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ABSTRACT: In a physical system undergoing a continuous quantum phase transition, spon-
taneous symmetry breaking occurs when certain symmetries of the Hamiltonian fail to be
preserved in the ground state. In the traditional Landau theory, a symmetry group can
break down to any subgroup. However, this no longer holds across a continuous phase tran-
sition driven by anyon condensation in symmetry enriched topological orders (SETOs). For
a SETO described by a G-crossed braided extension C C Cf, we show that physical con-
siderations require that a connected étale algebra A € C admit a G-equivariant algebra
structure for symmetry to be preserved under condensation of A. Given any categorical
action G — EqBr(C) such that g(A) = A for all g € G, we show there is a short exact se-
quence whose splittings correspond to G-equivariant algebra structures. The non-splitting
of this sequence forces spontaneous symmetry breaking under condensation of A, while
inequivalent splittings of the sequence correspond to different SETOs resulting from the
anyon-condensation transition. Furthermore, we show that if symmetry is preserved, there
is a canonically associated SETO of Cfc, and gauging this symmetry commutes with anyon
condensation.
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1 Introduction

A cornerstone of condensed matter physics is the concept of spontaneous symmetry break-
ing exemplified by Landau’s theory of symmetry breaking phase transitions [1, 2]. It was
long believed that all phases of matter are classified by their symmetries until the discovery
of topological orders [3, 4] in fractional quantum Hall fluids [5]. The presence of anyons [6],
i.e., particles obeying neither Bose nor Fermi statistics in two spatial dimensions, gives rise
to an extremely rich structure beyond the Landau paradigm. In particular, the interplay
between symmetries and topological orders leads to a large class of new phases of matter
called symmetry enriched topological orders (SETOs) [7-20].



According to Landau theory, in a physical system whose Hamiltonian preserves a
symmetry group G, the symmetry of its ground state can spontaneously break down to
any subgroup H C G. Within Landau theory, continuous quantum phase transitions
happen between one ground state whose unbroken symmetry is a subgroup of the other,
and the associated critical phenomena is described by the Ginzburg-Landau theory. It is
natural to wonder how this picture is altered by the interplay of symmetry and topology in
SETOs. The development of a theory for continuous phase transitions involving anyons and
topological orders beyond Landau’s paradigm raises a fundamental question for modern
condensed matter physics.

In this work, we make a first step to resolve this issue, focusing on quantum phase tran-
sitions between different gapped SETOs driven by anyon condensation [21-23]. We develop
a categorical framework for spontaneous symmetry breaking driven by condensing anyons
in topological orders. This perspective reveals a set of necessary conditions for a symmetry
to be preserved in continuous quantum phase transitions between two different SETOs.
Given an arbitrary SETO, our categorical framework allows us to classify all possible
gapped phases connected to this SETO by a continous quantum phase transition driven by
the condensation of anyons, revealing the structure of a phase diagram involving all SETOs.

We now recall the mathematical descriptions of anyon condensation and SETOs. The
topological order of a gapped system is described by a unitary modular tensor category
(UMTC) C. The simple objects of the category describe the superselection sectors (anyons)
of quasi-particle excitations, while the data of the category describes the fusion and braiding
operators of the anyons. If the system has a global on-site G-symmetry, then there is a
natural SETO associated to the system, described by a G-crossed braided extension [13] (see
also [24, section 8.24]). In particular, we have a categorical action G — Mg (C), where the
later denotes the categorical group of braided autoequivalences of C. Condensible anyons
are described by connected étale algebra objects A € C [22]. On the mathematical level,

anyon condensation is described as passage from the category C to the category Cfc of local

loc

A modules, which is again a UMTC. The category C{¢ describes the topological order of
the phase post transition.

A symmetry is spontaneously broken across a phase transition if it fails to be preserved
in the ground state post transition. In particular, if a symmetry is unbroken (preserved),
then it should also act consistently on the system after the phase transition. In general,
non-universal properties of the microscopic Hamiltonian (i.e. energetics) can cause a sym-
metry to be broken that are beyond the description of category theory, e.g., the symmetry
breaking that occurs in Landau theory. Thus from the categorical point of view, one can
only determine sufficient conditions for symmetry breaking which are universal and inde-
pendent of the specific Hamiltonian. We refer to symmetry broken for such categorical
reasons as categorically broken symmetry. From this point of view, it is natural to consider
categorically necessary conditions for symmetry to be preserved under a phase transition
driven by anyon condensation.

We analyze this problem mathematically in the more general setup of a non-degenerate
braided fusion category C, where we require neither unitarity nor a spherical structure,
together with a connected étale (commutative and separable) algebra A € C. We prove



there are two obstructions for a categorical symmetry G — Mg (C) to be preserved under
anyon condensation:

(1) For all g € G, g(A) = A as algebras, and
(2) There is a G-equivariant algebra structure A = {\ : g(A) = A}4eq on A.

Violating either condition will necessarily break the symmetry group G after the conden-
sation of A. In particular, as we will show later, the second condition can be concisely
expressed as the existence of a splitting of a short exact sequence (1.1) below, where in-
equivalent splittings correspond to different G-symmetric phases obtained by condensing A.

We now describe the mathematical and physical reasoning that leads to these obstruc-
tions.

Suppose F is a G-crossed braided extension of C, with associated categorical action
G— Mg (C). When we condense our étale algebra A € C, this algebra describes the vac-
uum sector of the new phase. A categorically necessary condition to preserve symmetry is
that the symmetry must be preserved in the vacuum. For g € Mg (C), to act by a monoidal
transformation on the new phase, we must have an algebra isomorphism A\ : g(A) — A,
and this algebra isomorphism gives us an isomorphism for each g-graded defect X € F,:

A X
-

9(A) :(Ag®ldx)OﬁX,A:X®A—>A®X.
X A

The multiplication m of A should be compatible with these isomorphisms

A X A X
_ < *
g(A)*A - g(A)J VX € Fg,
R T
XA A

X A A

and our isomorphisms A should be coherent with the G-crossed braided extension F. Thus
for a g-graded defect X € F; and an h-graded defect y € F,, we have

g(A)
A9
A = (A VX € Fy,Y € Fy.
xov[ )a



Under the coherence conditions for G-crossed braided fuison categories, this is exactly the
condition that the following diagram commutes for all g, h € G:

That is, {\9 : g(A) = A}geq endows A with the structure of a G-equivariant algebra object
in the equivariantization C¢ (see Definition 2.8 below).

Definition 1.1. Let G — Mg (C) be a categorical action and A € C a connected étale alge-
bra. We say that symmetry is categorically preserved if there exists a G-equivariant algebra
structure on A. We say that symmetry is categorically broken if no such structure exists.

If symmetry is categorically broken, then it forces the symmetry to break across the
anyon-condensation transition in any microscopic realization of this SETO. We now de-
scribe some mathematical consequences of symmetry being categorically preserved, which
justify our definition.

Define the categorical groups

Mg(CM) = {(a, A) ’ o€ Mg(C) and A : a(A) — A is an algebra isomorphism}

Stab(A) := {a € AutX(C) ‘ a(A) = A as algebras}

While the objects of these two categorical groups look similar, and involve braided autoe-
quivalences « which preserve A as an algebra, there is a subtle difference. To describe an
object in Mg (C|A) we must choose a specific algebra isomorphism A : a(A) — A, while
to describe an object in Mg(fl), we merely require the existence of such a A. The mor-
phisms between such pairs are monoidal natural transformations which must be compatible
with these specific choices of algebra isomorphisms. We refer the reader to Definition 4.1
below for the preceise definitions of these morphisms. However, observe that there is an
obvious forgetful monoidal functor F : Aut®(C|A) — Stab(A) C Aut(C) which forgets
the specific choice of A.

Theorem A. There is a canonical strong monoidal functor F 4 : Aut® (C|A) — Aut® (C°).
Given any categorical action (p,p) : G — Mg(C) whose image lies in Stabg(A), lifts to
Mg(CM) are in bijective correspondence with G-equivariant algebra structures A = {\9 :
g(A) = A}lgeq. Thus a G-equivariant algebra structure induces a canonical categorical
action G — Mg((ﬁ'}i’c).



37 Stab®(A) —— AutX(C)

Aut? (C°)

We refer the reader to section 4.2 for more details and the proof of Theorem A. This
theorem is telling us that if symmetry is categorically preserved, then the group G acts
consistently by braided autoequivalences on the phase C};’C after condensation. Physically,
this means there is no categorical reason which forces spontaneous symmetry breaking.

Now having an action of G on CIXC is not sufficient to specify a SETO. In gen-
eral, we need an entire G-crossed braided extension of C. Given a categorical action
(pp) : G — Mg (C¢¢), there is an obstruction to the existence of such an extension
04 € H*(G,U(1)) [25], which is known as the anomaly of the symmetry fractionalization
class (p, i) [13]. In Theorem B below, we show that if this anomaly vanishes for the action
on C, then it must also vanish for the action on Cffc constructed in Theorem A. However,
if the SETO C has an anomalous symmetry fractionalization class o4 € H*(G,U(1)), we
have not yet determined whether the phase C}ffc after anyon condensation is anomalous or
not [26]. We leave this question for future study.

Theorem B. Suppose F is a G-crossed braided extension of C with G-crossed braiding [,
and let Fy be the right A-modules in F. Fach G-equivariant algebra structure A\ induces
a canonical G-crossed braided extension £ C Fa of C}Xc such that gauging commutes with
condensation.

loc
CA

Condense/érrr’ﬁ Ytllge lifted G action
C &C
gauge G actiok‘ /_:frr:;dense (AN)
fG

Indeed, since A € C = F, the g-graded component £; C (Fa)y of £ C Fa consists of the
g-local modules for A in (F, ), which are the A-modules (M, r) € (Fa)q such that

T:TOBAMO()\g@idM)OBMﬂ.

We refer the reader to section 4.3 for more details and the proof of Theorem B. We re-
mark that we take this theorem as strong evidence that our definition of symmetry being



categorically preserved is the strongest possible definition available at the categorical level.
We also point out [19, section 5.2], where the authors have a symmetry preservation result
with a similar flavor to Theorem B, but in a different context.

It is now natural to ask how one can determine if symmetry is categorically preserved
or broken for a given categorical action G — Mg (C). Clearly a first obstruction is that
the image of G must lie in the full categorical subgroup Mg (A) C Mg (C). In section 3
below, we discuss the obstruction to the existence of a (G-equivariant algebra structure
given a categorical action G — Stab%(A) C Aut2(C). We begin by showing there is an
exact sequence of groups

1 —— Aute(A) —— Autpe(I(A) —> G —— 1 (1.1)

where Autc(A) is the group of algebra automorphisms of A € C, I : C — C% is the
right adjoint of the forgetful functor C¥ — C, and Autec(I(A)) is the group of algebra
automorphisms of I(A) € CC.

Theorem C. Splittings of the exact sequence (1.1) are in bijective correspondence with
G-equivariant algebra structures A on A € C.

Thus the failure of the short exact sequence (1.1) to split forces symmetry to be
broken under anyon condensation, independent of the microscopic energetics. If the exact
sequence does not split for the whole group G but there is a subgroup H C G which admits
a splitting, then the total symmetry G must break, but is allowed to break down to H. If
H C G admits no splitting, however, then the symmetry G can never break down to H.

If the exact sequence (1.1) splits and G symmetry is preserved after condensing A, there
is also a physical consequence for its inequivalent splittings: they correspond to different
gapped G-symmetry phases obtained by A condensation. This point will be illustrated by
example section 5.3 using the toric code.

