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Key Points: 9 

• The ‘genohydrology’ approach uses aquatic gene fragments to predict hydrologic 10 

function. 11 

• Seasonal variation and recurrence intervals of monthly flows are predicted with 16S 12 

rRNA gene sequences. 13 

• Genohydrology predictions outperform estimates based on area-scaled mean specific 14 

discharge values in similar rivers.  15 
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Abstract 16 

Recent advances in microbiology techniques, such as genetic sequencing, allow for rapid 17 

and cost-effective collection of large quantities of genetic information carried within water 18 

samples. Here, we posit that the unique composition of aquatic DNA material within a water 19 

sample contains relevant information about hydrologic function at multiple temporal scales. In 20 

this study, machine learning was used to develop discharge prediction models trained on the 21 

relative abundance of bacterial taxa classified into operational taxonomic units (OTUs) based on 22 

16S rRNA gene sequences from six large arctic rivers. We term this approach ‘genohydrology,’ 23 

and show that OTU relative abundances can be used to predict river discharge at monthly and 24 

longer timescales. Based on a single DNA sample from each river, the average Nash-Sutcliffe 25 

efficiency (NSE) for predicted mean monthly discharge values throughout the year was 0.84, 26 

while the NSE for predicted discharge values across different return intervals was 0.67. These 27 

are considerable improvements over predictions based only on the area-scaled mean specific 28 

discharge of five similar rivers, which had average NSE values of 0.64 and -0.32 for seasonal 29 

and recurrence interval discharge values, respectively. The genohydrology approach 30 

demonstrates that genetic diversity within the aquatic microbiome is a large and underutilized 31 

data resource with benefits for prediction of hydrologic function.  32 
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Plain Language Summary 33 

An important task in water resources is prediction of the discharge in rivers and streams 34 

at locations where there are no direct measurements. In this study, we show that the flow in a 35 

river can be predicted based only on the bacteria that are present in the river. Because different 36 

flow conditions create environments in which different groups of bacteria grow, measurements 37 

of the diversity of the bacteria community can be used for hydrologic purposes. We call this 38 

approach ‘genohydrology’ and explore different discharge predictions based on streamwater 39 

bacteria composition.  40 
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1 Introduction 41 

A core objective of contemporary hydrology is the prediction of discharge in un-gauged 42 

streams and rivers (Seibert & McDonnell, 2013; Sivapalan et al., 2003). While much success had 43 

be achieve through development of many hydrologic models for this purpose, the accurate 44 

calibration of these models often requires some minimum quantity of discharge measurements, 45 

and equifinality can cause to ambiguity in predictions even if measurements are present (Beven, 46 

2006). When faced with inadequate direct measurements of discharge from a study catchment, 47 

the collection of some other type of information-dense dataset during short field campaigns (i.e., 48 

‘soft data’) can be remarkably useful in understanding hydrologic function (Seibert & 49 

McDonnell, 2013). In this study, we explore a new type of hydrologic information: the DNA of 50 

aquatic microbes carried in a stream or river, which we evaluate as an emergent property of a 51 

catchment as a whole that is useful for quantitative predictions of discharge. This use of DNA-52 

derived information differs from earlier applications of DNA as a hydrologic tracer, e.g., (Dahlke 53 

et al., 2015), in which synthetic DNA was released and recaptured downstream. In our 54 

application, we examine naturally occurring aquatic bacteria DNA fragments, and relate their 55 

variation between rivers to variations in flow regimes.  56 

Here, we focus on bacterial diversity as reflected in 16S rRNA gene fragments from river 57 

samples (Crump et al., 2009), although other types of DNA derived data may hold similar 58 

potential. The 16s rRNA gene has been used in microbiology since the 1980’s to classify bacteria 59 

into relative positions in the evolutionary order, i.e. phylum, class, order, family, etc. (Kolbert & 60 

Persing, 1999). Much of the bacterial diversity in rivers and streams originates from upslope soil 61 

environments and headwater streams (Crump, Adams, Hobbie, & Kling, 2007; Crump, Amaral-62 

