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Dwell time for switched systems with multiple
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Abstract. We describe the behavior of solutions of switched systems with multiple glob-
ally exponentially stable equilibria. We introduce an ideal attractor and show that the
solutions of the switched system stay in any given e-inflation of the ideal attractor if the
frequency of switchings is slower than a suitable dwell time 7. In addition, we give condi-
tions to ensure that the e-inflation is a global attractor. Finally, we investigate the effect
of the increase of the number of switchings on the total time that the solutions need to go

from one region to another.
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1 Introduction

Dwell time is the lower bound on the time between successive switchings of
the switched system

&= fuu) (), u(t) is a piecewise constant function, z € R", (1)

which ensures a required dynamic behavior under the assumption that each
of the subsystems
T = fulx), ueR, zeR" (2)

possess a globally stable equilibrium z,,. When all the equilibria {z ) }i>t,
coincide, the dwell time T' > 0 which gives global exponential stability of the
common equilibrium g is computed e.g. in Liberzon [5, §3.2.1]. Specifically,
the result of [5, §3.2.1] gives a formula for T" which makes zy globally expo-
nentially stable for any piecewise constant function u(t) whose discontinuities
t1,ts, ... verify

|ti — ti,1| >T. (3)

The case where the equilibria are distinct is covered in Alpcan-Basar [1],
who offered a dwell time T that ensures global exponential stability of a
suitable set A D {2y, }>¢, for any u(t) whose discontinuities verify (3). The
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problem of stability of switched systems with multiple equilibria appears e.g.
in differential games, load balancing, agreement and robotic navigation (see
[1, 6] and references therein).

A deeper analysis of the dynamics of switched systems with multiple equi-
libria was recently carried out in Xu et al [7], who gave a sharp formula for
the attractor A in the case of quasi-linear switched systems (1). Assuming
that w(t) is periodic and denoting by t — X, (¢, z) the solution of (2) with
the initial condition X, (0,z) = x, the paper [7] investigated the asymptotic
attractivity of

t>to, T>to

The motivation for our paper comes from the problem of planning the motion
of a 3-D walking robot, where "turn left”, "walk straight” and ”turn right”
correspond to u(t) = —1, u(t) = 0 and u(t) = 1 respectively, see Gregg et al
[3]. It is not the asymptotic attractivity of A which is of importance for the
robot turning maneuver but rather an appropriate attractivity of A during
the time of the maneuver. The goal of this paper is to provide a dwell time
which can ensure the required attractivity.

The paper is organized as follows. In the next section of the paper, we prove
our main result (Theorem 2.1). Given ¢ > 0, Theorem 2.1 provides a dwell
time T > 0 such that the solutions of (1) with the initial conditions in the
e-neighborhood B.(A) of A never leave B.(A) in the future. Theorem 2.1
can be viewed as a version of [7, Theorem 1] for fully nonlinear systems.
In section 3, we compute (Theorem 3.1) a dwell time to ensure that the
attractor B¢(A) is reached asymptotically from any initial condition. The
proof of Theorem 3.1 follows the ideas of Alpcan-Basar [1]. However, we
offer weaker conditions where the Lyapunov functions of subsystems (2) are
not supposed to respect any uniform estimates. A particular case study
where the Lyapunov functions of subsystems (2) are shifts of one another
is addressed in section 4. In this section, we consider a switched system
which switches between two subsystems v = u; and u = us and analyze the
solutions of the switched system with the initial conditions in B.(A). Let x;
and xo be the equilibria of subsystems u = u; and u = ug respectively. The
result of section 4 (Theorem 4.1) clarifies whether or not the solutions from
the neighborhood of z; reach the neighborhood of x5 faster if the switching
signal is amended in such a way that an additional switching occurs between
u = u; and u = us. In other words, section 4 investigates whether or not
adding more discrete events is alone capable of making the dynamics inside
B.(A) faster. Examples 2.1 and 4.1 illustrate the conclusions of Theorems 2.1
and 4.1. Lastly in Appendix A, we derive some explicit formulas that can be
used to apply Theorem 3.1.
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2 The local trapping region

Let x, be the unique equilibrium of (2). We assume that for any u, system
(2) admits a global Lyapunov function V;, such that

()<6u(||x zul)),  weRY, (4)
kVu(z),  z€R", (5)

ay([lz = zul])

(V) () fu(z)

where «, f are strictly monotonically increasing functions with «,(0) =
B.(0), and k,, > 0. Introduce the following trapping regions

