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Key Points:

* The ‘genohydrology’ approach uses aquatic gene fragments to predict hydrologic

function.

* Seasonal variation and recurrence intervals of monthly flows are predicted with 16S

rRNA gene sequences.

* Genohydrology predictions outperform estimates based on area-scaled mean specific

discharge values in similar rivers.
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Abstract

Recent advances in microbiology techniques, such as genetic sequencing, allow for rapid
and cost-effective collection of large quantities of genetic information carried within water
samples. Here, we posit that the unique composition of aquatic DNA material within a water
sample contains relevant information about hydrologic function at multiple temporal scales. In
this study, machine learning was used to develop discharge prediction models trained on the
relative abundance of bacterial taxa classified into operational taxonomic units (OTUs) based on
16S rRNA gene sequences from six large arctic rivers. We term this approach ‘genohydrology,’
and show that OTU relative abundances can be used to predict river discharge at monthly and
longer timescales. Based on a single DNA sample from each river, the average Nash-Sutcliffe
efficiency (NSE) for predicted mean monthly discharge values throughout the year was 0.84,
while the NSE for predicted discharge values across different return intervals was 0.67. These
are considerable improvements over predictions based only on the area-scaled mean specific
discharge of five similar rivers, which had average NSE values of 0.64 and -0.32 for seasonal
and recurrence interval discharge values, respectively. The genohydrology approach
demonstrates that genetic diversity within the aquatic microbiome is a large and underutilized

data resource with benefits for prediction of hydrologic function.
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Plain Language Summary

An important task in water resources is prediction of the discharge in rivers and streams
at locations where there are no direct measurements. In this study, we show that the flow in a
river can be predicted based only on the bacteria that are present in the river. Because different
flow conditions create environments in which different groups of bacteria grow, measurements
of the diversity of the bacteria community can be used for hydrologic purposes. We call this
approach ‘genohydrology’ and explore different discharge predictions based on streamwater

bacteria composition.
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1 Introduction

A core objective of contemporary hydrology is the prediction of discharge in un-gauged
streams and rivers (Seibert & McDonnell, 2013; Sivapalan et al., 2003). While much success had
be achieve through development of many hydrologic models for this purpose, the accurate
calibration of these models often requires some minimum quantity of discharge measurements,
and equifinality can cause to ambiguity in predictions even if measurements are present (Beven,
2006). When faced with inadequate direct measurements of discharge from a study catchment,
the collection of some other type of information-dense dataset during short field campaigns (i.e.,
‘soft data’) can be remarkably useful in understanding hydrologic function (Seibert &
McDonnell, 2013). In this study, we explore a new type of hydrologic information: the DNA of
aquatic microbes carried in a stream or river, which we evaluate as an emergent property of a
catchment as a whole that is useful for quantitative predictions of discharge. This use of DNA-
derived information differs from earlier applications of DNA as a hydrologic tracer, e.g., (Dahlke
et al., 2015), in which synthetic DNA was released and recaptured downstream. In our
application, we examine naturally occurring aquatic bacteria DNA fragments, and relate their

variation between rivers to variations in flow regimes.

Here, we focus on bacterial diversity as reflected in 16S rRNA gene fragments from river
samples (Crump et al., 2009), although other types of DNA derived data may hold similar
potential. The 16s rRNA gene has been used in microbiology since the 1980’s to classify bacteria
into relative positions in the evolutionary order, i.e. phylum, class, order, family, etc. (Kolbert &
Persing, 1999). Much of the bacterial diversity in rivers and streams originates from upslope soil
environments and headwater streams (Crump, Adams, Hobbie, & Kling, 2007; Crump, Amaral-

Zettler, & Kling, 2012), as well as from groundwater (Sorensen et al., 2013). Although aquatic
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microorganisms are generally considered passive dispersers, in that dispersal is controlled by the
flow of water, evidence indicates that environmental variables have a strong influence in shaping
aquatic microbial communities (Crump et al., 2012; Whittaker & Rynearson, 2017). Lower costs
and recent advances in molecular biology methods have resulted higher quality freshwater
microbial DNA extraction and analysis (Li et al., 2015), making this type of information more

accessible to a wider research community for an increasing variety of applications.