Zettler, & Kling, 2012), as well as from groundwater (Sorensen et al., 2013). Although aquatic 63 
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microorganisms are generally considered passive dispersers, in that dispersal is controlled by the 64 

flow of water, evidence indicates that environmental variables have a strong influence in shaping 65 

aquatic microbial communities (Crump et al., 2012; Whittaker & Rynearson, 2017). Lower costs 66 

and recent advances in molecular biology methods have resulted higher quality freshwater 67 

microbial DNA extraction and analysis (Li et al., 2015), making this type of information more 68 

accessible to a wider research community for an increasing variety of applications. 69 

Recent studies have linked bacterial community composition with hydrologic function, 70 

with these studies primarily directed at understanding the microbial ecology of rivers and 71 

streams. In the River Thames basin, Read et al. (2015) found a significant relationship between 72 

bacterial community composition and cumulative stream length upstream of the community, and 73 

concluded that physical and chemical characteristics of the river were less important than hydro-74 

geomorphic parameters in shaping microbial communities. Savio et al. (2015) measured 280 75 

individual water quality parameters and found that the bacterioplankton community along the 76 

Danube River continuum was primarily correlated with catchment characteristics, including river 77 

kilometer, dendritic stream length, mean dendritic length, catchment size, and accumulated 78 

dendritic distance. Other studies have linked microbial communities to river flow rate (Crump & 79 

Hobbie, 2005; Doherty et al., 2017), and flow conditions have been used to model the abundance 80 

of crucial bacterial populations, such as Vibrio cholera (Bertuzzo et al., 2008). Furthermore, 81 

freshwater microbial communities have demonstrated seasonal shifts, with returns to 82 

characteristic “core” seasonal communities (Crump & Hobbie, 2005; Doherty et al., 2017; Savio 83 

et al., 2015). These studies suggest that the composition of microbial communities of rivers and 84 

streams is influenced by the hydrology of the watersheds in which they are found. 85 
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Given that geographically and hydrologically diverse rivers have been shown to host 86 

characteristic, seasonally shifting, and predictable microbial communities, and that those 87 

communities are shaped by hydrological properties of a watershed, including discharge, we 88 

hypothesized that microbial community composition could be used to predict the hydrological 89 

characteristics of a basin. We term this approach ‘genohydrology.’ In this study, we use 90 

previously measured estimates of the bacterial community composition of six arctic rivers to 91 

make predictions of river flow regimes. 92 

 93 

2 Materials and Methods 94 

2.1 Arctic River Bacteria Community Composition 95 

This study evaluates the bacterial and hydrologic characteristics of six arctic rivers: the 96 

Yukon, Kolyma, Yenisey, Mackenzie, Lena, and Ob (Figure 1). These rivers range in discharge 97 

from ~100 cubic kilometers per year to ~600 cubic kilometers per year, with basin sizes from 0.8 98 

million square kilometers to 2.4 million square kilometers (Table 1). In total, these northern 99 

latitude rivers constitute 67% of the Arctic Ocean’s drainage area (Holmes et al., 2012), with all 100 

six ranked in the world’s top 50 largest rivers by discharge (Dai & Trenberth, 2002), and share 101 

broad similarities in their discharge patterns, geochemical composition, and bacterial community 102 

structure (Crump et al., 2009; Holmes et al., 2012). Discharge observations (Bodo, 2001a, 103 

2001b) were compiled by the Global Runoff Data Center of the Federal Institute of Hydrology, 104 

Germany, and the International Hydrological Programme of the United Nations Educational, 105 

Scientific, and Cultural Organization. Only years with discharge data for all 12 months of the 106 

year were used, and across the six rivers there was an average of 33 years of data per river. 107 



Confidential manuscript submitted to Water Resources Research 

 

 108 

Table 1. Characterization of the six arctic river basins used in this study.  109 

River Total Area 
(km2) 

Annual Discharge 
(km3/yr) 

Gauge Latitude 
(degrees N) 

Gauge Longitude 
(degrees E) 

Discharge 
(Years)  