We emphasize that Theorem C applies to a generic SETO, no matter whether it is a
regular SETO realized in two-dimensional (2d) lattice models with onsite symmetries, or
an anomalous SETO realized on the 2d surface of a three-dimensional SPT phase. In other
words, the symmetry breaking rules for anyon condensation transitions is valid irrespective
of the obstruction o4 € H*(G,U(1)) for a 2d SETO.

We examine many examples in detail in section 5. We begin with Landau Theory in
section 5.1, followed by the Toric Code in section 5.2, and stable G-actions where g = id¢ for
all g € GG in section 5.3. In section 5.4, we give a universal example using Drinfeld doubles
of finite groups, showing that any prescribed exact sequence of finite groups can arise as the
second obstruction of categorical symmetry preservation (1.1). In section 5.5, we include
examples where symmetry must be either automatically categorically preserved or broken.

Finally, in section 6 below, we give an application to algebraic quantum field theory.
Given a rational conformal net B, whose representation category Rep(B) is a UMTC,
extensions A D B correspond to irreducible @Q-systems in Rep(B), a.k.a. connected étale
C* Frobenius algebras A € Rep(B) [27, 28]. We prove in Proposition 6.3 that a global
symmetry G of B extends to A only if the associated categorical action G — Mg(C) lies



in Stab%r (A). Moreover, extensions A D B are in bijective correspondence with splittings
of the exact sequence (1.1).

2 Categorical groups, condensation, and gauging

In this section, we give the requisite backgound on categorical groups,
(de)equivariantization for fusion categories, and condensation and gauging for braided
fusion categories. We refer the reader to [24] for background on tensor categories, module
categories, algebra objects, and module objects.

2.1 Categorical group actions and levels of symmetry

In this article, we identify a group G with the categorical 0-group which has one object
and Hom(x — %) = G with composition given by the group law.

Definition 2.1. A categorical (1-)group is a 2-category with one object x, every 1-
morphism is invertible up to a 2-morphism, and all 2-morphisms are invertible.

Given a categorical group, we obtain a group by truncation, where we identify all
isomorphic 1-morphisms, and we forget the 2-morphisms.

Notation 2.2. We use a sans-serif font with 1 underline to denote a categorical 1-group G,
and its truncation to a group is denoted without an underline by G. We use the standard
font with serifs for a group G, and we denote the categorical 1-group obtained by only
adding identitiy morphisms at level 2 by G. Thus the sans-serif font G should signify to the
reader that some information has been lost from G, while G has lost no information from G.

Definition 2.3. Given a categorical group G, we define m(G) := {*}, m1(G) is the group
of equivalence classes of automorphisms of %, and m2(G) is the group of automorphisms of
id.

Example 2.4 (Sinh, [29, section 4.2]). Suppose we have a tuple (H, A, m,w) where H
is a group, A is an abelian group, m : H — Aut(A) is a group homomorphism, and
w € Z3(H, A, m). From this data, we can construct a categorical group G := G(H, A, 7,w)
with 1-morphism set H with composition given by the group law, and 2-morphism set
Hom(h, k) = 0p=1A for h,k € H. The homomorphism 7 satisfies

id), ®a = mp(a) ® id, € End(h) Vhe H,a€ A,

and the associator 2-morphisms (h®@ k) ® ¢ — h® (k® L) for h, k,¢ € H are determined by
the 3-cocycle w. This immediately implies 71(G) = H and m2(G) = A. It is straightforward
to verify that cohomologous 3-cocycles give equivalent categorical groups. Moreover, every
categorical group is equivalent to one of this form.

Definition 2.5. For a semisimple linear category C, Aut(C) is the categorical group with
End(x) the set of autoequivalences of C and 2-morphisms natural isomorphisms of functors.

For a (semisimple) tensor category C, Autg(C) is the categorical group with End(x)
the set of tensor autoequivalences of C and 2-morphisms monoidal natural isomorphisms
of tensor functors.



For a (semisimple) braided tensor category C, Mg (C) is the categorical group with
End(x) the set of braided tensor autoequivalences of C and 2-morphisms monoidal natural
isomorphisms of tensor functors.

The next definition is based on [13, 30].

Definition 2.6. Suppose C is a (semisimple) tensor category and G is a group. There are
two levels of symmetry action in this setting:

(1) A first level symmetry action is a group homomorphism p : G — Autg/(C).

(2) A second level symmetry action, also called a categorical G-action, is a monoidal functor
(p,i) : G — Autg(C). Notice that a second level symmetry decategorifies to a first
level symmetry.

Observe that there are analogous definitions of first and second level symmetry actions
when C is just a semisimple category, where the targets are Aut(C) and Aut(C) respectively.

Now suppose C is a non-degenerately braided fusion category. We now have three
levels of symmetry action:

(1) A first level symmetry action is a homomorphism p : G — Autg(C).

(2) A second level symmetry action, also called a categorical G-action, is a monoidal functor
p:G — Mg (C). Again, a second level symmetry decategorifies to a first level
symimetry.

(3) A third level symmetry action is a G-crossed braided extension of C. The restriction
of the G-action to a monoidal functor G — Mg (C) is a second level symmetry.

2.2 (De)equivariantization, condensation, and gauging

We now rapidly recall the notions of (de)equivariantization, condensation, and gauging. A
general reference for this material is the book [24]. Other references include [30-33]. For
this section, C is a fusion category.

Notation 2.7. Suppose (p, it) : G — Autg (C) is a categorical action, where the tensorator
p = {pgn = p(g) o p(h) — p(gh)}gnec is a family of monoidal natural isomorphisms
satisfying associativity and unitality axioms. To ease the notation, we still write g for p(g).
We denote the tensorator of g by ¢9 = {1/1271) : g(a) @ g(b) = g(a @ b)}apec-

By [34, Thm. 1.1], one may assume that the action is strict, so that g o h = gh for all
g,h € G. However, for the sake of generality, we will only assume strict unitality of the

action:

e Each monoidal functor (g,v9) is unital [34, Prop. 3.1], i.e., for all g € G, g(1¢) = 1¢
and g(idy,) = idy,, and

e c=idc,eog=goe=gand pge = e,y = id, for all g € G.



Definition 2.8. A G-equivariant object is a pair (X,\) where X € C and A = {\? :
9(X) = X}geq is a family of isomorphisms such that the following diagram commutes for
all g, h € G:
h
— g(X)
ujfhl L\g (2.1)
A9h

gh(X) 22 X.

Given G-equivariant objects (X, \), (Y, ), we call a morphism f € C(X — Y) a G-
equivariant morphism if the following diagram commutes for all g € G:

g(X) 2 X
g(f)l f (2:2)
g(Y) 5 v

The equivariantization C© is the category whose objects are G-equivariant objects and
whose morphisms are G-equivariant morphisms. The tensor product in C¢ is given by

(X, ) @ (Y k) = (X @Y, (M @ k) o (%)) (2.3)
and the unit object is (1¢,idy,).

Remark 2.9. Observe that when the G-action is strictly unital, the commutativity of (2.1)
with g = h = e shows that any G-equivariant object (X, \) must have A® = idx.

The inverse process to equivariantization is de-equivariantization.

Definition 2.10. Suppose ¢ : Rep(G) — Z(C) is a fully faithful braided tensor functor
such that the composite For: Rep(G) — C is still fully faithful, where F': Z(C) — C is the
forgetful functor. (Such an inclusion Rep(G) C Z(C) is called a Tannakian subcategory.)
Let O(G) € Rep(G) denote the algebra object of functions G — C whose multiplication
is given by x4 - xn = 0g=nXg Where x4(h) = 0p—y for g,h € G. Then +(O(G)) is an étale
algebra object in C whose category of right modules C¢ := C,o(q)) is a fusion category,
called the de-equivariantization of C.

More generally, given a separable algebra object A € C which lifts to a commutative
(and thus étale) algebra in the Drinfeld center Z(C), the category C4 of right A-modules
is a tensor category which is called the de-equivariantization of C by A. In more detail, if
ea={eac: A®c = c® A}eec is a half-braiding for A such that m,i are morphisms in
Z(C), we define the tensor product of right A-modules (M, rs) and (N,ry) as the image
of the separability idempotent

PM,N ‘= (T’M ®7"N) o (idM®A ®6A,N) o (id]\/[ ®(Soi) ®id]v) S CA(M@N — M@N) (2.4)

where s € Homg_4(A — A® A) is a splitting such that mos =id4. When A is connected,
s is unique, since Homg_4(A - A® A) 2 C(A — 1) = Ci similar to [31, figure 4].



Fact 2.11. For fusion categories, the maps C — C% and D — D¢ are mutually inverse up
to equivalence; we refer the reader to [24, Rem. 8.23.5] for more details.

In the presence of a braiding 5 on C, given an algebra object A € C, we get a canonical
lift of A to Z(C) using the half-braiding S4. We can ask whether the de-equivariantization
CA carries a canonical braiding. In general, this is not the case, so we pass to the subcat-
egory C¢ of local/dyslectic right modules (M, r) € C4 which satisfy r o B4 a1 0 B4 = 7.
The braiding 8 defines a canonical braiding on C}Xc. The braided fusion category C}Xc is

called the condensation of C by A.

Example 2.12. Let C be a braided fusion category. An invertible object g € C is called a
boson or simple-current if B4 4 = idggy. If B C Inv(C) is a subgroup consisting of bosons,
then the full subcategory of C generated by B is braided equivalent to Rep(é), where B
is the dual group of B. We call O(E) the étale algebra induced by the group of bosons
B. The condensation CSCA is also referred to as the braided tensor category obtained by

(B)

condensing the bosons B.

An inverse process to condensing a connected étale algebra of the form O(G) €
Rep(G) C C is given by gauging [13, 30], which is a two step process consisting of:

(1) finding a G-crossed braided extension F of C, which carries a canonical categorical
action G — Autg (F), and

(2) taking the equivariantization FC.

Definition 2.13 (24, section 8.24]). A G-crossed braided extension of C based on a cat-
egorical action (p, ) : G — Mg (C) is a fusion category F equipped with the following
structure:

e F is a faithfully G-graded extension of C, i.e. F = @ F, with F. =C, X,®Y), € Fyy
for every g,h € G, and X, € Fy, and Y}, € Fy,.

e There is an action (p”, ") : G — Auty(F) extending the action on F. = C such
that g(Fp) C Fypg— for all g,h € G.

e There is a family of natural isomorphisms
Bxy: X®Y = g(Y)® X, geG,XeF,YeF (2.5)
called the G-crossed braiding, which extends the braiding 8 on F, = C.

Moreover, this data must satisfy the following coherence identities:

(hp)y ®idy(x)) o (¢z(y)7x)_1 0 g(Bxy) o ¥y = (Bhhg1.5)y ®idg(x))

© By(x).g(v) VX € Fp
(VY. ; ®@idx) o (idgy) ®Bx,z) o (Bxy ®idz) = Bx yez VX € F,
(1) 4)z ®@idxey) © (Bxpz) @idy) o (idx ®By,z) = Bxev.z VX €Cy, Y €Cp

,10,



Fact 2.14. When the G-action on C is strict, which we may assume by [34, Thm. 1.1], every
G-crossed braided extension F of C is equivalent to a strict GG-crossed braided extension
of C by [34, Thm. 5.6]. That is, if we only consider strict G-actions, we do not lose any
G-crossed braided extensions.