Recent studies have linked bacterial community composition with hydrologic function,
with these studies primarily directed at understanding the microbial ecology of rivers and
streams. In the River Thames basin, Read et al. (2015) found a significant relationship between
bacterial community composition and cumulative stream length upstream of the community, and
concluded that physical and chemical characteristics of the river were less important than hydro-
geomorphic parameters in shaping microbial communities. Savio et al. (2015) measured 280
individual water quality parameters and found that the bacterioplankton community along the
Danube River continuum was primarily correlated with catchment characteristics, including river
kilometer, dendritic stream length, mean dendritic length, catchment size, and accumulated
dendritic distance. Other studies have linked microbial communities to river flow rate (Crump &
Hobbie, 2005; Doherty et al., 2017), and flow conditions have been used to model the abundance
of crucial bacterial populations, such as Vibrio cholera (Bertuzzo et al., 2008). Furthermore,
freshwater microbial communities have demonstrated seasonal shifts, with returns to
characteristic “core” seasonal communities (Crump & Hobbie, 2005; Doherty et al., 2017; Savio
et al., 2015). These studies suggest that the composition of microbial communities of rivers and

streams is influenced by the hydrology of the watersheds in which they are found.
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Given that geographically and hydrologically diverse rivers have been shown to host
characteristic, seasonally shifting, and predictable microbial communities, and that those
communities are shaped by hydrological properties of a watershed, including discharge, we
hypothesized that microbial community composition could be used to predict the hydrological
characteristics of a basin. We term this approach ‘genohydrology.’ In this study, we use
previously measured estimates of the bacterial community composition of six arctic rivers to

make predictions of river flow regimes.

2 Materials and Methods

2.1 Arctic River Bacteria Community Composition

This study evaluates the bacterial and hydrologic characteristics of six arctic rivers: the
Yukon, Kolyma, Yenisey, Mackenzie, Lena, and Ob (Figure 1). These rivers range in discharge
from ~100 cubic kilometers per year to ~600 cubic kilometers per year, with basin sizes from 0.8
million square kilometers to 2.4 million square kilometers (Table 1). In total, these northern
latitude rivers constitute 67% of the Arctic Ocean’s drainage area (Holmes et al., 2012), with all
six ranked in the world’s top 50 largest rivers by discharge (Dai & Trenberth, 2002), and share
broad similarities in their discharge patterns, geochemical composition, and bacterial community
structure (Crump et al., 2009; Holmes et al., 2012). Discharge observations (Bodo, 2001a,
2001b) were compiled by the Global Runoff Data Center of the Federal Institute of Hydrology,
Germany, and the International Hydrological Programme of the United Nations Educational,
Scientific, and Cultural Organization. Only years with discharge data for all 12 months of the

year were used, and across the six rivers there was an average of 33 years of data per river.
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Table 1. Characterization of the six arctic river basins used in this study.

River Total Area Annual Discharge Gauge Latitude Gauge Longitude Discharge
(km?) (km*/yr) (degrees N) (degrees E) (Years)
Yukon 831386 203.2 61.93 -162.88 21
Kolyma 526000 99.3 68.73 158.27 16
Yenisey 2440000 577.4 67.43 86.48 59
Mackenzie 1660000 288.3 67.46 -133.75 21
Lena 2460000 486.1 72.37 -126.80 18
Ob 2430000 397.3 66.63 -66.60 64

The prediction of two key hydrologic flow quantities [m’/s] was evaluated: (1) the
average monthly discharge as it varies throughout the year, and (2) the average discharge
expected at different recurrence intervals. Observed monthly discharge volumes were estimated
by averaging across all years with 12 months of discharge data (see Table 1 for number of years
in each gauge record). Discharge values at different recurrence intervals used data from all
months of the year for estimates at 20 logarithmically spaced intervals spanning 0.1 to 10 years,
with the recurrence period (7%) calculated as 7,=1/P,, where P, is the probability that a discharge
of x will be exceeded in the observed record (L. K. Read & Vogel, 2015). Observed flows were
compared to predicted flows (see below) using both root means squared errors (RMSE) and
Nash-Sutcliffe Efficiently (NSE) metrics. RMSE, which can range from 0 for a perfect model fit
to positive infinity, captures both model bias and precision. NSE values can range from positive
1, for a perfect model fit, to negative infinity, with an NSE of zero occurring when predictions
are as accurate as the mean of the observed data. Values of the RMSE and NSE for predictions
were calculated for each river separately based on either the 12 monthly means or the 20 return

intervals, and then averaged across all six rivers.
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Figure 1 (Left) The watersheds of the six arctic rivers used in this study. Rivers were sampled
(red circles) near their outlets into the Arctic Ocean in June of 2004 to obtain the (Right) relative
abundances of nine broadly distributed OTUs, based on the number of 16S rRNA gene
sequences in clone libraries prepared from DNA samples.