Yukon 831386 203.2 61.93 -162.88 21 
Kolyma 526000   99.3 68.73  158.27 16 
Yenisey 2440000 577.4 67.43   86.48 59 
Mackenzie 1660000 288.3 67.46 -133.75 21 
Lena 2460000 486.1 72.37 -126.80 18 
Ob 2430000 397.3 66.63 -66.60 64 

 110 

The prediction of two key hydrologic flow quantities [m3/s] was evaluated: (1) the 111 

average monthly discharge as it varies throughout the year, and (2) the average discharge 112 

expected at different recurrence intervals. Observed monthly discharge volumes were estimated 113 

by averaging across all years with 12 months of discharge data (see Table 1 for number of years 114 

in each gauge record). Discharge values at different recurrence intervals used data from all 115 

months of the year for estimates at 20 logarithmically spaced intervals spanning 0.1 to 10 years, 116 

with the recurrence period (Tx) calculated as Tx=1/Px, where Px is the probability that a discharge 117 

of x will be exceeded in the observed record (L. K. Read & Vogel, 2015). Observed flows were 118 

compared to predicted flows (see below) using both root means squared errors (RMSE) and 119 

Nash-Sutcliffe Efficiently (NSE) metrics. RMSE, which can range from 0 for a perfect model fit 120 

to positive infinity, captures both model bias and precision. NSE values can range from positive 121 

1, for a perfect model fit, to negative infinity, with an NSE of zero occurring when predictions 122 

are as accurate as the mean of the observed data. Values of the RMSE and NSE for predictions 123 

were calculated for each river separately based on either the 12 monthly means or the 20 return 124 

intervals, and then averaged across all six rivers. 125 
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This study is based on DNA samples collected though the Pan-Arctic River Transport of 126 

Nutrients, Organic Matter and Suspended Sediments (PARTNERS) program (Holmes et al., 127 

2012), which focused on collection water samples throughout the arctic with consistent sampling 128 

and analytical methods. Though water samples were obtained throughout the year through the 129 

PARTNERS program, only samples from June of 2004 were analyzed in detail for bacterial 130 

community composition (Crump et al., 2009). The composition of bacterial communities in these 131 

six rivers was measured in samples collected by the United States Geological Survey (USGS) 132 

National Research Program and Alaska Water Science Center, Canada’s Department of Indian 133 

Affairs and Northern Development, the South Russian Centre for Preparation and 134 

Implementation of International Projects, and the Northeast Science Station in Russia (Crump et 135 

al., 2009). Water samples were taken from the river mouths following USGS sampling protocols 136 

Figure 1 (Left) The watersheds of the six arctic rivers used in this study. Rivers were sampled 
(red circles) near their outlets into the Arctic Ocean in June of 2004 to obtain the (Right) relative 
abundances of nine broadly distributed OTUs, based on the number of 16S rRNA gene 
sequences in clone libraries prepared from DNA samples. 
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(Striegl, Aiken, Dornblaser, Raymond, & Wickland, 2005) as cross-sectionally integrated, flow-137 

weighted water samples during June 2004. 138 

Community composition was assessed using DNA sequencing of PCR-amplified and 139 

cloned bacterial 16S rRNA genes (i.e., clone library sequencing) (Crump et al., 2009; Crump & 140 

Hobbie, 2005). Phylogenetic distances between sequences were calculated with DNADIST using 141 

the Jukes-Cantor model, and the DOTUR application was used to group sequences into operation 142 

taxonomic units (OTUs) based on 97% DNA sequence similarity (Crump et al., 2009). 143 

Taxonomic assignments were made using the Ribosomal Database Project naïve Bayesian rRNA 144 

classifier tool using a confidence threshold of 80% (http://rdp.cme.msu.edu). Each OTU in this 145 

dataset represents a group of closely-related bacterial species found in each river, and the number 146 

of clones belonging to each OTU in each river were published as supplementary Table S2 of 147 

