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Abstract

We develop a theory which allows making qualitative conclusions about the dynamics of both monotone and
non-monotone Moreau sweeping processes. Specifically, we first prove that any sweeping processes with almost
periodic monotone right-hand-sides admits a globally exponentially stable almost periodic solution. And then we
describe the extent to which such a globally stable solution persists under non-monotone perturbations.
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1. Introduction

A perturbed Moreau sweeping process reads as

−ẋ(t) ∈ NC(t)(x(t)) + f (t, x(t)), (1)

where NC(x) is a so-called normal cone defined for closed convex C ∈ Rn as

NC(x) =

{ {
ξ ∈ Rn : 〈ξ, c − x〉 ≤ 0, for any c ∈ C

}
, if x ∈ C,

∅, if x < C, (2)

and f : R × Rn → Rn (see [15, 28, 22, 17]). The unboundedness of the right-hand-sides in (1) makes the
classical theory of differential inclusions (see e.g. [4, 23]) inapplicable. And despite numerous applications in
elastoplasticity (see e.g. [6, 5]) (as well as in problems of power converters [2] and crowd motion [34]), the
theory of Moreau’s sweeping processes is still in its infancy. Fundamental results on the existence, uniqueness and
dependence of solutions on the initial data are proposed in Monteiro Marques [35, Ch. 3], Valadier [42], Castaing
and Monteiro Marques [15], Adly-Le [3], Brogliato-Thibault [11], Krejci-Roche [27], Paoli [36]. Dependence of
solutions on parameters is covered in Bernicot-Venel [7] and Kamenskiy-Makarenkov [22]. The papers [22, 15]
also show the existence of T -periodic solutions for T -periodic in time (1). Optimal control problems for sweeping
process (1) and equivalent differential equations with hysteresis operator are addressed in Edmond-Thibault [17],
Adam-Outrata [1] (which also discusses applications to game theory), Brokate-Krejci [12]. Numerical schemes to
compute the solutions of (1) are discussed through most of the papers mentioned above.

Much less is known about the asymptotic behavior as t → ∞. The known results in this direction are due to Leine
and van de Wouw [29, 30], Brogliato [9], and Brogliato-Heemels [10]. Applied to a time-independent sweeping
process (1) the statements of [29, Theorem 8.7] (or [30, Theorem 2]), [9, Lemma 2], and [10, Theorem 4.4] imply
incremental stability (see Definition 2.1) and global exponential stability of an equilibrium, provided that

〈 f (t, x1) − f (t, x2), x1 − x2〉 ≥ α‖x1 − x2‖
2, for some fixed α > 0 and for all t ∈ R, x1, x2 ∈ Rn. (3)
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In particular, the results of [29, 30, 9, 10] do not impose any Lipschitz regularity on x 7→ f (t, x) and the derivative
in (1) is a differential measure, which is capable to deal with solutions x of bounded variation.

This paper is motivated by sweeping processes (1) coming from models of parallel networks of elastoplastic springs
(see e.g. Bastein et al [6, 5]), where the right-hand-sides are Lipschitz in all the variables. Here C(t) represents
the mechanical loading of the springs and f (t, x) stands for those forces which influence the masses of nodes.
Time-periodically changing C and f are most typical in laboratory experiments (see [19, 20, 6]). However, the
different nature of t 7→ C(t) and t 7→ f (t, x) makes it most reasonable to not rely on the existence of a common
period when the two functions receive periodic excitations, but rather to use a theory which is capable to deal with
arbitrary different periods of t 7→ C(t) and t 7→ f (t, x). The goal of this paper is to develop such a theory.

Specifically, by assuming that both t 7→ C(t) and t 7→ f (t, x) are almost periodic, we establish global exponential
stability of an almost periodic solution to a monotone sweeping process (14). The corresponding theory for dif-
ferential equations is available e.g. in Trubnikov-Perov [41] and Zhao [46], that found numerous applications in
biology. Moreover, we show that the almost periodic solution found preserves its stability under a wide class of
non-monotone perturbations, which is known for differential inclusions with bounded right-hand-sides e.g. from
Kloeden-Kozyakin [24] and Plotnikov [25].

The paper is organized as follows. Section 2 establishes (Theorem 2.1) the existence of solutions to (1) defined
on the entire R under the assumption that both t 7→ C(t) and (t, x) 7→ f (t, x) are globally Lipschitz functions, but
without any use of the monotonicity assumption (3). Note, that for any solution x(t) of (1), one has x(t) ∈ C(t),
so any solution of (1) is uniformly bounded in the domain of its definition, if C(t) is such. When the monotonicity
assumption (3) holds, we have (Theorem 2.2) the uniqueness and global exponential stability of a solution defined
on the entire R. This result doesn’t follow from [9, 10], where the existence of an equilibrium is a consequence
of the particular structure of the right-hand-sides. When both C(t) and f (t, x) are constant in t, the existence
of an equilibrium to (1) formally follows from [29, 30] which could transform into a solution on R when C(t)
and f (t, x) are time-varying and globally bounded. We provide an independent proof because the proofs of [29,
Theorem 8.7] and [30, Lemma 2] rely on Yakubovich [44, Lemma 2]. In turn, [44, Lemma 2] sends the reader
to Budak [13, Theorem 2] for the most crucial step of the proof, which is compactness of a sequence {xk}

∞
k=1

of C0(R,Rn) solutions to (1) corresponding to a converging sequence of initial conditions. Even if one ignores
verifying the regularity assumption of Budak [13, Theorem 2], this theorem provides a convergent subsequence on
a finite interval and Yakubovich [44, Lemma 2] doesn’t explain how the convergence gets extended to the entire R.

Under the assumption that both t 7→ C(t) and t 7→ f (t, x) are almost periodic functions and x 7→ f (t, x) is monotone
in the sense of (3), Section 3 shows (Theorem 3.1) that the unique global solution found in Section 2 is almost
periodic. Here we follow the standard definitions (see e.g. Levitan-Zhikov [31, p. 1] or Vesely [43]) to introduce
the concept of almost periodicity for set-valued functions and for the respective Bochner’s theorem. The results of
[31] and [43] are developed for functions with values in an arbitrary complete metric space and we take advantage
of the completeness of the space of convex closed nonempty sets equipped with the Hausdorff metric (see e.g.
Price [38]) to apply the concept of almost-periodicity to sweeping processes. The overall strategy of section 3
originates from the corresponding theory available for differential equations (see e.g. Trubnikov-Perov [41]).

