

Dwell time for local stability of switched affine systems with application to non-spiking neuron models

Oleg Makarenkov^{a,*}, Anthony Phung^a

^aDepartment of Mathematical Sciences, University of Texas at Dallas, 75080, TX, Richardson, USA

Abstract

For switched systems that switch between distinct globally stable equilibria, we offer closed-form formulas that lock oscillations in the required neighborhood of the equilibria. Motivated by non-spiking neuron models, the main focus of the paper is on the case of planar switched affine systems, where we use properties of nested cylinders coming from quadratic Lyapunov functions. In particular, for the first time ever, we use the dwell-time concept in order to give an explicit condition for non-spiking of linear neuron models with periodically switching current.

Keywords: Switched system, dwell-time, trapping region, multiple equilibria, planar switched affine systems, non-spiking, subthreshold oscillations, linear neuron model

2000 MSC: 93C30, 34D23, 92C20

1. Introduction

Dwell time is the lower bound on the time between successive discontinuities (switchings) of the piecewise constant function $u(t)$, which ensures that the corresponding switched (affine in our case) system

$$\dot{x} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}x + B_{u(t)}, \quad x \in \mathbb{R}^2, \quad (1)$$

where $a, b, c, d \in \mathbb{R}$ and B_u is a u -dependent vector of \mathbb{R}^2 , exhibits a required type of stability, under the assumption that each of the subsystems of (1) possess a unique globally asymptotically stable equilibrium x_u . Let V_u be some Lyapunov function of subsystem (1) corresponding to $u(t) = x_u$ and let N_u^k be the neighborhood of x_u given by

$$N_u^k = \{x : V_u(x) \leq k\}. \quad (2)$$

Extending the pioneering result by Alpcan-Basar [1] (see also Liberzon [7, §3.2.1]), the recent paper [4] by Dorothy and Chung gives an important formula for the dwell time τ_d which ensures that any solution of (1) with the initial condition $x(t_0) \in N_{u(t_0)}^k$ satisfies

$$x(t_i) \in N_{u(t_i)}^k, \quad i \in \mathbb{N}, \quad (3)$$

as long as the successive discontinuities t_1, t_2, \dots of the control signal $u(t)$ verify $t_{i+1} - t_i \geq \tau_d$, $i \in \mathbb{N}$. At the same time, the results of [4] are formulated in general abstract settings and certain work is required to apply those results to particular problems. In the present paper we follow the strategy of [4] when addressing planar switched affine systems, but carry out an independent proof that allows us to get closed-form formulas for the dwell-time τ_d (i.e. formulas in terms of just coefficients of the affine subsystems).

Relevant significant results have been recently obtained in Xu et al [11] for quasi-linear switched systems (1), but the dwell-time formula [11] is not fully explicit, as it involves the constant of the rate of decay of the matrix exponent of the homogeneous part of subsystems (1).

*Corresponding author

Email address: makarenkov@utdallas.edu (Oleg Makarenkov)

Our research is motivated by an application to non-spiking of linear neurons with a periodically switching current. The model of a planar linear neuron reads as (Izhikevich [6, §8.1.1], Hasselmo-Shay [5])

$$\begin{aligned}\dot{v} &= -g_p v + g_h h + I_{in}(t), \\ \dot{h} &= -mv - o_h h,\end{aligned}\tag{4}$$

coupled with the reset law

$$v(t) \mapsto v_R, \quad h(t) \mapsto h_R(h(t)), \quad \text{if } v(t) = v_{th},\tag{5}$$

where v is the neural cell membrane potential, h is the recovery variable, g_p is the rate of passive decay of membrane potential, g_h is the rate of current induced depolarization of the cell, $m > 0$ makes h increasing when v gets negative, o_h is the current decay, I_{in} is a constant current which alternates between switch on and switch off. Though some neurons spike and reset according to vector v_R and function h_R (when reach the firing threshold v_{th}) to propagate a message, some others are capable to transmit information without spiking and are not supposed to ever reach the threshold v_{th} (see e.g. Vich-Guillamon [8], Chen et al [2]). The present paper uses the dwell time concept in order to obtain conditions for the model (4)-(5) to never reach the firing threshold v_R , i.e. to ensure just subthreshold oscillations. The readers interested in the difference between subthreshold and spiking dynamics are referred to Coombes et al [3].