Crump et al., (2009). A total of 148 different OTUs were identified, and nine of these OTUs 148 

were present in at least five of the six rivers. These nine OTUs represented 20% to 34% of clone 149 

library sequences from each river, and comparison with the GenBank global database showed 150 

that they are common in freshwater systems world-wide (Crump et al., 2009). The relative 151 

abundances of these nine OTUs in each river (Figure 1) were used as input data for model 152 

calculations. These nine OTUs were selected because they appear in most (at least 5 of 6) of the 153 

studied arctic rivers, and the variation in their relative abundances was explored for predictive 154 

purposes. 155 

2.2 Genohydrology Prediction Method 156 

In this study a common machine learning technique, support vector regression (SVR) is 157 

used to map measured OTU abundances to hydrologic properties. SVR is a machine learning 158 

technique with few parameters (regularization C and kernel width ε) that is able to achieve 159 
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results that match or surpass neural-network approaches with minimal tuning (Smola, Sch, & 160 

Schölkopf, 2004). In particular, linear SVR is useful when feature counts (here the nine OTUs) 161 

exceeds the number of samples (here the six rivers). Linear SVR from the python SciKit-Learn 162 

machine learning library (Pedregosa et al., 2012) was used to construct predictor functions, fj,t( ), 163 

that take as input xj, the array of normalized OTU counts in target river j, and returns as output 164 

the estimated log fractional discharge anomalies, 𝑦!,!, during an individual month or recurrence 165 

interval t. Discharge values were estimated based on models trained with both the absolute 166 

discharge and the specific discharge for each river, with specific discharge then scaled by basin 167 

area to estimate a final absolute discharge value. 168 

Predictor functions were trained using an m by n input matrix of the normalized OTU 169 

counts for the other rivers (with m the five rivers used in training and n the nine most common 170 

OTUs), and m output values of the log anomalies in the discharge in the other five rivers during 171 

period t. Anomalies were calculated relative to the log mean discharge of the five other rivers, 172 

and thus the predictor functions, fj,t( ), do not include any information of the discharge in river j 173 

during period t or any other time period. Observed log discharge anomalies, yk,t, in each river k 174 

(k≠j, with j the target river) for interval t that were used for training are calculated as  175 

(1a)   𝑦!,! (!") = ln 𝑑!,! − ln !
!

𝑑!,!!
!!!  176 

(1b)   𝑦!,! (!") = ln !!,!
!!

− ln !
!

!!,!
!!

!
!!!  177 

where Ai  is the area of catchment i. Equation 1a gives the derived log anomaly of absolute 
178 

discharge (AD), and Equation 1b gives the SD derived log anomaly of the specific discharge 
179 

(SD). Note that the m rivers in the summation does not include the target river j. 
180 
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The five sets of normalized OTU data from the non-target rivers and the five values of yk,t 181 

for interval t were used to train the SVR predictor function fj,t( ). Note that the j subscript in fj,t( ) 182 

specifies that this is the predictor function trained with flow and OTU data from all the rivers 183 

that are not j, and is therefore unique to river j because it is the only predictor function that will 184 

not contain data from river j. The t subscript in fj,t( ) signifies that each time interval is predicted 185 

independently, in that the same summer OTU is repeatedly used to predicate each separate 186 

month and return interval discharge. In the training of the predictor function, OTU data is passed 187 

to possible predictor functions to produce estimates of the expected discharge anomaly in that 188 

river, i.e. fj.t(xk) =𝑦!,!. The SVR approach seeks the hyperplane, or series of hyperplanes, that 189 

have the largest separation between sets of training data (Pedregosa et al., 2012), with a larger 190 

margin typically associated with smaller training errors: 𝑦!,!-yk,t . Note that separate predictor 191 

functions and resulting predictions, were created for both the absolute (𝑦!,! (!")) and specific 192 

(𝑦!,! (!")) discharge based approaches. 193 

Once the form of a fj,t( ) has been determined, the OTU data from the target river is 194 

passed through the predictor function to produce the SVR estimate of discharge anomalies in the 195 

target river j relative to average of the other non-target rivers, i.e. fj.t(xj) = . The final 196 

predicted discharge values are then calculated as 197 

(2a)    𝑑!,! = 𝑒!!,! (!") !
!

𝑑!,!!
!!!  198 

(2b)   𝑑!,! = 𝑒!!,! (!") !
!

!!,!
!!

