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Abstract

For switched systems that switch between distinct globally stable equilibria, we offer closed-form formulas that lock
oscillations in the required neighborhood of the equilibria. Motivated by non-spiking neuron models, the main focus
of the paper is on the case of planar switched affine systems, where we use properties of nested cylinders coming from
quadratic Lyapunov functions. In particular, for the first time ever, we use the dwell-time concept in order to give an
explicit condition for non-spiking of linear neuron models with periodically switching current.
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1. Introduction

Dwell time is the lower bound on the time between successive discontinuities (switchings) of the piecewise constant
function u(t), which ensures that the corresponding switched (affine in our case) system

ẋ =

(
a b
c d

)
x + Bu(t), x ∈ R2, (1)

where a, b, c, d ∈ R and Bu is a u-dependent vector of R2, exhibits a required type of stability, under the assumption
that each of the subsystems of (1) possess a unique globally asymptotically stable equilibrium xu. Let Vu be some
Lyapunov function of subsystem (1) corresponding to u(t) = xu and let Nk

u be the neighborhood of xu given by

Nk
u = {x : Vu(x) ≤ k} . (2)

Extending the pioneering result by Alpcan-Basar [1] (see also Liberzon [7, §3.2.1]), the recent paper [4] by Dorothy
and Chung gives an important formula for the dwell time τd which ensures that any solution of (1) with the initial
condition x(t0) ∈ Nk

u(t0) satisfies
x(ti) ∈ Nk

u(ti), i ∈ N, (3)

as long as the successive discontinuities t1, t2, ... of the control signal u(t) verify ti+1 − ti ≥ τd, i ∈ N. At the same
time, the results of [4] are formulated in general abstract settings and certain work is required to apply those results to
particular problems. In the present paper we follow the strategy of [4] when addressing planar switched affine systems,
but carry out an independent proof that allows us to get closed-form formulas for the dwell-time τd (i.e. formulas in
terms of just coefficients of the affine subsystems).

Relevant significant results have been recently obtained in Xu et al [11] for quasi-linear switched systems (1), but the
dwell-time formula [11] is not fully explicit, as it involves the constant of the rate of decay of the matrix exponent of
the homogeneous part of subsystems (1).
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Our research is motivated by an application to non-spiking of linear neurons with a periodically switching current.
The model of a planar linear neuron reads as (Izhikevich [6, §8.1.1], Hasselmo-Shay [5])

v̇ = −gpv + ghh + Iin(t),
ḣ = −mv − ohh, (4)

coupled with the reset law
v(t) 7→ vR, h(t) 7→ hR(h(t)), if v(t) = vth, (5)

where v is the neural cell membrane potential, h is the recovery variable, gp is the rate of passive decay of membrane
potential, gh is the rate of current induced depolarization of the cell, m > 0 makes h increasing when v gets negative, oh

is the current decay, Iin is a constant current which alternates between switch on and switch off. Though some neurons
spike and reset according to vector vR and function hR (when reach the firing threshold vth) to propagate a message,
some others are capable to transmit information without spiking and are not supposed to ever reach the threshold
vth (see e.g. Vich-Guillamon [8], Chen et al [2]). The present paper uses the dwell time concept in order to obtain
conditions for the model (4)-(5) to never reach the firing threshold vR, i.e. to ensure just subthreshold oscillations. The
readers interested in the difference between subthreshold and spiking dynamics are referred to Coombes et al [3].

2. The main result

Next theorem offers conditions on the coefficients of the system (1) where the strategy of Dorothy and Chung [4] leads
to explicit dwell-time formulas.

Theorem 2.1. Assume that abcd < 0, a < 0, and d < 0. Let k > 0 be a given constant and let x be any solution
of switched system (1) with the control signal u = u(t) and with the initial condition x(t0) ∈ Nk

u(t0). If the successive
discontinuities t1, t2, ... of u(t) verify

ti − ti−1 ≥
1

2 min{|a|, |d|}
ln

(
ki

k

)
, ki =

(
√

k +

√
|c|

(
xu(ti),1 − xu(ti−1),1

)2
+ |b|

(
xu(ti),2 − xu(ti−1),2

)
2

)2

, i ∈ N, (6)

with the equilibria xu = (xu,1, xu,2)T given by xu = −

(
a b
c d

)−1

Bu, then (3) holds, and, moreover,

x(t) ∈ Nki
u(ti)

, t ∈ [ti−1, ti], i ∈ N. (7)

The notations and conclusions of the theorem are illustrated in Fig. 1.
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Figure 1: The location of the ellipse ∂Nki
u(ti)

relative to ellipse ∂Nk
u(ti−1) and the solution t 7→ x(t) of switched system (1) on the interval [ti−1, ti].