This study is based on DNA samples collected though the Pan-Arctic River Transport of
Nutrients, Organic Matter and Suspended Sediments (PARTNERS) program (Holmes et al.,
2012), which focused on collection water samples throughout the arctic with consistent sampling
and analytical methods. Though water samples were obtained throughout the year through the
PARTNERS program, only samples from June of 2004 were analyzed in detail for bacterial
community composition (Crump et al., 2009). The composition of bacterial communities in these
six rivers was measured in samples collected by the United States Geological Survey (USGS)
National Research Program and Alaska Water Science Center, Canada’s Department of Indian
Affairs and Northern Development, the South Russian Centre for Preparation and
Implementation of International Projects, and the Northeast Science Station in Russia (Crump et

al., 2009). Water samples were taken from the river mouths following USGS sampling protocols
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(Striegl, Aiken, Dornblaser, Raymond, & Wickland, 2005) as cross-sectionally integrated, flow-

weighted water samples during June 2004.

Community composition was assessed using DNA sequencing of PCR-amplified and
cloned bacterial 16S rRNA genes (i.e., clone library sequencing) (Crump et al., 2009; Crump &
Hobbie, 2005). Phylogenetic distances between sequences were calculated with DNADIST using
the Jukes-Cantor model, and the DOTUR application was used to group sequences into operation
taxonomic units (OTUs) based on 97% DNA sequence similarity (Crump et al., 2009).
Taxonomic assignments were made using the Ribosomal Database Project naive Bayesian rRNA

classifier tool using a confidence threshold of 80% (http://rdp.cme.msu.edu). Each OTU in this

dataset represents a group of closely-related bacterial species found in each river, and the number
of clones belonging to each OTU in each river were published as supplementary Table S2 of
Crump et al., (2009). A total of 148 different OTUs were identified, and nine of these OTUs
were present in at least five of the six rivers. These nine OTUs represented 20% to 34% of clone
library sequences from each river, and comparison with the GenBank global database showed
that they are common in freshwater systems world-wide (Crump et al., 2009). The relative
abundances of these nine OTUs in each river (Figure 1) were used as input data for model
calculations. These nine OTUs were selected because they appear in most (at least 5 of 6) of the
studied arctic rivers, and the variation in their relative abundances was explored for predictive

purposes.

2.2 Genohydrology Prediction Method

In this study a common machine learning technique, support vector regression (SVR) is
used to map measured OTU abundances to hydrologic properties. SVR is a machine learning

technique with few parameters (regularization C and kernel width ¢€) that is able to achieve
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results that match or surpass neural-network approaches with minimal tuning (Smola, Sch, &
Schoélkopf, 2004). In particular, linear SVR is useful when feature counts (here the nine OTUs)
exceeds the number of samples (here the six rivers). Linear SVR from the python SciKit-Learn
machine learning library (Pedregosa et al., 2012) was used to construct predictor functions, f; ( ),
that take as input x;, the array of normalized OTU counts in target river j, and returns as output
the estimated log fractional discharge anomalies, J; ;, during an individual month or recurrence
interval ¢. Discharge values were estimated based on models trained with both the absolute
discharge and the specific discharge for each river, with specific discharge then scaled by basin

area to estimate a final absolute discharge value.

Predictor functions were trained using an m by n input matrix of the normalized OTU
counts for the other rivers (with m the five rivers used in training and » the nine most common
OTUs), and m output values of the log anomalies in the discharge in the other five rivers during
period ¢. Anomalies were calculated relative to the log mean discharge of the five other rivers,
and thus the predictor functions, f;( ), do not include any information of the discharge in river j
during period ¢ or any other time period. Observed log discharge anomalies, yx, in each river &

(k#j, with j the target river) for interval ¢ that were used for training are calculated as

(1a) Ve apy = In(die) = In (-2, dy, )
(1b) Ykt (sp) = In (%{t) —1In (% ﬁ1%)

where 4; is the area of catchment i. Equation 1a gives the derived log anomaly of absolute
discharge (AD), and Equation 1b gives the SD derived log anomaly of the specific discharge