2. The main result

Next theorem offers conditions on the coefficients of the system (1) where the strategy of Dorothy and Chung [4] leads to explicit dwell-time formulas.

Theorem 2.1. Assume that $abcd < 0$, $a < 0$, and $d < 0$. Let $k > 0$ be a given constant and let x be any solution of switched system (1) with the control signal $u = u(t)$ and with the initial condition $x(t_0) \in N_{u(t_0)}^k$. If the successive discontinuities t_1, t_2, \dots of $u(t)$ verify

$$t_i - t_{i-1} \geq \frac{1}{2 \min\{|a|, |d|\}} \ln\left(\frac{k_i}{k}\right), \quad k_i = \left(\sqrt{k} + \sqrt{|c|(x_{u(t_i),1} - x_{u(t_{i-1}),1})^2 + |b|(x_{u(t_i),2} - x_{u(t_{i-1}),2})_2}\right)^2, \quad i \in \mathbb{N},\tag{6}$$

with the equilibria $x_u = (x_{u,1}, x_{u,2})^T$ given by $x_u = -\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} B_u$, then (3) holds, and, moreover,

$$x(t) \in N_{u(t_i)}^{k_i}, \quad t \in [t_{i-1}, t_i], \quad i \in \mathbb{N}.\tag{7}$$

The notations and conclusions of the theorem are illustrated in Fig. 1.

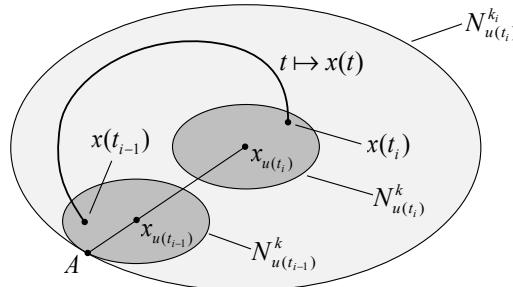


Figure 1: The location of the ellipse $\partial N_{u(t_i)}^{k_i}$ relative to ellipse $\partial N_{u(t_{i-1})}^k$ and the solution $t \mapsto x(t)$ of switched system (1) on the interval $[t_{i-1}, t_i]$.

Proof. The condition for a, b, c, d implies that a Lyapunov function for subsystems of (1) can be taken as

$$V_u(x) = |c|(x_1 - x_{u,1})^2 + |b|(x_2 - x_{u,2})^2, \quad x = (x_1, x_2)^T.$$

Specifically,

$$\dot{\omega}_i(t) \leq -\varepsilon \omega_i(t), \quad \text{for } \omega_i(t) = V_{u(t_i)}(x(t)), \quad t \in (t_{i-1}, t_i], \quad (8)$$

where $\varepsilon > 0$ is such a constant that

$$\varepsilon \geq -\frac{2a|c|(x_1 - x_{u,1})^2 + 2|b|d(x_2 - x_{u,2})^2}{|c|(x_1 - x_{u,1})^2 + |b|(x_2 - x_{u,2})^2} = 2 \frac{|ac|(x_1 - x_{u,1})^2 + |bd|(x_2 - x_{u,2})^2}{|c|(x_1 - x_{u,1})^2 + |b|(x_2 - x_{u,2})^2}. \quad (9)$$

Letting $x_1 - x_{u,1} = r \cos \phi$ and $x_2 - x_{u,2} = r \sin \phi$, the right-hand-side of this inequality takes the form

$$2 \frac{|ac| \cos^2 \phi + |bd| \sin^2 \phi}{|c| \cos^2 \phi + |b| \sin^2 \phi} =: g(\phi) \quad \text{and} \quad g'(\phi) = \frac{4|bc|(|d| - |a|) \sin \phi \cos \phi}{(|c| \cos^2 \phi + |b| \sin^2 \phi)^2}.$$