Proof. The condition for a, b, c, d implies that a Lyapunov function for subsystems of (1) can be taken as

Vu(x) = |c|(x1 − xu,1)2 + |b|(x2 − xu,2)2, x = (x1, x2)T .
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Specifically,
ω̇i(t) ≤ −εωi(t), for ωi(t) = Vu(ti)(x(t)), t ∈ (ti−1, ti], (8)

where ε > 0 is such a constant that

ε ≥ −
2a|c|(x1 − xu,1)2 + 2|b|d(x2 − xu,2)2

|c|(x1 − xu,1)2 + |b|(x2 − xu,2)2 = 2
|ac|(x1 − xu,1)2 + |bd|(x2 − xu,2)2

|c|(x1 − xu,1)2 + |b|(x2 − xu,2)2 . (9)

Letting x1 − xu,1 = r cos φ and x2 − xu,2 = r sin φ, the right-hand-side of this inequality takes the form

2
|ac| cos2 φ + |bd| sin2 φ

|c| cos2 φ + |b| sin2 φ
=: g(φ) and g′(φ) =

4|bc|(|d| − |a|) sin φ cos φ(
|c| cos2 φ + |b| sin2 φ

)2 .

To find the best (i.e. maximal) possible value of ε we therefore compute the minimum of g(φ) on the interval [0, π].
Analysing g′(φ), we conclude that g(φ) has just one critical point φ0 = π/2 on (0, π). Therefore,

ε = min
φ∈[0,π]

g(φ) = min {g(0), g(π/2), g(π)} = 2 min{|a|, |d|}. (10)

Let us fix i ∈ N. Assuming that x(ti−1) ∈ Nk
u(ti−1) is established, we now use (8)-(10) in order to prove that x(ti) ∈ Nk

u(ti)
,

i.e. to prove that ωi(ti) ≤ k. Specifically, we are going to find ki > 0 satisfying

Nk
u(ti−1) ⊂ Nki

u(ti)
(Step 1) (11)

and prove that
kie−εu(ti)(ti−ti−1) ≤ k (Step 2) (12)

to have ωi(ti) ≤ ωi(ti−1)e−εu(ti)(ti−ti−1) ≤ kie−εu(ti )(ti−ti−1) ≤ k.

Step 1. Note, that the boundary ∂Nk
u of Nk

u is given by ∂Nk
u =

{
x ∈ R2 : |c|(x1 − xu,1)2 + |b|(x2 − xu,2)2 = k

}
. To find

ki > 0 satisfying (11) we construct the ellipse ∂Nki
u(ti)

to touch the ellipse ∂Nk
u(ti−1) (at some point A ∈ R2), see Fig. 1.

Expressing the point A in the polar coordinates of the ellipses ∂Nk
u(ti−1) and ∂Nki

u(ti)
we get

x1 − xu(ti−1),1 =

√
k
|c|

cos φ, x2 − xu(ti−1),2 =

√
k
|b|

sin φ, x1 − xu(ti),1 =

√
ki

|c|
cos φ̄, x2 − xu(ti),2 =

√
ki

|b|
sin φ̄. (13)

The property of the derivative of the curve ∂Nk
u(ti−1) at A to be parallel to the derivative of the curve ∂Nki

u(ti)
at A leads to

φ = φ̄. Excluding in (13) the unknowns x1 and x2 we get

xu(ti),1 − xu(ti−1),1 =
(√

k −
√

ki

)
· (cos φ) /

√
|c|, xu(ti),2 − xu(ti−1),2 =

(√
k −

√
ki

)
· (sin φ) /

√
|b|, (14)

which yields the required formula (6) for ki.

Step 2. Combining (6) with (10), the inequality (12) takes form of assumption (6) and so (12) holds true.

The proof of the theorem is complete.

3. Application to non-spiking neuron models

In this section we apply the earlier results to the planar linear system (4) assuming that the current Iin is changing
according to the law

Iin(t) =

{
I, t ∈ (0,TI],
0, t ∈ (TI ,TI + T0], where I > 0 is given constant, (15)

on [0,TI + T0] and is then continued to [0,∞) by TI + T0-periodicity. Taking an arbitrary k > 0, the equilibrium of (4)
with Iin(t) = I and the constants ki in (6) compute as(

vI

hI

)
=

I
gpoh + mgh

(
oh

−m

)
, ki =

(√
k +

√
mv2

I + ghh2
I

)2
=: k̄, i ∈ N. (16)