!
!!! 𝐴!, 199 

where Equation 2a gives the predicted discharge based on the absolute discharge and Equation 200 

2b gives the predicted discharge based on the specific discharge. The SciKit-Learn linearSVR 201 

routine was used to train each fj,t( ) function with the regularization penalty C was set as 60 for 202 

ŷ j,t
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the absolute discharge models and 7.1 for the specific discharge models, where these were values 203 

selected through trail and error to reduce overall error. For all models the ε value set to 0, as 204 

suggested in the SciKit documentation. Training the SVR function to predict log anomalies 205 

bounds the exponentially transformed discharge predictions in equation 2 to positive values, and 206 

defaults predictions in river j to the mean of the other five rivers when fj,t( ) carries no 207 

information and predictions  approach zero. 208 

In this study, discharge data from five of six rivers was used to develop the predictive 209 

models, which were then used with remaining river OTU distribution for a leave-one-out 210 

validation approach. All genohydrology predictions were compared to both observations from 211 

river gauges and to predictions obtained using the mean of the five non-target rivers to estimate 212 

the discharge in river j for interval t, as well as to predictions obtained using the mean specific 213 

discharge of the five non-target rivers multiplied by the area of the target basin. Our comparison 214 

with the mean of the other, non-target, rivers was not intended to suggest that this is good 215 

hydrologic practice, but only to assess the added information that the genohydrology approach 216 

brings. In cases where OTU data hold no relation to true discharge values, or where our SVR 217 

approach cannot discern this relation, the genohydrology predictions will result in error statistics 218 

similar to those obtained when comparing the mean discharge of the non-target rivers to that of 219 

the target river. 220 

 221 

3 Results 222 

After training both the absolute and specific discharge based models, we compare the 223 

predicted monthly discharge values from both models against the mean of the five other non-224 

ŷ j,t
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target rivers, the area-scaled means specific discharge of the five other non-target rivers, and the 225 

observed discharge values (Figure 2). Error metrics for each of the four predictions methods 226 

across all months of the year are listed for each river (Table 2). Similarly, we compare the two 227 

genohydrology approaches with the two approaches based on the means of the non-target rivers 228 

and with the observed data for recurrence intervals from 0.1 to 10 years (Figure 3). Error metrics 229 

for each of the four predictions methods across all of the different recurrence intervals are listed 230 

for each river (Table 3). Additionally, we also show the cross-plot of each prediction method 231 

Figure 2. Average monthly discharge in six arctic rivers (a-f). Genohydrology estimated 
discharge values (circles), and the mean discharge of the other five rivers (squares) are 
shown based on both absolute discharge (AD) and specific discharge (SD). 
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with observed values for both the monthly flows and the different recurrence intervals (Figure 4).  232 

 233 

Table 2. Error statistics for predicted average monthly flows using the genohydrology approach 234 
and the mean other rivers based on both absolute discharge (AD) and specific discharge (SD). 235 
The best preforming approach is shown in bold. 236 

River Root Mean Squared Error (m3/s) Nast-Sutcliffe Efficiency 
 Genohydrology Mean Of Others Genohydrology Mean of Others 
 (AD) (SD) (AD) (SD) (AD) (SD) (AD) (SD) 
Yukon 4084 2485 8622 2202 0.35 0.76 -1.97 0.81 
Kolyma 3463 1385 11818 1379 0.31 0.89 -7.00 0.89 
Yenisey 15245 12338 16313 10920 0.45 0.64 0.37 0.72 
Mackenzie 5313 1822 6179 5754 0.24 0.91 -0.03 0.11 
Lena 9661 4744 11386 5255 0.72 0.93 0.61 0.92 
Ob 2724 3431 4083 7655 0.93 0.88 0.83 0.42 
Average: 6748 4367 9734 5527 0.50 0.84 -1.19 0.64 

