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Abstract. We describe the behavior of solutions of switched systems with multiple glob-

ally exponentially stable equilibria. We introduce an ideal attractor and show that the

solutions of the switched system stay in any given ε-inflation of the ideal attractor if the

frequency of switchings is slower than a suitable dwell time T . In addition, we give condi-

tions to ensure that the ε-inflation is a global attractor. Finally, we investigate the effect

of the increase of the number of switchings on the total time that the solutions need to go

from one region to another.
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1 Introduction

Dwell time is the lower bound on the time between successive switchings of
the switched system

ẋ = fu(t)(x), u(t) is a piecewise constant function, x ∈ Rn, (1)

which ensures a required dynamic behavior under the assumption that each
of the subsystems

ẋ = fu(x), u ∈ R, x ∈ Rn, (2)

possess a globally stable equilibrium xu. When all the equilibria {xu(t)}t≥t0
coincide, the dwell time T > 0 which gives global exponential stability of the
common equilibrium x0 is computed e.g. in Liberzon [5, §3.2.1]. Specifically,
the result of [5, §3.2.1] gives a formula for T which makes x0 globally expo-
nentially stable for any piecewise constant function u(t) whose discontinuities
t1, t2, . . . verify

|ti − ti−1| ≥ T. (3)

The case where the equilibria are distinct is covered in Alpcan-Basar [1],
who offered a dwell time T that ensures global exponential stability of a
suitable set A ⊃ {xu(t)}t≥t0 for any u(t) whose discontinuities verify (3). The
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problem of stability of switched systems with multiple equilibria appears e.g.
in differential games, load balancing, agreement and robotic navigation (see
[1, 6] and references therein).

A deeper analysis of the dynamics of switched systems with multiple equi-
libria was recently carried out in Xu et al [7], who gave a sharp formula for
the attractor A in the case of quasi-linear switched systems (1). Assuming
that u(t) is periodic and denoting by t 7→ Xu(t, x) the solution of (2) with
the initial condition Xu(0, x) = x, the paper [7] investigated the asymptotic
attractivity of

A =
⋃

t≥t0, τ≥t0

{Xu(τ)(t, xu(τ))}.

The motivation for our paper comes from the problem of planning the motion
of a 3-D walking robot, where ”turn left”, ”walk straight” and ”turn right”
correspond to u(t) = −1, u(t) = 0 and u(t) = 1 respectively, see Gregg et al
[3]. It is not the asymptotic attractivity of A which is of importance for the
robot turning maneuver but rather an appropriate attractivity of A during
the time of the maneuver. The goal of this paper is to provide a dwell time
which can ensure the required attractivity.

The paper is organized as follows. In the next section of the paper, we prove
our main result (Theorem 2.1). Given ε > 0, Theorem 2.1 provides a dwell
time T > 0 such that the solutions of (1) with the initial conditions in the
ε-neighborhood Bε(A) of A never leave Bε(A) in the future. Theorem 2.1
can be viewed as a version of [7, Theorem 1] for fully nonlinear systems.
In section 3, we compute (Theorem 3.1) a dwell time to ensure that the
attractor Bε(A) is reached asymptotically from any initial condition. The
proof of Theorem 3.1 follows the ideas of Alpcan-Basar [1]. However, we
offer weaker conditions where the Lyapunov functions of subsystems (2) are
not supposed to respect any uniform estimates. A particular case study
where the Lyapunov functions of subsystems (2) are shifts of one another
is addressed in section 4. In this section, we consider a switched system
which switches between two subsystems u = u1 and u = u2 and analyze the
solutions of the switched system with the initial conditions in Bε(A). Let x1
and x2 be the equilibria of subsystems u = u1 and u = u2 respectively. The
result of section 4 (Theorem 4.1) clarifies whether or not the solutions from
the neighborhood of x1 reach the neighborhood of x2 faster if the switching
signal is amended in such a way that an additional switching occurs between
u = u1 and u = u2. In other words, section 4 investigates whether or not
adding more discrete events is alone capable of making the dynamics inside
Bε(A) faster. Examples 2.1 and 4.1 illustrate the conclusions of Theorems 2.1
and 4.1. Lastly in Appendix A, we derive some explicit formulas that can be
used to apply Theorem 3.1.
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2 The local trapping region