Section 4 considers a sweeping process (1) with a parameter ε under the assumption that the monotonicity condition
(3) holds for ε = ε0. When ε = ε0, the sweeping process has a unique solution x0 defined on R by Theorem 2.2.
The result of section 4 (Theorems 4.1 and 4.3) proves that the solutions to the perturbed sweeping process with
ε , ε0 and with an initial condition xε(0) ∈ C(0) approach any given inflation of the solution x0 (as it is termed in
Kloeden-Kozyakin [24]) when the values of time become large and when ε approaches ε0. Section 4.3 specifies
the findings of section 4 for the case where both t 7→ C(t) and t 7→ f (t, x, ε) are almost periodic in time, so that x0 is
almost periodic as well. Instructive examples of Section 4.4 illustrate the domains of applications of Theorems 4.1
and 4.3. Finally, Section 4.5 gives a brief outlook about the potential role of Theorems 4.1 and 4.3 in the analysis
of the dynamics of networks of elastoplastic springs that motivated our study.

We note that condition (3) ensures that the sweeping process (1) is incrementally stable (see [29, Theorem 8.7],
[30, Lemma 2], or Theorem 2.2 below), which concept currently attracts an increasing attention in the switched
systems literature, see e.g. Lu-di Bernardo [33], Zamani-van de Wouw-Majumdar [45] and references therein.
The source for incremental stability in these papers is certain contraction of the right-hand-sides (going back to
Demidovich, see [16, Ch. IV, §16] and [37]), which property is also ensured by the monotonicity assumption (3).
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2. The existence of an unique globally exponentially stable bounded solution x0

Let f : R × Rn → Rn be globally Lipschitz continuous in the sense that

‖ f (t1, x1) − f (t2, x2)‖ ≤ L f ‖t1 − t2‖ + L f ‖x1 − x2‖, for all t1, t2 ∈ R, x1, x2 ∈ Rn, and for some L f > 0. (4)

A similar property

dH(C(t1),C(t2)) ≤ LC |t1 − t2|, for all t1, t2 ∈ R, and for some LC > 0, (5)

is assumed for the closed convex-valued function t 7→ C(t), where the Hausdorff distance dH(C1,C2) between two
closed sets C1,C2 ⊂ Rn is defined as

dH(C1,C2) = max
{

sup
x∈C2

dist(x,C1), sup
x∈C1

dist(x,C2)
}

with dist(x,C) = inf {|x − c| : c ∈ C} . (6)

Under conditions (4) and (5), for any initial condition x(t0) ∈ C(t0), the sweeping process (1) with nonempty,
closed and convex C(t), t ∈ R, admits (Edmond-Thibault [17, Theorem 1]) a unique absolutely continuous forward
solution x(t), in the sense that x(t) satisfies (1) for almost all t ≥ t0.

Remark 2.1. If x0 is a solution to (1) defined on t ≥ t0, then x(t) ∈ C(t), for all t ≥ t0, because NC(t)(x(t)) is
undefined otherwise (the interested reader can see that [17] obtains the solution x(t) as x(t) = y(t) − ψ(t), where
y(t) ∈ C(t) + ψ(t) [17, pp. 352–353]). In particular, if ‖C(t)‖ ≤ M for some M > 0 and all t ∈ R, then

‖x(t)‖ ≤ M, for any solution x to (1) with the initial condition x(t0) ∈ C(t0) and t ≥ t0. (7)

Theorem 2.1. Let f : R × Rn → Rn satisfy the Lipschitz condition (4). Assume that, for any t ∈ R, the set
C(t) ⊂ Rn is nonempty, closed, convex and the map t 7→ C(t) satisfies the Lipschitz condition (5). If t 7→ C(t) is
globally bounded, then the sweeping process (1) admits at least one absolutely continuous solution x0 defined on
the entire R. The solution x0 is globally bounded.

Proof. Step 1: Construction of a candidate solution x0 defined on the entire R. Let {ξm}
∞
m=1 be an arbitrary

sequence of elements of Rn such that ξm ∈ C(−m), m ∈ N. Let xm(t) be the solution to (1) with the initial condition
xm(−m) = ξm. Extend each xm from [−m,∞) to R by defining xm(t) = xm(−m) for all t < −m. By Edmond-Thibault
[17, Theorem 1], the functions of {xm(t)}∞m=1 share same Lipschitz constant Lk > 0 on each interval [−k, k], k ∈ N.
Letting {x0

m}
∞
m=1 = {xm}

∞
m=1, for each k ∈ N we can extract a subsequence {xk

m(t)}∞m=1 of {xk−1
m (t)}∞m=1 which converges

uniformly on [−k, k]. By using this family of subsequences we introduce a sequence {x∗m}
∞
m=1 by x∗m(t) = xm

m(t).
The sequence {x∗m}

∞
m=1 converges uniformly on any fixed interval [−k, k], k ∈ N. Define x0(t) by x0(t) = lim

m→∞
x∗m(t).

Step 2: Proof that x0 is indeed a solution. Let τ ∈ R and let v be a solution to (1) with v(τ) = x0(τ). Assume
v(t0) , x0(t0) for some t0 > τ, i.e. lim

m→∞
x∗m(t0) , v(t0). Then there exists ε0 > 0, such that for each m ∈ N, there

exists mk > m such that ‖x∗mk
(t0) − v(t0)‖≥ ε0. On the other hand, by continuous dependence of solutions to (1) on

the initial condition (see Edmond-Thibault [17, Proposition 2]), there exists δ > 0 such that if ‖v(τ) − x∗m(τ)‖< δ
then ‖v(t) − x∗m(t)‖< ε0 for all m ∈ N with −m < τ (which ensures that x∗m(t) is a solution of (1) for t ≥ τ) and
t ∈ [τ, t0], see Fig. 1. But since v(τ) = x0(τ) = lim

m→∞
x∗m(τ), there exists N ∈ N such that ‖v(τ) − x∗m(τ)‖< δ for

each m > N. Then ‖v(t) − xm(t)‖< ε0 for all m > N and t ∈ [τ, t0]. This contradicts lim
n→∞

x∗m(t0) , v(t0). Therefore
v(t) = x0(t) for each t ≥ τ. Hence x0 is a solution to (1).

