological variables (y1 for LacI, y2 for FapR, y3 for 

GFP, y5 for malonyl-CoA and y6 for biomass) with the specific growth rate. IPTG (y4) is an 

exogenously-added inducer irrelevant to the biology itself, we just let this species exponentially 

decay. It should be noted that the specific growth rate contains an inhibitor factor 𝜇𝑚𝑎𝑥(1 −

𝑦6 𝑦6,𝑚𝑎𝑥)⁄ , which specifies that specific growth rate is transitioning from the maximal rate 𝜇𝑚𝑎𝑥 

at the beginning (t = 0, 𝑦6 = 0) to zero rate at the end (t approaches +∞ , 𝑦6 = 𝑦6,𝑚𝑎𝑥 ) when the 

system reaches its capacity. 

With this, we will be able to account for Logic growth effect and predict the dynamic behavior of 

the engineered malonyl-CoA sensor. Like the exponential growth effect, our model predicts that 

both LacI (y1) and FapR (y2) will undergo exponential decay in the first phase (t < 25) when the 

model incorporates Logistic growth (Figure 5b). Reporter output GFP (y3) will rapidly increase at 

this period (t < 25) in response to the decay of FapR and LacI. Due to the hysteresis effect as 

discussed previously, expression of FapR “remember” the past history of IPTG (y4) induction; 

instead of continuing decay, the amount of FapR will later undergo steady increase (roughly 40 < 

t <80, Figure 5b). As FapR (y2) binds fapO to shut down GFP (y3) expression, reporter GFP will 

be leveling off as FapR increases. It is obvious that the decay of reporter GFP expression is much 

lagging behind the rising of the repressor FapR (roughly 75 < t < 100, Figure 5b). This indicates 

the hysteresis of FapR expression propagates to the delay of the reporter GFP expression. Due 

to coupling of the state variables FapR (y2) and malonyl-CoA (y5) with cell growth and the tradeoff 

between synthesis rate (𝛼𝑖 ) and degradation rate (𝛾𝑖 ), expression of FapR and synthesis of 

malonyl-CoA displays a continuing decay as time evolves (roughly t > 100, Figure 5b), albeit 

malonyl-CoA experiences a much weaker decay (due to the very small degradation constant 𝛾5 =

0.0006). Interestingly, reporter output GFP (y3) exhibits a second peak, which is generally called 
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a bimodal expression pattern (Figure 5b, Figure 6b and Supplementary Figures S1, S2, S3, S4 

and S5). This bimodal gene expression pattern is deeply rooted in the hysteresis characteristics 

of the TF cross-talk model posed by the carrying capacity of the system (where we have used 

both exponential growth and Logistic growth to constraint our system). 

Then we varied the level of inducer IPTG (y4) and cellular malonyl-CoA (y5) to examine how 

strong the hysteresis behavior could lead to. With a range of the inducer IPTG level from 2.5 to 

50, the expression of FapR (y2) displays hysteresis behavior (Figure 6a): a rapid decay (t < 25) 

and a rapid increase (25 < t < 80) followed by another decay (t > 100). The first decay of FapR 

expression (t < 25) is associated with the relatively large degradation constant of FapR; the rising 

of FapR expression (25 < t < 80) simply represents a memory response to the IPTG induction 

that is governed by transcriptional factor cross-talk; and the second decay (t > 100) of FapR 

expression is rooted in the Logistic-coupling effects (Eq. 7): the systems displays continuing 

decreased rate as it reaches the carrying capacity of the system. Consequently, the reporter GFP 

output displays a bimodal gene expression pattern (Figure 6b). The first rising of GFP expression 

(roughly t < 25) is due to the decay of FapR and LacI expression; the first decay of GFP expression 

(roughly 75 < t < 120) represents a memory response to the past FapR rising history (25 < t < 80, 

Figure 6a).  The second rising of GFP expression (roughly 150 < t < 200 in Figure 6b) is simply a 

response to the past memory of the decay of the FapR (roughly t >100 in Figure 6a); the second 

decay of GFP expression (roughly t > 200 in Figure 6b) is rooted in the Logistic-coupling effect 

(Eq. 8): the system rate eventually decreases to 0 as it reaches the carrying capacity. 