(SD). Note that the m rivers in the summation does not include the target river ;.
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The five sets of normalized OTU data from the non-target rivers and the five values of yy,
for interval ¢ were used to train the SVR predictor function f; ( ). Note that the j subscript in f; ()
specifies that this is the predictor function trained with flow and OTU data from all the rivers
that are not j, and is therefore unique to river j because it is the only predictor function that will
not contain data from river j. The ¢ subscript in f; ( ) signifies that each time interval is predicted
independently, in that the same summer OTU is repeatedly used to predicate each separate
month and return interval discharge. In the training of the predictor function, OTU data is passed
to possible predictor functions to produce estimates of the expected discharge anomaly in that
river, 1.€. f{Xx) =Y ¢. The SVR approach seeks the hyperplane, or series of hyperplanes, that
have the largest separation between sets of training data (Pedregosa et al., 2012), with a larger
margin typically associated with smaller training errors: ¥, .-y . Note that separate predictor

functions and resulting predictions, were created for both the absolute (¥ + (ap)) and specific

(¢ (apy) discharge based approaches.

Once the form of a f; ( ) has been determined, the OTU data from the target river is
passed through the predictor function to produce the SVR estimate of discharge anomalies in the

target river j relative to average of the other non-target rivers, i.e. f;(x;) = y,,. The final

predicted discharge values are then calculated as

o _ oY 1yvm
(22) dje = eVinew (131, d )

A s 1 d't
2b dj = eFieem (Zym, G) 4,
( ) J,t m&i=1 A; ]

where Equation 2a gives the predicted discharge based on the absolute discharge and Equation
2b gives the predicted discharge based on the specific discharge. The SciKit-Learn linearSVR

routine was used to train each f; ( ) function with the regularization penalty C was set as 60 for
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the absolute discharge models and 7.1 for the specific discharge models, where these were values
selected through trail and error to reduce overall error. For all models the € value set to 0, as
suggested in the SciKit documentation. Training the SVR function to predict log anomalies
bounds the exponentially transformed discharge predictions in equation 2 to positive values, and
defaults predictions in river j to the mean of the other five rivers when f; ( ) carries no

information and predictions j,, approach zero.

In this study, discharge data from five of six rivers was used to develop the predictive
models, which were then used with remaining river OTU distribution for a leave-one-out
validation approach. All genohydrology predictions were compared to both observations from
river gauges and to predictions obtained using the mean of the five non-target rivers to estimate
the discharge in river j for interval ¢, as well as to predictions obtained using the mean specific
discharge of the five non-target rivers multiplied by the area of the target basin. Our comparison
with the mean of the other, non-target, rivers was not intended to suggest that this is good
hydrologic practice, but only to assess the added information that the genohydrology approach
brings. In cases where OTU data hold no relation to true discharge values, or where our SVR
approach cannot discern this relation, the genohydrology predictions will result in error statistics
similar to those obtained when comparing the mean discharge of the non-target rivers to that of

the target river.

3 Results

After training both the absolute and specific discharge based models, we compare the

predicted monthly discharge values from both models against the mean of the five other non-
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Figure 2. Average monthly discharge in six arctic rivers (a-f). Genohydrology estimated
discharge values (circles), and the mean discharge of the other five rivers (squares) are
shown based on both absolute discharge (AD) and specific discharge (SD).

225  target rivers, the area-scaled means specific discharge of the five other non-target rivers, and the
226  observed discharge values (Figure 2). Error metrics for each of the four predictions methods

227 across all months of the year are listed for each river (Table 2). Similarly, we compare the two
228  genohydrology approaches with the two approaches based on the means of the non-target rivers
229 and with the observed data for recurrence intervals from 0.1 to 10 years (Figure 3). Error metrics
230  for each of the four predictions methods across all of the different recurrence intervals are listed
231 for each river (Table 3). Additionally, we also show the cross-plot of each prediction method
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with observed values for both the monthly flows and the different recurrence intervals (Figure 4).

Table 2. Error statistics for predicted average monthly flows using the genohydrology approach
and the mean other rivers based on both absolute discharge (AD) and specific discharge (SD).
The best preforming approach is shown in bold.