<V
< -

Ny {J) : Vu(x) < 5},
L) = U {Xu(t2)} (6)

zEN;l

and define the dwell time that the solutions need to go from N; to N as

1 €
TS w=——In — . (7)
ku2 Bu2 (||='Eu2 = Tuy ” + au11 (5))

Theorem 2.1. Assume that
(A1) f, € CY(R"™,R") for any u € R,

(A2) for any u € R, system (2) admits an equilibrium z, whose Lyapunov
function V,, satisfies (4)-(5), where a, 3 € C(R, R) are strictly increas-
ing functions, «(0) = 5(0) =0, k, > 0,

(A3) u: [tg,00) — R is a piecewise constant function.

Let {t1,t2,...} = {t;}ier be a finite or infinite increasing sequence of points
of discontinuity of u and

If
ti —ti—1 > TE

—1,Uq 7

then for any solution z of (1) with

x(ti_l) S N'ii—l’ 1€l
one has
( ) ELZL L (t), ti1<t<t;, i€el, (8)

x(t;) € N, iel 9)



4 Oleg Makarenkov and Anthony Phung

(x:V, (=5}

XV, (= ™

Figure 1: Tllustration of the proof of Theorem 2.1. The two gray rings are the estimates
for the sets {z : Vi, _, (z) =€} and {z : V,,(z) = §} given by condition (4).

Proof. We only have to prove (9) because the validity of (8) follows directly
from the definition of L;, | .. Let z(t;_1) € N, _, . Our goal is to show that
x(t;) € N, . Given € > 0, define § > 0 as

6 = B, (Ilo, = 2us l+ 032, 9)) -
By construction (see Fig. 1), N D N, and so z(t;—1) € N3 . Introduce
v(t) =V, (z(t)).
By (5) we have

—kv(t), tioi <t <ty
0.

1
=
A IA

By the comparison lemma (see e.g. [2, Lemma 16.4]), it holds that

v(t) < p(d),
where p(t) is the solution of
) = —kip(t), ti-1 ST,
pti-1) = 4.
At the same time,
p(t;) = e huitimti-) § < e Fui T iy — ‘ 6 =c¢.

Bui (me — Ly ” + a;il—l (5))
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Therefore, V,, (x(t;)) < e, which completes the proof. O

Theorem 2.1 suggests the following definition of the e-inflation A, of the ideal
attractor A of (1). Given a piecewise constant function w : [ty,00) — R and
the respective increasing sequence (t1,ta,...) = {t;}icr, let u; = u(t; +0)
and

Ae(t) _ Lflfi—l,'ufi(t)’ ti1 <t<t;, 1€l
L1 ) (1), t>tmaxr), if I is finite.

Corollary 2.1. Let the assumptions (A1)-(A3) of Theorem 2.1 hold. If

tl‘ — ti—l Z supTE = TIZEOC, 1€ I,

Ui—1,Uq

iel
then, for any solution z of (1) with the initial condition

.'L'(to) € AE(tO)a

one has
x(t) € Ac(t), t>to.
Note, sup Ty,
iel
[t()7 OO)

\u; 18 finite when ¢ +— u(t) takes a finite number of values on

Example 2.1. To illustrate Theorem 2.1, we consider the following switched
system (slightly modified from Example 2 in [1])

@:(_11 _1>x+<11t) (10)
whose unique equilibrium is given by
=1 ( u-l ) |
“To2\u+l
Introduce the three discrete states ui, us, and us as
u; =1, ug = 0, uz = —1,

and consider
e =0.05.

If the Lyapunov function V() is selected as
Vi(z) = |lz - xu”Q,
then formulas (6) and (7) yield

NE={a:|lz—z,| <Ve}, Tp, ~1.426.
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Therefore, for the control input

Uz, t € [O7T)a
u(t) =< we, telT,2T), T =1.43, (11)
uz, t>2T,

and for any solution z of (10), Theorem 2.1 ensures the following:
if #(0) € N;;,, then 2(T) € N, and z(2T) € N, .

Figure 2(left) documents the sharpness of the dwell time T'. Indeed, the figure
shows that if the initial condition x(0) deviates to the outside of N just
a little bit, then the dwell time 7" is no longer sufficient to get z(T) € N,
(though we still have x(2T") € N for this solution).