Fact 2.15. For non-degenerately braided fusion categories, condensing O(G) and gauging
a second level categorical G-symmetry (taking the equivariantization of a G-crossed
braided extension) are mutually inverse; we refer the reader to [32, section 4] and [30] for
more details.

Remark 2.16. As mentioned above, we can condense any étale algebra in a nondegen-
erately braided fusion category, not just one of the form O(G). It is an important open
question to find the inverse process to this more general condensation. The recent arti-
cle [35] provides an interesting step in this direction.

3 Obstruction for equivariant algebras

Suppose C is a tensor category and (p, i) : G — Autg (C) is a categorical action. We assume
Notation 2.7 to ease the notation. In this section, we study a connected G-stable algebra
object in C, i.e., a connected algebra object (A, m,i) € C such that g(A) = A as algebras
for all g € G.

Our first task is to determine when A has the structure of a G-equivariant algebra
object, i.e. an algebra in the equivariantization C¢, with the same multiplication map m
and unit 7. It is easy to show that this is equivalent to having a G-equivaraint structure
A= {N :g(A) = A}yeq on the object A such that each A is an algebra isomorphism
(where the algebra g(A) has multiplication and unit g(m)o ug‘,g, g(1) respectively). That is,
we must supply a family of algebra isomorphisms A = {\9 : g(A) — A} cq such that (2.1)
holds. We prove that the obstruction to the existence of such a family X is a certain short
exact sequence of groups, and the data of a splitting for this sequence is equivalent to the
data of a G-equivariant algebra structure. If Aut¢(A) is abelian, this is equivalent to the
vanishing of a certain 2-cocycle in H?(G, Autc(A)) (see section 3.2 below).

3.1 The exact sequence associated to a G-stable algebra object

To construct our exact sequence for our G-stable algebra A, we construct a new larger
G-equivariant algebra object. Recall that there is a forgetful tensor functor F : C¢ — C
which forgets the G-equivariant structure. Let I : C — C be the right adjoint of F', which
we think of as an ‘induction’ functor. Since F' is a tensor functor, I can be canonically
endowed with the structure of a lax monoidal functor [36], which maps algebra objects to
algebra objects. We now give the explicit description of the algebra I(A).

Definition 3.1. We define the object I(A) := @, 9(A4). The multiplication morphism
n € C9(I(A) ® I(A) — I(A)) is given on components by

ng = Og=nbg—t - g(m) 0 V% 4 : g(A) @ h(A) = k(A)
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The unit morphism j € C%(1 — I(A)) is given on components by

Jg:=9(1) : 1 — g(A).

It is straightforward to verify that the unit and multiplication are unital and associative.
The G-equivariant structure v = {v9 : g(I(A)) = I(A)}4ec is given on components by

v =y g(h(A)) — (gh)(A).

Again, it is straightforward to verify that n and j are G-equivariant maps, and thus give
well-defined morphisms in C%.

We now construct a short exact sequence
1 —— Aute(A) —— Autee(I(A)) —/— G —— 1. (3.1)
We first analyze Autye(I(A)).
Lemma 3.2. Suppose f € Autea(I(A)).

(1) For h,k € G, fny: k(A) = h(A) is equal to uﬁe o h(fop-1x) 0 (i, 1)~ . Hence f is
completely determined by its components feq: g(A) — A.

(2) There is a unique g € G such that foq # 0, and fey : g(A) — A is an algebra
isomorphism.

(3) For every h € G, there are unique g,k € G such that fon, # 0 # fu .

Proof. Note (1) follows immediately since f : I(A) — I(A) is G-equivariant from (2.2).

To prove (2), we first note that for each g € G, there is a scalar v, € C such that
fegog(i) =74-1€C(1 - A) =C-i. Looking at the e-component of the unitality axiom
for (I(A),n,j) gives the identity

idA:Zmo1/}é4’Ao((fe7hoh(i))®ldA (Z’yh>mo (1®idy) = (Z’yh> idy,

heG heG heG@

which immediately implies ), 75, = 1. Fix h € G such that v, # 0. For g # h, looking at
the component nj,  : h(4) ® g(A) — A yields the identity

oYM 0 (fuh ® feg) = Sngfeg © 9(m) 0 " =0
Precomposing with h(7) ® idg4) yields
0=mo ((fenoh(i)) @ feg) =Tn-mo(i® feg) =" feg-

Since 75, # 0, we conclude f., = 0 whenever g # h, proving (2). Notice this also proves
v = 1. That f. 4 : g(A) — Ais an algebra isomorphism follows immediately by looking at
components as above.

Now (3) follows immediately by (1) and (2). O
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Proposition 3.3. Defining ¢ : Aute(A) = Autea(I(A)) by o(f)ng = Sn=g - 9(f) gives a
well-defined injective group homomorphism.

Proof. Given f € Autc(A), define the morphism ¢(f)g 5 := 6g=n - g(f). It is easy to verify
this is an algebra automorphism of I(A). Furthermore, since ¢(f)ec = f, this is clearly
injective. O

Proposition 3.4. Defining 7 : Autea(I(A)) — G by f +— g where g € G is the unique
element such that f. 4 # 0 gives a group homomorphism.

Proof. Suppose f!, f? € Autoe(I(A)), and consider f! o f2. Then 7(f! o f2) is the unique
element g € G such that (f!o f?)., # 0. We calculate that

(fl o fQ)e,g = Z fel,h o f}%,g = felﬂr(fl) © fz(]u) g
heG
Now notice that fg(fl) g # 0 if and only if ffb(fl)_lg # 0. Hence m(f')~tg = m(f?), which
immediately implies w(f! o f2) = g = 7(f!) - 7(f?). O]

Lemma 3.5. Fiz g € G. Given an algebra isomorphism N : g(A) — A, there is a unique
[ € Autea(I(A)) such that fe g = N9. The assignment N9 — f is a bijection between the
set of algebra isomorphisms g(A) — A and the pre-image 7 1(g).

Proof. Let g € G, and let A9 : g(A) — A be an algebra isomorphism. If there is an f €
Autec (I(A)) such that fo , = A9, then by Lemma 3.2, for arbitrary h, k € G, we must have

Frk = Sh=ng - h(A) © (i 1)~ (3:2)

(Notice here that ,uﬁe = idy(4) as discussed in Notation 2.7.) We claim defining f in
this way yields an algebra automorphism of I(A). To see that f is compatible with
multiplication map n for I(A), we compute

h(m) oy o (frk ® fay)

= O=i=hg h(m) 1/’;?140( Nhh 1) 1®h(>\g)°(ﬂﬁh—1k)fl)
= Gketong h(m) o Y o (h(N) & hw)) o ((ptn1) 7" @ (ity1) ™)
= Okmi=ng h(m o (A ® N)) o g D94 (w;‘,g)—l@(uﬁg)—l)

= Sk—i=ng (N 0 g(m)) o k(1) o T/Jh ((Nﬂg)_1®(ﬂ’fig)_l)

= Skmt0k—ng h(A\) 0 h(g(m)) o pcs o (i) ™ @ (ity) ™)
= Ok—iOk—ng N(N) o (13 g) "o hg(m) o ¢;‘?§A
= Okt S © k(m) o

We omit the easier proof that f is compatible with the unit map j of I(A).

Now since f is completely determined by fe 4, and 7(f) = g by definition of 7, we see
that the assignment A9 — f is a bijection. O
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Theorem 3.6. The sequence (3.1) is exact.

Proof. By Proposition 3.3, ¢ is injective. By Lemma 3.5, 7 is surjective. It remains to
show that ker(m) = ¢(Autc(A)). Suppose f € ker(w). By Lemma 3.2, f is determined by
translations of the algebra automorphism f..: A — A in Autc(A). Thus f = ¢(fe), and
we are finished. O

3.2 Exact sequences of groups and cohomology

We now include a short aside to discuss splitting of exact sequences and its relation to
cohomology. All this material is well-known, and we refer the reader to [37] for more
details.

Consider a short exact sequence of groups

1 N—»E-T"5@G 1. (3.3)

Such a short exact sequence induces a homomorphism a : G — Out(N). Now starting with
a homomorphism a : G — Out(N), it is natural to ask what are the possible extensions of
G by N that induce a. There may be no such extensions, but if one exists, the set of all
possible extensions forms a torsor over the group H?(G, Z(N), ).

Recall that a splitting for the exact sequence (3.3)

1 N——E">a 1 (3.4)

~ -

(e

is a group homomorphism ¢ : G — E such that w o ¢ = id¢g, which is equivalent to the
existence of a group isomorphism E =2 N x G for some action of G on N. Given a splitting
o0:G — E and n € N, we get another splitting by defining 0,,(g9) := no(g)n~!. Hence N
acts on the set of splittings (3.4) by conjugation. We call two splittings equivalent if they
are in the same N-conjugacy class.

When N is abelian, Out(/N) = Aut(XN), and thus there exists a canonical extension as-
sociated to any « : G — Aut(N), namely the semi-direct product. This canonical extension
is a canonical basepoint for our torsor, and thus extensions inducing « are classified by the
group H?(G, N, «a). Moreover, the extension is split if and only if the assocaited 2-cocycle
w € H?(G, N, a) is trivial, and splittings exactly correspond to functions v : G — N sat-
isfying v(g)ag(v(h)) = v(gh), i.e., v is a 1-cocycle in Z*(G, N, ). Two splittings are then
equivalent if and only if they are cohomologous [37, Ch. IV, Prop. 2.3].

3.3 The splitting obstruction and G-equivariance
We now prove our main theorem for this section.

Theorem 3.7. The data of a splitting for the exact sequence (3.1) is equivalent to the data
of a G-equivariant algebra structure for A.

Proof. Suppose 0 : G — Autea(I(A)) is a section. Then for each g € G, a(g) € 7 (g),
and o(g) is completely determined by the algebra isomorphism A\ := 0(g)e,q : g(4) = A
by Lemma 3.5.
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We now look at the equation o(g)oo(h) = o(gh) € Autee(I(A)), which in components
is > 2ieqo(9)ijoo(h)jr = o(gh)iy. By the definition of the multiplication morphism n for
I(A), both sides are zero unless i = kh~'g~!, and thus this equation is equivalent to

o(9)kh=1g=1,kh=1 © O(h)gn-1k = O (gh)kn-1g-1 - (3.5)
Using the formula (3.2), we can rewrite

o(9)kn-1g-1 4 = kh™'g7 (A9) o (N?hflgfl,g)_l

o(h)pp-14 = kh™'(A") o (Mf?h—l,h)_l
o(gh)gn-1g-1 = kh™'g7 (A9") o (M?hflgfl,gh)_l

Thus (3.5) is equivalent to the following equation in terms of A = {\9 : g(4) = A}yeq:

kh™tg™ (V) o (upg-1gm1 )~ o KRN © (1 ) ™1 = KR ) 0 (i1 g1 ) "
(3.6)
We claim that (3.6) holds for all g, h, k € G if and only if (A, m, i, \) is a G-equivariant
algebra. For the forward direction, if (3.6) holds, then setting h = k, we obtain for all
g,h €@,

g M) o (ipa ) T o N = g T ) o (e )
Now applying g to both sides, post-composing with #19479717 and simplifying gives the G-
equivariance condition (2.1). Conversely, if A\; : g(A) — A are a family of algebra iso-
morphisms making (A4,m,i,\) a G-equivariant algebra, we apply kh~1g~! to (2.1) and
pre-compose with (uﬁh_lg_lyg)*l. Again, simplifying gives (3.6).
We have thus proven that our section o is a splitting if and only if A9 := o(g)eq :
g(A) — A defines a G-equivariant algebra structure for A. O

Remark 3.8. Viewing the splitting of the exact sequence (3.1) as an obstruction bears
many similarities to the results of [38]. There, the authors investigate module categories
over G-graded fusion categories, and they quickly reduce their problem to studying G-
equivariant module categories. The 2-category of modules, module functors, and natural
transformations is 2-equivalent to the 2-category of algebras, bimodules and intertwiners,
so unsurprisingly, they obtain an obstruction for G-equivariant module categories which is
the splitting of their short exact sequence (8.1).