As we increase the level of IPTG, we could induce stronger hysteresis effects: as exemplified by 

a pronounced FapR peak (Figure 6a) and a widen bimodal GFP expression (Figure 6b) when 

IPTG level is increased to 50. The delay in expression of FapR and reporter GFP is reinforced as 

the IPTG level is increased from 2.5 to 50 (Figure 6a and 6b). For example, the reporter output 

doesn’t experience the second delay and only displays a singular mode gene expression pattern 
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at low IPTG level (2.5), but transitions to bimodal gene expression when IPTG is increased to 

above 5. More importantly, the peak reporter output is further shifted afterward on the right, it is a 

characteristic of the hysteresis behavior. Under all bimodal gene expression scenarios, the 

reporter output (y3) is increased as we increase the cellular malonyl-CoA level (y5, Figure 6c), 

which tells us that the complicated system still functions as a malonyl-CoA sensor, albeit with 

transcriptional factor cross-talk and cell dilution effect. Phase plot between FapR (y2) and GFP 

expression (y3) clearly demonstrates the hysteria nature of transcriptional factor cross-talk and 

cell dilution effect (Figure 6d), as predicted by our model (Eq. 6 to Eq. 11). The trajectory of FapR-

reporter output (GFP) expression transverses back and forth on the phase plane, and eventually 

bifurcates at two distinct stable states (Figure 6d). 

It should be noted that hysteresis and bimodal gene expression is a common phenomenon in 

biological systems. Positive feedback control and noncooperative regulation has been the 

hallmark for generating multistability, hysteresis and bifurcation in synthetic gene networks [38-

42]. In the cell dilution (exponential or Logistic growth) model, cell dilution actually creates an 

additional negative control to all the system variables. Due to incoherent nature of the TF cross-

talk model, the overall effect of the cell dilution created a positive feedback control and the 

noncooperative regulation, which is the source of hysteresis and bimodal gene expression in the 

malonyl-CoA sensor. 

Conclusions 

A grand challenge in synthetic biology is to design and engineer predictable transcriptional output 

driving different level of cellular/metabolic activity. Metabolite-responsive transcriptional factors 

(MRTFs) have emerged as promising tools to address this challenge. These biosensors translate 

an internal cellular signal to a transcriptional reporter output. Reductionist tends to simplify 

protein-DNA-RNA interactions and overlook cellular-context effects, leading to undesirable gene 

expression dynamics with perplexing signal outputs. In this work, we formulated an ordinary 
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differential equation based- mathematical models to understand the design constrains of 

transcriptional factor-based biosensors, with the aim to improve the robustness and predictability 

of the engineered system. Specifically, we proposed a mechanism-based kinetic model to 

simulate and predict how transcriptional factor (TF) cross-talk, autoregulation and feedback 

reshape the transcriptional dynamics of an engineered sensor-reporter system. Our 

computational framework allows us to investigate the effects of protein cooperativity, DNA binding 

affinity, non-cognate DNA cross-talk, cell growth dilution and autoregulation et al. The 

computational insights obtained in this study will guide us to design more accurate, sensitive TF-

based biosensors and may serve as a diagnostic platform to troubleshoot the complex 

transcriptional dynamics in biosensor design. The computational framework developed here will 

also provide an educational tutorial for biochemical/biomolecular engineering students to 

understand biosystem design and transcriptional regulation. 

Methods and computational framework 

All the simulation is generated by Matlab R2016a and the numerical solutions of differential 

equations are solved by ode45 solver. MATLAB code will be shared upon request for educational 

use only. The genetic circuit glyphs are generated by the online servers of pigeoncad 

(http://pigeoncad.org/) [34]. The plots are designed with OriginPro 2017.  

For Figures 3a and 3b, physical parameters are alpha1 = 0.5; gamma1 = 0.1; alpha2 = 0.2; m = 

1; K1 = 1; p = 2; gamma2 = 0.01; alpha3 = 0.1; n = 1; s = 1; K2 = 0.1; q = 2; K3 = 1; r = 2; gamma3 

= 0.05; gamma4 = 0.0005; alpha5 = 0 and gamma5 = 0.0006 in MATLAB programming. And initial 

conditions are y1_0=10; y2_0=0.5; y3_0=0; y5_0=4.  

For Figure 3c, physical parameters are alpha1 = 0.5; gamma1 = 0.1; alpha2 = 0.2; m = 1; K1 = 1; 

p = 2; gamma2 = 0.01; alpha3 = 0.1; n = 1; s = 1; K2 = 0.1; q = 2; K3 = 1; r = 2; gamma3 = 0.05; 

gamma4 = 0.0005; alpha5 = 0 and gamma5 = 0.0006 in MATLAB programming. And initial 

conditions are y1_0=10; y2_0=0.5; y3_0=0; y4_0=25. 

