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Abstract

For switched systems that switch between distinct globally stable equilibria, we offer closed-form formulas that lock
oscillations in the required neighborhood of the equilibria. Motivated by non-spiking neuron models, the main focus
of the paper is on the case of planar switched affine systems, where we use properties of nested cylinders coming from
quadratic Lyapunov functions. In particular, for the first time ever, we use the dwell-time concept in order to give an
explicit condition for non-spiking of linear neuron models with periodically switching current.
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1. Introduction

Dwell time is the lower bound on the time between successive discontinuities (switchings) of the piecewise constant
function u(t), which ensures that the corresponding switched (affine in our case) system

x=(z Z)x+Bu(,), x e R?, 1)

where a, b, c,d € R and B, is a u-dependent vector of R?, exhibits a required type of stability, under the assumption
that each of the subsystems of (1) possess a unique globally asymptotically stable equilibrium x,. Let V,, be some
Lyapunov function of subsystem (1) corresponding to u(¢) = x, and let N* be the neighborhood of x, given by

N¥ = {x: V,(x) < k}. 2)

Extending the pioneering result by Alpcan-Basar [1] (see also Liberzon [7, §3.2.1]), the recent paper [4] by Dorothy
and Chung gives an important formula for the dwell time 7, which ensures that any solution of (1) with the initial

condition x(ty) € N[j(to) satisfies

x(t;) € Ny, i€N, 3)

as long as the successive discontinuities #y, f», ... of the control signal u(¢) verify t,,; — t; > 74, i € N. At the same
time, the results of [4] are formulated in general abstract settings and certain work is required to apply those results to
particular problems. In the present paper we follow the strategy of [4] when addressing planar switched affine systems,
but carry out an independent proof that allows us to get closed-form formulas for the dwell-time 7, (i.e. formulas in
terms of just coefficients of the affine subsystems).

Relevant significant results have been recently obtained in Xu et al [11] for quasi-linear switched systems (1), but the
dwell-time formula [11] is not fully explicit, as it involves the constant of the rate of decay of the matrix exponent of
the homogeneous part of subsystems (1).
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Our research is motivated by an application to non-spiking of linear neurons with a periodically switching current.
The model of a planar linear neuron reads as (Izhikevich [6, §8.1.1], Hasselmo-Shay [5])

b= =g,y + gl + LD,
h = —mv — oyh,

“

coupled with the reset law
V(1) = vg, h(t) = hr(h(D), if V(1) = Vi, &)

where v is the neural cell membrane potential, 4 is the recovery variable, g, is the rate of passive decay of membrane
potential, g, is the rate of current induced depolarization of the cell, m > 0 makes & increasing when v gets negative, oy,
is the current decay, [;, is a constant current which alternates between switch on and switch off. Though some neurons
spike and reset according to vector vg and function iz (when reach the firing threshold v,;,) to propagate a message,
some others are capable to transmit information without spiking and are not supposed to ever reach the threshold
vy, (see e.g. Vich-Guillamon [8], Chen et al [2]). The present paper uses the dwell time concept in order to obtain
conditions for the model (4)-(5) to never reach the firing threshold vg, i.e. to ensure just subthreshold oscillations. The
readers interested in the difference between subthreshold and spiking dynamics are referred to Coombes et al [3].

2. The main result

Next theorem offers conditions on the coefficients of the system (1) where the strategy of Dorothy and Chung [4] leads
to explicit dwell-time formulas.

Theorem 2.1. Assume that abcd < 0, a < 0, and d < 0. Let k > 0 be a given constant and let x be any solution
of switched system (1) with the control signal u = u(f) and with the initial condition x(¢y) € le If the successive
discontinuities ?y, ,, ... of u(t) verify

(t0)"
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ti—ti 2 m IH(E) , k= (\/% + \/|C| (Cutet = Xute)1)” + 1Bl (a2 = xu(ti_l),Z)z) . i€l (6)
a b\
with the equilibria x,, = (xL,,l,xu,z)T given by x, = —( ¢ d ) B,, then (3) holds, and, moreover,

x(t) € ij;t,_), telti,t], i €N @)

The notations and conclusions of the theorem are illustrated in Fig. 1.
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Figure 1: The location of the ellipse BNL]‘;E[,) relative to ellipse 6Nzl§(r»,|) and the solution ¢ — x(¢) of switched system (1) on the interval [#;_1, #;].