The solution x0 is globally bounded by Remark 2.1.

Definition 2.1. (see e.g. Leine - van de Wouw [29, Definition 6.22]) The sweeping process (1) is incrementally
stable, if for any ε > 0 there exists δ > 0 such that given an arbitrary t0 ∈ R, all solutions x1 and x2 of (1) with the
initial condition ‖x1(t0) − x2(t0)‖ < δ, satisfy ‖x1(t) − x2(t)‖ < ε, for a.e. t ≥ t0.

Theorem 2.2. Assume that the conditions of Theorem 2.1 hold. If f satisfies the monotonicity condition (3) then
(1) is incrementally stable and (1) admits exactly one absolutely continuous bounded solution x0 defined on the
entire R. Moreover, x0 is globally exponentially stable.
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Figure 1: Illustration of the location of curves x0, v, and x∗m.

The incremental stability of (1) under condition (3) is proved in Leine - van de Wouw [29, Theorem 8.7] and
[30, Lemma 2]. The statements about uniqueness and global stability of the bounded solution x0 follow from
incremental stability. We include a proof of Theorem 2.2 in Appendix for completeness.

Remark 2.2. The global boundedness of t 7→ C(t) is used in the proof of Theorem 2.1 just to conclude the
boundedness of the global solution x0. Accordingly, the assumption of global boundedness of t 7→ C(t) and the
property of global boundedness of x0 can be simultaneously dropped in the formulation of Theorem 2.1. But
assuming global boundedness of t 7→ C(t) in Theorem 2.2 cannot be dropped as it is used in the proof in an
essential way (to establish the uniqueness of x0, not to just prove its global boundedness).

3. Almost periodicity of the bounded solution x0

Let ck(Rn) be the space of all closed bounded nonempty sets of Rn equipped with the Hausdorff metric dH , see (6).
The concept of almost periodicity for multi-valued functions with compact values (Definition 3.1) is a combination
of the definition of almost periodicity in complete metric spaces (see e.g. Levitan-Zhikov [31, p. 1] or Vesely [43])
and the property of the completeness of the metric space ck(Rn) (see e.g. Price [38]).

Definition 3.1. A continuous function φ : R → ck(Rn) is almost periodic, if for any ε > 0, there exists a number
p(ε) > 0 with the property that any interval of length p(ε) > 0 of the real line contains at least one point s, such
that

dH(φ(t + s), φ(t)) < ε, for all t ∈ R.

Theorem 3.1. Let the conditions of Theorem 2.2 hold and let x0 be the unique absolutely continuous bounded
solution given by Theorem 2.2. If both the function t 7→ f (t, x) and the set-valued function t 7→ C(t) are almost
periodic, then x0 is almost periodic.

Proof. Let {hm}
∞
m=1 ⊆ R. We are going to prove that there exists {km(x)}∞m=1 ⊆ {hm}

∞
m=1 such that the sequence of

xm(t) = x0(t + km), m ∈ N, t ∈ R, (8)

converges as m→ ∞ uniformly in t ∈ R, which will imply almost periodicity of x0 by Bochner’s theorem (see e.g.
Levitan-Zhikov [31, p. 4]).

Step 1. The existence of {lm}∞m=1 ⊆ {hm}
∞
m=1 such that fm(t, x) = f (t + lm, x) converges as m → ∞ uniformly.

Since f (t, x) is almost periodic, then, for each x ∈ Rn, Bochner’s theorem (see e.g. Levitan-Zhikov [31, p. 4])
implies the existence of {lm(x)}∞m=1 ⊆ {hm}

∞
m=1 such that the sequence of functions { f (· + lm(x), x)}∞m=1 converges in

the sup-norm. The standard diagonal method allows to construct {lm(x)}∞m=1 independent of x. Indeed, considering
{xm}

∞
m=1 = Qn, we first construct sequences {lm(x1)}∞m=1 ⊇ {lm(x2)}∞m=1 ⊇ . . ., such that each individual sequence

{ f (·+ lm(x1), x1)}∞m=1, { f (·+ lm(x2), x2)}∞m=1, . . . converges. And then define {lm}∞m=1 ⊆ {hm}
∞
m=1 as lm = lm(xm),m ∈ N.

Put
fm(t, x) = f (t + lm, x), for all t ∈ R, x ∈ Qn, m ∈ N. (9)

So constructed, { fm(·, x)}∞m=1 converges for each fixed x ∈ Qn. Let

f̂ (t, x) = lim
m→∞

fm(t, x), for all t ∈ R, x ∈ Qn. (10)

4



By (4) both fm and f̂ are Lipschitz continuous with constant L f on R × Rn and R × Qn respectively. Now we
extend f̂ from R × Qn to R × Rn by taking an arbitrary sequence Q 3 xk → x0 ∈ R, as k → ∞, and defining
f̂ (t, x0) = lim

k→∞
f̂ (t, xk). The limit exists because { f̂ (t, xk)}∞k=1 is a Cauchy sequence for each fixed t ∈ R, which

follows from Lipschitz continuity of f̂ on R × Qn. Lipschitz continuity of f̂ extends from R × Qn to R × Rn by
continuity. The latter property also implies that∥∥∥ f̂ (t, x0) − f̂ (t, xk)

∥∥∥ ≤ L f ‖x0 − xk‖, for all k ∈ N.

Finally, to show that
fm(t, x)→ f̂ (t, x) as m→ ∞, uniformly in t ∈ R, x ∈ Rn, (11)

we estimate fm(t, x) − f̂ (t, x) as∥∥∥ fm(t, x) − f̂ (t, x)
∥∥∥ ≤ ‖ fm(t, x) − fm(t, x∗)‖ +

∥∥∥ fm(t, x∗) − f̂ (t, x∗)
∥∥∥ +

∥∥∥ f̂ (t, x∗) − f̂ (t, x)
∥∥∥ .