Let xu be the unique equilibrium of (2). We assume that for any u, system
(2) admits a global Lyapunov function Vu such that

αu(‖x− xu‖) ≤ Vu(x) ≤ βu(‖x− xu‖), x ∈ Rn, (4)

(Vu)′(x)fu(x) ≤ −kuVu(x), x ∈ Rn, (5)

where α, β are strictly monotonically increasing functions with αu(0) =
βu(0), and ku > 0. Introduce the following trapping regions

Nε
u = {x : Vu(x) ≤ ε} ,

Lεu1,u2
(t) =

⋃
x∈Nε

u1

{Xu2
(t, x)} (6)

and define the dwell time that the solutions need to go from Nε
u1

to Nε
u2

as

T εu1,u2
= − 1

ku2

ln
ε

βu2

(
‖xu2

− xu1
‖+ α−1u1 (ε)

) . (7)

Theorem 2.1. Assume that

(A1) fu ∈ C1(Rn,Rn) for any u ∈ R,

(A2) for any u ∈ R, system (2) admits an equilibrium xu whose Lyapunov
function Vu satisfies (4)-(5), where α, β ∈ C0(R,R) are strictly increas-
ing functions, α(0) = β(0) = 0, ku > 0,

(A3) u : [t0,∞)→ R is a piecewise constant function.

Let {t1, t2, . . .} = {ti}i∈I be a finite or infinite increasing sequence of points
of discontinuity of u and

ui = u(ti + 0).

If

ti − ti−1 ≥ T εui−1,ui
,

then for any solution x of (1) with

x(ti−1) ∈ Nε
ui−1

, i ∈ I,

one has

x(t) ∈ Lεui−1,ui
(t), ti−1 ≤ t ≤ ti, i ∈ I, (8)

x(ti) ∈ Nε
ui
, i ∈ I. (9)
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Figure 1: Illustration of the proof of Theorem 2.1. The two gray rings are the estimates
for the sets {x : Vui−1 (x) = ε} and {x : Vui (x) = δ} given by condition (4).

Proof. We only have to prove (9) because the validity of (8) follows directly
from the definition of Lεui−1,ui

. Let x(ti−1) ∈ Nε
ui−1

. Our goal is to show that
x(ti) ∈ Nε

ui
. Given ε > 0, define δ > 0 as

δ = βui

(
‖xui

− xui−1
‖+ α−1ui−1

(ε)
)
.

By construction (see Fig. 1), N δ
ui
⊃ Nε

ui−1
, and so x(ti−1) ∈ N δ

ui
. Introduce

v(t) = Vui
(x(t)).

By (5) we have

v̇(t) ≤ −kiv(t), ti−1 ≤ t ≤ ti,
v(ti−1) ≤ δ.

By the comparison lemma (see e.g. [2, Lemma 16.4]), it holds that

v(t) ≤ p(t),

where p(t) is the solution of

ṗ(t) = −kip(t), ti−1 ≤ t ≤ ti,
p(ti−1) = δ.

At the same time,

p(ti) = e−kui
(ti−ti−1)δ ≤ e−kui

T ε
ui−1,ui δ =

ε

βui

(
‖xui

− xui−1
‖+ α−1ui−1(ε)

)δ = ε.
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Therefore, Vui(x(ti)) ≤ ε, which completes the proof.

Theorem 2.1 suggests the following definition of the ε-inflation Aε of the ideal
attractor A of (1). Given a piecewise constant function u : [t0,∞)→ R and
the respective increasing sequence (t1, t2, . . .) = {ti}i∈I , let ui = u(ti + 0)
and

Aε(t) =

 Lεui−1,ui
(t), ti−1 ≤ t < ti, i ∈ I,

Lεumax(I)−1,umax(I)
(t), t ≥ tmax(I), if I is finite.

Corollary 2.1. Let the assumptions (A1)-(A3) of Theorem 2.1 hold. If

ti − ti−1 ≥ sup
i∈I

T εui−1,ui
=: T εloc, i ∈ I,

then, for any solution x of (1) with the initial condition

x(t0) ∈ Aε(t0),

one has
x(t) ∈ Aε(t), t ≥ t0.

Note, sup
i∈I

T εui−1,ui
is finite when t 7→ u(t) takes a finite number of values on

[t0,∞).

