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Abstract

Convection is the predominant mechanism by which energy and angular momentum are transported in the outer
portion of the Sun. The resulting overturning motions are also the primary energy source for the solar magnetic
field. An accurate solar dynamo model therefore requires a complete description of the convective motions, but
these motions remain poorly understood. Studying stellar convection numerically remains challenging; it occurs
within a parameter regime that is extreme by computational standards. The fluid properties of the convection zone
are characterized in part by the Prandtl number Pr=ν/κ, where ν is the kinematic viscosity and κ is the thermal
diffusion; in stars, Pr is extremely low, Pr≈10−7. The influence of Pr on the convective motions at the heart of
the dynamo is not well understood since most numerical studies are limited to using Pr≈1. We systematically
vary Pr and the degree of thermal forcing, characterized through a Rayleigh number, to explore its influence on the
convective dynamics. For sufficiently large thermal driving, the simulations reach a so-called convective free-fall
state where diffusion no longer plays an important role in the interior dynamics. Simulations with a lower Pr
generate faster convective flows and broader ranges of scales for equivalent levels of thermal forcing.
Characteristics of the spectral distribution of the velocity remain largely insensitive to changes in Pr. Importantly,
we find that Pr plays a key role in determining when the free-fall regime is reached by controlling the thickness of
the thermal boundary layer.

Key words: stars: fundamental parameters – stars: interiors – stars: kinematics and dynamics –
Sun: helioseismology – Sun: interior – Sun: magnetic fields

1. Introduction

Convective motions within the outer one-third of the Sun
transport energy from the radiative interior to the photosphere.
In the process, these overturning motions, which are thought to
drive the solar differential rotation, play a pivotal role in
generating the solar magnetic field. Any model of the solar
dynamo necessarily requires a description of the Sun’s
underlying convective motions, and yet those motions remain
poorly characterized in spite of the observational coverage
enabled by the Sun’s proximity to Earth.

On the largest spatial scales, photospheric convection
manifests in cellular patterns known as supergranules that were
first noted by Hart (1954) and better characterized by Leighton
et al. (1962). The horizontal extent of these cells is approximately
35Mm, and they possess a spectral peak in photospheric
Dopplergram power around the spherical harmonic degree
ℓ≈120 (e.g., Hathaway et al. 2000, 2015). In addition,
smaller-scale motions known as granulation are clearly visible
in the photosphere, possessing a characteristic size of about
1 Mm and a clear peak in photospheric Dopplergram power
around ℓ≈103 (Bray et al. 1984).

Presently, only the granular component of photospheric
convection is reliably captured in direct numerical simulations.
Radiative hydrodynamic simulations of solar surface convection
that can simulate granulation fail to yield clear evidence for
supergranulation (e.g., Stein et al. 2009; Ustyugov 2010).
Inconsistencies between numerical models and the Sun have
also been observed in the velocity power distribution associated
with larger scales of convection (e.g., Miesch et al. 2008).
Measurements of deep convective flow speeds, made using

time-distance helioseismology, suggest that convection models
may overestimate the amplitude of the convection on spatial
scales larger than 30Mm (Hanasoge et al. 2012). The results of
Hanasoge et al. (2012) estimate that the convective velocities on
spatial scales larger than 70Mm is at most 5–6ms−1, about an
order of magnitude weaker than that expected from simulations
or theoretical arguments (e.g., Miesch et al. 2012). Ring-analysis
measurements of the subsurface flows in the near-surface shear
layer, however, exhibit good agreement with the models and
theory (Greer et al. 2015).
Resolving these discrepancies requires careful comparison of

these two different helioseismic techniques, and perhaps
improvements to both. A resolution to this problem also
requires a better theoretical understanding of convective
dynamics under stellar conditions. Exploring stellar convection
numerically remains challenging owing to the fact that it occurs
within parameter regimes that are considered extreme by
modern computational and laboratory standards alike. These
regimes can be characterized by several nondimensional
parameters. In particular, the Reynolds number measures the
relative importance of inertial forces to viscous forces, the
Rayleigh number expresses the relative strength of buoyancy
driving and diffusive effects, and the Prandtl number specifies
the relative importance of viscosity to thermal diffusion.
Estimates for the Sun lead to values of the Reynolds, Rayleigh,
and Prandtl numbers on the order of 1013, 1020, and 10−7,
respectively, indicating that the solar convection zone is highly
turbulent (e.g., Ossendrijver 2003).
Such extreme values of nondimensional parameters are