River Root Mean Squared Error (m’/s) Nast-Sutcliffe Efficiency
Genohydrology Mean Of Others Genohydrology Mean of Others
(AD) (SD) (AD) (SD) (AD) (SD) (AD) (SD)
Yukon 4084 2485 8622 2202 0.35 0.76 -1.97 0.81
Kolyma 3463 1385 11818 1379 0.31 0.89 -7.00 0.89
Yenisey 15245 12338 16313 10920 0.45 0.64 0.37 0.72
Mackenzie 5313 1822 6179 5754 0.24 0.91 -0.03 0.11
Lena 9661 4744 11386 5255 0.72 0.93 0.61 0.92
Ob 2724 3431 4083 7655 0.93 0.88 0.83 0.42
Average: 6748 4367 9734 5527 0.50 0.84 -1.19 0.64

On average, the seasonal discharge predictions in each of the six rivers using the specific
discharge trained genohydrology approaches showed a clear improvement in both the root mean
squared error (RMSE) and Nash-Sutcliffe efficiency (NSE) over the mean flow of the other, non-
target, rivers (Table 2) using both the absolute and specific discharge, and over the absolute
discharge trained genohydrology approach. The addition of bacterial information resulted in an
average RMSE of 4367 m’/s, representing a decrease of 21% in the RMSE from predictions
based on the area-scaled mean specific discharge of the non-target rivers. While on average the
genohydrology improved RMSE values, there were specific months in specific rivers where
genohydrology predictions were worse than those predicted from observations of the average
specific discharge in the other five rivers (Figure 2). In rivers where the RMSE was best based
on the mean of other specific discharge values (the Yukon, Kolyma, and Yenisey rivers), the
genohydrology was only slightly worse, with an average difference in RMSE for these rivers of

~600 m*/s. However, when the genohydrology approach was best (the Mackenzie, Lena, and Ob
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Figure 3. Average discharge for different return intervals in six arctic rivers (a-f).
Genohydrology estimated discharge values (circles), and the mean discharge of the other
five rivers (squares) are shown based on both absolute discharge (AD) and specific
discharge (SD).

251  rivers) its improvement over the area scaled mean of the specific discharge of the over rivers was

252 much larger (~2900 m’/s).

253 The average NSE value of monthly discharges estimated without the bacteria data and
254  only based on the mean of non-target rivers specific discharge was -1.19. This negative value
255 signifies that using a single, average value of the observed flow in the target river across all

256  months, which by definition gives an NSE of zero, would be more accurate than using the mean
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257  monthly discharge values of the other, non-target, rivers. If the average specific discharge of the
258  non-target rivers is scaled by the basin area of the target river, the average NSE rises to 0.64.
259  When the bacterial information is also included with the specific discharge, the average NSE
260  value rises to 0.84 and ranged from 0.93 to 0.64 for individual rivers, with predictions in all

261  rivers greater than zero. Predictions based on the state-of-the-art distributed hydrologic model
262 (VIC) of discharge in the Lena (NSE of 0.96), Yenisey (NSE of 0.96) and Ob (NSE of 0.92)

263 (Troy, Sheffield, & Wood, 2011), are higher than our monthly genohydrology predictions.
264

265 Table 3. Error statistics for predicted monthly flows of different return intervals using the
266  genohydrology approach and the mean of the five other rivers based on both absolute discharge
267  (AD) and specific discharge (SD).

River Root Mean Squared Error (m3/s) Nast-Sutcliffe Efficiency
Genohydrology Mean Of Others Genohydrology Mean of Others
(AD) (SD) (AD) (SD) (AD) (SD) (AD) (SD)

Yukon 11148 2958 20336 2636 -3.11 0.71 -12.68 0.77
Kolyma 3179 3639 22651 3283 0.77 0.70 -10.78 0.75
Yenisey 39077 28008 39358 24534 -0.26 0.35 -0.28 0.50
Mackenzie 4941 4259 15460 14357 0.47 0.61 -4.15 -3.44
Lena 9451 5544 22105 6206 0.85 0.95 0.19 0.94
Ob 2924 6650 5534 18498 0.94 0.69 0.78 -1.41
Average: 11789 8510 20907 11586 -0.06 0.67 -4.48 -0.32

268

269 Predictions of the discharge across return intervals ranging from 0.1 to 10 years using the

270 specific discharge genohydrology approach were also better on average than similar predictions
271 based on the mean of the other rivers (Table 3). When the bacterial information was included the
272 RMSE decreased by 26%, with the average dropping from 11586m’/s to 8510m?/s. Similar to the
273 seasonal predictions, even though there was a large improvement overall, predictions of

274 individual return intervals in individual rivers were at times worse than predictions from the

275  mean of the non-target rivers (Figure 4). However, as above, decreases in RMSE for the specific

276  discharge based genohydrology approach over the area scaled mean specific discharge were
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Figure 4. Cross-plot of observed and estimated river discharge for (a) specific
months, and (b) for specific return intervals using the different approaches.