Example 2.1. To illustrate Theorem 2.1, we consider the following switched
system (slightly modified from Example 2 in [1])

ẋ =

(
−1 −1
1 −1

)
x+

(
u
1

)
, (10)

whose unique equilibrium is given by

xu =
1

2

(
u− 1
u+ 1

)
.

Introduce the three discrete states u1, u2, and u3 as

u1 = 1, u2 = 0, u3 = −1,

and consider
ε = 0.05.

If the Lyapunov function Vu(x) is selected as

Vu(x) = ‖x− xu‖2,

then formulas (6) and (7) yield

Nε
u =

{
x : ‖x− xu‖ ≤

√
ε
}
, T εloc ≈ 1.426.
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Therefore, for the control input

u(t) =

 u1, t ∈ [0, T ),
u2, t ∈ [T, 2T ),
u3, t ≥ 2T,

T = 1.43, (11)

and for any solution x of (10), Theorem 2.1 ensures the following:

if x(0) ∈ Nε
u1
, then x(T ) ∈ Nε

u2
and x(2T ) ∈ Nε

u3
.

Figure 2(left) documents the sharpness of the dwell time T . Indeed, the figure
shows that if the initial condition x(0) deviates to the outside of Nε

u1
just

a little bit, then the dwell time T is no longer sufficient to get x(T ) ∈ Nε
u2

(though we still have x(2T ) ∈ Nε
u3

for this solution).
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Figure 2: Left: Solutions of switched system (1) with initial conditions (blue dots) inside
N0.05

u1
, on the boundary of N0.05

u1
, and outside N0.05

u1
, and for the control input u(t) given

by (11). Right: The solution of switched system (1) with the initial condition (−0.5, 0.5)T

for the 4T -periodic control input (12).

To demonstrate that trapping regions Nε
u1

, Nε
u2

, Nε
u3

(and thus the ε-inflated
attractor Aε, see Corollary 2.1) provide a rather sharp estimate for the loca-
tion of the attractor of (10), we extend the input u(t) to [0, 4T ] as

u(t) =


u1, t ∈ [0, T ),
u2, t ∈ [T, 2T ),
u3, t ∈ [2T, 3T ),
u2, t ∈ [3T, 4T ),

(12)

and then continue it to the entire [0,∞) by 4T -periodicity. The respective
solution x of (10) with the initial condition x(0) = (−0.5, 0.5)T is plotted in
Fig. 2 (right). The drawing shows that the switching points of the solution x
are very close to the boundaries of the trapping regions Nε

u1
, Nε

u2
, Nε

u3
, i.e.

there is only a little window to reduce the size of those regions.
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3 Global attractivity of the local trapping re-
gion

Theorem 3.1. Let the assumptions (A1)-(A3) of Theorem 2.1 hold and I
be infinite. Fix ε > 0 and suppose that there exists constants µi(ε) such that

Vui+1(x)

Vui
(x)

≤ µi(ε), x ∈ Rn \Nε
ui
, i ∈ N ∪ {0}.

Finally, assume that

µ0(ε) · . . . · µi(ε)e
−
∫ ti+1

t0

ku(s)ds
→ 0, as i→∞.

Then, x(T̂ ) ∈ Nε
ui

for some T̂ > 0 and some i ∈ N.

Proof. Let W (t) = eku(t)tVu(t)(x(t)), where t ∈ [t0,∞). Then, for t ∈
[ti, ti+1),

W ′(t) = kui
W (t) + ekui

t d

dt
Vui

(x(t)) ≤ kui
W (t)− kui

ekui
tVui

(x(t)) = 0,

which means that W is decreasing on [ti, ti+1). In particular,

W (t+i ) ≥W (t−i+1).

On the other hand,

W (t+i+1)

W (t−i+1)
=
ekui+1

ti+1

ekui
ti+1

·
Vui+1

(x(ti+1))

Vui
(x(ti+1))

≤ ekui+1
ti+1

ekui
ti+1

· µi(ε) =: µ̃i.

Therefore,
µ̃iW (t+i ) ≥ µ̃iW (t−i+1) ≥W (t+i+1) (13)

Replacing i by i − 1 and combining with (13), one gets µ̃i−1µ̃iW (t+i−1) ≥
W (t+i+1). Continuing this process for i− 2, i− 3, etc. we obtain

µ̃0 · . . . · µ̃iW (t+0 ) ≥W (t+i+1).