Given x ∈ R and ε > 0, we choose x∗ ∈ Q so close to x that ‖ fm(t, x) − fm(t, x∗)‖ < ε/3 and
∥∥∥ f̂ (t, x∗) − f̂ (t, x)

∥∥∥ <
ε/3, for all m ∈ N, t ∈ R. By (10) we can now select m0 ∈ N such that

∥∥∥ fm(t, x∗) − f̂ (t, x∗)
∥∥∥ < ε/3, for all m > m0

and t ∈ R. Thus, (11) holds.

Step 2. The existence of {km}
∞
m=1 ⊆ {lm}

∞
m=1, such that Cm(t) = C(t + km) converges as m → ∞ uniformly. By

Bochner’s theorem for almost periodic functions in pseudo-metric spaces (see [43, Theorem 2.4]), there exists
{km}

∞
m=1 ⊆ {lm}

∞
m=1, such that {Cm(t)}∞m=1 is a Cauchy sequence in ck(Rn), which is uniform in t ∈ R. The convergence

of {Cm(t)}∞m=1 for each individual t ∈ R now follows from the completeness of ck(Rn) (Price [38, the theorem of
§3]). The uniformity of the convergence in t ∈ R follows along standard lines. Indeed, let

Ĉ(t) = lim
m→∞

Cm(t).

Given ε > 0, fix m0 > 0 such that dH(Cm(t),Cm∗ (t)) < ε/2 for all m > m0, m∗ > m0, and t ∈ R. For each t ∈ R
select m∗(t) > m0 such that dH

(
Cm∗(t)(t), Ĉ(t)

)
< ε/2. Then

dH

(
Cm(t), Ĉ(t)

)
≤ dH

(
Cm(t),Cm∗(t)(t)

)
+ dH

(
Cm∗(t)(t), Ĉ(t)

)
< ε/2 + ε/2 = ε, for all m > m0, t ∈ R.

Note that (5) implies that Ĉ is globally Lipschitz continuous with constant LC .

Step 3: The uniform convergence of {xm(t)}∞m=1. The function xm, see (8), is a solution to the sweeping process

−ẋ(t) ∈ NCm(t)(x(t)) + fm(t, x(t)). (12)

Along with (12) let us consider
−ẋ(t) ∈ NĈ(t)(x(t)) + f̂ (t, x(t)). (13)

Both Ĉ and f̂ are globally bounded and globally Lipschitz continuous. Moreover, by using (9) and (10) one
concludes that f̂ satisfies the monotonicity property (3). Therefore, by Theorem 2.2, the sweeping process (13)
has a unique bounded absolutely continuous solution x̂ defined on the entire R. Let t ∈ R be such that both ẋm(t)
and ˙̂x(t) exist and satisfy the respective relations (12) and (13). Define

vm = ẋm(t) + fm(t, xm(t)), v̂ = ˙̂x(t) + f̂ (t, x̂(t)), so that vm ∈ −NCm(t)(xm(t)), v̂ ∈ −NĈ(t)(x̂(t)).

Furthermore, introducing ∆m(t) = dH

(
Cm(t), Ĉ(t)

)
one has

xm(t) ∈ Cm(t) ⊆ Ĉ(t) + B̄∆m(t)(0), x̂(t) ∈ Ĉ(t) ⊆ Cm(t) + B̄∆m(t)(0), for all t ∈ R.

Therefore, xm and x̂ can be decomposed as

xm(t) = d̂(t) + sm(t), x̂(t) = dm(t) + ŝ(t), where d̂(t) ∈ Ĉ(t), dm(t) ∈ Cm(t), ‖sm(t)‖≤ ∆m(t), ‖ŝ(t)‖≤ ∆m(t).

Let
wm(t) = ‖xm(t) − x̂(t)‖2.
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Then,

1
2

ẇm(t) = 〈ẋm(t) − ˙̂x(t), xm(t) − x̂(t)〉

= 〈vm(t) − fm(t, xm(t)) − v̂(t) + f̂ (t, x̂(t)), xm(t) − x̂(t)〉
= 〈vm(t), xm(t) − dm(t) − ŝ(t)〉 + 〈v̂(t), x̂(t) − d̂(t) − sm(t)〉 − 〈 fm(t, xm(t)) − f̂ (t, x̂(t)), xm(t) − x̂(t)〉

By (2) we have 〈vm(t), xm(t) − dm(t)〉 ≤ 0 and 〈v̂(t), x̂(t) − d̂(t)〉 ≤ 0. Therefore, for a.e. t ∈ R,

1
2

ẇm(t) ≤ −〈vm(t), ŝ(t)〉 − 〈v̂(t), sm(t)〉 − 〈 fm(t, xm(t)) − f̂ (t, x̂(t)), xm(t) − x̂(t)〉

≤ ‖vm(t)‖·‖ŝ(t)‖+‖v̂(t)‖·‖sm(t)‖−〈 fm(t, xm(t)) − fm(t, x̂(t)) + fm(t, x̂(t)) − f̂ (t, x̂(t)), xm(t) − x̂(t)〉.

Given ε > 0 we use the conclusions of Steps 1 and 2 to spot an m0 > 0 such that

‖ŝ(t)‖ ≤ ε, ‖sm(t)‖ ≤ ε,
∥∥∥ fm(t, x̂(t)) − f̂ (t, x̂(t))

∥∥∥ ≤ ε, for all m ≥ m0, t ∈ Rn.

Almost periodicity in t and the Lipschitz condition (4) imply that the function f (t, x) is uniformly bounded when
t ∈ R and ‖x‖ ≤ M, where M is as introduced in Remark 2.1. Therefore, by Edmond-Thibault [17, Theorem 1],
there exists L0 > 0 such that

‖vm(t)‖ ≤ L0, ‖v̂(t)‖ ≤ L0.

and by using (7) we can estimate ẇm(t) further as

1
2

ẇm(t) ≤ 2εL0 − 〈 fm(t, xm(t)) − fm(t, x̂(t)), xm(t) − x̂(t)〉 + 2εM, for all m ≥ m0, a.e. t ∈ R.