To find the best (i.e. maximal) possible value of ε we therefore compute the minimum of $g(\phi)$ on the interval $[0, \pi]$. Analysing $g'(\phi)$, we conclude that $g(\phi)$ has just one critical point $\phi_0 = \pi/2$ on $(0, \pi)$. Therefore,

$$\varepsilon = \min_{\phi \in [0, \pi]} g(\phi) = \min \{g(0), g(\pi/2), g(\pi)\} = 2 \min\{|a|, |d|\}. \quad (10)$$

Let us fix $i \in \mathbb{N}$. Assuming that $x(t_{i-1}) \in N_{u(t_{i-1})}^k$ is established, we now use (8)-(10) in order to prove that $x(t_i) \in N_{u(t_i)}^k$, i.e. to prove that $\omega_i(t_i) \leq k$. Specifically, we are going to find $k_i > 0$ satisfying

$$N_{u(t_{i-1})}^k \subset N_{u(t_i)}^{k_i} \quad (\text{Step 1}) \quad (11)$$

and prove that

$$k_i e^{-\varepsilon_{u(t_i)}(t_i - t_{i-1})} \leq k \quad (\text{Step 2}) \quad (12)$$

to have $\omega_i(t_i) \leq \omega_i(t_{i-1}) e^{-\varepsilon_{u(t_i)}(t_i - t_{i-1})} \leq k_i e^{-\varepsilon_{u(t_i)}(t_i - t_{i-1})} \leq k$.

Step 1. Note, that the boundary ∂N_u^k of N_u^k is given by $\partial N_u^k = \{x \in \mathbb{R}^2 : |c|(x_1 - x_{u,1})^2 + |b|(x_2 - x_{u,2})^2 = k\}$. To find $k_i > 0$ satisfying (11) we construct the ellipse $\partial N_{u(t_i)}^{k_i}$ to touch the ellipse $\partial N_{u(t_{i-1})}^k$ (at some point $A \in \mathbb{R}^2$), see Fig. 1. Expressing the point A in the polar coordinates of the ellipses $\partial N_{u(t_{i-1})}^k$ and $\partial N_{u(t_i)}^{k_i}$ we get

$$x_1 - x_{u(t_{i-1}),1} = \sqrt{\frac{k}{|c|}} \cos \phi, \quad x_2 - x_{u(t_{i-1}),2} = \sqrt{\frac{k}{|b|}} \sin \phi, \quad x_1 - x_{u(t_i),1} = \sqrt{\frac{k_i}{|c|}} \cos \bar{\phi}, \quad x_2 - x_{u(t_i),2} = \sqrt{\frac{k_i}{|b|}} \sin \bar{\phi}. \quad (13)$$

The property of the derivative of the curve $\partial N_{u(t_{i-1})}^k$ at A to be parallel to the derivative of the curve $\partial N_{u(t_i)}^{k_i}$ at A leads to $\phi = \bar{\phi}$. Excluding in (13) the unknowns x_1 and x_2 we get

$$x_{u(t_i),1} - x_{u(t_{i-1}),1} = (\sqrt{k} - \sqrt{k_i}) \cdot (\cos \phi) / \sqrt{|c|}, \quad x_{u(t_i),2} - x_{u(t_{i-1}),2} = (\sqrt{k} - \sqrt{k_i}) \cdot (\sin \phi) / \sqrt{|b|}, \quad (14)$$

which yields the required formula (6) for k_i .

Step 2. Combining (6) with (10), the inequality (12) takes form of assumption (6) and so (12) holds true.