Applying e−kui+1
ti+1 yields

µ̃0 · . . . · µ̃ie−kui+1
ti+1W (t+0 ) ≥ Vui+1

(x(ti+1)),

or, equivalently,

Vu0
(x(t0))e−

∑i
j=0 kuj

(tj+1−tj)µ0(ε) · . . . · µi(ε) ≥ Vui+1
(x(ti+1)).

The left-hand-side approaches 0 as i→∞ by the assumption of the theorem.
Therefore, Vui+1(x(ti+1))→ 0 as i→∞. The proof is complete.
(For linear switched systems, there is an explicit formula for µ(ε). See The-
orem A.1 in appendix A.)
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Corollary 3.1. (Alpcan-Basar [1]) Let the assumptions (A1)-(A3) of The-
orem 2.1 hold and I be infinite. Fix ε > 0 and suppose that there exists a
constant µ(ε) > 1 such that

Vu(t)(x)

Vu(τ)(x)
≤ µ(ε), x ∈ Rn\Nε

u(τ), τ, t ≥ t0.

Finally, assume that k = inf
t≥t0

ku(t) > 0 and consider T εglob satisfying

T εglob >
ln(µ(ε))

k
.

If

ti − ti−1 ≥ T εglob, i ∈ N,

then x(T̂ ) ∈ Nε
ui

for some T̂ > 0 and some i ∈ N.

Proof. Let γ > 0 be such that T εglob =
ln(µ(ε) + γ)

k
. Let µ0(ε), . . . µi(ε) be

as given by Theorem 3.1. Then

e−
∑i+1

j=0 kuj
(tj+1−tj)µ0(ε) · . . . · µi+1(ε) ≤ e−k(i+1)T ε

globµ(ε)i+1 =

= (µ(ε) + γ)
−(i+1)

µ(ε)i+1 =

(
µ(ε)

µ(ε) + γ

)i+1

→ 0 as i→∞.

One can similarly show the following result.

Corollary 3.2. Let the assumptions (A1)-(A3) of Theorem 2.1 hold and I
be infinite. Fix ε > 0 and suppose that there are constants µi(ε) such that

Vui+1
(x)

Vui
(x)

≤ µi(ε), x ∈ Rn \Nε
ui
, i ∈ N ∪ {0}.

If

ti − ti−1 >
ln(µi−1(ε))

kui−1

, i ∈ N,

then x(T̂ ) ∈ Nε
ui

for some T̂ > 0 and some i ∈ N.

Corollary 3.3. Let the conditions of Corollary 3.1 hold. Let T εloc and T εglob
be those given by Corollaries 2.1 and 3.1. If

ti − ti−1 ≥ max
{
T εloc, T

ε
glob

}
, i ∈ N,

then, for any solution x of (1), there exists T̂ > t0 such that

x(t) ∈ Aε(t), t ≥ T̂ .
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Example 3.1. To see when Corollary 3.1 cannot be applied, consider the
switched system

ẋ =

(
−1 0
0 −1

)
x+

(
0
u2

)
whose unique equilibrium is

xu =

(
0
u2

)
.

Let ε = 0.01. Take any piecewise constant switching signal u : [t0,∞) → R
such that

u(ti) = i, i ∈ N ∪ {0}.

Also take the Lyapunov functions

Vu(x) = ||x− xu||2.

Then apply Theorem A.1 to see

µi(ε) =

(
1 +

2i+ 1√
0.01

)2

→∞ as i→∞.

So in this example, we have pairwise µi(ε) bounds but not a uniform µ(ε)
bound. Thus we cannot apply Corollary 3.1. Instead, we can use Corollary
3.2 to ensure x(T̂ ) ∈ Nε

ui
for some T̂ > 0 and i ∈ N.

4 Dependence of the dwell time on the num-
ber of discrete states

Suppose that u(t) switches from u0 to u1 at t = t0. According to Theorem 2.1,
it takes at most time T εu0,u1

(see formula (7)) for a trajectory x of (1) to go
from Nε

u0
to Nε

u1
. The next theorem shows that adding more discrete states

between u0 and u1 makes the travel time from Nε
u0

to Nε
u1

longer.