largely an expression of the fact that while diffusion in stellar
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interiors may be active on very small scales, it tends to be
negligible at the system scale. Achieving such a situation,
wherein diffusion plays no appreciable role in the leading-order
force balance, is possible in those parameter regimes already
accessible through computational models. Featherstone &
Hindman (2016a, 2016b) identified two such regimes by
exploring the response of convection to changes in the
Rayleigh number and the Ekman number (which expresses
the relative importance of the Coriolis force and viscous
diffusion), while using a fixed Prandtl number of unity. In so
doing, they identified asymptotic scaling laws for spectral
properties of the convection that in principle could be
extrapolated to the stellar parameter regime. The purpose of
this paper is to extend those studies by exploring the response
of the convective spectrum to changes in the Prandtl number.

This paper is organized as follows. In Section 1.1, we
summarize earlier investigations of the role of the Prandtl
number. In Sections 2 and 3, we discuss our numerical model
and the parameter space that was explored. Results are
discussed in Section 4, followed by a discussion of their
implications in Section 5.

1.1. Prandtl Number in Convection

The Prandtl number, Pr=ν/κ, where ν is the kinematic
viscosity and κ is the thermal diffusivity, is known to be small in
the dynamo regions of planets and stars (Ossendrijver 2003;
Roberts 2007). It is well known from linear theory that the value
of the Prandtl number both influences the structure and amplitude
of convective motions and controls the critical Rayleigh number
required for the onset of rotating convection (e.g., Chandrasekhar
1961). Asymptotic approximations to the governing fluid
equations can be carried out based on the size of the Prandtl
number. Such approximations yield some insight into the
convective dynamics arising under different Prandtl-number
regimes. In the large Prandtl-number limit, the influence of
inertia is weak and can be neglected; this limit is routinely
exploited in studying the convection of planetary mantles where
the Prandtl number can be of order 1020 (Schubert et al. 2001).
Spiegel (1962) developed an approximate set of equations valid
in the limit Pr 0 that showed that inertia plays a leading-order
role in the convective dynamics (see also Thual 1992). Both of
these approximate models have been applied only to nonrotating
and incompressible Boussinesq systems to date.

Much less is known about the role of the Prandtl number in
compressible convection. Earlier studies of compressible
convection have primarily used a Prandtl number of order
unity (e.g., Gilman 1977; Gilman & Glatzmaier 1981; Goudard
& Dormy 2008; Christensen 2011; Schrinner et al. 2012;
Soderlund et al. 2012; Gastine et al. 2015, 2016; Wicht &
Meduri 2016). While there are also many studies that make use
of nonunity Prandtl numbers (e.g., Brown et al. 2011; Käpylä
et al. 2013; Jones 2014; Nelson et al. 2014; Augustson
et al. 2015, 2016; Duarte et al. 2016; Brun et al. 2017), no
parameter studies that vary the Prandtl number systematically
have been carried out. One exception to this trend is the work
of O’Mara et al. (2016), who explored the characteristics of
high Prandtl number compressible convection. These authors
found that high Prandtl number convection tended to possess
lower characteristic flow speeds with respect to unity Prandtl-
number convection, owing to the enhanced entropy content of
its downflow plumes. Finally, we note that recent work using a

small Prandtl number with rapid rotation has found that the
anelastic approximation can yield spurious behavior (Calkins
et al. 2015a) that does not appear in nonrotating anelastic
convection (Calkins et al. 2015b). These results raise serious
questions regarding the applicability of the anelastic approx-
imation within rotating stellar interiors where it remains to be
seen if the convective flows are well-approximated by a Prandtl
number of unity.
Systematic parameter space studies of convective dynamics