For Figure 4a, physical parameters are alpha1 = 0.5; gamma1 = 0.1; alpha2 = 0.4; m = 1; K1 = 1; 

p=2; gamma2 = 0.001; alpha3 = 1; n = 1; s = 1; K2 = 0.1; q = 2; K3 = 1; r = 2; gamma3 = 0.05; 

gamma4 = 0.0005; alpha5 = 0.15 and gamma5 = 0.0006 in MATLAB programming. And initial 

conditions are y1_0=10; y2_0=4; y3_0=0; y5_0=4. 

For Figure 4b, physical parameters are alpha1 = 0.5; gamma1 = 0.1; alpha2 = 0.2; m = 1; K1 = 1; 

p = 2; gamma2 = 0.01; alpha3 = 0.1; n = 0.5; s = 1; K2 = 0.1; q = 2; K3 = 1; r = 2; gamma3 = 0.05; 

http://pigeoncad.org/
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gamma4 = 0.0005; alpha5 = 0 and gamma5 = 0.0006 in MATLAB programming. And initial 

conditions are y1_0=10; y2_0=0.5; y3_0=0; y5_0=4. 

For Figure 4c, physical parameters are alpha1 = 0.5; gamma1 = 0.1; alpha2 = 0.4; m = 1; K1 = 1; 

p=2; gamma2 = 0.001; alpha3 = 1;n = 0.5; s = 1; K2 = 0.1; q = 2; K3 = 1;r = 2; gamma3 = 0.05; 

gamma4 = 0.0005; alpha5 = 0.15 and gamma5 = 0.0006 in MATLAB programming. And initial 

conditions are y1_0=10; y2_0=4; y3_0=0; y5_0=4. 

For Figure 5a, physical parameters are alpha1 = 0.4; gamma1 = 0.05; alpha2 = 0.4; m = 1; K1 = 

1; p = 2; gamma2 = 0.05; alpha3 = 1.4; n = 1; s = 1; K2 = 0.1; q = 2; K3 = 1;r = 2; gamma3 = 0.05; 

gamma4 = 0.0005; alpha5 = 0.15; gamma5 = 0.0006; miu = 0.06 and Ym = +∞ in MATLAB 

programming. And initial conditions are y1_0=10; y2_0=4; y3_0=0; y4_0=10; y5_0=4; y6_0=0.1. 

For Figure 5b and supplementary Figure S1, S2, S3 and S4, physical parameters are alpha1 = 

0.4; gamma1 = 0.05; alpha2 = 0.4; m = 1; K1 = 1; p = 2; gamma2 = 0.05; alpha3 = 1.4; n = 1; s = 

1; K2 = 0.1; q = 2; K3 = 1; r = 2; gamma3 = 0.05; gamma4 = 0.0005; alpha5 = 0.15; gamma5 = 

0.0006; miu = 0.06 and Ym = 20 in MATLAB programming. And initial conditions are y1_0=10; 

y2_0=4; y3_0=0; y5_0=4; y6_0=0.1. 

For Figure 6a and 6b, physical parameters are alpha1 = 0.4; gamma1 = 0.05; alpha2 = 0.4;m = 

1; K1 = 1; p = 2; gamma2 = 0.05; alpha3 = 1.4;n = 1; s = 1; K2 = 0.1; q = 2; K3 = 1;r = 2; gamma3 

= 0.05; gamma4 = 0.0005; alpha5 = 0.15; gamma5 = 0.0006; miu = 0.06 and Ym = 20 in MATLAB 

programming. And initial conditions are y1_0=10; y2_0=4; y3_0=0; y5_0=4 and y6_0=0.1. 

For Figure 6c, physical parameters are alpha1 = 0.4; gamma1 = 0.05; alpha2 = 0.4;m = 1; K1 = 

1; p = 2; gamma2 = 0.05; alpha3 = 1.4;n = 1; s = 1; K2 = 0.1; q = 2; K3 = 1;r = 2; gamma3 = 0.05; 

gamma4 = 0.0005; alpha5 = 0.15; gamma5 = 0.0006; miu = 0.06 and Ym = 20 in MATLAB 

programming. And initial conditions are y1_0=10; y2_0=4; y3_0=0; y4_0=25; y6_0=0.1. 
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Tables 

 

 

 

 

Table 1. Physical explanation of the equation parameters in this study. 