Our situation differs as a truncation of theirs in the following sense. Since we are
motivated by the physics of anyon condensation, we are effectively considering module
tensor categories with basepoints [39] over the non-degenerate braided fusion category
C. Indeed, given a connected étale algebra A € C, we get a fully faithful braided tensor
functor ®* : C — Z(C4) =C &C}fc, where the bar denotes taking the opposite braiding [33,
Cor. 3.30]. The functor ®* equips the tensor category C4 with the structure of a module

tensor category over C with simple basepoint A € C4.

Now pointed module tensor functors between module tensor categories with basepoint
do not have an additional layer of structure, as there is at most one natural transformation
between any two which is necessarily a natural isomorphism [40, Lem. 3.5]. Thus we
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may safely truncate to the 1-category of connected étale algebras and algebra morphisms
without losing any information.

As a 1-category has one fewer layer of structure, we have one fewer obstruction. How-
ever, our obstruction is not simply a special case of theirs, since the group of automorphisms
of an algebra (on which our sequence is based) and the group of equivalence classes of in-
vertible bimodules (on which their exact sequence is based) are not the same in general.

4 Equivariant algebras and induced categorical actions

In this section, we show how given a categorical action of G on C together with a G-
equivariant structure A on an algebra A € C, we get a canonical induced categorical action
on the de-equivariantized or condensed theory. We do this in three different stages.

First, in section 4.1 below, we consider a fusion category C, a connected separable
algebra object A € C which lifts to a commutative (and thus étale) algebra object (A,e4) €
Z(C), and a central G-equivariant structure A on A, ie., A9 € Z(C)(g(A) — A) for all
g € G. We then show we get a canonical induced categorical action G — Aut (C4).

Second, in section 4.2 below, we consider a non-degenerately braided fusion category
C, a connected étale algebra object A € C, and a G-equivariant structure A on A. We then
show we get a canonical induced categorical action G — Mg(Cfc).

Third, in section 4.3, we combine the above two situations and consider the case of a
connected étale algebra in a non-degenerately braided fusion category C, together with an
action G — Mg (C) and a compatible G-crossed braided extension C C F. We apply the
earlier results to show that for each G-equivariant algebra structure (A, \), there exists a
canonical G-crossed braided extension C'{° C £, compatible with the action G — Mg (Clo°)
constructed in section 4.2. We also demonstrate the compatibility of £ and F by showing
that gauging and condensation commute (see Theorem 4.15).

4.1 The induced action on C4

We now show that given a separable algebra object A € C which lifts to a commutative (and
thus étale) algebra object (A,e4) € Z(C), together with a central G-equivariant structure
A on A, a categorical actiom (p, ) : G — Autg (C) induces a canonical categorical action
(pyo 1)+ G — Autg (Ca). First, we define a number of categorical groups and describe how
they are related.

Definition 4.1. We define the following groups and categorical groups:

e Staby(A) C Autg(C) is the full categorical subgroup whose 1-morphisms are o €

Aut (C)
Aut (C)

such that a(A) =2 A as algebras with composition of 1-morphisms from
, and whose 2-morphisms are monoidal natural isomorphisms.

e Stabg (A) is the group truncation (or 1) of Stabg (A), whose elements are equivalence
classes of a € Autg(C) such that a(A4) = A.

e Autc(A) is the group of algebra isomorphisms A : A — A.
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e Autg(C|A) is the categorical 1-group whose 1-morphisms are triples (a, ), A*) with
(a,9*) € Auty(C) and A* : a(A) — A is an algebra isomorphism with strictly
associative composition of 1-morphisms given by

(@, % X%) 0 (7,47, A7) = (@ oy, a(¢7) 0 %, A% 0 a(A7)),

and whose 2-morphisms 7 : (a, ¥, \¥) = (7,97, \7) are monoidal natural isomor-
phisms 7 : (a, ) = (7,%7) such that A7 ony = A“.

e Autg(C|A) is the truncated group, whose elements are equivalence classes of pairs
(o, \*) as above. We denote the equivalence class of (a, A%) by [ar, A?].

Recall from [24, Prop. 4.14.3] that ma(Aut,, (C)) := Autg(ide) = Hom(G — C*), where
G is the universal grading group of the fusion category C. Since Stabgy(A) C Autg(C) is a
full categorical 1-subgroup, it has the same 5.

We say a character v € Hom(G — C*) trivializes the object a € C if v(g) = 1 for any
homogenous g-graded subobject by C a. Under the isomorphism 73 (Autg (C)) = Hom(G —
C*), it is easy to verify that

m2(Autg, (C|A)) = {y € Hom(G — C*) | v trivializes A} .

The following result is analogous to [41, Cor. 3.7] in the presence of an algebra object
AelC.

Proposition 4.2. Let
Aut, (C|A) —=— Staby (A)

be the forgetful monoidal functor (a, \*) +— «. There is a decategorified exact sequence of
groups

1 — my(Auty(ClA)) — Hom(G — CX) — Aute(A) 294 Autg (€lA) > Stabg(A) — 1.

Proof. The first injection is described right before the proposition. Given a character of
the universal grading group v € Hom(G — C*), we define an automorphism of the object
AcChby ), =), 47(gr(a))ids, where gr(a) € G is the group element grading the simple
object a € Irr(C) appearing in the direct sum decomposition of ¢. Since gr(a) gr(b) = gr(c)
for any subobject ¢ < a®b, A\, is an algebra automorphism. Furthermore, characters which
act trivially are obviously identified with mo(Autg(C|A)) as above.

The map [ide, -] : Aute(A) — Autg(C|A) sends ¥ € Aute(A) to [ide, v]. This is trivial
precisely if we have a monoidal natural automorphism of the identity functor » : id¢ — id¢
such that n4 = 1. But recall there is a canonical isomorphism between Autg(ide) =
Hom(G — C*) by [24, Prop. 4.14.3]. Thus the kernel of [id¢, -] is precisely the set of
automorphisms that are restrictions of the characters of the universal grading group.

Finally, the kernel of the forgetful functor F' is exactly the image of Aut¢(A), and F
is surjective by definition of Stabg(A). O
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Definition 4.3. We now define a functor of categorical 1-groups F, : Autg(C|A) —
Aut(Cy). First, given (a, 9%, A*) € Aut (C|A), we define F 4 (a, 9, X) € Aut(C4) as follows.
Given a right A-module (M,r: M ® A — A), the object a(M) € C carries the structure of
a right A-module via

a(r) o yfy . © (idagary @A) 7). (4.1)

It is straightforward to verify that for f € Ca(M — N), a(f) € Ca(a(M) — a(N)).
Hence F 4(a,®, \%) is a well-defined object in Aut(C4). Notice that if 7 : (a, ¥, AY) =
(7,7, A7) and (M,r) € Ca, then ny : (M) — v(M) is an A-module map. Hence we
may define F 4 (1)) := F4(nu). Finally, it straightforward to show that F 4 is a strict
monoidal functor under the above definitions.

Definition 4.4. Now suppose the connected separable algebra A lifts to a commutative
algebra (A,e4) € Z(C). Given (a, ) € Aut, (C) and (A,ea) € Z(C), there is a canonical
lift of a(A) to Z(C) given by

Ca(A)ale) = (U a) o aleac) oY . (4.2)

Moreover, the multiplication mg4) := a(ma) o Y3 4 and unit iy(a) = a(ia) are automat-
ically morphisms in Z(C) using the half-braiding e, 4) from (4.2).
We define:

e Stab (A,eq) C Stabg(A) is the full categorical subgroup whose 1-morphisms a €
Aut, (C) satisfy that there exists an algebra isomorphism A : Z(C)(a(A) — A).
Notice that A being a morphism in Z(C) is equivalent to

ea(A),a(e) = (idae) @A) 0 eac o (A®idye) Ve eC. (4.3)

o Auty(C|A,es) C Autgy(C|A) is the full categorical subgroup whose 1-morphisms
(o, ™, A¥) are such that \* € Z(C)(a(A) — A) is an algebra isomorphism.

We now define the underlying functor F5(a, ¢, A\%) € Aut(C4) as in Definition 4.3.
Lemma 4.5. The tensorator ¥ is compatible with the separability idempotents (2.4)
VAN © Pa(M),a(N) = (PM,N) © Yy N VM, N € Ca.
Thus 1® endows F3 (o, )™, X\¥) with the structure of a tensor functor in Autg(Ca).

Proof. We write ¥ = ¢¥® and A = A% to ease the notation. We also write a 1 with multiple
subscripts to denote a composite of ¢’s, as the order does not matter via associativity of
. Let s: A = A® A be the splitting of m : A® A — A which is unique as A is connected.
By the uniqueness of s and as A\ : a(4) — A is an algebra isomorphism, we see that

A rTeoAxHosoi= 1/’271,4 oa(s)ortoi= wZ}A o a(s) o afi). (4.4)
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We calculate

YM,N O Pa(M),a(N)
=YunNo (ra(M) ®7’a(N)) o (ida(M)®A ®€A7a(N)) o (ida(M) ®(so1t) ®ida(N))
=a(ry @ry) oY AN, A
o (ida(ar) @A™ @ ((idg(v) ®A 1) 0 €4 a(n)) ®ida) 0 (Ida(ar) @(s01) ®idy(n))

= a(rpy®@ryN)oYn,anN,A
(4.3)

o (ida(M) A (ea(Am(N) o ()\71 ®ida(N))) ®ida)o (ida(M) ®(s01) ®ida(N))

i a(ry @ry) ot an,a(idyar) ®@ida ®(1/)Kf,1,4 oalean)oPanN))

o (ida(ary (AT @A) 0504) ®ida(ny)

(54) a(ry @ry) ot an,a°0(idyar) ®@ida ®(¢X/,1AOOZ(€A,N) o1haN))

o (ida(an) @(¥4 4 0 a(s) o (i) @ida))

=a(pm,N)oVmN- O

We conclude that F'% is a strict monoidal functor of categorical groups.
We now show that a central G-equivariant structure A on A exactly correspond to
liftings of the categorical action G — Stabg (A, e4) to Aut, (C|A,eq).

- e (4.5)

Autg (Ca) —— Aut(Ca)

Proposition 4.6. The data of a lifting of (p, 1) to Autg (C|A, e4) is equivalent to a central
G-equivariant algebra structure X on (A, e).

Proof. A lifting of (p, ;1) to a monoidal functor (p, ) : G — Autg(C|A,en) is exactly the

data of an algebra isomorphism A € Z(C)(g(A) — A) for all ¢ € G which satisfies the
monoidality axiom (2.1). O

Remark 4.7. Given a categorical action G — Stab,, (A) in the absence of a half braiding
on A, the data of a lift G — Autg(C|A) is equivalent to a G-equivariant algebra structure
A on A. Since we will not use this result, we leave it to the interested reader.

We conclude that given a G-equivariant structure A on A, (p,p) : G — Auty(C)
induces a canonical categorical action (p,, ) : G — Aut(Ca) given by postcomposing the
lift of (p, ) from Remark 4.7 with I 4. Moreover, in the presence of a half-braiding e
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on A such that (A,eq) is commutative, given a central G-equivariant structure A on A,
Proposition 4.6 gives us a canonical categorical action (B‘i ) 2 G — Autg (Ca).