in stellar interiors have, so far, focused largely on the role of
buoyancy driving and rotation. Featherstone & Hindman
(2016b) investigated the response of the convection to varying
Rayleigh numbers and varying degrees of density stratification.
Those simulations were nonrotating, hydrodynamic, Pr=1,
and demonstrated a clear scaling relationship between kinetic
energy and Rayleigh number. Those results also suggest that a
naive interpretation of model results (by ascribing solar values
to all of the problem parameters but the diffusion coefficients)
will naturally overestimate the low-wavenumber power in the
convective power spectrum. The influence of rotation was
investigated using a similar methology by Featherstone &
Hindman (2016a) who identified a complementary scaling law
relating convective-cell size and rotational influence. When
rotation is present, and diffusive effects are negligible, the
typical spatial size of convective cells is determined primarily
through the Rossby number, which expresses the ratio of the
rotation period to a characteristic convective timescale. Their
work was also restricted to Pr=1.
Through this paper, we extend these studies and examine the

effects of Prandtl-number variation on the convective
dynamics. We present a series of numerical simulations
designed to examine how the structure and amplitude of the
convective flow within a stellar interior depends on the Prandtl
number and the convective forcing. We vary the Prandtl
number and the convective forcing in a systematic way,
covering both low and high Prandtl numbers. Effects due to
rotation and magnetism are not included. We will show that the
convection develops smaller-scale structures as the convective
forcing is increased and the Prandtl number is decreased,
corresponding to an increase in high-wavenumber power. As
the high-wavenumber power increases, the low-wavenumber
power decreases and this trend occurs for all of the Prandtl
numbers studied. We also show that the Prandtl number has an
important influence on the boundary-layer thickness.

2. Numerical Model

This study is based on a series of 3D, nonlinear convection
simulations that use the pseudo-spectral convection code
Rayleigh (e.g., Featherstone & Hindman 2016b). We employ
a spherical geometry and represent the horizontal variation of
all variables along spherical surfaces using spherical harmonics
Yℓ
m(θ, f). Here ℓ is the spherical harmonic degree, and m is the

azimuthal mode order. In the radial direction, we employ a
Chebyshev collocation method, expanding all variables in
Chebyshev polynomials Tn(r), where n is the degree of the
polynomial.
We are particularly interested in understanding convection in

the deep stellar interior, far removed from the photosphere. In
this region, plasma motions are subsonic and perturbations to
thermodynamic variables are small compared to their mean,
horizontally averaged values (represented using overbars).
Under these conditions, the anelastic approximation provides a

2
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convenient description of the system’s thermodynamics
(Gough 1969; Gilman & Glatzmaier 1981). The governing
evolution equations include the continuity equation

u 0, 1r =· ( ¯ ) ( )

where r̄ is the background density and u is the fluid velocity.
The momentum equation is given by
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where P is the pressure, S is the entropy, cp is specific heat at
constant pressure, g is the gravitational acceleration, and the
viscous stress tensor  is given by
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Here, eij is the strain rate tensor and δij is the Kronecker delta.
Written in terms of the entropy, the thermal energy equation is
given by
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where T̄ is the background temperature. Sources of internal
heating and cooling are encapsulated in the functional form of Q.
A linearized equation of state closes the system and is given by
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assuming the ideal gas law

P T , 6r=¯ ¯ ¯ ( )

where is the gas constant and γ=5/3 is the adiabatic index.

3. Numerical Experiment

We have constructed a set of 34 model stellar convection
zones designed to explore how the convective kinetic energy
depends on both the thermal diffusion and the viscous diffusion
as characterized by the Prandtl number. The diffusion
coefficients are taken to be constant values within each
simulation. In particular, they have no variation with radius.
Table 1 has a detailed list of all of the model parameters for
each run.