Theorem 4.1. Let the assumptions (A1)-(A2) of Theorem 2.1 hold and
suppose αu =: α, βu =: β, ku =: k don’t depend on u. Fix d > 0 and r > 0.
Then there exists ε0 > 0 such that

T εu0,u1
< T εu0,v + T εv,u1

,

for any

ε ∈ (0, ε0), ‖xu0
‖ ≤ d, ‖xu1

‖ ≤ d, ‖xu0
− xv‖ ≥ r, ‖xv − xu1

‖ ≥ r. (14)
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Proof. By formula (7) one has

T εu0,u1
− T εu0,v − T

ε
v,u1

= −1

k
ln

ε

β (‖xu0
− xu1

‖+ α−1(ε))
+

+
1

k
ln

ε

β (‖xu0 − xv‖+ α−1(ε))
+

+
1

k
ln

ε

β (‖xv − xu1
‖+ α−1(ε))

=

= − ln
K

ε1/k
, (15)

where

K =

(
β
(
‖xv − xu1‖+ α−1(ε)

)
β (‖xu0

− xu1
‖+ α−1(ε))

)1/k(
β
(
‖xu0

− xv‖+ α−1(ε)
))1/k

.

Observe that there exists K0 > 0 such that K ≥ K0 for any functions
u0, u1, v that verify (14) as long as d > 0 and r > 0 stay fixed. Therefore,
it is possible to choose ε0 > 0 (which depends on just d > 0 and r > 0) to
satisfy K/ε1/k > 1 for all ε ∈ (0, ε0). The proof is complete.
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Figure 3: Solutions of switched system (1) with the initial condition in N0.05
u1

for the
control inputs ũ(t) (Left) and u(t) (Right) of Example 4.1.

Example 4.1. In order to illustrate Theorem 4.1, we refer to Example 2.1
again. Figure 3 shows the graphs of the solutions x of (10) for two control
inputs

ũ(t) =

{
u1, t ∈ [0, T εu1,u3

),
u3, t ≥ T εu1,u3

,
u(t) =


u1, t ∈ [0, T εu1,u2

),
u2, t ∈ [T εu1,u2

, T εu1,u2
+ T εu2,u3

),
u3, t ≥ T εu1,u2

+ T εu2,u3
,

over the time interval [0, T εu1,u3
]. The plotting documents that T εu1,u2

+T εu2,u3

turns out to be a longer time compared to T εu1,u3
.
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5 Conclusion

In this paper we considered a switched system of differential equations under
the assumption that the time between two successive switchings is greater
than a certain number T called dwell time. We proved (Theorem 2.1) that
a suitable choice of the dwell time makes the solution stay within a required
neighborhood Aε of a so-called ideal attractor. We further proved that the
solutions reach Aε asymptotically if the initial conditions don’t belong to Aε.
By doing that we obtained a new integral condition (Theorem 3.1) for global
stability which didn’t seem to appear in the literature before. Finally, we
addressed a case study where the Lyapunov functions of different subsystems
are just shifts of one another. Here we used the dwell time formulas from
Theorem 2.1 to estimate the time that the trajectories need to go from the
neighborhood of an equilibrium of one subsystem to the neighborhood of an
equilibrium of another subsystem (i.e. we considered a switched system with
two discrete states). We proved (Theorem 4.1) that adding more discrete
states makes this travel time longer. Examples 2.1 and 4.1 show that our
theoretical conclusions agree with numeric simulations.

For future work, it would be interesting to explore the relationship between
local results like Theorem 2.1 and global results like Theorem 3.1. For ex-
ample, under what conditions are the local and global dwell times the same?
Under what conditions would it be possible to have local stability and not
global convergence and vice versa?

A Computing µ for linear switched systems

Consider a linear switched system

ẋ = Au(x− xu) (16)

where xu is asymptotically stable for each u subsystem. Then (16) admits
quadratic Lyapunov functions of the form

Vu(x) = 〈x− xu, Pu(x− xu)〉, u ∈ R

where 〈, 〉 is the standard inner product on Rn and Pu ∈ Rn×n is a symmetric
matrix with positive eigenvalues

0 < λumin = λu1 ≤ λu2 ≤ . . . ≤ λun = λumax.

(See [4] Theorem 3.6, p.127.)