4.2 The induced action when C is non-degenerately braided

Suppose now that C is a non-degenerately braided fusion category and (A,m,i) € C is a
connected étale algebra. In this setting, we define

e Stab(A) C Aut(C) is the full categorical subgroup whose 1-morphisms are braided
autoequivalences (o, y®) € Mg((ﬁ) such that there exists an algebra isomorphism
a(A) =2 A, and whose 2-morphisms are monoidal natural isomorphisms.

° ng(c |A) is the categorical group whose 1-morphisms are tuples (o, ®, A%) such
that (o,1®) € Aut?(C) and A\* : a(A) — A is an algebra isomorphism, and whose
2-morphisms 7 : (o, Y* A%) = (v,%7, A7) are monoidal natural isomorphisms 7 :
(o, ™) = (7,97) such that \Y onyg = A*.

Remark 4.8. Recall from [25, Prop. 7.3.ii] that we have a group isomorphism o : Inv(C) —
Ta(Aut? (C)) denoted a + @ which is determined by its value on a simple object ¢ € C
by the morphism in End¢(c) such that S 4 0 B4, = id, ®0¢. The isomorphism ¢® is called
the loop/ring operator because when C has a pivotal structure, we may represent c? for
arbitrary ¢ € C graphically by

[

ol = ad).

Notice that since Stabg(A) C Mg(C) is a full categorical subgroup, Wg(Stabg(A)) =
T2 (Mg (C)) = Inv(C). Now given a fixed ¢ € C, we have an exact sequence

1 —— ¢ NInv(C) —— Inv(C) —Z— Aute(c) (4.6)

where o.(a) := 0%, and ¢ NInv(C) is the subgroup of a € Inv(C) which are transparent to

c, le., Bc,a o ﬁa,c = ida@c-

Lemma 4.9. The group isomorphism o : Inv(C) — mo(Aut2(C)) from Remark 4.8 yields
a group isomorphism w2 (Aut (C|A)) = A’ NInv(C).

Proof. Suppose 7 is an automorphism of the identity (ide¢,ids) € Mg (C|A). Then by
Remark 4.8, 1 € m(Aut(C)), so n = o for some a € Inv(C). Now the condition that
idg on4 = id4 implies that 0% = id4, and thus @ must be transparent to A. ]

The following proposition is analogous to Proposition 4.2.

Proposition 4.10. Let
Aut®(C|A) —E— Stabb'(A)

be the forgetful functor. Then (4.6) extends to an exact sequence of groups

1 — A ATv(C) — Tnv(C) 25 Aute(A) 12 Autbr(cl4) £ Stab,(4) — 1.
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Proof. Observe A is in the kernel of the map A — [ide, ] € Autg(C]A) if and only if
there is a monoidal natural automorphism 7 : id¢ = id¢ such that A ons = id4. But by
Remark 4.8, when C is non-degenerately braided, the map Inv(C) > a — ¢% € Aut (idc)
is an isomorphism. Thus the kernel of [id¢, -] is precisely the image of o 4. Finally, notice
that kernel of F' is the set of [id¢, A] such that A : A — A is an algebra isomorphism, which
is precisely the image of [id¢, -] : Aute(A) — Autg(C|A). O

Analogous to Definition 4.4 and Lemma 4.5, there is a strict monoidal functor
F, : Aut? (C|A) — Autg (Ca).
Since every algebra isomorphism A\* € C(a(A) — A) is compatible with the braiding, we
no longer need to pass to Z(C).

Lemma 4.11. Suppose (o, p®,\*) € Aut® (C|A). The functor F 4(c, *, \*) € Auty(Ca)

preserves local modules in Cfc and is compatible with the braiding on lefl’c. Thus

F (0, 9%, X%) € Aut? (CK°).
Proof. We write 1) = ¢® and A = A% to ease the notation. Suppose (M,r) € C°. Then
since (v, %) € Aut(C), we have
a(r) o s a o (ida(ar ®A) 0 Baa(ar) © Ba(i) A
= a(r) 0 Yar,4 © Ba(ay,a(m) © Ba(ir)a(a) © (ida@an @A)
= a(roBan o Bu,a) o ¥ara o (idaar @A)
= a(r) oYp,A© (ida(M) ®)\71),

and thus a(M) € C}°. As the tensorator of F (a1, \) is exactly ¢, (a, 1) € Aut(C), and
the braiding of C¥° is exactly the braiding on C, we have that F 4(a, 1, \) is braided. [

We now see that analogous to Proposition 4.6, G-equivariant structures A on A corre-
spond to lifts of (p,u) : G — Stab2(A) to (pop) : G — Aut (C|A).

G

w‘

37 Stab®(A4) —— Aut¥(C)

% (47)
)\FA/A

Aut (CK°)

!
!
!
!
!
!
!
!
!
!
!
!
~

AutZ(C]A

4.3 Induced actions on G-crossed braided extensions

For this section, suppose C is a non-degenerately braided fusion category, A € C is a
connected étale algebra, and F = P, Fy is a G-crossed braided extension of C = Fe.
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We also assume we have a fixed G-equivariant algebra structure A on A. By [34] (see
Notation 2.7) and Remark 2.9, \* = id4. We claim we can construct a canonical G-
crossed braided extension & of C}ffc, which satisfies that the equivariantization £ can be
canonically identified as a braided tensor category with (F G)l(‘;i N That is, the following
diagram commutes:

loc
CA

Condensef:}—r,_,fﬁ Ylllge lifted G action
C &G
gauge G actiok‘ /-I"Irgjldense (A,N)
]:G

First, notice that since A € C = F., the G-crossed braiding § of F provides A with a
lift to Z(F), i.e., (A,Ba—) € Z(F). We immediately see that F4 is a tensor category.

Remark 4.12. Observe that since A € C = F., any right A-module decomposes as a
canonical direct sum of g-graded right A-modules, and that (F,)4 is a semisimple category
for all g € G. Hence Fy = P geG(}—g) A is manifestly a G-extension of the tensor category
Ca=(Fe)a-

As F is a G-crossed braided extension of C, we have a categorical action G — Autg (F).
Notice that our G-equivariant algbra structure A on A € C is central in F, as C = F.. By
Proposition 4.6, A gives us a lift of our categorical action to G — Autg (F|A). Postcom-
posing with the strict monoidal functor ' : Auty (F|A) — Autg (Fa), we get a categorical
action (p,,p) : G = Autgy(Fa). We now find a subcategory of F4 which is a G-crossed
braided extension of C9¢.

Definition 4.13. For g € GG, we define the category of g-local modules ff{loc C (Fg)a to
be the right A-modules (M, r) € (F,4)a such that

r=r0Banmo (N ®idar) o Bara- (4.9)

Notice F f‘_loc C (F4)a is a semisimple subcategory.
We define & = P ¢
E C F4 is closed under ® 4. Hence £ is manifestly a G-extension of & = ]:f(loc = C}ff".

]—"ffloc. It is straightforward to verify the full subcategory

One now verifies that the g-action on F4 maps h-local modules to ghg~'-local modules.
Hence & carries a categorical G-action.

Lemma 4.14. For all (M,ry) € fi_loc and (N,ry) € .7-"2_100, BM,N © PM,N = Pg(N),M ©
Bm,n where p denotes the corresponding separability idempotents from (2.4). Hence the
G-crossed braiding B of F descends to a G-crossed braiding of £.

Proof. Below, we write 1 = ¥9 and A = A9 to ease the notation. Let s € Homg_4(A — A®
A) be the splitting of m € Homa_4(A® A — A). Since s is unique as A is connected, (4.4)
holds. Moreover, by uniqueness of s and commutativity of A (m o 4,4 = m), we have

ﬁAAOS:S. (410)
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We now calculate that

BM,N O PM,N
= Buno(rm ®@ry) o (idyega ®@Ba,n) o (idy ®(s0i) ®idy)
= (idy(n) ®rar) © (Bu,y ®ida) o (idy ®Ba,n) o (idpea ®(ry o Ban))
o (idy ®(so0i) ®idy)
= (idgnvy ®rar) o (Bu,n ®@ida) o (idy @ry ®@ida) o (idygn ®(Ba,a 0 s01))

oy (o) Erar) © (B @ ida) © (idar Gy @ ida) o (idaray ©(s 01))

= ((9(rn) 0 n,4) @ (rar 0 By 0 (AT @idar))) o (idy @((ida ®X) 0 9ty 0 g(s 00))@n)
o Bum,N

i ((g(rn) 0 ¥n,a) @ (rar o Ban) © (idar ®((ida ®N) 091y 0 g(504))@N) © Bar,v

(4.4) ((9(rn) 0 ¥w.a) ® (rar o Banr) o (idy @((A' ®ida) 0 s 0 i)ON) 0 Bary

= Pg(N),M © BM,N-
Hence £ is a G-crossed braided extension of &, = ]:jfloc = Cljfc. O

Since our G-equivariant structure A on A gave us a categorical action (B N w) G —
Autg (Fa), we can take the G-equivariantization, which we denote by (F4)%* to emphasize
that the categorical G-action on F4 depends on A.

Theorem 4.15. The equivariantization (Fa)%* is tensor isomorphic to the tensor cate-
gory ]:84 N viewed as subcategories of F. Moreover, this isomorphism restricts to a braided

tensor isomorphism EG = (]-‘G)l&c -

Proof. One one side, the objects of (F4)%* are tuples ((M,rar),7) where (M,7y) € Fa
is a right A-module and v = {7, € Fa(9(M) — M)}sec is a family of G-equivariant
A-module isomorphisms. Using the definition of the A-action on g(M) from (4.1), this
means that the v, : g(M) — M satisfy

Yo 0 9(rar) 0 ¥ 4 © (idgan @A) ™) = rar 074 (4.11)

The morphisms of (F, A)G’/\ are A-module maps which are G-equivariant. This means
the morphisms f € Fa(((M,rn), ™) — ((N,7n),7Y)) must satisfy the two conditions

fory=ryof and 78 o g(f) o9 fovy. (4.12)

A

The tensor structure on (F4)%* is given by

((M7 TM)?VM) ®(]—'A)G”\ ((N7 TN)?’YN)
= (M, 7ar) @z e (N, 7n), pary o (VM @ 4N) o (95, 5)71) (4.13)
= (M ®4 N,puno(ri @rn)),pan o (Y @) o (v 5) )

where pps v is the separability idempotent (2.4).
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On the other side, the objects of (]:G)(A’A) are tuples ((M,~),ryr) where (M,~) € F©,
so M € Fand v = {y, € F(g(M) = M)}4ecq is a family of G-equivariant isomorphisms,
and ry; € FE((M,~)®zrc (A, \) — (M, 7)) is a G-equivariant map. Thus by (2.2) and (2.3),

raro (g ® A9) o (Y )7 = g0 9(rm),

which is equivalent to (4.12). Now 7 is an (A, A)-module map, which is exactly the require-
ment that (M,ry) € Fa. Hence the object ((M,7),7x) € (F%)(4,n) can be canonically
identified with ((M,ra),7) € (Fa)%A.

Now the morphisms of (F G)( A,») are G-equivariant maps which are compatible with
the (A, N)-module structures, which is exactly the two conditions in (4.12). Thus we may
canonically identify the morphisms of (F G)( A,n) With the morphisms of (F. 1), and this
identification preserves composition.