 237 

On average, the seasonal discharge predictions in each of the six rivers using the specific 238 

discharge trained genohydrology approaches showed a clear improvement in both the root mean 239 

squared error (RMSE) and Nash-Sutcliffe efficiency (NSE) over the mean flow of the other, non-240 

target, rivers (Table 2) using both the absolute and specific discharge, and over the absolute 241 

discharge trained genohydrology approach. The addition of bacterial information resulted in an 242 

average RMSE of 4367 m3/s, representing a decrease of 21% in the RMSE from predictions 243 

based on the area-scaled mean specific discharge of the non-target rivers. While on average the 244 

genohydrology improved RMSE values, there were specific months in specific rivers where 245 

genohydrology predictions were worse than those predicted from observations of the average 246 

specific discharge in the other five rivers (Figure 2). In rivers where the RMSE was best based 247 

on the mean of other specific discharge values (the Yukon, Kolyma, and Yenisey rivers), the 248 

genohydrology was only slightly worse, with an average difference in RMSE for these rivers of 249 

~600 m3/s. However, when the genohydrology approach was best (the Mackenzie, Lena, and Ob 250 
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rivers) its improvement over the area scaled mean of the specific discharge of the over rivers was 251 

much larger (~2900 m3/s).  252 

 The average NSE value of monthly discharges estimated without the bacteria data and 253 

only based on the mean of non-target rivers specific discharge was -1.19. This negative value 254 

signifies that using a single, average value of the observed flow in the target river across all 255 

months, which by definition gives an NSE of zero, would be more accurate than using the mean 256 

Figure 3. Average discharge for different return intervals in six arctic rivers (a-f). 
Genohydrology estimated discharge values (circles), and the mean discharge of the other 
five rivers (squares) are shown based on both absolute discharge (AD) and specific 
discharge (SD). 
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monthly discharge values of the other, non-target, rivers. If the average specific discharge of the 257 

non-target rivers is scaled by the basin area of the target river, the average NSE rises to 0.64. 258 

When the bacterial information is also included with the specific discharge, the average NSE 259 

value rises to 0.84 and ranged from 0.93 to 0.64 for individual rivers, with predictions in all 260 

rivers greater than zero. Predictions based on the state-of-the-art distributed hydrologic model 261 

(VIC) of discharge in the Lena (NSE of 0.96), Yenisey (NSE of 0.96) and Ob (NSE of 0.92) 262 

(Troy, Sheffield, & Wood, 2011), are higher than our monthly genohydrology predictions. 263 

 264 

Table 3. Error statistics for predicted monthly flows of different return intervals using the 265 
genohydrology approach and the mean of the five other rivers based on both absolute discharge 266 
(AD) and specific discharge (SD). 267 
River Root Mean Squared Error (m3/s) Nast-Sutcliffe Efficiency 
 Genohydrology Mean Of Others Genohydrology Mean of Others 
 (AD) (SD) (AD) (SD) (AD) (SD) (AD) (SD) 
Yukon 11148 2958 20336 2636 -3.11 0.71 -12.68 0.77 
Kolyma 3179 3639 22651 3283 0.77 0.70 -10.78 0.75 
Yenisey 39077 28008 39358 24534 -0.26 0.35 -0.28 0.50 
Mackenzie 4941 4259 15460 14357 0.47 0.61 -4.15 -3.44 
Lena 9451 5544 22105 6206 0.85 0.95 0.19 0.94 
Ob 2924 6650 5534 18498 0.94 0.69 0.78 -1.41 
Average: 11789 8510 20907 11586 -0.06 0.67 -4.48 -0.32 

 268 

Predictions of the discharge across return intervals ranging from 0.1 to 10 years using the 269 

specific discharge genohydrology approach were also better on average than similar predictions 270 

based on the mean of the other rivers (Table 3). When the bacterial information was included the 271 

RMSE decreased by 26%, with the average dropping from 11586m3/s to 8510m3/s. Similar to the 272 

seasonal predictions, even though there was a large improvement overall, predictions of 273 

individual return intervals in individual rivers were at times worse than predictions from the 274 

mean of the non-target rivers (Figure 4). However, as above, decreases in RMSE for the specific 275 

discharge based genohydrology approach over the area scaled mean specific discharge were 276 
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much larger than increases in RMSE. Interestingly, there were two specific cases (the Kolyma 277 

and Ob rivers) where the absolute discharge based genohydrology approach preformed best.  278 