277 much larger than increases in RMSE. Interestingly, there were two specific cases (the Kolyma

278 and Ob rivers) where the absolute discharge based genohydrology approach preformed best.

279 On average, the predicted NSE values for return intervals improved when adding the

280  bacterial data (Table 3), though predictions for this hydrologic quantity were less accurate then
281  for predictions of monthly means. With the exception of the specific discharge based

282 genohydrology approach, all average NSE values were negative. As with the monthly mean

283 predictions, the differences between the specific discharge genohydrology approach and the area
284  scaled specific discharge mean of others were strongly skewed. Adding the bacteria community

285  information either resulted in in large improvements or small weakening in predictions.

286 All the DNA samples used in the study were collected during the month of June, but
287  predictions were made for all months in order to evaluate the utility of summer bacterial

288  community for predictions during other periods. When viewed at the monthly timescale,



Confidential manuscript submitted to Water Resources Research

Mean of others (AD) -®- Mean of others (SD)
Genohydrology (AD) —-eo - Genohydrology (SD)
100 100
80 A - 80
s A s
5 I\ 5
S o s\ o
32 60 - L] 60 © 2
(O] F \ o ®©
> < ] \ ? S <
=e] \ ) =e]
B2 PN aN! L B2
05 404 ¢ 0 & 'Y s -40 @2
oo o-" \ 1 (O]
o3 [\ S1a”™ °4 23
GLJ 8 ‘\\\ i IIII " 5 8
<>( E_ 20 4 ‘i '“ F 20 <>( ‘5_
c \ \ .II o c
= \‘ \ ’!/ ‘ |\l3 =
0 o N M T PPN S Y
“ e 4
J FMAM]J] J] ASOND 1071 100 10!
Seasonal Cycle [Month] Recurrence Interval [Years]

Figure 5. Average relative error in predictions of (left panel) monthly discharge values and
(right panel) the discharge for different recurrence intervals.

289  predictions from June to September were very accurate (Figure 5) with relative errors near zero.
290  Predictions in the low-flow, colder months showed larger errors and were biased high. On

291  average, monthly predictions using the non-target means were biased high during all months for
292 both specific and absolute discharge means. The overall relative error in these approaches also
293 decreased in the summer. For the return intervals, all approaches had larger errors at shorter time
294  intervals than at longer ones. Below 0.5 years, all approaches were biased high. At time scales
295  larger than a year, the two genohydrology approaches demonstrate very low relative errors in

296  predicted discharges.

297

298 4 Discussion

299 The objective of this study was to explore the hydrologic information contained within

300  aquatic bacterial DNA fragments. While multiple previous studies (D. S. Read et al., 2015; Savio
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et al., 2015) have suggested that bacterial composition is influenced by hydrologic flows, here
we attempted quantitative macro-scale flow predictions based on this genetic information. When
compared to observed flows, our accuracy varied considerably between the six rivers examined
and between the hydrologic quantities that were predicted. However, we demonstrated overall

improvement over predictions based only on flow information from other similar rivers.

While the accuracy of the genohydrology approach for these arctic rivers is below that
obtained from advanced hydrologic models, this study demonstrates that non-trivial hydrologic
information can be obtained from river DNA. In comparison of the absolute and specific
discharge approaches, it was expected that the inclusion of basin area would be highly
informative. It is expected that other basic hydrologic properties such as basin-averaged
precipitation would improve our results further. However, the objective of this study was to test
if bacteria alone, without any other ancillary data about the hydrologic system, carry hydrologic
information. There are many possible genohydrology approaches for incorporation of DNA
derived data into predictive macro-scale models, and this study is only an initial investigation.
We expect the accuracy of genohydrology approaches to improve with more extensive sampling

of aquatic bacterial DNA across a larger range of river flow regimes.