By referring to the definition (9) of fm, one observes that fm satisfies the monotonicity estimate (3), which implies

1
2

ẇm(t) ≤ 2ε(L0 + M) − α‖xm(t) − x̂(t)‖2 = 2ε(L0 + M) − αwm(t), for all m ≥ m0 and a.e. t ∈ R.

Gronwall-Bellman lemma (see Lemma 6.1 in the Appendix) now allows to conclude that

wm(t) ≤ wm(τ)e−2α(t−τ)+4ε(L0+M)
∫ t

τ

e−2α(t−s)ds = wm(τ)e−2α(t−τ)+ε
2(L0 + M)

α

(
1 − e−2α(t−τ)

)
, t, τ ∈ R, m ≥ m0.

By passing to the limit as τ→ −∞ one gets

wm(t) ≤ ε · 2(L0 + M)/α, t ∈ R, m ≥ m0.

Therefore, ‖xm(t)− x̂(t)‖→ 0 as m→ ∞ uniformly in t ∈ R, and so x0 is almost periodic by Bochner’s theorem.

Remark 3.1. To fulfill the assumption of global boundedness of t 7→ C(t) in Theorem 3.1, it is sufficient to
assume that C(t) is bounded for each individual t ∈ R. Indeed, any almost periodic set-valued map C(t) with closed
bounded values is globally bounded on R, see e.g. Levitan-Zhikov [31, p. 2] or Vesely [43, Lemma 2.2].

4. Stability of the attractor to non-monotone perturbations

In this section we study the sweeping process

−ẋ(t) ∈ NC(t)(x(t)) + f (t, x(t), ε), (14)

which satisfies the monotonicity condition (3) only when ε = ε0, i.e.

〈 f (t, x1, ε0) − f (t, x2, ε0), x1 − x2〉 ≥ α‖x1 − x2‖
2, for some fixed α > 0 and for all t ∈ R, x1, x2 ∈ Rn. (15)

6



4.1. The case where the dependence of the perturbation on the parameter ε is continuous

Here we assume that

‖ f (t1, x1, ε) − f (t2, x2, ε)‖ ≤ L f ‖t1 − t2‖ + L f ‖x1 − x2‖, for all t1, t2 ∈ R, x1, x2 ∈ Rn, ε ∈ R. (16)

Theorem 4.1. Let f : R × Rn × R→ Rn satisfy both the Lipschitz condition (16) and the monotonicity condition
(15). Assume that, for any t ∈ R, the set C(t) ⊂ Rn is nonempty, closed, convex and the globally bounded map
t 7→ C(t) satisfies the Lipschitz condition (5). Finally, assume that f (t, x, ε) is continuous at ε = ε0 uniformly in
t ∈ R, x ∈ Rn. Let x0 : R → Rn be the unique solution to (14) with ε = ε0 provided by Theorem 2.2. Then, given
any γ > 0 there exists t1 ∈ R such that for any solution xε to (14) defined on [0,∞), one has

‖xε(t) − x0(t)‖ < γ, t ≥ t1, (17)

for all ε sufficiently close to ε0.

We remind the reader that coresponding results for differential inclusions with bounded right-hand-sides are known
e.g. from Kloeden-Kozyakin [24].

The following lemma will be used iteratively throughout the rest of the paper.

Lemma 4.1. Let xε be a solution to (14) defined on [τ,∞). Let x0 = xε0 . If (15) holds, then, for a.e. t ≥ τ,

‖xε(t) − x0(t)‖2 ≤ e−2α(t−τ)‖xε(τ) − x0(τ)‖2 − 2
∫ t

τ

e−2α(t−s)〈 f (s, xε(s), ε) − f (s, xε(s), ε0), xε(s) − x0(s)〉ds. (18)

Proof. For a.e. t ≥ τ and ε ∈ R we have

d
dt
‖xε(t) − x0(t)‖2 = 2 〈ẋε(t) − ẋ0(t), xε(t) − x0(t)〉

≤ 2 〈− f (t, xε(t), ε) , xε(t) − x0(t)〉 + 2 〈 f (t, x0(t), ε0), xε(t) − x0(t)〉
= −2 〈 f (t, xε(t), ε) − f (t, xε(t), ε0), xε(t) − x0(t)〉 − 2〈 f (t, xε(t), ε0) − f (t, x0(t), ε0), xε(t) − x0(t)〉

≤ −2α‖xε(t) − x0(t)‖2 − 2〈 f (t, xε(t), ε) − f (t, xε(t), ε0), xε(t) − x0(t)〉

and the conclusion follows by applying the Gronwall-Bellman lemma (see Lemma 6.1 in the Appendix).

Proof of Theorem 4.1. By Lemma 4.1 and (7) one has

‖xε(t) − x0(t)‖2 ≤ e−2αt‖xε(0) − x0(0)‖2 +

(
1

2α
−

e−2αt

2α

)
max
s∈[0,t]

‖ f (s, xε(s), ε) − f (s, xε(s), ε0)‖ · M, (19)

from which the conclusion follows.

Remark 4.1. The estimate (17) can be extended to the entire R, if xε is defined on the entire R (e.g. if xε is that
given by Theorem 2.1). Indeed, in this case (19) can be strengthened to

‖xε(t) − x0(t)‖2 ≤ e−2α(t−τ)‖xε(τ) − x0(τ)‖2 +

(
1

2α
−

e−2α(t−τ)

2α

)
max
s∈[τ,t]

‖ f (s, xε(s), ε) − f (s, xε(s), ε0)‖ · M,

which gives

‖xε(t) − x0(t)‖2 ≤
1

2α
sup

s∈(−∞,t]
‖ f (s, xε(s), ε) − f (s, xε(s), ε0)‖ · M,

by passing to the limit as τ→ −∞.
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4.2. The case where the dependence of the perturbation on the parameter ε is only just integrally continuous

In this section we assume that the following version of Lipschitz condition (4) holds:

‖ f (t1, x, ε) − f (t2, x, ε)‖ ≤ Lε‖t1 − t2‖, for all t1, t2 ∈ R, x ∈ Rn, ε ∈ R\{ε0},
‖ f (t, x1, ε) − f (t, x2, ε)‖ ≤ L f ‖x1 − x2‖, for all t ∈ R, x1, x2 ∈ Rn, ε ∈ R, (20)

where Lε > 0 may depend on ε ∈ R and L f > 0 is independent of ε ∈ Rn. Following Krasnoselskii-Krein [26] and
Demidovich [16, Ch. V, §3], we say that f (t, x, ε) is integrally continuous at ε = ε0, if

lim
ε→ε0

t∫
τ

f (s, x, ε)ds =

t∫
τ

f (s, x, ε0)ds, for all τ, t ∈ R, x ∈ Rn. (21)

The central role in this section is played by a generalization of the theorem on passage to the limit in the integral
due to Krasnoselskii-Krein [26] (see also Demidovich [16, Ch. V, §3]). We will formulate this theorem for the case
when f (t, x, ε) satisfies the Lipschitz condition (20).

Theorem 4.2. (Krasnoselskii-Krein [26]) Assume that F : R×Rk×R→ Rn satisfies (20) and that t 7→ F(t, u, ε0)
is continuous for every u ∈ Rk. Consider a family of continuous functions {uε(t)}ε∈R defined on an interval [τ,T ]
such that uε(t)→ u0(t) uniformly on [τ,T ]. If F verifies the integral continuity property (21), then

lim
ε→ε0

t∫
τ

F(s, uε(s), ε)ds =

t∫
τ

F(s, u0(s), ε0)ds, for all t ∈ [τ,T ].

In this statement, we take k = n when referring to (20) and (21) in the context of the function F.

If a function is integrally continuous at a point, then the function is bounded in the neighborhood of this point,
which rigorous formulation is given in the following lemma.

Lemma 4.2. Let f : R × Rn × R → Rn satisfy the Lipschitz condition (20). Assume, that f (t, x, ε) is integrally
continuous at ε = ε0. Then, given any t1 < t2 from R and any r > 0, there exist ∆ > 0 and K > 0 such that

‖ f (t, x, ε)‖ ≤ K, for all t ∈ [t1, t2], ‖x‖ ≤ r, ε ∈ (ε0 − ∆, ε0 + ∆).

Proof. Assuming the contrary, there exist tn → t0, xn → x0, εn → ε0 as n → ∞, such that ‖ f (tn, xn, εn)‖ ≥
1
n
.

Therefore, for a suitable sequence {sn}
∞
n=1 ⊂ [t1, t2], we have

t2∫
t1

f (s, xn, εn)ds = f (sn, xn, εn) =
[
f (sn, xn, εn) − f (tn, xn, εn)

]
+ f (tn, xn, εn), n ∈ N.

The term in the square brackets is bounded by (20), while lim
n→∞

f (tn, xn, εn) = ∞, i.e. lim
n→∞

∫ t2
t1

f (s, xn, εn)ds = ∞,

which contradicts the integral continuity of f (t, x, ε).

We are now in the position to prove the main result of this section.

Theorem 4.3. Let f : R × Rn × R→ Rn satisfy both the Lipschitz condition (20) and the monotonicity condition
(15). Assume that, for any t ∈ R, the set C(t) ⊂ Rn is nonempty, closed, and convex, and that the globally bounded
map t 7→ C(t) satisfies the Lipschitz condition (5). Finally, assume that f (t, x, ε) is integrally continuous at ε = ε0.
Then, given any γ > 0 there exists t1 ≥ 0 such that for any solution xε to (14) defined on R (at least one such
solution exists by Theorem 2.1) and for any t2 ≥ t1, one has

‖xε(t) − x0(t)‖ < γ, t ∈ [t1, t2],

for all ε sufficiently close to ε0.
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Proof. Let us fix some closed interval [t1, t2] and assume that the statement of the theorem is wrong, i.e. assume
that there exists γ > 0 such that

max
t∈[t1,t2]

‖xεm (t) − x0(t)‖ ≥ γ (22)

for some sequence εm → ε0 as m→ ∞. By (7), we can find τ < 0 such that

e−2α(t−τ)‖xεm (τ) − x0(τ)‖2 <
γ2

2
, for all m ∈ N, t ∈ [t1, t2]. (23)

In what follows, we show that the integral term of the estimate (18) can be made smaller than γ2/2 on the sequence
xεm as well. Let r > 0 be an arbitrary constant such that

‖v‖ ≤ r, for all v ∈ C(t), t ∈ R.

Since, by Lemma 4.2, f (t, x, ε) is uniformly bounded for t ∈ [t1, t2], ‖x‖ ≤ r and ε close to ε0 and since C satisfies
the global Lipschitz condition (5), using Edmond-Thibault [17, Theorem 1] we have the existence of L0 > 0 such
that

‖ẋεm (t)‖ ≤ L0, for all m ∈ N, and a.e. t ∈ [τ,T ]

where T > 0. Since the functions of {xεm (t)}m∈N are uniformly bounded according to (7), the Ascoli-Arzela theorem
implies that without loss of generality the sequence {xεm (t)}m∈N can be assumed convergent uniformly on [τ,T ].
Introduce

F(t, (x1, x2)T , ε) = 〈 f (t, x1, ε) − f (t, x1, ε0), x2〉 , um(t) =
(
xεm (t), e2αt (xεm (t) − x0(t)

))T
,

so that F : R × R2n × R→ Rn. Since f (t, x, ε) is integrally continuous at ε = ε0, then

lim
ε→ε0

t∫
τ

F
(
s, (x1, x2)T , ε

)
ds = 0, for all (x1, x2)T ∈ R2n, t ∈ [τ,T ].

Furthermore, since ‖xε(t)‖ ≤ r, the function F satisfies the same type of Lipschitz condition (20) as f does. The
Krasnoselskii-Krein theorem (Theorem 4.2), therefore, implies

lim
m→∞

t∫
τ

F(s, um(s), εm)ds = 0, for all t ∈ [τ,T ]. (24)

The conclusions (23) and (24) contradict (22) because of (18). The proof follows by Lemma 4.1.