The tensor structure on (F G)( A,)) s given by

(M AM),r0) ©(ray ) (NY), 1)
= (M, AM)@an (NAY), a0 (T @ 7))
= (M ®a N, pyuno M @rev™)),pav o (r @)
= (M @4 N,parvo (Y @) o (0, 3) ) parw o (rr @ 7).

Thus we see from (4.13) that our identification of objects from (]—"G)(A,A) and (F4)%A
identifies the tensor products on the nose. Hence the tensor categories (]—"G)( A, and
(Fa)%* are canonically tensor isomorphic.

It remains to show that our tensor isomorphism descends to a braided tensor isomor-
phism £6* =~ (]:G)l(%,)\). Suppose (M, r,7) € (F€)a ) = (Fa)?. Since F is G-graded
and A € Fe, we can decompose (M,r) € Fa as P cq(My,rg) where (Mg, rq) € (Fg)a.
Now the braiding in F¢(M ® A — A ® M) is given by

PN @idu,) o B, € P F(My @ A— A M,),
geG geq

where 3 is the G-crossed braiding on F. Since A € F,, the braiding in F€(A@M — M®A)
is exactly B4 a. Hence (M, r,~) is local in (.FG)(A)\) >~ (F4)%* if and only if for each g € G,

rg 0 Ban, © (N ®@idyy,) o Br, A =1y,

which is exactly the condition that the component module (My,7y) € & = f‘floc for
each ¢ € G. Now the condition that (M,r,v) is G-equivariant is exactly the condi-
tion that (M,r,7y) € EGA. Hence our isomorphism restricts to a tensor isomorphism
EGA = (.FG)I((X)\). Since the braidings on both sides are exactly the G-crossed braidings
on components, the tensor isomorphism £ 2 (F G)l(‘i N is braided. O
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In summary, we have the following commutative diagram, where we write }'f*loc for
£ to keep the notation consistent.

G G , G—loc\G
FO ) 7§ (FG1o0)
e T A T
G—1
./_"4 ,,,,,,,,,,,,,, = fA )‘FA o¢
L (4.14)
—®(4,)
G 5 loc\G
R 5 0 (i)
7 //\[ //){
. on - -
C D =< CA > C}EC

In the diagram (4.14),
e a hook arrow — denotes a fully faithful functor,
e a tail on an arrow ~— denotes a forgetful functor, and

e a dashed arrow --» means a functor which is not a tensor functor.

5 Examples

We now provide many examples of symmetry breaking from anyon condensation. We be-
gin by reviewing the Landau theory of symmetry breaking phase transitions in section 5.1,
which is trivial from the categorical perspective. We then discuss the toric code in sec-
tion 5.2, which is the simplest example of a topological order in a condensed matter system.
Here we already observe non-trivial categorical symmetry breaking when condensing the e
anyon. We then continue with G-stable actions in section 5.3, where g = id¢ for all g € G.
In section 5.4 below, we give a universal example using Drinfeld doubles of finite groups,
which shows that any short exact sequence can be realized as the obstruction (3.1). Using
this framework, we provide examples of short exact sequences which do not split, but the
induced action of G permutes anyons. We then include some interesting scenarios where
symmetry must be either automatically categorically preserved or broken in section 5.5.

5.1 Landau theory

The Landau theory of symmetry breaking phase transitions is the simplest example. We
consider the continuous phase transition between two ‘trivial’ phases with no anyon exci-
tations, with symmetry group G which contains a subgroup H C G. If both phases are
gapped, they both correspond to the trivial MTC Cyi, = Vec within the categorical frame-
work, where all gapped excitations are local quasiparticles (the trivial object 1) obeying
Bose statistics. The associated continuous phase transition between these two phases, de-
scribed by the Landau-Ginzberg-Wilson paradigm, is driven by condensation of these local
bosonic quasiparticles, which corresponds to the trivial connected étale algebra A = 1.
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Since there are no nontrivial anyons involved here, the first obstruction always vanishes:
g(A) ~ A Vg e G.

Since Aut¢(A) = 1 in these trivial phases, the second obstruction also vanishes, since the
following short exact sequence

1 1—+H -+ H v 1 VH C G

always splits for any subgroup H C G. This indicates that a trivial phase preserving
symmetry group G can be driven into another trivial phase whose symmetry group can be
any subgroup H of GG, via a continuous phase transition from boson condensation. This is
exactly the symmetry-breaking phase transitions of Landau, described by Landau-Ginzburg
theory of fluctuating local order parameters defined in the manifold G/H [42].

Even without anyons and topological orders, the presence of symmetry can also lead
to many distinct ‘trivial’ phases, i.e. symmetry protected topological (SPT) phases. SPT
phases can be viewed as a special case of SETO when the corresoponding MTC is trivial.
Within our categorical framework, the symmetry breaking rules for a trivial MTC do not
depend on its SPT classification. In other words, for a trivial MTC, its symmetry group G
can break down to any subgroup H C G, independent of the SPT phase to which it belongs.

5.2 Toric code

The toric code [43] is the simplest example of a topological order in a condensed matter
system. Its MTC has 4 simple objects

Irr(Croric Code) = {1,€,m, e := e@m} = {1,e} x {1, m},
and its modular S and T matrices are given by

11 1 1 1
111 1 —-1-1 1

1-11 -1 1

1-1-11 -1
Clearly the e and m particles obey Bose statistics, while their composite € = ¢ ® m obeys
Fermi statistics.

Below, we discuss 3 examples involving the toric code preserving a G = Zz = (g)

symmetry, where we always choose to condense the boson e, corresponding to the connected
étale algebra A = 1@ e. We discuss a few distinct G = Zy symmetry enriched toric codes,

which realize the first obstruction in Example 5.1, the second obstruction in Example 5.2,
and the absence of any obstructions in Example 5.3.

Example 5.1. Consider the Zy symmetry enriched toric code where the e and m particles
are permuted by the action of Zy symmetry generator g:

g
e <— m.
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In this case, the symmetry action g does not preserve the étale algebra A = 1 ® e, so
symmetry is broken at the first level. This means in a Zs symmetry enriched toric code
where the Zs symmetry permutes e and m, condensing the e particle will necessarily break
the Zo symmetry.

Example 5.2. Consider a Zo symmetry enriched toric code with a nontrivial Zs symmetry
fractionalization class [9, 13, 16]. Symmetry fractionalization in a generic SETO is classified
by the projective action of symmetry on the anyon a in the SETO:

a a a Sa,w h 51,1
USIUN = walg. MU, walg, h) = oot

= e U(1), w(g,h) € Inv(C),
9 S1aS1eom (1) (g, 1) ©)

which is classified by [w] € H?(G, Inv(C)).
We now specialize to the fractionalization class for G = Zs symmetry generated by g
given by
W(gvg) =m = we(g,g) :2Se,m: -1

Since the Zs symmetry considered here does not permute anyons, the first obstruction
vanishes. The second obstruction is then captured by the short exact sequence

1= Aute(A) ~Zo - 72y — G =79 — 1,

which does not split. Hence the second obstruction does not vanish, and the Zy symmetry
must be broken in the toric code with this symmetry fractionalization class if e is condensed.
Physically, this means if a symmetry acts projectively on the anyon we wish to condense,
this symmetry must be broken by the anyon condensation.

Example 5.3. Finally, we consider the toric code with a different G = Zy = {1,g}
symmetry fractionalization class, where we have

w(g,g) =e = we(g,9) = 28ce = 1.

Twisting the trivial action by this 2-cocycle gives a Zs-action on Z(Zs). Note that since e
centralizes A = 1¢ @ e, by section 5.3 the short exact sequence is

1— AutC(A) = ZQ — Auth(I(A)) = ZQ X ZQ — G = ZQ — 1. (51)

Thus we see in this case, the obstruction vanishes at both levels since (5.1) splits. This
means the Zs symmetry can be preserved after we condense the e particle and drive the
SETO into a trivial gapped phase Cyiy = Vec with no anyons. However, as we will show
below, there are two inequivalent splittings of this exact sequence, resulting in a Z3-SPT
state with protected edge states versus a trivial state with no edge states after condensing
A=1cDe.

Since A = 1¢ @ e, the two automorphism within Aute(A) are given by trivial automor-
phism id4 and the notrivial one id;, ® — id.. Physically the nontrivial automorphism can
be understood as braiding one m particle around the e particle being condensed, which
gives rise to a minus sign. Therefore we can conveniently label the automorphism group as

Autc(A) = {idA,idlC D — ide} = {1, m} = 7.
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In this case, the corresponding Zs-crossed braided extension is given by F :=
Zvec(z,)(Vec(Zz)), the relative center of Vec(Zz) in Vec(Z4). The associated gauged theory
is D := F?2 = Z(Vec(Z,)), whose anyons are given by

{1,0,02, 03} x {1,m,m? m3}. (5.2)
The two generating anyons « and m both have a trivial self-braiding, and obey a Z4 fusion
rule:
at=mtl.

Here, m is exactly the m particle in the toric code before gauging, while a® corresponds to
the e particle before gauging.
The two inequivalent splittings correspond to the following two choices of I(A):

(A, M) 2 I(A) =1p @ o?

and
(A, X)) 2 I(A) = 1p @ s° where si=a@m.

Both splittings share the same automorphism group
Autec(I(A)) = Autza (1(A)) = Autp(1(A)) = {1,a} x {1,m} = Zy x Zs.

We provide the following diagram of the relevant phases, where squiggly arrows denote
condensing by the labeled algebra, and other arrows denote gauging the Zo symmetry.

C}Xc = VECfd

C = Z(Vec(Zs)) Dloc = Z(Vec(Zy)) Dloc , = Z(Sem)

1@@0(2 - 1p Ps2

m} (A,)\l)/g W

D = Z(Vec(Zy4))

The two inequivalent splittings of (5.1) have a clear physical difference in the outcome
of the anyon condensation [44]. The two splittings are characterized by different g-defects
of the Zy symmetry group:

I

1 2
Xg o Xg

I

S=a®m.

~ ~

In particular X ; > « is a boson for the first splitting, and X, 92 > 5 is a semion for the
second splitting. As a result, they give rise to different Zo-symmetric gapped phases after
condensing A = 1¢ @ e:

(1) For the first splitting, each e particle carries the trivial (one-dimensional) linear rep-
resentation of the G = Zs symmetry group. It results in a trivial Zs-symmetric phase
with no edge states, leading to a toric code by gauging the Zs symmetry

D¢, =~ (1 a} x {1,m?} = Z(Vec(Zs)).

l’D @O&2 =
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(2) For the 2nd splitting, each e particle carries the nontrivial (one-dimensional) linear
representation of the G = Zy symmetry group. It results in a nontrivial Zs-SPT phase
with protected edge states, leading to a double semion theory after gauging the Zs
symmetry

Dloc

Loms2 = {1, 8} x {1, m?} = double semion.

5.3 General stable actions

We now consider general stable actions, generalizing Example 5.3. Let C be a fusion
category. A categorical action G — Autg(C) is called stable if each g € G acts as the
identity monoidal functor. Such an action is specified up to equivalence by a 2-cocycle w €
Z%(G, Autg (ide)), where Autg (ide) = m1 (Autg (C)) is the monoidal natural automorphisms
of the identity functor, and the action of G on Autg(ide) is trivial. The 2-cocycle describes
the tensorator simply by ug ), = w(g,h)id, for any a € C.