Proof. The condition for a, b, ¢, d implies that a Lyapunov function for subsystems of (1) can be taken as

V() = lel(x = x,1)* + bl(xa — x,0)%,  x = (x1,x2)".
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Specifically,

wi(t) < —ewi(t), for wi(t) = Vyuy(x(@), € (ti1, 8], ®
where € > 0 is such a constant that
L _2alel(n — 1) + 2/bld(x; = x,2) _, lacl(x1 = x,,1)* + |bd|(x; — xu,2)2. ©)
a lel(x1 = x,1)% + 1bl(x2 = x,2)? lel(x1 = x,1)* + 1bl(x2 = x,2)?

Letting x; — x,,; = rcos ¢ and x, — x,» = rsin ¢, the right-hand-side of this inequality takes the form

5 lac| cos? ¢ + |bd|sin* ¢

4lbel(\d) - la]) si
oot g+ psitg P EO ey

(Il cos? ¢ + blsin® @)

To find the best (i.e. maximal) possible value of & we therefore compute the minimum of g(¢) on the interval [0, 7r].
Analysing g’(¢), we conclude that g(¢) has just one critical point ¢g = /2 on (0, ). Therefore,

&= ;g%(i)fllr] 8(¢) = min {g(0), g(7/2), g(m)} = 2 min{lal, |d|}. (10)

is established, we now use (8)-(10) in order to prove that x(t;) € N*

Let us fix i € N. Assuming that x(t,_;) € N* e

u(ti-1)
i.e. to prove that w;(#;) < k. Specifically, we are going to find k; > 0 satisfying

Nt c Nt (Step 1) )

u(ti-1) u%t,')
and prove that

ke~ Suen(titi)) < e (Step 2) 12)
to have w;(t;) < w;(tiy e 1) < fyemfun (i) < k.

Step 1. Note, that the boundary ﬁfo of N’Lj is given by Bij = {x eR? : cl(x; - Xu,1)2 + |b|(x — )cu,z)2 = k} . To find
k; > 0 satisfying (11) we construct the ellipse azvjj; ) to touch the ellipse 0N5( )

Expressing the point A in the polar coordinates of the ellipses GNﬁ( ., and 6Nl’fér,)

f k / k . ,k - /k .-
X1 = Xu@t )1 = E COS, X2 — Xy )2 = m sing, x| — Xy = I_cll COS ¢, X2 — Xyu)2 = ﬁ sing. (13)

The property of the derivative of the curve ‘9NZ§

(at some point A € R?), see Fig. 1.

we get

(o At A to be parallel to the derivative of the curve GNILZ ;) at A leads to

¢ = ¢. Excluding in (13) the unknowns x; and x, we get

Xu(t),l = Xu(t),) = (‘/% - \/E) -(cos @)/ Vicl.  Xuap = X2 = (\/% - \/IZ) - (sin ) / /Ibl. (14)
which yields the required formula (6) for k;.
Step 2. Combining (6) with (10), the inequality (12) takes form of assumption (6) and so (12) holds true.

The proof of the theorem is complete. O

3. Application to non-spiking neuron models
In this section we apply the earlier results to the planar linear system (4) assuming that the current /;,, is changing

according to the law

0, te(T;,T;+Tol,

on [0, T; + Ty] and is then continued to [0, o0) by T, + Ty-periodicity. Taking an arbitrary k > 0, the equilibrium of (4)
with ;,(¢) = I and the constants k; in (6) compute as

vy 1 op ( \/ﬁ)z o
= ki = k h = k’ N 16
(hl) gp0h+mgh(—m)’ Vi + mvy + gphy ie (16)

One gets the following result as a direct consequence of Theorem 2.1.
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L,() = { [, 10,1, where I > 0 is given constant, (15)