15 ‘ ‘ 15

0.0

0.0

-05 1 1 -05 1 :
15 ~1.0 ~05 0.0 05 “1s ~1.0 —0.5 0.0 0.5

X1 X1
Figure 2: Left: Solutions of switched system (1) with initial conditions (blue dots) inside
N3i057 on the boundary of NSiOS’ and outside NEiOB’ and for the control input u(t) given
by (11). Right: The solution of switched system (1) with the initial condition (—0.5,0.5)T
for the 4T-periodic control input (12).

To demonstrate that trapping regions N , N , N, (and thus the e-inflated

wuy? ug?
attractor A, see Corollary 2.1) provide a rather sharp estimate for the loca-

tion of the attractor of (10), we extend the input u(t) to [0,47] as

Uiy, t € [O7T)a
) we, terom),
ut) =0 st (2T, 37), (12)
us, t€ [3T,4T),

and then continue it to the entire [0, 00) by 4T-periodicity. The respective
solution z of (10) with the initial condition x(0) = (—0.5,0.5)T is plotted in
Fig. 2 (right). The drawing shows that the switching points of the solution x
are very close to the boundaries of the trapping regions Ng , Ni , N, ie.
there is only a little window to reduce the size of those regions.
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3 Global attractivity of the local trapping re-
gion

Theorem 3.1. Let the assumptions (A1)-(A3) of Theorem 2.1 hold and I
be infinite. Fix ¢ > 0 and suppose that there exists constants p;(e) such that

qu‘,+1 (IL’)

< (o), R\ NZ, i .
Vo ) <ui(e), zeR"\N;, ieNU{0}

Finally, assume that

tit1
—/ ku(s)ds
(e)e Jto —0, asi— oco.

Then, z(T) € N, for some T > 0 and some i € N.

Proof. Let W(t) = eF®'V, 4 (x(t)), where t € [tg,00). Then, for ¢ €
[tis tit1),

po(e) .. pi

(1) = b W (8) + b SV, (2(0) < W(0) = s Vi (2(0) =,

which means that W is decreasing on [t;,t;11). In particular,
W (L) > W(tiyy)-
On the other hand,

Witfy) _ entt Vo (a(tion) _ eMint

— . cui(e) =t ;.
Wit et Vi (o(tiyr)) = ebulinn pile) = B

Therefore,

AW (t5) = W (t,) = W(t) (13)
Replacing i by i — 1 and combining with (13), one gets ;W (t] ;) >
W(t;’;l). Continuing this process for i — 2,7 — 3, etc. we obtain

fio - - W (tg) = W(t ).

Applying e Fuipatin yields

[1,0 EE ﬂieikuiJrltH'lW(tak) > Vui+1 ({E(tiJrl)),
or, equivalently,
Vi (2(to))e™ Zim0 Kus 01— 4 (2) - 1g(€) > Vi, (5(Ei41))-

The left-hand-side approaches 0 as ¢ — oo by the assumption of the theorem.
Therefore, V,,, (2(ti41)) — 0 as i — oco. The proof is complete. O
(For linear switched systems, there is an explicit formula for p(e). See The-

orem A.l in appendix A.)
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Corollary 3.1. (Alpcan-Basar [1]) Let the assumptions (A1)-(A3) of The-
orem 2.1 hold and I be infinite. Fix € > 0 and suppose that there exists a
constant u(e) > 1 such that

<pu(e), xeR™MN:., T7,t>1.

Finally, assume that k = ti£1ff Ky > 0 and consider T, glob satisfying
Zto

- In(p(e
75 > M)

If
ti —ti—1 2 T;lob’ 1 €N,

then 2(T") € N, for some T > 0 and some i € N.

In(pu(e) +1)

Proof. Let v > 0 be such that T, = A

; . Let ug(e),...pi(e) be

as given by Theorem 3.1. Then

- S ke (ty41—t5) 7k(i+1)T§Lobu(€)i+1 _

to(e) - .- pita ()

<e
' _ i+l
= (u(e) + ’y)_(H_l) w(e) ™t = (u(g)(i)_ 7) —0 as i > o0. O

One can similarly show the following result.

Corollary 3.2. Let the assumptions (A1)-(A3) of Theorem 2.1 hold and I
be infinite. Fix € > 0 and suppose that there are constants y;(¢) such that

Vui+1 (.Z’)

<y R™\ N¢& ) .
Vo (@) < ui(e), z€ \N;,, ieNuU{0}

If
In(p;—
ti_ti71>wa iEN,
kui—l
then 2(T") € N, for some T > 0 and some i € N.