Theorem A.1. Let ε > 0. Then for all a, b ∈ R

Vb(x)

Va(x)
<

(√
λbmax
λamin

+

√
〈xb − xa, Pb(xb − xa)〉√

ε

)2

:= µba(ε), x ∈ Rn \Nε
a .
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Proof. Set ||x||u =
√
〈x− xu, Pu(x− xu)〉. Consider the spectral decompo-

sition

Pu = UΛUT

of Pu. Recall Λ is the diagonal matrix whose nonzero entries are the eigen-
values of Pu and UUT = I. Then

〈x, Pux〉 = 〈x, UΛUTx〉 = 〈UTx,ΛUTx〉 =
n∑
i=1

λi〈UTx, UTx〉 =
n∑
i=1

λi〈x, UUTx〉

=
n∑
i=1

λi〈x, x〉, x ∈ Rn.

Thus

λumin〈x, x〉 ≤ 〈x, Pux〉 ≤ λumax〈x, x〉, x ∈ R.

Hence

||x||2b = 〈x, Pbx〉 ≤ λbmax〈x, x〉 ≤ λbmax
λamin
λamin

〈x, x〉 ≤ λbmax
λamin

〈x, Pax〉

≤ λbmax
λamin

||x||2a, x ∈ R.

So in particular,

||x||b ≤

√
λbmax
λamin

||x||a.

Therefore let x ∈ Rn \Nε
a . Then apply the above inequality to get

Vb(x)

Va(x)
=

(||x− xb||b)2

(||x− xa||a)2
=

(
||x− xb||b
||x− xa||a

)2

≤
(
||x− xa||b + ||xb − xa||b

||x− xa||a

)2

≤

(√
λbmax
λamin

+
||xb − xa||b√

Va(x)

)2

<

(√
λbmax
λamin

+
||xb − xa||b√

ε

)2

.

As a consequence of the above result, we get sufficient conditions for when
the local dwell time of Theorem 2.1 also ensures global convergence to the
attractor Aε for linear switched systems.
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Corollary A.1. Let ε > 0. Suppose the linear switched system (16) satisfies
assumptions (A1)-(A3) in Theorem 2.1 with quadratic Lyapunov functions
of the form

Vu(x) = 〈x, Pux〉
and a single constant ku ≡ k. Let u : [t0,∞) → R be a piecewise constant
function with discontinuities {t1, t2, . . . }. Assume

ti − ti−1 > −
1

k
ln

ε

(||xui
− xui−1

||+
√
ε)2

= T εui−1,ui
, i ∈ N.

Suppose in addition

(i) ||x|| ≥ ||x||u, x ∈ Rn, u ∈ R, and

(ii) λamin = λbmax a, b ∈ R

where ||x||u =
√
〈x, Pux〉 and λumin and λumax are the smallest and largest

eigenvalues of Pu. Then x(T̂ ) ∈ Nε
ui

for some T̂ > 0 and some i ∈ N.

Proof. The goal of the proof is to show that the local dwell time from The-
orem 2.1 is larger than the global dwell time from Theorem 3.1. More con-
cretely, we need to verify

ti − ti−1 >
ln(µ(ε))

k
, i ∈ N

from Corollary 3.1. So let a, b ∈ R. By Theorem A.1, we need to check

1

k
ln

(||xb − xa||+
√
ε)2

ε
≥ 1

k
ln

(√
λbmax
λamin

+
||xb − xa||b√

ε

)2

.

Apply (ii) and simplify this expression to get

(||xb − xa||+
√
ε)2

ε
≥
(

1 +
||xb − xa||b√

ε

)2

||xb − xa||+
√
ε√

ε
≥ 1 +

||xb − xa||b√
ε

||xb − xa||√
ε

≥ ||xb − xa||b√
ε

.

Apply (i) to finish the proof.

Example A.1. To illustrate this result, let us revisit Example 2.1. In this
example,

Vu(x) = ||x− xu||2 = 〈x− xu, x− xu〉.

So ||x||u = ||x|| and Pu =

(
1 0
0 1

)
for all u. So moreover Pu has the eigen-

value λ = 1 for all u. Thus (i) and (ii) from Corollary A.1 hold. Therefore
taking the local dwell time T = 1.43 with switching signal given by (12)
ensures global convergence to Aε in this case.
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