4.3. A particular case: high-frequency vibrations
In this section we consider a sweeping process

−ẋ(t) ∈ NC(t)(x(t)) + g
( t
ε
, x(t)

)
, (25)

where both t 7→ C(t) and t 7→ g(t, x) are almost periodic and we use Theorem 4.3 in order to estimate the location
of solutions to (25) for large values of time and for small values of ε.

Since g is almost periodic in the first variable, the following property holds uniformly in a ∈ R (see Bohr [8, p. 44])

g0(x) = lim
T→∞

1
T

T∫
0

g(τ, x)dτ = lim
T→∞

1
T

T+a∫
a

g(τ, x)dτ, (26)

where both limits exist. Therefore,

lim
ε→0

t∫
τ

g
( s
ε
, x

)
ds = lim

T→∞
(t − τ)

1
T

T+τT/(t−τ)∫
τT/(t−τ)

g(s, x)ds =

t∫
τ

g0(x)ds.
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In other words, the function

f (t, x, ε) =

 g
( t
ε
, x

)
, if ε , 0,

g0(x), if ε = 0,

is integrally continuous at ε = 0 in the sense of (21).

We arrive to the following corollary of Theorem 3.1, Remark 3.1, and Theorem 4.3.

Corollary 4.1. Assume that, for each t ∈ R, the set C(t) ⊂ Rn is nonempty, closed, convex, and bounded. Let
t 7→ C(t) be an almost periodic set-valued function that satisfies the global Lipschitz condition (5). Assume that,
for each x ∈ Rn, the function t 7→ g(t, x) is almost periodic and satisfies the global Lipschitz condition

‖g(t1, x1) − g(t2, x2)‖ ≤ Lg|t1 − t2| + Lg‖x1 − x2‖, for all t1, t2 ∈ R, x1, x2 ∈ Rn.

Finally, assume that for some α > 0 the function g0 given by (26) satisfies the monotonicity condition

〈g0(x1) − g0(x2), x1 − x2〉 ≥ α‖x1 − x2‖
2, for all x1, x2 ∈ Rn.

If xε is an arbitrary solution to (25) defined on R, then uniformly on any time-interval [t1, t2] with sufficiently large
t1, the family {xε(t)}ε∈R converges, as ε → 0, to the unique globally exponentially stable almost periodic solution
x0(t) to the averaged sweeping process

−ẋ(t) ∈ NC(t)(x(t)) + g0(x(t)).

4.4. Instructive examples

The examples of this section illustrate how the results of the paper are supposed to be used in applications.

Example 4.1. Consider a one-dimensional sweeping process

−ẋ(t) ∈ N[sin(t),sin(t)+1](x(t)) + εx2(t) +
(
sin

(√
2 · t

)
+ 2

)
x(t). (27)

The sweeping process (27) satisfies the monotonicity property (3) when ε = 0. Theorems 3.1 and 4.1 imply that
for any γ > 0 there exists t1 > 0 such that any solution xε of (27), with xε(0) ∈ [0, 1], satisfies ‖xε(t) − x0(t)‖ ≤ γ
for all t ≥ t1 and for all |ε| sufficiently small, where x0 is the unique globally exponentially stable almost periodic
solution to

−ẋ(t) ∈ N[sin(t),sin(t)+1](x(t)) +
(
sin

(√
2 · t

)
+ 2

)
x(t).

Example 4.2. Let now the monotonicity of a sweeping process get broken by a high-frequency ingredient as
follows

−ẋ(t) ∈ N[sin(t),sin(t)+1](x(t)) + sin
( t
ε

)
x2(t) +

(
sin

(√
2 · t

)
+ 2

)
x(t). (28)

The non-monotonic term sin
( t
ε

)
no longer approaches 0 as it took place in Example 4.1, and Theorem 4.1 is

inapplicable. However, sin
( t
ε

)
approaches 0 as ε → 0 integrally (i.e. in the sense to (21)) on any bounded time

interval [t1, t2]. Therefore, Corollary 4.1 ensures that given any γ > 0 there exists t1 > 0 such that for any t2 > t1
and for any solution xε of (28) with xε(0) ∈ [0, 1] and defined on R one has ‖xε(t) − x0(t)‖ ≤ γ on [t1, t2] for all
|ε| sufficiently small, where x0 is the unique globally exponentially stable almost periodic solution to the averaged
sweeping process

−ẋ(t) ∈ N[sin(t),sin(t)+1](x(t)) +
(
sin

(√
2 · t

)
+ 2

)
x(t).

To summarize, Examples 4.1 and 4.2 establish useful qualitative properties of non-monotone sweeping processes
without any need of actual computing of solutions. Numerical computation of solutions to (27) and (28) (e.g. using
the catching-up algorithm of Edmond-Thibault [17]) is thus outside the scope of this paper.
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4.5. Applications in elastoplasticity

The perturbation term of the sweeping processes that models networks of elastoplastic springs (like those in Bastein
et al [5]) does not generally satisfy the monotonicity property (3) because it always contains oscillatory terms com-
ing from springs. In applications of Theorems 4.1 and 4.3 to elastoplasticity, one can expect monotonicity (caused
by viscous friction) only when the eigenfrequencies of all springs vanish. The magnitudes of these eigenfrequen-
cies is, therefore, a natural choice for the small parameter ε. The eigenfrequencies of the springs can be viewed
small compared to other parameters, if the masses of nodes of the network (i.e. inertial forces) are large. How-
ever, setting the so-selected small parameter ε to 0 will ensure monotonicity and global asymptotic stability for
velocity-like variables only, not for the position-like variables. This can be intuitively seen from a simple oscillator
ẍ + cẋ + εh(t, x) = 0, whose solutions approach those of ẍ + cẋ = 0 as ε→ 0 (assuming that h(t, x) stays bounded).
The solutions of the reduced oscillator asymptotically approach the line R × {0} because of the monotonicity pro-
vided by the friction term. As a consequence, the solutions of the original oscillator stay close to R × {0} for small
values of ε > 0. Coming back to the sweeping processes of elastoplasticity, we expect that for large inertial forces
the methods of Theorems 4.1 and 4.3 will predict convergence to the manifold of equilibria that correspond to
infinite inertial forces. Pursuing this plan is subject of a different paper, that we are working on.