Clearly g(A) = A as algebras for all ¢ € G. When C is nondegenerately braided,
WQ(M%(C)) = Inv(C) as ‘ring operators’ as in Remark 4.8. Note that each ring op-
erator gives an element in the center Z(Autc(A)), and thus w yields a 2-cocycle w €
Z%(G, Z(Autc(A))).

Directly from the definitions, it is clear that we can find an equivariant algebra struc-
ture on A precisely when we have a w-projective homomorphism 1 : G — Aut¢(A). The
short exact sequence in this case is

1 —— Aute(4) —— Aute(A) x5 G —2—» G —— 1

where Aut¢(A) X5 G is the twisted direct product. This sequence has a splitting precisely
when we have an w-projective homomorphism ¢ : G — Aut¢(A). In this case the splitting
is given by g — (¥(g),g) € Aut¢(A) x5 G.

5.4 Universal example from an exact sequence of groups

Suppose we have a short exact sequence of finite groups as in (3.3):

1 N ‘sp-t,q 1.

Consider the non-degenerately braided fusion category C := Z(Vec(N)). Since Vec(E) is
a G-extension of Vec(N), by [45, Thm 3.3], the relative center F := Zyec(g)(Vec(V))
is a G-crossed braided extension of Z(Vec(NN)). Furthermore, the equivariantization
FC¢ = Zvec(r)(Vec(N ))¢ is braided tensor equivalent to Z(Vec(E)), which is a gauging
of Z(Vec(N)) by G. The inverse construction to gauging is taking local modules of func-
tion algebras. So condensing O(G) € Rep(E) C Z(Vec(E)), we have Z(Vec(E))l(g‘(:G) is
braided tensor equivalent to Z(Vec(N)).
Recall that we have an adjoint pair of induction and restriction functors

— 29 —



Since Res¥; is a braided tensor functor, we have a braided equivalence
Rep(N) = Rep(E) 47 (trivy) = ReP(E)o(r/n) = Rep(E)o(q)-

This equivalence identifies O(E/N) = Ind% (trivy) and O(E) = Ind%(O(N)). (See
also [24, Ex. 4.15.3].)
Set A:= O(N) € Rep(N) C Z(Vec(N)) =C. As above,

I(A) = Ind¥(O(N)) = O(E) € Rep(E) ¢ € ¢ F¢ = Z(Vec(E)).

Hence we have isomorphisms Aut¢(A) = N and Autee(I(A)) = Autze(I(A4)) = E. Ex-
plicitly, these isomorphisms are both instances of the fact that K = Autgrep(x)(O(K)) for
a finite group K. Indeed, since O(K) is a left K-module via (k- f)(¢) := f(k=1¢), and
since left multiplication commutes with right multiplication, we get a K-equivariant map

Ok € Autrep() (O(K)) by (0r.f)(£) = [ (k).

We now check that the following diagram commutes:

1 —— Aute(A) —— Autec(I(A)) — G —— 1

1 s N U E d G 1.

For the square on the left, notice that as left N-modules, we may identify

1(4) = 0(E) = P O(Ng ™) = P g(O(N)), (5:3)

geG geG

and we may identify O(Ng~!) with g(O(N)) as algebra objects in Rep(N). Recall that for
On € Autrep(n)(O(N)) = N, ¢(0n) = D,ecq 9(0n) from Proposition 3.3. Under the iden-
tification (5.3), the action of g(6,) on g(O(N)) = O(Ng™') is via f,,,,-1 € Aut(O(Ng)).
Hence the left square commutes.

Now in Proposition 3.4, we defined m on f € Autea(L(A)) by m(f) is the unique
g € G such that 0 # feq : g(A) — A. Under the identification I(A) = O(FE) and
g(O(N)) = O(Ng™1), for every z € E = Autrep(p)(O(E)), there is a unique g € G such
that € Ng. Soif f € O(E) is supported on Ng~!, then 6, f is supported on N. Mapping
z € E to the unique g € G such that x € Ng is exactly the quotient map F — G. Hence
the square on the right commutes.

Remark 5.4. Notice that we have a canonical isomorphism ma(Aut® (Rep(N)) = Z(N).
Indeed, since Rep(N)aq = N/Z(N) [24, Ex. 4.14.6] and Rep(N) is faithfully graded by the
dual group Z(N ), the characters of the grading group of Rep(IN) are canonically identified
with Z(N) = Z(N). Given a homomorphism G — Out(N), one obtains a 3-cohomology
class 03 € H3(G,Z(N)), which vanishes if and only if there exists a short exact sequence
1—- N — F — G — 1 for some E which implements this outer action. This 3-cohomology

class agrees with the og obstruction associated to G — Aut (Rep(NN)).
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Example 5.5. In previous examples with an obstruction in the second level, we always
considered a trivial action of the symmetry which does not permute anyons. Below, making
use the universal example from a short exact sequence, we construct an explicit example
where (i) the symmetry permutes anyons, (ii) the first obstruction vanishes, and (iii) the
second obstruction does not vanish.

We consider a G = Z9 SETO with

C = Z(Vec(Z3)) X Z(Vec(Zya)). (5.4)

Physically, C corresponds to one layer of Zs gauge theory Z(Vec(Z3)) stacked on top of the
toric code Z(Vec(Zs)) (or Zso gauge theory). We label the gauge charge of Z3 gauge theory
as €, and its gauge flux as m, satisfying fusion rules

3 3

1
1%

eeRQe=e"=m 1.

We still use e and m to label the gauge charge and gauge flux in toric code Z(Vec(Zs)).
The Zy symmetry ¢ permutes anyons € and é2 2 ¢!, and belongs to a nontivial symmetry
fractionalziation class

w(g,g) =m = we(g,9) = —1.

We condense the connected étale algebra
A=0Z3)RO(Zy) =10 EDEDed (e®é) ® (e ®é?).

Clearly g(A) = A, and the first obstruction vanishes. At the second level, since Aut¢(A) =2
Zs X L3 ~ Zg, the short exact sequence (3.1) is given by

1—>Autc(A)ZZG—>D1C12§Z3NZ4—>G:ZQ—>1,

which does not split, leading to an obstruction at the second level. Physically, since the Zs
symmetry g acts projectively on the anyon e, condensing e ® € will also condense e, and
therefore the Zy symmetry must be broken.

Remark 5.6. The universal example can be modified by introducing a cocycle on E as
follows. Given w € Z3(E,C*), we set C := Z(Vec(N,w|x)). Note that C has a G-crossed
braided extension F such that F¢ is braided equivalent to Z(Vec(E,w)). Indeed, the
discussion at the beginning of this section only uses the fact that there is a canonical
Tannakian subcategory Rep(H) C Z(Vec(H,w)) for H = N, E, and the exact sequence
does not change under the presence of cocycles. We also note the relation to the Lyndon-
Hochschild-Serre spectral sequence, see [25, appendix by E. Meir].

If the obstruction vanishes, one gets, for every splitting ¢ : G — FE, a G-graded
extension of the condensed theory Cé,‘)’fN) = Vec which is necessarily given by Vec(G,v) for
some [v] € H3(G,C*) given by the pull back [v] = 0*[w] = [w o ¢*?] along the splitting
0:G <= E.

Now it may be the case that given a fixed exact sequence and a fixed w € Z3(E,C*),
two inequivalent splittings yield two non-cohomologous cocycles v € Z3(G, C*)! We would

— 31 —



like to thank Tian Lan for explicitly pointing this phenomenon out to us, which we saw
briefly in Example 5.3 above. (See also [46].) We now provide further details on this
example below.

Example 5.7. Let us consider the special case of the exact sequence

2

1 ZQ Ll Z2 X ZQ

ZQ ]-7

where ¢1 is inclusion into the first factor and 7o is the projection onto the second factor.
Now consider w € Z3(Zg x Z,C*) with one non-trivial element w((1,1), (1,1),(1,1)) = —1.
There are two splittings, which give exactly the two cohomology classes of H3(Zy, C*).

Indeed, this example is the same as Example 5.3 above, as there is a braided tensor
equivalence Z(Vec(Zy x Za,w)) = Z(Vec(Z4)) [47, Ex. 4.10]! This can also be seen from
the following table of twists in Z(Vec(Z4)) using the anyon labels from (5.2) above

1 mm?m?
111 1 1 1
all -1 —i
a?ll -1 1 -1
adll —i -1 i

together with the following table of connected étale algebras in Z(Vec(Z,)):

A Z(Vec(Z4))5° | Attt z(vee(z.)) (A)
1 Z(Vec(Z4)) 1

1« Z(Vec(Z2)) Zo

lem Z(Vec(Zs)) L2

1@ a?m? Z(Sem) Lo
1®ad®a?da’ Vec Ly
1emam?aemd Vec Ly
1®a?2dm?®a?m? Vec Zio X o

5.5 Symmetry which is automatically categorically preserved or broken

In the next three sections, we present some interesting cases where symmetry is automat-
ically categorically preserved or broken. In section 5.5.1, we consider when Autc¢(A) is
trivial, so that the exact sequence (3.1) is always an isomorphism. In section 5.5.2, we con-
sider the case when Autc(A) = Autee(I(A)), so that no non-trivial G-action may satisfy
the first obstruction. Finally, in section 5.5.3, we consider a multilayer phase where the
algebra lies in one level and the action happens on another, so that the exact sequence (3.1)
trivially splits.
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5.5.1 KEtale algebras with trivial automorphism group

Suppose C is a non-degenerately braided fusion category and A € C is a connected étale
algebra with trivial automorphism group Autc(A) = 1. We assume there is a categorical
action p : G — @g (A) C Mg (C). This implies that the exact sequence (3.1) necessarily
collapses to

1 —— Autee(I(A)) —/— G —— 1.

In other words, 7 : Autee(A) — G is an isomorphism. In particular, there is a unique

1 as in section 5.1.

lifting 0 = 7~
We now show that non-trivial such examples indeed exist. First, we note the following
sufficient condition for Aute¢(A) to be trivial, which essentially follows from the argument

in [31, section 6 Type Eg].

Proposition 5.8. Suppose C is a fusion category and X € C is a self-dual object with
dim(C(X®? — X)) = 1. If A:= 1@ X admits the structure of a separable algebra object,
then the algebra structure is unique up to unique isomorphism. In particular, Aute(A) is
trivial.

The following is a well-known example of a non-trivial étale algebra A which fulfills
the hypothesis of Proposition 5.8.

Example 5.9. Let C(SU(2)10) with simple objects ([0], [3],[1],...,[5]) and fusion rules
i+j
il @ K,
ke=|i—j|
i+j+k<10
and consider the unique connected étale algebra Agmy := [0] @ [3] [31, section 6 Type Eg]
(see also [48]). By Proposition 5.8, Aut(Agpmy) is trivial.

Now & := C(SU(2)10) Aqy, is an Eg-category, i.e. the fusion matrix of the (neces-
sarily simple) free A-module [%] ® A is the adjancency matrix of the Dynkin diagram
Es. The condensation C}g’éHJ is braided equivalent to Ising category C(Spin(5);) with
T = diag(1, exp(12%), —1).

Recall from [49, Cor. 4.9 and Ex. 5.1] (see also [33, Corollary 3.30]) that we have

braided equivalences

Z(&) = C(SU(2)10) ®CRS = C(SU(2)10) W C(Spin(5)1) = C(SU(2)10) B C(Spin(11)1).

We denote by %56 the adjoint subcategory of £, which has fusion rules of the even part of
EG [50]2

a?~1 cRQa=Za®o=o CRT=E1Pad?2- o,

and note that & is a Z/2-extension of %86.