The proof of the theorem is complete. \square

3. Application to non-spiking neuron models

In this section we apply the earlier results to the planar linear system (4) assuming that the current I_{in} is changing according to the law

$$I_{in}(t) = \begin{cases} I, & t \in (0, T_I], \\ 0, & t \in (T_I, T_I + T_0], \end{cases} \quad \text{where } I > 0 \text{ is given constant,} \quad (15)$$

on $[0, T_I + T_0]$ and is then continued to $[0, \infty)$ by $T_I + T_0$ -periodicity. Taking an arbitrary $k > 0$, the equilibrium of (4) with $I_{in}(t) = I$ and the constants k_i in (6) compute as

$$\begin{pmatrix} v_I \\ h_I \end{pmatrix} = \frac{I}{g_p o_h + m g_h} \begin{pmatrix} o_h \\ -m \end{pmatrix}, \quad k_i = \left(\sqrt{k} + \sqrt{m v_I^2 + g_h h_I^2} \right)^2 =: \bar{k}, \quad i \in \mathbb{N}. \quad (16)$$

One gets the following result as a direct consequence of Theorem 2.1.

Corollary 3.1. Let $g_p, g_h, m, o_h > 0$ and consider $k > 0$. Assume that

$$\min\{T_I, T_0\} \geq \frac{1}{2 \min\{g_p, o_h\}} \ln \frac{\bar{k}}{k} =: \tau_d. \quad (17)$$

Then, the dynamics of any solution $t \mapsto (v(t), h(t))$ of (4) with the control function (15) and with the initial condition $(v(0), h(0)) = 0$ satisfies, for $j \in \mathbb{N}$, $t_j = (T_I + T_0) \cdot j$, $\tau_j = (T_I + T_0) \cdot j + T_I$, the relations

$$m(v(t) - v_I)^2 + g_h(h(t) - h_I)^2 \leq \bar{k}, \quad t \in [t_j, \tau_j], \quad mv(t)^2 + g_h h(t)^2 \leq \bar{k}, \quad t \in [\tau_j, t_{j+1}], \quad v(t) \leq v_I + \sqrt{\bar{k}/m}, \quad t \geq 0.$$

In particular, the neuron model (4)-(5) exhibits just sub-threshold oscillations (never develops spiking), if

$$v_{th} > v_I + \sqrt{\bar{k}/m}. \quad (18)$$

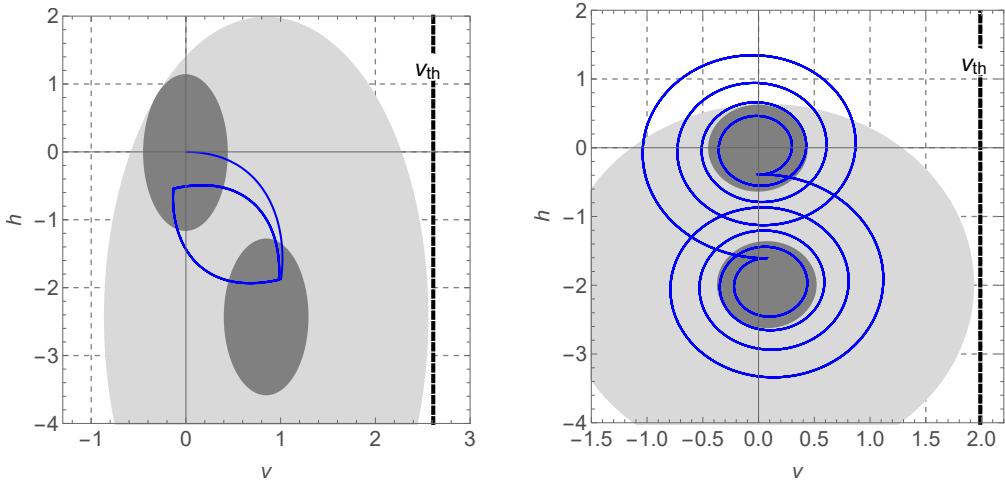


Figure 2: Left: The trajectory $t \mapsto (v(t), h(t))$ of system (4) with the initial condition $(v(0), h(0)) = 0$ for the parameters of $g_p = 0.75$, $g_h = 0.15$, $m = 1$, $o_h = 0.35$ (from Hasselmo-Shay [5]) and with the input $I_{in}(t)$ alternating between 0 and $I = 1$ every $T = 3.84$ units of time (i.e. $T_0 = T_I = 3.84$). Right: The attractor of system (4) for the parameters $g_p = 0.04$, $g_h = 0.5$, $m = 1$, $o_h = 0.04$, whose input $I_{in}(t)$ alternates between 0 and $I = 1$ with period $T_0 = T_I = 35.7$. In both figures the dark gray disks are N_0^k and N_I^k , $k = 0.2$, and the light disk is N_I^k , see (16). The line $v = v_{th}$ is an example of firing threshold that doesn't cause spiking (because the line $v = v_{th}$ does not intersect N_I^k).