On average, the predicted NSE values for return intervals improved when adding the 279 

bacterial data (Table 3), though predictions for this hydrologic quantity were less accurate then 280 

for predictions of monthly means. With the exception of the specific discharge based 281 

genohydrology approach, all average NSE values were negative. As with the monthly mean 282 

predictions, the differences between the specific discharge genohydrology approach and the area 283 

scaled specific discharge mean of others were strongly skewed. Adding the bacteria community 284 

information either resulted in in large improvements or small weakening in predictions. 285 

All the DNA samples used in the study were collected during the month of June, but 286 

predictions were made for all months in order to evaluate the utility of summer bacterial 287 

community for predictions during other periods. When viewed at the monthly timescale, 288 

Figure 4. Cross-plot of observed and estimated river discharge for (a) specific 
months, and (b) for specific return intervals using the different approaches. 
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predictions from June to September were very accurate (Figure 5) with relative errors near zero. 289 

Predictions in the low-flow, colder months showed larger errors and were biased high. On 290 

average, monthly predictions using the non-target means were biased high during all months for 291 

both specific and absolute discharge means. The overall relative error in these approaches also 292 

decreased in the summer. For the return intervals, all approaches had larger errors at shorter time 293 

intervals than at longer ones. Below 0.5 years, all approaches were biased high. At time scales 294 

larger than a year, the two genohydrology approaches demonstrate very low relative errors in 295 

predicted discharges. 296 

 297 

4 Discussion 298 

The objective of this study was to explore the hydrologic information contained within 299 

aquatic bacterial DNA fragments. While multiple previous studies (D. S. Read et al., 2015; Savio 300 

Figure 5. Average relative error in predictions of (left panel) monthly discharge values and 
(right panel) the discharge for different recurrence intervals. 
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et al., 2015) have suggested that bacterial composition is influenced by hydrologic flows, here 301 

we attempted quantitative macro-scale flow predictions based on this genetic information. When 302 

compared to observed flows, our accuracy varied considerably between the six rivers examined 303 

and between the hydrologic quantities that were predicted. However, we demonstrated overall 304 

improvement over predictions based only on flow information from other similar rivers.  305 

While the accuracy of the genohydrology approach for these arctic rivers is below that 306 

obtained from advanced hydrologic models, this study demonstrates that non-trivial hydrologic 307 

information can be obtained from river DNA. In comparison of the absolute and specific 308 

discharge approaches, it was expected that the inclusion of basin area would be highly 309 

informative. It is expected that other basic hydrologic properties such as basin-averaged 310 

precipitation would improve our results further. However, the objective of this study was to test 311 

if bacteria alone, without any other ancillary data about the hydrologic system, carry hydrologic 312 

information. There are many possible genohydrology approaches for incorporation of DNA 313 

derived data into predictive macro-scale models, and this study is only an initial investigation. 314 

We expect the accuracy of genohydrology approaches to improve with more extensive sampling 315 

of aquatic bacterial DNA across a larger range of river flow regimes. 316 

For specific rivers, in the cases when the genohydrology approach was not an 317 

improvement over the mean of the other rivers, the decrease in model fit was small. Conversely, 318 

when the genohydrology approach did improve over the mean of the others, the improvement 319 

was much larger. This skewness is likely caused by the fact that genohydrology approach is 320 

constructed to predict log relative anomalies from the means of the others (either specific or 321 

absolute discharge). Thus, if the DNA carries little information,  approaches zero, and 322 

predictions do not deviate strongly from the means of the other training rivers. However, when 323 

ŷ j,t
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the DNA does contain information about the hydrologic system, these improvements can be 324 

quite large. 325 

The genohydrology approach was more successful in predicting average monthly flows 326 

than predicting flows associated with different return periods. This suggests that the average 327 