Corollary 3.1. Let g,, gn,m, 0, > 0 and consider k > 0. Assume that

1 k
in{T;, Ty} > ——— In- =: 7. 17
min{T;, To} 2 ming,, on) =T a7

Then, the dynamics of any solution 7 — (v(¢), h(f)) of (4) with the control function (15) and with the initial condition
(v(0), h(0)) = O satisfies, for j € N, t; = (T; + To) - j, t; = (T; + Tp) - j + T;, the relations

m(v() = vi)® + gu(h(e) = b’ <Kt € [tpr]. mv? + g <k e [rpa]. v <vit ki, 120,

In particular, the neuron model (4)-(5) exhibits just sub-threshold oscillations (never develops spiking), if

Ve >V + \H_c/m. (18)
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Figure 2: Left: The trajectory ¢t = (v(#), h(t)) of system (4) with the initial condition (v(0), 2(0)) = 0 for the parameters of g, = 0.75, g, = 0.15,
m = 1, o, = 0.35 (from Hasselmo-Shay [5]) and with the input /;,,(¢) alternating between 0 and / = 1 every T = 3.84 units of time (i.e.
To = T; = 3.84). Right: The attractor of system (4) for the parameters g, = 0.04, g5, = 0.5, m = 1, o, = 0.04, whose input /;,,() alternates between

0 and 7 = 1 with period To = T; = 35.7. In both figures the dark gray disks are N(’)‘ and N;‘, k = 0.2, and the light disk is N;‘, see (16). The line

v = vy, is an example of firing threshold that doesn’t cause spiking (because the line v = vy, does intersect Nf ).

Simulations of Figs. 2-3 illustrate the accuracy of the predictions of Corollary 3.1. At Fig. 2(left) we drew the solution
of the linear neuron model (4) with the parameters of Hasselmo-Shay [5] (g, = 0.75, g, = 0.15, m = 1, 0, = 0.35),
I =1,k = 0.2 and the periods Ty = T; = 3.84, that was computed using the dwell-time formula (17) (which gives
74 = 3.836). Formula (18) provides the estimate v,, > 2.56 for the firing threshold to ensure non-spiking. A possible
firing threshold vy, is drawn in Fig. 2(left). The figure also illustrates the construction beyond the estimate (18) whose
role is to locate the cylinder Nf to the left from the line v = vy;,. Fig. 2(left) is an example where Corollary 3.1 leads to
a rather conservative estimate for v;;,. The figure shows that the value v;; can actually be much smaller than v,;, = 2.56
(roughly v, = 1.3) for sub-threshold oscillations to not spike. The sharpness of the estimates of Corollary 3.1 is
seen e.g. with the parameters g, = 0.04, g, = 0.5, m = 1, 05, = 0.04, k = 0.2, I = 1. The dwell time 7,4 given by
Corollary 3.1 is now 74, = 35.621, which was used in simulations of Fig. 2(right) (we took Ty = T; = 35.7) where
the respective attractor of model (4) is shown. First of all, one can see that the switchings (corners of the trajectory)
occur very close to the boundary of the cylinders N(’)‘ and N}‘. Moreover, Fig. 3(left) shows that the switching points
are no longer in N(’)‘ and N;‘, if Ty and T; reduce to Ty = T; = 32, which confirms that 7, = 35.621 is a relatively sharp
dwell time bound. Finally, Fig. 3(d) illustrates that the estimate (18) for the maximal current is also accurate, i.e. a
trajectory with the initial condition in N(’)‘ can pass quite close to the rightmost point of the ellipse Nf,‘ .
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Figure 3: Both the figures are plotted with the parameters of Fig. 2(right) except for Ty and 7. Left: Attractor of (4) for Ty = Ty = 32. Right: The
solution of (4) with the initial condition at the top of N’O‘ and Tp = T; = 35.7. The meaning of gray disks is the same as in Fig. 2.

4. Conclusion

We used the dwell-time concept to give explicit conditions for the attractor of a linear planar switched system to never
cross a given threshold. As a consequence, we gave a closed-form formula for a linear neuron model to never reach the
firing threshold, i.e. to operate in just a sub-threshold mode. To the best of our knowledge, the dwell-time approach
has never been used in the context of neuroscience before. Extending the ideas of the paper to wider classes of neuron
models and switched systems (such as those in [7, 9, 10, 12, 13]), and utilizing more relaxed dwell-time concepts is a
subject of future research.
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