Let C be the modular tensor category Z (%(‘:ﬁ) which has 10 simple objects and the
modular data is given in [50, 51]. By [45, Thm 3.3] it follows that C = Z(1&) has a
Zy-crossed braided extension F = Zg,(3&). Let D = C(SU(2)19) KC(Spin(11)1). As noted
in [52] we can also realize F as Digg, where 3 is the unique Zs-boson in D. In other words,
C is the Zs condensation of D = C(SU(2)19) X C(Spin(11);).
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Proposition 5.10. The center C = Z(%&) of the even part of Eg has a unique étale
algebra A = 1@ X for a non-invertible object X of dimension 2+ /3, such that the F with
associated Zo-action p : G — Aut (C) lands in Stab(A).

Proof. The adjoint functor I : & — Z(&) = D of the forgetful functor gives a Lagrangian
algebra L' = I(1) in D. Subalgebras of L’ correspond to full subcategories of %86 (33,
Theorem 4.10]. The maximal pointed subcategory £ C & correspond to an étale algebra
A’ € D. Note that the étale algebra B = 1 @ 8 corresponds to the adjoint subcategory
%86 C & and A’ gives an étale algebra in C = D}gc which we denote by A. A simple
dimension argument gives dim(A) = 3 ++/3 and it follows from the modular data of C that
A=16¢ X as claimed.

To see that the action stabilizes, we note that g(X) = X, since the object X splits into
two inequivalent objects in D = F22_ which can be read of the modular invariant which
has been computed in [52, Example 4.13]. Thus g fixes A as an object, but A has a unique
algebra structure by Proposition 5.8. 0

This implies Aut¢(A) is trivial and that there is a unique equivariant algebra (A, \) €
F7Z2. Again it can be checked that the only possibility as an object (and hence as an algebra
using Proposition 5.8) is that (A, ) is isomorphic to Agpy X1 in D. It further follows that

(FR2lo0)?2 = Dy ) 2 C(Spin(5)1) R C(Spin(11)y)

which is a center of an Ising category. The condensed theory C¢ = C(Spin(16);) is the
toric code Z(Z2). We summarize with the following diagram.

co W gauge lifted Z2 action

C(Spin(5)1) K C(Spin(11)1)

gauge Zm WA A)

10 & C(Spln(ll

5.5.2 First level broken symmetry

Suppose C is a non-degenerately braided fusion category and A € C is a connected étale
algebra. Suppose we have a non-trivial finite group G and a categorical action G —
Mg (C). If g(A) 2 A as algebras for all g € G the symmetry must be completely broken.

In particular, suppose that we have a group isomorphism Aut¢(A) = Autee(1(A)).
Then g(A) 2 A as an algebra for any g € G; otherwise, the existence of our short exact
sequence leads to a contradiction. Hence the symmetry is completely broken.

Example 5.11. For an explicit example, we take C := Z(Vec(Zs3)) = Vec(Zs, q)XVec(Z3,q)
where q(n) = exp(2mwin?/3) is a quadratic form on Z3, and A := Dz, 9 © g~ ! Let
Ly — Mg (Vec(Zs,q)) be the particle-hole symmetry [30], which gives a categorical Zs-
action on C. Indeed, there are two equivalence classes of Zs-crossed braided extension of
C which are of the form M X Vec(Zs,q) for M a Zs-metaplectic category [53]. Let us



denote by « the non-trivial element of Mg (C) with a(gXk) = g~ X k. This action maps
a(gRg1) = g1 Xg, and thus a does not even fix A as an object.

We claim that Aute(A) = Autee(I(A)). First, note that Aute(A) = Zs. Next, it is
straightforward to show that

(A2 (IR (hR¥) e (XRg) o (XKg)

where h € (Vec(Zs3,q)?? is a boson, X € (Vec(Z3,q)?? has dimension 2, and g is a gen-
erator of Vec(Zs,q). Hence dimea(I(A)) = 6, and |Autea(L(A))| < 6 [54]. Assume for
contradiction that | Autea (I(A))| = 6 so that I(A) = O(H) for some group H of order 6,
see [54]. But
O(H) = @ dim(7) - m 2 I(A),
welrr(Rep(H))

a contradiction. Hence | Autea(I(A))] < 6. Since we always have an injection Aute(A) =
Z3 — Autec (I(A)), this injection must be an isomorphism.

Example 5.12. We now consider the other equivalence class of Zs-crossed braided exten-
sion of C, which is in stark contrast to Example 5.11. This other extension comes from the
universal example from section 5.4 corresponding to the exact sequence

1 Zg L Zg A ZQ = Sg P ZQ 1

which permits three different splittings.

As in [55], Examples 5.11 and 5.12 can be generalized to any finite abelian group of
odd order.

Problem 5.13. Find an explicit example of a non-degenerate braided fusion category C,

a connected étale algebra A, and a categorical action p : G — Aut(C) with Aute(A) =
Autea (I(A)) such that g(A) = A as an object alone, but not necessarily as an algebra.

5.5.3 Trivially unbroken symmetry

Example 5.14. Suppose C1,Cs are non-degenerately braided fusion categories, and define
C := C; W (Cy. Suppose we have a categorical action G — Mg (C2), which gives us a
categorical action G — Mg (C). Suppose now A; € C; is a connected étale algebra, and
consider A = A; K 1¢, € C. Then Autea(I(A)) = Aute(A) x G = Aute, (A1) x G, and the

exact sequence (3.1) clearly splits.

6 Application to algebraic quantum field theory

A conformal net B = {B(I)} ez is a family of von Neumann algebras on a common Hilbert
space H indexed by the set Z of proper open intervals on the unit circle S' together
with a cyclic and separating unit vector 2 € H and a projective unitary representation
of Diff , (S1), the group of orientation preserving diffeomorphisms of S!, fulfilling certain
axioms, see e.g. [56] for details.
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If B is a so-called rational conformal net, then C := Rep’ (B) is a unitary modular tensor
category [57]. A conformal net B has a group of global gauge transformations Aut(B).
There is a one-to-one correspondence [27] between local irreducible extensions A D B and
connected étale C* Frobenius algebras A € Rep(B), and Rep(.A) is braided tensor equivalent
to C%¢ [28]. Thus local extensions correspond to condensation of étale algebras. Let us
denote the global gauge transformations of A fixing B pointwise by

Aut(A|B) = {a € Aut(A) | a(b) =bforallbe B(I) and I € T},

which is a finite group since the index [A : B] = dimgep)(A4) is finite. By [56],
| Aut(A|B)| < [A: B].

Lemma 6.1. Under the above correspondence between A € Rep(B) and A D B, we have a
correspondence Aut(A[B) <— Autreps)(4)-

Proof. Let H be a Hilbert space, let N C M C B(H) be von Neumann algebras, and let
Q) € H be a cyclic and separating vector. We denote

Aut(M|N,Q)={acAut(M) | a(n)=n and (Qa(m)Q) =(QmNQ) for all ne N,me M} .

Fix a proper interval I € Z. By [58] we have Aut(A(I)|B(I),2) = Aut(A|B). We may
assume that A € Rep!(A) c End(A(I)) and that A = 7 ® ¢ where ¢+ : B(I) — A(I)
is the embedding. Let v := coev, ®id, so that A(I) = «(B(I))v by [27, 59]. We get a
map « : Autreps)(A) = Aut(A(I)|B(1),) given by a(g)(u(b)v) = t(bg')v and a map
B+ Aut(A(I)[B(I),Q) — Autreps)(A) given by 5(a) = (ev, ®A) o (id; ®a ! (v)). One can
verify that o and 8 are homomorphisms which are mutually inverse. Indeed, by the zig-zag
relation we have (ev, ®A) o (id; ®a(g)(v)) = g, so f o = idpute,, s (4)- Using the other
zig-zag relation gives a0 8 = idpu(a(1)|B(1),0Q)- 0

For every a € Aut(A) with «(B(I)) = B(I), we get an automorphism
resg(ar) € Aut(B). Given a finite global symmetry group G C Aut(B), Miiger [60]
showed that there is:

e an irreducible rational subnet BY C B where BY(I) = {z € B(I) : a(zr) =
x for all @ € G} [61] which is rational by [57],

e anactionp: G — M%(C), a — 7 given by “n; = aomroa ! for any representation
m = {nr}, and

e a G-crossed braided extension F = G—Rep’(B) of C compatible with p-

Furthermore, Rep(BG) is braided tensor equivalent to FC. Thus the “orbifold subnet”
BY C B corresponds to gauging C by G.

The language of tensor categories gives a dictionary between anyons and conformal
nets. We can ask what the notion of an unbroken categorical symmetry means in the
setting of conformal nets. A similar problem has been studied in [62].
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Definition 6.2. An extension of the global symmetry G C Aut(B) of B to a global sym-
metry of A O B corresponds to an embedding s : G < Aut(A|BY) C Aut(A) such that
s(g)(B(I)) = B(I) for all g € G and resgos = idg.

Proposition 6.3. Let B be a rational conformal net, C :== Rep(B) its UMTC of representa-
tions, G C Aut(B) a finite subgroup, and A € C a connected étale C* Frobenius algebra with
associated local extension A D B. An extension of the global symmetry G of B to A exists
only if the associated action G — Aut (C) lies in Stab®(A). In this case, extensions are in
one-to-one correspondence with splittings o: G — Autea(1(A)) of the exact sequence (3.1).

Proof. Let us fix an interval I € Z and let us denote t4 : B(I) — A(I) the canonical
inclusion map. Let us assume an extension of G to A exists. Then ¢4 0 a = s(a) oty for
any « € G which implies that the action of G stabilizes the algebra A 2 74 ® 1 4.

Recall that Aut(B|BY) = {a, : g € G} and that the associated categorical action on
C = Rep!(B) is given by g(1) = ®7 = a, ® T ® a for 7 € Rep!(B), where the tensor
product correspond to composition of endomorphisms of B(I).

To prove the second claim, we show that the following diagram commutes:

1 —— Aut(A|B) — Aut(A|BE) —%£ Aut(B|BE) —— 1

al Js |

1 — Aute(A) —— Autee(I(A)) — = G 1.

Recall from Definition 3.1 that I(A) = €, g(A). Let A be the algebra in Rep! (B%)
corresponding to B¢ C A. Then A is of the form 73 ®7.4® 14 ® 15 where 15 : BE(I) — B(I)
is the inclusion map. Let f € Autc( (A)).

We obtain a map f : A — A as follows. As in Lemma 3.2 (2) there is a unique g,
such that f., # 0 and f : g(A) — A. Note that BY(I) C B(I) being a depth two inclusion
implies that Hom(ozg®LBc ag®LBG) = C. Therefore 15® fe @5 : Zg®ag®ZA®LA®a*1®
13 — A gives amap f: A — A defined up to a scalar which can be fixed by demanding
that (g ® ev,, ®tp) © f is an automorphism of the algebra associated with iz ® tz. We
define a(f) = a(f) with o : Aute(A) — Aut(A|B) from Lemma 6.1. Then &(c(f)) equals
a(f) € Aut(A|BY) for all f € Aute(A). Thus the first square commutes.

Finally, recall that w(f) = g with g € G the unique element such that f., # 0. We
claim that resg(a(f)) = ay. Namely, let b = 1p(c)vg € B(I), where v_) = coev,  ®id
then

L(,)’

a(f)(a(®)) = a(f)(ealis(c)vs) = a(f)(ra(s(e)is(ev. Jvs)va)
= 14(15(c)iB(eviy) [ u)va) = va(ag(b)).
Hence the second square commutes, and we are finished. ]
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