Corollary 3.3. Let the conditions of Corollary 3.1 hold. Let Tj;,. and T,
be those given by Corollaries 2.1 and 3.1. If

t; —t;—1 > max {ﬂi)c’T;lob} , 1€N,
then, for any solution z of (1), there exists 7' > to such that

x(t) € Ac(t), t>T.
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Example 3.1. To see when Corollary 3.1 cannot be applied, consider the

switched system
. (-1 0 0
(0 A ) ()

whose unique equilibrium is
u ’Z,L2 .

Let ¢ = 0.01. Take any piecewise constant switching signal w : [tg, 00) — R
such that

u(t;) =14, i€ NU{0}.
Also take the Lyapunov functions
Vu(@) = [lo — |
Then apply Theorem A.1 to see

2i+1
v0.01

So in this example, we have pairwise p;(e) bounds but not a uniform p(e)
bound. Thus we cannot apply Corollary 3.1. Instead, we can use Corollary

3.2 to ensure z(7T") € N, for some T' > 0 and i € N.

2
> — 00 as 1 — 00.

pi(e) = (1 +

4 Dependence of the dwell time on the num-
ber of discrete states

Suppose that u(t) switches from wug to u; at t = tg. According to Theorem 2.1,
it takes at most time Ty , (see formula (7)) for a trajectory = of (1) to go
from N; to N; . The next theorem shows that adding more discrete states

between g and u; makes the travel time from Ny to N; longer.

Theorem 4.1. Let the assumptions (A1)-(A2) of Theorem 2.1 hold and
suppose o, =: a, By =: B, ky =: k don’t depend on u. Fix d > 0 and r > 0.
Then there exists €9 > 0 such that

T: . <T: ,+Ts

uQ,uU1 uop,v v,u1?

for any

e €(0,e0), llzuell < d, [[vu, | £ d; ||Tug — 20|l > 7, (20 — 20y || > 7. (14)
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Proof. By formula (7) one has

1 5
Tziu _Tiv_Tfu = ——In +
o o ’1 ko Blzw — 2wl +a7'(e)
+h : +
—n
ko B#u, — 2ol + a7 (e))
+11 5
— n =
ko Blze — 2wl +a71(e))
K
= —ln m, (15)

where

1 1/k
e (S ) ot

Observe that there exists Ko > 0 such that K > K, for any functions
ug, u1,v that verify (14) as long as d > 0 and r > 0 stay fixed. Therefore,
it is possible to choose €y > 0 (which depends on just d > 0 and r > 0) to
satisfy K/e'/*F > 1 for all € € (0,£0). The proof is complete. O

15 ; ; 1.5

0.5

X2

[N I ,
A I \ I ”

0.0 ] ; t ; 0.0 T
N | /! | \

~0.5 1 ‘ -05 1 :
215 ~1.0 ~05 0.0 0.5 215 ~1.0 —0.5 0.0 0.5

X1 X1
Figure 3: Solutions of switched system (1) with the initial condition in N2.%5 for the
control inputs u(t) (Left) and u(¢) (Right) of Example 4.1.

Example 4.1. In order to illustrate Theorem 4.1, we refer to Example 2.1
again. Figure 3 shows the graphs of the solutions x of (10) for two control
inputs

uy, te€[0,T¢ ,..),
~ Uy, te 0771E )7 ez
u(t) - { us t> [TE s u(t) = ug, te€ [T51,u2’T517u2 + T52,U3)’
’ - s ug, 1= T51,u2 + Tsz,us’
over the time interval [0, T ,.]. The plotting documents that 7y . +T5, ..,

turns out to be a longer time compared to 17, ..
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5 Conclusion

In this paper we considered a switched system of differential equations under
the assumption that the time between two successive switchings is greater
than a certain number T called dwell time. We proved (Theorem 2.1) that
a suitable choice of the dwell time makes the solution stay within a required
neighborhood A, of a so-called ideal attractor. We further proved that the
solutions reach A, asymptotically if the initial conditions don’t belong to A..
By doing that we obtained a new integral condition (Theorem 3.1) for global
stability which didn’t seem to appear in the literature before. Finally, we
addressed a case study where the Lyapunov functions of different subsystems
are just shifts of one another. Here we used the dwell time formulas from
Theorem 2.1 to estimate the time that the trajectories need to go from the
neighborhood of an equilibrium of one subsystem to the neighborhood of an
equilibrium of another subsystem (i.e. we considered a switched system with
two discrete states). We proved (Theorem 4.1) that adding more discrete
states makes this travel time longer. Examples 2.1 and 4.1 show that our
theoretical conclusions agree with numeric simulations.