Figure 6. Average of the standardized SVR regression coefficients used in prediction 
of discharge for different months of the year (left panel), and for different recurrence 
intervals (right panel). The phylum (P), class (C), order (O), and family (F) of OTUs 
are listed when known. 
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seasonal variations in river conditions are more influential on bacterial community structure than 328 

discharge associated with events of different frequencies. However, when looking at the 329 

discharges associated with return intervals greater than one year, the accuracy of our approach 330 

improved. These larger discharge values, which occur less frequently, are most likely to occur 331 

during the summer months when they do occur. Higher accuracy during summer months and at 332 

longer return intervals is likely due to the fact that the DNA was collected in summer. It is 333 

possible that winter sampling of DNA would yield improved predictions of discharges associated 334 

with winter months and smaller return intervals. 335 

The OTU-based genohydrology models used in this study were created using Support 336 

Vector Regression, though other machine learning techniques may be applicable. Machine 337 

learning techniques can be prone to both over- and under- fitting (Pedregosa et al., 2012), and the 338 

removal of superfluous information via data reduction approaches aids in fitting. Given the small 339 

number of rivers examined here, we focused on OTUs that appeared in five of six surveyed 340 

rivers. We also examined prediction accuracy using the OTUs that appeared in all six rivers 341 

(only three OTUs total), and on the OTUs that appeared in less than five of the rivers. Both cases 342 

resulted in much worse predictions (results not shown), suggesting that when either too few 343 

features or too few samples are used, prediction accuracy decreases. Given the limited number of 344 

sampled rivers, we employed a leave-one-out cross validation approach of training prediction 345 

models with OTU and flow data from five rivers and testing this on the sixth. This resulted in 346 

16% of the observations being used for validation. Further studies, based on DNA information 347 

from more rivers may wish to use a higher percentage of observations for cross validation. 348 

The six rivers in this study are all found at northern latitudes, and they share broadly 349 

similar climate (Arctic), vegetation (tundra and taiga), and natural bacteria communities (Crump 350 
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et al., 2009). At present, it is unclear how widely applicable the OTU based prediction models 351 

derived here are, because collection methods and DNA analysis varies significantly between 352 

surveys of aquatic microbial communities. Comparison of standardized regression coefficients 353 

(Figure 6) allows us to diagnose the stability of our prediction models for different prediction 354 

intervals. Each vertical column of Figure 6 represents an average of six prediction models. There 355 

is some stability in the average prediction model across different prediction months or recurrence 356 

intervals. In the case of the monthly coefficients, the summer coefficients often have a different 357 

sign than the winter coefficients, suggesting that a different set of OTUs are most informative of 358 

flows in different seasons. For the discharge predictions at different recurrence intervals, an 359 

inflection point occurs at one year, with distinct sets of coefficients for models at greater than 360 

and less than one year. Furthermore, the sub-year return interval coefficients more closely match 361 

those of monthly prediction values during wither months only. This is consistent because 362 

summer months and longer recurrence intervals both represent periods associated with larger 363 

discharge values.  364 

Comparison of standardized average regression coefficient values at different prediction 365 

intervals also provides some insight into which bacterial taxa are likely associated with which 366 

type of flow. In the models explored here, a positive (or negative) SVR regression coefficient 367 

corresponds to larger (or smaller) discharge predictions when those bacteria are more abundant. 368 

For both seasonal flow and recurrence interval predictions greater than one year, the SVR 369 

regression coefficients had strong consistency in sign, and, to a lesser degree, in magnitude. 370 

However, given the limited number of rivers (six) examined here, and the fact that samples were 371 

only collected once, it remains difficult to associated specific OTUs with specific hydrologic 372 

patterns at this time. 373 
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 374 

5 Conclusions 375 

In this study, we examined the suitability of using bacterial DNA fragments to predict 376 

seasonal discharge dynamics and the discharge expected at various return intervals. Our 377 

approach was successful in demonstrating that DNA-derived information, as captured in the 378 

relative abundance of different OTUs, contains information about discharge levels. Predictions 379 

of discharge volume improved once the OTU data was incorporated. While the number of rivers 380 

involved in this study (six), their sampling period (June only), and the sequencing approach (16S 381 

rRNA clone libraries), are somewhat limiting, further studies with more sampling points in space 382 

and time, as well as improved sequencing techniques will likely expand the applications and 383 

improve the precision of the genohydrology approach. 384 
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