One gets the following result as a direct consequence of Theorem 2.1.
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Corollary 3.1. Let gp, gh,m, oh > 0 and consider k > 0. Assume that

min{TI ,T0} ≥
1

2 min{gp, oh}
ln

k̄
k

=: τd. (17)

Then, the dynamics of any solution t 7→ (v(t), h(t)) of (4) with the control function (15) and with the initial condition
(v(0), h(0)) = 0 satisfies, for j ∈ N, t j = (TI + T0) · j, τ j = (TI + T0) · j + TI , the relations

m(v(t) − vI)2 + gh(h(t) − hI)2 ≤ k̄, t ∈
[
t j, τ j

]
, mv(t)2 + ghh(t)2 ≤ k̄, t ∈

[
τ j, t j+1

]
, v(t) ≤ vI +

√
k̄/m, t ≥ 0.

In particular, the neuron model (4)-(5) exhibits just sub-threshold oscillations (never develops spiking), if

vth > vI +

√
k̄/m. (18)

vth
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Figure 2: Left: The trajectory t 7→ (v(t), h(t)) of system (4) with the initial condition (v(0), h(0)) = 0 for the parameters of gp = 0.75, gh = 0.15,
m = 1, oh = 0.35 (from Hasselmo-Shay [5]) and with the input Iin(t) alternating between 0 and I = 1 every T = 3.84 units of time (i.e.
T0 = TI = 3.84). Right: The attractor of system (4) for the parameters gp = 0.04, gh = 0.5, m = 1, oh = 0.04, whose input Iin(t) alternates between
0 and I = 1 with period T0 = TI = 35.7. In both figures the dark gray disks are Nk

0 and Nk
I , k = 0.2, and the light disk is N k̄

I , see (16). The line
v = vth is an example of firing threshold that doesn’t cause spiking (because the line v = vth does intersect N k̄

I ).

Simulations of Figs. 2-3 illustrate the accuracy of the predictions of Corollary 3.1. At Fig. 2(left) we drew the solution
of the linear neuron model (4) with the parameters of Hasselmo-Shay [5] (gp = 0.75, gh = 0.15, m = 1, oh = 0.35),
I = 1, k = 0.2 and the periods T0 = TI = 3.84, that was computed using the dwell-time formula (17) (which gives
τd = 3.836). Formula (18) provides the estimate vth > 2.56 for the firing threshold to ensure non-spiking. A possible
firing threshold vth is drawn in Fig. 2(left). The figure also illustrates the construction beyond the estimate (18) whose
role is to locate the cylinder N k̄

I to the left from the line v = vth. Fig. 2(left) is an example where Corollary 3.1 leads to
a rather conservative estimate for vth. The figure shows that the value vth can actually be much smaller than vth = 2.56
(roughly vth = 1.3) for sub-threshold oscillations to not spike. The sharpness of the estimates of Corollary 3.1 is
seen e.g. with the parameters gp = 0.04, gh = 0.5, m = 1, oh = 0.04, k = 0.2, I = 1. The dwell time τd given by
Corollary 3.1 is now τd = 35.621, which was used in simulations of Fig. 2(right) (we took T0 = TI = 35.7) where
the respective attractor of model (4) is shown. First of all, one can see that the switchings (corners of the trajectory)
occur very close to the boundary of the cylinders Nk

0 and Nk
I . Moreover, Fig. 3(left) shows that the switching points

are no longer in Nk
0 and Nk

I , if T0 and TI reduce to T0 = TI = 32, which confirms that τd = 35.621 is a relatively sharp
dwell time bound. Finally, Fig. 3(d) illustrates that the estimate (18) for the maximal current is also accurate, i.e. a
trajectory with the initial condition in Nk

0 can pass quite close to the rightmost point of the ellipse N k̄
I .
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Figure 3: Both the figures are plotted with the parameters of Fig. 2(right) except for T0 and TI . Left: Attractor of (4) for T0 = TI = 32. Right: The
solution of (4) with the initial condition at the top of Nk

0 and T0 = TI = 35.7. The meaning of gray disks is the same as in Fig. 2.

4. Conclusion

We used the dwell-time concept to give explicit conditions for the attractor of a linear planar switched system to never
cross a given threshold. As a consequence, we gave a closed-form formula for a linear neuron model to never reach the
firing threshold, i.e. to operate in just a sub-threshold mode. To the best of our knowledge, the dwell-time approach
has never been used in the context of neuroscience before. Extending the ideas of the paper to wider classes of neuron
models and switched systems (such as those in [7, 9, 10, 12, 13]), and utilizing more relaxed dwell-time concepts is a
subject of future research.
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