5. Conclusion

In this paper we established the existence and global exponential stability of bounded and almost periodic solutions
of Moreau’s sweeping process (1). We proved that non-monotone sweeping processes with bounded Lipschitz
right-hand-sides admit at least one solution defined on the entire R. When the moving constraint C(t) is globally
bounded and the sweeping process satisfies the monotonicity property (3), we proved the existence of exactly one
bounded solution defined on R which is almost periodic when the right-hand-sides of (1) are almost periodic.

When the right-hand-sides of (1) are non-monotone, but close to monotone, we discovered that all the solu-
tions to (1) are close to the unique bounded (or almost periodic) solution of the respective monotone process
for large values of time. In particular, we initiated the development of the averaging theory for Moreau sweep-

ing process (1) with high-frequency almost periodic excitation g
( t
ε
, x

)
, where only monotonicity of the average

g0(x) = lim
T→∞

1
T

T∫
0

g(s, x)ds is required. This result can be used for the design of vibrational control strategies for

Moreau sweeping processes (see e.g. Bullo [14] for the respective theory in the case of differential equation).

The approach of this paper finds applications in the problem of global stabilization of parallel networks of elasto-
plastic springs where the period of the mechanical loading (e.g. stretching/compressing) of springs doesn’t coincide
with the period of the force that excites the masses at nodes, as we discussed in the Introduction and in Section 4.5.

Further potential applications of the results of this paper are in studying the dynamics of a circuit involving devices
like diodes, thyristors and diacs (see Addi et al [2]) when ampere-volt characteristics (for the set function) and
voltage supply (for the perturbation) receive time-periodic excitations of different periods. Such a study will
require extending our theory to sweeping processes with state-dependent convex constraints.

6. Appendix

The following version of Gronwall-Bellman lemma and its proof are taken from Trubnikov-Perov [41, Lemma 1.1.1.5].

Lemma 6.1. (Gronwall-Bellman) Let an absolutely continuous function a : [0,T ]→ R satisfies

ȧ ≤ λa(t) + b(t), for a.e. t ∈ [0,T ], (29)

where b : [0,T ]→ R is an integrable function and λ ∈ R is a constant. Then

a(t) ≤ eλta(0) +

t∫
0

eλ(t−s)b(s)ds, for all t ∈ [0,T ].
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Proof. By introducing

ψ(t) = eλta(0) +

t∫
0

eλ(t−s)b(s)ds,

one has

ψ(t)e−λt −

t∫
0

e−λsb(s)ds = a(0)

and so
d
dt

ψ(t)e−λt −

t∫
0

e−λsb(s)ds

 = 0, for a.e. t ∈ [0,T ],

which implies
ψ̇(t) − λψ(t) = b(t) ≥ ȧ(t) − λa(t).

If now
u(t) = a(t) − ψ(t),

then u̇(t) ≤ λu(t) and so
d
dt

[
u(t)e−λt

]
= e−λt(u̇ − λu) ≤ 0, i.e. u(t)e−λt ≤ u(0). Therefore, u(t) ≤ 0 and

a(t) ≤ ψ(t) = eλta(0) +

t∫
0

eλ(t−s)b(s)ds.

The following proof is known (see e.g. [29, Theorem 8.7] and [30, Lemma 2]), but we add a proof in terms of
sweeping process (1) for completeness.

Proof of Theorem 2.2. Step 1: Incremental stability. Let x1 and x2 be solutions to (1) with the initial conditions
x1(t0), x2(t0) ∈ C(t0). Assuming that t ≥ t0 is such that both ẋ1(t) and ẋ2(t) exist and verify (1), one has

〈−ẋ1(t) − f (t, x1(t)), x1(t) − x2(t)〉 ≥ 0.

Therefore 〈− f (t, x1(t)), x1(t) − x2(t)〉 ≥ 〈ẋ1(t), x1(t) − x2(t)〉. By analogy, −ẋ2(t) − f (t, x2(t)) ∈ NC(t)(x2(t)) implies
〈−ẋ2(t), x1(t) − x2(t)〉 ≤ 〈 f (t, x2(t)), x1(t) − x2(t)〉 Therefore,

d
dt
‖x1(t) − x2(t)‖2 = 2〈ẋ1(t) − ẋ2(t), x1(t) − x2(t)〉

= 2〈ẋ1(t), x1(t) − x2(t)〉 − 2〈ẋ2(t), x1(t) − x2(t)〉
≤ −2〈 f (t, x1(t)), x1(t) − x2(t)〉 + 2〈 f (t, x2(t)), x1(t) − x2(t)〉
= −2〈 f (t, x1(t)) − f (t, x2(t)), x1(t) − x2(t)〉

≤ −2α‖x1(t) − x2(t)‖2

and by Gronwall-Bellman lemma (see Lemma 6.1 in the Appendix), ‖x1(t) − x2(t)‖2≤ e−2α(t−t0)‖x1(t0) − x2(t0)‖2,
for a.e. t ≥ t0. Since both x1 and x2 are continuous functions,

‖x1(t) − x2(t)‖2≤ e−2α(t−t0)‖x1(t0) − x2(t0)‖2, for all t ≥ t0. (30)

Step 2. Uniqueness of the bounded solution x0. Let v be another bounded solution to (1) defined on the entire R.
Then, given any τ ∈ R, the inequality (30) yields

‖x0(t) − v(t)‖2≤ e−2α(t−τ)‖x0(τ) − v(τ)‖2, for all t ≥ τ.

Thus ‖x0(t) − v(t)‖≤ 2Me−α(t−τ), for all t ≥ τ, where M is as defined in (7). Now we fix t ∈ R and pass to the limit
as τ→ −∞, obtaining ‖u(t) − v(t)‖2≤ 0. Thus u(t) = v(t) for all t ∈ R.

Step 3. Global exponential stability of x0 follows from (30). Indeed, (30) implies that ‖x0(t)−v(t)‖≤ e−α(t−τ)‖x0(τ)−
v(τ)‖, for any solution v to (1) and for any t ≥ τ.
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