Each model is constructed using a polytropic background
state following Jones et al. (2011). The background states were
constructed in a similar fashion to the models presented in
Featherstone & Hindman (2016b). We use a polytropic index
of n=1.5, which corresponds to the adiabatic value, and
model the innermost three density scale heights of the
convection zone. The spherical shell has an aspect ratio of
χ=ri/ro=0.759, corresponding to a dimensional shell depth
of 159 Mm, where ri and ro are the inner and outer radii of the
domain, respectively.

Our models are fully characterized by two parameters: a
Rayleigh number and a Prandtl number. As discussed in
Featherstone & Hindman (2016b), a flux Rayleigh number RaF

appropriate for this system may be defined as

gFH

c T
Ra , 7F

p

4

2r nk
=

˜ ˜
˜ ˜ ( )

where tildes indicate the volume averages over the full shell,
making RaF a bulk Rayleigh number. In this definition, F is the
thermal energy imposed by the radiative heating and H is chosen
to be the shell depth, r ro i- . The nondimensionalization was
carried out using the shell depth and the viscous diffusion
timescale H2/ν.
Heat enters the system through the internal deposition by Q,

which drops to zero at the upper boundary. In all of the
simulations we adopt a functional form of Q that depends only
on the background pressure profile such that

Q r P r P r, , . 8oq f a= -( ) ( ¯ ( ) ¯ ( )) ( )

The normalization is defined so that

L Q r r dr4 , 9
r

r
2

i

o
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where Lå is the stellar luminosity. The thermal energy flux F r( )
that convection and conduction must transport across a
spherical surface at radius r is then given by

F r
r

Q x x dx
1

. 10
r

r

2
2

i
ò=( ) ( ) ( )

For all of the simulations, we have adopted impenetrable and
stress-free boundary conditions on the velocity. The radial
entropy gradient is forced to vanish at the lower boundary of
the convection zone, and the entropy perturbations are forced to
vanish at the upper boundary.
Our numerical experiments span the range of 4×102

RaF 7×106 and 0.1� Pr�4. Each simulation was
initialized using a small random thermal perturbation, evolved
until the kinetic energy reached a statistically steady state, and
further evolved for at least one diffusion time. Since there are
two diffusion timescales, the larger of the two was used for this
purpose. The larger of the two diffusion times is also the time
interval over which a time average is computed when
necessary. This averaging interval includes several tens of
convective overturning times.

4. Survey of Results

4.1. Kinetic Energy Scaling

We begin our examination of the convective energetics by
looking at the integrated kinetic energy KE, defined as

ur r d xKE
1

2
, , , 112 3ò r q f= ¯ ( ) ∣ ( )∣ ( )

where the integration is computed over the entire domain and
then time averaged.
Figure 1(a) shows the dimensional kinetic energy versus

RaF . Different symbols indicate different values of Pr. As the
Prandtl number is lowered, the kinetic energy increases for any
given RaF . The kinetic energy for those runs with RaF2
×104 appears to have reached a steady value that is
independent of RaF . The level at which the kinetic energy
saturates is dependent on the Prandtl number. The saturation of
the kinetic energy as the Rayleigh number is changed was also
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found in Featherstone & Hindman (2016b), although their
study was restricted to a Prandtl number of unity.

As Pr is increased, ν becomes larger leading to enhanced
viscous dissipation and a smaller Reynolds number. The
Reynolds number measures the relative ratio of inertial forces
to viscous forces and is given by

u H
Re , 12

2

n
=
~
∣ ∣

( )

where H and the tilde retain the same meaning as before,
representing the shell depth and a volume average, respec-
tively. Larger Prandtl numbers will produce smaller Reynolds
numbers for a given RaF .

Figure 1(a) indicates that below some RaF cutoff, diffusion
plays a leading-order role in the force balance. Beyond RaF
∼2×104, which we denote the high-RaF regime,6 this is no
longer the case; diffusion no longer plays a leading-order role
in the global force balance and the kinetic energy remains
constant as RaF is increased. We note that the cutoff for the
high-RaF region is based on the Pr=1 results of Featherstone
& Hindman (2016b). Importantly, the cutoff is a decreasing
function of the Prandtl number; lower Prandtl numbers will
have a lower high-RaF cutoff. To simplify the analysis, only a
single cutoff is used.