Simulations of Figs. 2-3 illustrate the accuracy of the predictions of Corollary 3.1. At Fig. 2(left) we drew the solution of the linear neuron model (4) with the parameters of Hasselmo-Shay [5] ($g_p = 0.75$, $g_h = 0.15$, $m = 1$, $o_h = 0.35$), $I = 1$, $k = 0.2$ and the periods $T_0 = T_I = 3.84$, that was computed using the dwell-time formula (17) (which gives $\tau_d = 3.836$). Formula (18) provides the estimate $v_{th} > 2.56$ for the firing threshold to ensure non-spiking. A possible firing threshold v_{th} is drawn in Fig. 2(left). The figure also illustrates the construction beyond the estimate (18) whose role is to locate the cylinder N_I^k to the left from the line $v = v_{th}$. Fig. 2(left) is an example where Corollary 3.1 leads to a rather conservative estimate for v_{th} . The figure shows that the value v_{th} can actually be much smaller than $v_{th} = 2.56$ (roughly $v_{th} = 1.3$) for sub-threshold oscillations to not spike. The sharpness of the estimates of Corollary 3.1 is seen e.g. with the parameters $g_p = 0.04$, $g_h = 0.5$, $m = 1$, $o_h = 0.04$, $k = 0.2$, $I = 1$. The dwell time τ_d given by Corollary 3.1 is now $\tau_d = 35.621$, which was used in simulations of Fig. 2(right) (we took $T_0 = T_I = 35.7$) where the respective attractor of model (4) is shown. First of all, one can see that the switchings (corners of the trajectory) occur very close to the boundary of the cylinders N_0^k and N_I^k . Moreover, Fig. 3(left) shows that the switching points are no longer in N_0^k and N_I^k , if T_0 and T_I reduce to $T_0 = T_I = 32$, which confirms that $\tau_d = 35.621$ is a relatively sharp dwell time bound. Finally, Fig. 3(d) illustrates that the estimate (18) for the maximal current is also accurate, i.e. a trajectory with the initial condition in N_0^k can pass quite close to the rightmost point of the ellipse N_I^k .

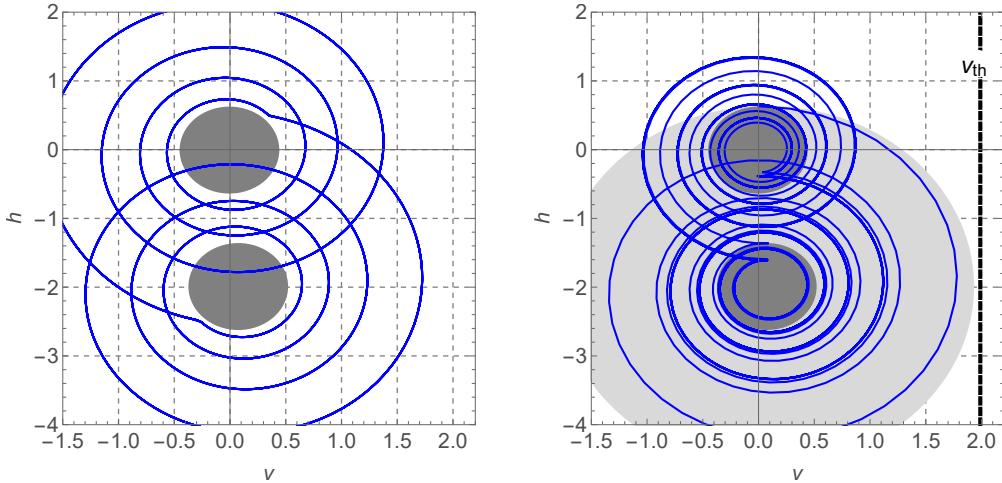


Figure 3: Both the figures are plotted with the parameters of Fig. 2(right) except for T_0 and T_1 . Left: Attractor of (4) for $T_0 = T_1 = 32$. Right: The solution of (4) with the initial condition at the top of N_0^k and $T_0 = T_1 = 35.7$. The meaning of gray disks is the same as in Fig. 2.