For future work, it would be interesting to explore the relationship between
local results like Theorem 2.1 and global results like Theorem 3.1. For ex-
ample, under what conditions are the local and global dwell times the same?
Under what conditions would it be possible to have local stability and not
global convergence and vice versa?

A  Computing i for linear switched systems

Consider a linear switched system
= Au(z —xy) (16)

where z,, is asymptotically stable for each u subsystem. Then (16) admits
quadratic Lyapunov functions of the form

V() = (x — 2y, Py(x — z)), uw€R

where (,) is the standard inner product on R™ and P, € R™*™ is a symmetric
matrix with positive eigenvalues

0< AL, =AU <AL <. <A =\Y

min max*

(See [4] Theorem 3.6, p.127.)
Theorem A.1l. Let ¢ > 0. Then for all a,b € R

2

x b Ty — Ta, Po(Th — T4
“2((9:; < ( i\\%:j: + Vi \/Pgb( b )>> = pul(e), x€R™\NE.
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Proof. Set ||z|l, = \/(x — @y, Pu(x — z,,)). Consider the spectral decompo-
sition

P, =UAU"
of P,. Recall A is the diagonal matrix whose nonzero entries are the eigen-
values of P, and UUT = I. Then

n n

(@, Pyx) = (2, UAUTz) = (U2, AU ) = > N(U 2, UTz) =3 Ni(2,UU" )

i=1 i=1
n
= Z)\i(x,x), x € R"
i=1

Thus
Amin (@, 1) < (z, Pyz) < Ap o, (w,2), z€R.
Hence
2 b b A A
||‘/L'Hb = <‘T7Pb$> S )‘maz<aj $> < )‘maw /\Zun <£C7.’13> S Zliéw<xvpa$>
min min
maw
< Zmazy2 g e R
)\g‘m,n
So in particular,
[y < m‘””II |
)\amzn “

Therefore let z € R™ \ N¢. Then apply the above inequality to get

Vb(fﬂ) (le—fﬂbll)2 <|35—ffb|b>2

Va() (Hx—xaH |7 — zalla

(Ix — Zallo + [l —xallb)

||z — 2alla

>\ - Ya
maz | ||y — @al[o
mln Va(x)
e . llow = zalls
max Tp — Tallb
<
( mZn Jr \/E )

As a consequence of the above result, we get sufficient conditions for when
the local dwell time of Theorem 2.1 also ensures global convergence to the
attractor A, for linear switched systems.

2

IN

O
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Corollary A.1. Let € > 0. Suppose the linear switched system (16) satisfies
assumptions (A1)-(A3) in Theorem 2.1 with quadratic Lyapunov functions
of the form

Vu(z) = (z, Pyx)
and a single constant k, = k. Let u : [tp,00) — R be a piecewise constant

function with discontinuities {¢1,ts,...}. Assume

1 5
ti—ti1 > ——In =T ., i€N.
T TR T ([t — @ [+ VB2

Suppose in addition
@) ||z|] = ||z]lu, 2 € R™ueR,and

(i) A%, = AP a,beR

min mazx
where ||z||, = v/(z, Pyx) and A¥, and AY .. are the smallest and largest
eigenvalues of P,. Then z(T) € N, for some T > 0 and some i € N.

Proof. The goal of the proof is to show that the local dwell time from The-
orem 2.1 is larger than the global dwell time from Theorem 3.1. More con-
cretely, we need to verify

1
n) oy
k
from Corollary 3.1. So let a,b € R. By Theorem A.1, we need to check

2
— 2 b —
b&wbxu+ﬁ>zim<xmxgm %m>
3

ti —ti_1 >

)‘(Tlnin \ﬁ
Apply (ii) and simplify this expression to get

s —all £ VP 5
: >

NG
|z — 2ol + VE S14 ||lzo — zallo
Ve Ve
[|zo = zall o [l2p = Zall
Ve o T Ve
Apply (i) to finish the proof. O

||y —30a|b)2

Example A.1. To illustrate this result, let us revisit Example 2.1. In this
example,

V() = ||z — 24|]? = (x — 20, © — 2,).
So ||z||, = ||z|| and P, = ( (1) (1) for all u. So moreover P, has the eigen-

value A = 1 for all w. Thus (i) and (ii) from Corollary A.1 hold. Therefore
taking the local dwell time T" = 1.43 with switching signal given by (12)
ensures global convergence to A. in this case.
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