Symbols Physical explanation 

𝑦1 Repressor LacI concentration 

𝑦2 Repressor FapR concentration 

𝑦3 eGFP readout 

𝑦4 IPTG concentration 

𝑦5 Malonyl-CoA concentration 

𝑦6 Biomass concentration 

𝛼𝑖(𝑖=1,2,3,4,5) Protein or metabolite synthesis rate 

𝛾𝑖(𝑖=1,2,3,4,5, 6) Protein or metabolite degradation constant 

𝐾𝑖 (𝑖=1,2,3) Saturation constant of ligand (IPTG or malonyl-CoA) to repressor protein 

m, n, p, q, r and s Hill coefficient 

𝜇𝑚𝑎𝑥 Maximal specific growth rate 

𝑦6,𝑚𝑎𝑥 Maximal biomass reached in batch culture 
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Figure captions 

Figure 1. Schematic representation and gene expression dynamics of malonyl-CoA sensor with 

eGFP as readout. (a) A T7 promoter based genetic circuit to sense malonyl-CoA in E. coli. T7: 

bacteriophage T7 promoter; lacO: lacI repressor binding site; lacI: E. coli lactose repressor protein; 

fapO: fapR repressor binding site; fapR, B. subtilis fatty acid biosynthetic pathway repressor; T7-

fapO, fapO sequence was inserted downstream of T7 promoter; eGFP: enhanced green 

fluorescence protein. (b) Dependence of eGFP readout on the inducer IPTG: IPTG deactivates 

LacI and turns on FapR expression to repress the transcription of eGFP, assuming constant level 

of malonyl-CoA inside the cell. (c) Dependence of eGFP readout on the inducer IPTG: LacI 

competes with FapR for binding with fapO, leading to biphasic gene expression dynamics. This 

data has been experimentally validated [15].  

Figure 2. Simplified representation of constructed malonyl-CoA sensor. (a) Pigeoncad glyph 

generated from Pigeoncad online server [34]. (b) Deconvolution of the pigeon glyph and 

representation of LacI and FapR competitively bind with fapO. (c) Symbol representation of the 

inter-dependence of LacI (y1), FapR (y2), GFP (y3), IPTG (y4) and malonyl-CoA (y5). 

Figure 3. Time-dependent species concentration change predicted by equation 1 to equation 5. 

(a) FapR concentration is increased with increased concentration of inducer IPTG (y4) and 

increased cultivation time t. (b) eGFP output exhibits biphasic parabolic kinetics. Note that the 

plateau GFP output is increased with increasing concentration of IPTG (y4). (c) GFP output is 

proportionally increasing with increased concentration of malonyl-CoA (y5).  

Figure 4. Time-dependent GFP output simulated by equation 1 to equation 5. (a) GFP expression 

with malonyl-CoA (y5) replenishing. This GFP expression curve is stretched compared to Figure 

3b. (b) GFP expression with Hill coefficients m=1 and n=0.5. The pattern of GFP expression is 

flipped compared to Figure 3b. (c) GFP expression with malonyl-CoA (y5) replenishing and Hill 
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coefficients m=1 and n=0.5. This GFP expression curve is stretched and the pattern is flipped 

compared to Figure 3b. “Flipped” means that the plateau GFP output is decreased with increasing 

concentration of IPTG (y4). 

Figure 5. Time-dependent species concentration change with cell dilution predicted by Equation 

6 to Equation 11. (a) Cell maintains exponential growth (𝑦6,𝑚𝑎𝑥 in Equations 6-11 is infinity large 

+∞  and 𝜇𝑚𝑎𝑥 is 0.06). (b) Cell maintains logistic growth (𝑦6,𝑚𝑎𝑥 in Equations 6-11 is 20 and 𝜇𝑚𝑎𝑥 

is 0.06). Exact physical parameters and initial conditions can be found in the Methods and 

Computational Framework section. 

Figure 6. Time-dependent species concentration change with logistic-type dilution effect 

predicted by equation 6 to equation 11. (a) FapR expression exhibits hysteresis characteristics, 

though FapR concentration is increased with increased concentration of inducer IPTG (y4). (b) 

eGFP output exhibits bimodal gene expression as we increase the concentration of IPTG (y4). (c) 

Time-dependent bimodal eGFP expression varies at different level of intracellular malonyl-CoA 

(y5). (d) Hysteresis characteristic of repressor protein FapR and reporter output (GFP expression) 

in transcriptional factor cross-talk model constrained by logistic growth. 
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Figure 2 
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Figure 4 
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Figure 6 
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