4. Conclusion

We used the dwell-time concept to give explicit conditions for the attractor of a linear planar switched system to never cross a given threshold. As a consequence, we gave a closed-form formula for a linear neuron model to never reach the firing threshold, i.e. to operate in just a sub-threshold mode. To the best of our knowledge, the dwell-time approach has never been used in the context of neuroscience before. Extending the ideas of the paper to wider classes of neuron models and switched systems (such as those in [7, 9, 10, 12, 13]), and utilizing more relaxed dwell-time concepts is a subject of future research.

5. Acknowledgments.

OM is supported by NSF Grant CMMI-1436856 and by Burroughs Wellcome Fund Collaborative Grant #1017453. The authors are grateful to anonymous referees, whose comments helped to improve the paper.

References

- [1] T. Alpcan, T. Basar, A stability result for switched systems with multiple equilibria, *Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal.* **17**, (2010), no. 6, 949–958.
- [2] W. Chen, R. Maex, R. Adams, V. Steuber, L. Calcraft, N. Davey, Clustering predicts memory performance in networks of spiking and non-spiking neurons, *Frontiers in Computational Neuroscience* **5** (2011), no. 5, Article 14, 10pp.
- [3] S. Coombes, R. Thul, K. C. A. Wedgwood, Nonsmooth dynamics in spiking neuron models. *Phys. D* **241** (2012), no. 22, 2042–2057.
- [4] M. Dorothy, S.-J. Chung, Switched systems with multiple invariant sets. *Systems Control Lett.* **96** (2016), 103–109.
- [5] M. E. Hasselmo, C. F. Shay, Grid cell firing patterns may arise from feedback interaction between intrinsic rebound spiking and transverse traveling waves with multiple heading angles, *Frontiers in Systems Neuroscience* **8** (2014), no. 8, Article 201, 24 pp.
- [6] E. M. Izhikevich, *Dynamical systems in neuroscience: the geometry of excitability and bursting*. MIT Press, Cambridge, 2007, xvi+441 pp.
- [7] D. Liberzon, *Switching in systems and control. Systems & Control: Foundations & Applications*. Birkhauser Boston, Inc., Boston, 2003.
- [8] C. Vich, A. Guillamon, Dissecting estimation of conductances in subthreshold regimes. *J. Comput. Neurosci.* **39** (2015), no. 3, 271–287.
- [9] X. Xie, H. Xu, and R. Zhang, Exponential Stabilization of Impulsive Switched Systems with Time Delays Using Guaranteed Cost Control, *Abstract and Applied Analysis*, vol. 2014, Article ID 126836, 8 pages, 2014.
- [10] X. Xie, H. Xu, X. Cheng, and Y. Yu, Improved results on exponential stability of discrete-time switched delay systems, *Discrete & Continuous Dynamical Systems, B*, 2017, 22(1): 199-208
- [11] H. Xu, Y. Zhang, J. Yang, G. Zhou, L. Caccetta, Practical exponential set stabilization for switched nonlinear systems with multiple subsystem equilibria, *J. Global Optim.* **65** (2016), no. 1, 109–118.
- [12] H. Xu, X.Xie, and L. Shi, An MDADT-Based Approach for -Gain Analysis of Discrete-Time Switched Delay Systems, *Mathematical Problems in Engineering*, vol. 2016, Article ID 1673959, 8 pages, 2016.
- [13] X. Zhao, L. Zhang, P. Shi, and M. Liu, Stability and stabilization of switched linear systems with mode-dependent average dwell time, *IEEE Transactions on Automatic Control*, vol. 57, no. 7, pp. 1809-1815, 2012.