For specific rivers, in the cases when the genohydrology approach was not an
improvement over the mean of the other rivers, the decrease in model fit was small. Conversely,
when the genohydrology approach did improve over the mean of the others, the improvement
was much larger. This skewness is likely caused by the fact that genohydrology approach is
constructed to predict log relative anomalies from the means of the others (either specific or

absolute discharge). Thus, if the DNA carries little information, y. approaches zero, and

Jst

predictions do not deviate strongly from the means of the other training rivers. However, when
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Figure 6. Average of the standardized SVR regression coefficients used in prediction
of discharge for different months of the year (left panel), and for different recurrence

intervals (right panel). The phylum (P), class (C), order (O), and family (F) of OTUs

are listed when known.

the DNA does contain information about the hydrologic system, these improvements can be

quite large.

The genohydrology approach was more successful in predicting average monthly flows

than predicting flows associated with different return periods. This suggests that the average
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seasonal variations in river conditions are more influential on bacterial community structure than
discharge associated with events of different frequencies. However, when looking at the
discharges associated with return intervals greater than one year, the accuracy of our approach
improved. These larger discharge values, which occur less frequently, are most likely to occur
during the summer months when they do occur. Higher accuracy during summer months and at
longer return intervals is likely due to the fact that the DNA was collected in summer. It is
possible that winter sampling of DNA would yield improved predictions of discharges associated

with winter months and smaller return intervals.

The OTU-based genohydrology models used in this study were created using Support
Vector Regression, though other machine learning techniques may be applicable. Machine
learning techniques can be prone to both over- and under- fitting (Pedregosa et al., 2012), and the
removal of superfluous information via data reduction approaches aids in fitting. Given the small
number of rivers examined here, we focused on OTUs that appeared in five of six surveyed
rivers. We also examined prediction accuracy using the OTUs that appeared in all six rivers
(only three OTUs total), and on the OTUs that appeared in less than five of the rivers. Both cases
resulted in much worse predictions (results not shown), suggesting that when either too few
features or too few samples are used, prediction accuracy decreases. Given the limited number of
sampled rivers, we employed a leave-one-out cross validation approach of training prediction
models with OTU and flow data from five rivers and testing this on the sixth. This resulted in
16% of the observations being used for validation. Further studies, based on DNA information

from more rivers may wish to use a higher percentage of observations for cross validation.

The six rivers in this study are all found at northern latitudes, and they share broadly

similar climate (Arctic), vegetation (tundra and taiga), and natural bacteria communities (Crump
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351  etal., 2009). At present, it is unclear how widely applicable the OTU based prediction models
352 derived here are, because collection methods and DNA analysis varies significantly between

353 surveys of aquatic microbial communities. Comparison of standardized regression coefficients
354  (Figure 6) allows us to diagnose the stability of our prediction models for different prediction
355  intervals. Each vertical column of Figure 6 represents an average of six prediction models. There
356  is some stability in the average prediction model across different prediction months or recurrence
357  intervals. In the case of the monthly coefficients, the summer coefficients often have a different
358  sign than the winter coefficients, suggesting that a different set of OTUs are most informative of
359  flows in different seasons. For the discharge predictions at different recurrence intervals, an

360 inflection point occurs at one year, with distinct sets of coefficients for models at greater than
361  and less than one year. Furthermore, the sub-year return interval coefficients more closely match
362 those of monthly prediction values during wither months only. This is consistent because

363 summer months and longer recurrence intervals both represent periods associated with larger

364  discharge values.

365 Comparison of standardized average regression coefficient values at different prediction
366  intervals also provides some insight into which bacterial taxa are likely associated with which
367  type of flow. In the models explored here, a positive (or negative) SVR regression coefficient
368  corresponds to larger (or smaller) discharge predictions when those bacteria are more abundant.
369  For both seasonal flow and recurrence interval predictions greater than one year, the SVR

370  regression coefficients had strong consistency in sign, and, to a lesser degree, in magnitude.

371  However, given the limited number of rivers (six) examined here, and the fact that samples were
372 only collected once, it remains difficult to associated specific OTUs with specific hydrologic

373 patterns at this time.
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5 Conclusions

In this study, we examined the suitability of using bacterial DNA fragments to predict
seasonal discharge dynamics and the discharge expected at various return intervals. Our
approach was successful in demonstrating that DNA-derived information, as captured in the
relative abundance of different OTUs, contains information about discharge levels. Predictions
of discharge volume improved once the OTU data was incorporated. While the number of rivers
involved in this study (six), their sampling period (June only), and the sequencing approach (16S
rRNA clone libraries), are somewhat limiting, further studies with more sampling points in space
and time, as well as improved sequencing techniques will likely expand the applications and

improve the precision of the genohydrology approach.
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