Table 1
List of All of the Simulation Parameters for Each Run

Input Parameters Output Parameters

κ ν RaF Pr nmax ℓmax KE KE fconv δBL Re Repeak
(1012 cm2 s−1) (1038 erg) (Mm)

10 1 6.88×104 0.1 85 1023 34.43 19064.7 0.6620 15.57 248.3 342.1

4 1 4.30×105 0.25 85 1023 42.59 23582.9 0.8301 10.36 261.2 376.9
8 2 5.37×104 0.25 85 511 46.56 6446.4 0.7026 13.76 132.8 192.8
12 3 1.59×104 0.25 85 511 42.08 2588.8 0.5876 16.18 85.1 123.4
16 4 6.72×103 0.25 85 263 35.80 1238.4 0.5087 17.68 58.7 83.6
24 6 1.99×103 0.25 85 127 21.07 324.8 0.3251 20.78 30.8 44.9
32 8 8.40×102 0.25 85 127 9.36 81.6 0.1569 23.26 15.7 23.0

4 2 2.15×105 0.5 85 511 42.24 5847.2 0.8403 9.87 129.0 186.0
6 3 6.37×104 0.5 85 511 40.46 2489.6 0.7750 11.98 83.7 121.9
8 4 2.68×104 0.5 85 263 39.62 1371.2 0.7167 13.71 62.7 91.9
12 6 7.96×103 0.5 85 127 34.51 530.8 0.6031 16.18 38.5 56.5
16 8 3.36×103 0.5 85 127 24.84 214.8 0.4860 18.18 25.6 38.4
24 12 9.96×102 0.5 85 127 79.94 30.4 0.2314 22.21 10.4 16.5

1 1 6.81×106 1 85 1023 36.22 20057.7 0.9480 4.96 229.8 320.4
2 2 8.53×105 1 85 511 34.73 4807.6 0.9120 6.93 114.1 166.5
4 4 1.06×105 1 85 263 33.42 1156.7 0.8470 9.83 56.3 85.6
6 6 3.16×104 1 85 127 32.92 506.4 0.7910 12.18 37.5 58.2
8 8 1.33×104 1 85 127 31.62 273.5 0.7360 14.09 27.5 42.4
12 12 3.94×103 1 85 127 22.08 84.9 0.6230 16.03 15.4 24.0
16 16 1.66×103 1 42 127 12.02 26.0 0.4420 19.06 9.0 15.6
24 24 4.93×102 1 42 63 2.05 2.0 0.1220 23.77 2.5 4.5

2 4 4.30×105 2 85 511 27.22 941.9 0.9145 6.92 53.5 78.0
4 8 5.37×104 2 85 263 25.60 221.4 0.8539 10.18 26.6 40.0
6 12 1.59×104 2 85 127 24.37 93.7 0.8038 13.43 17.3 26.2
8 16 6.72×103 2 85 127 20.11 43.5 0.7398 15.22 12.1 18.7
12 24 1.99×103 2 85 127 10.04 9.6 0.5277 18.35 6.1 9.9
16 32 8.40×102 2 42 127 4.33 2.3 0.3393 20.65 3.1 5.2

1 4 1.72×106 4 85 1023 17.10 591.8 0.9490 5.02 45.3 67.1
2 8 2.15×105 4 85 511 20.26 175.2 0.9150 7.11 24.6 37.9
4 16 2.68×104 4 85 263 17.12 37.0 0.8641 11.62 11.7 18.5
6 24 7.96×103 4 85 127 11.88 11.4 0.7953 14.10 6.9 11.5
8 32 3.36×103 4 85 127 8.10 4.3 0.6808 15.86 4.2 7.1
12 48 9.96×102 4 85 127 3.66 0.8 0.4438 19.16 1.9 3.2
16 64 4.29×102 4 42 127 0.63 0.1 0.0969 24.08 0.6 1.0

Note.Each simulation used a polytropic background state with an adiabatic index of γ=5/3, three density scale heights across the domain Nρ=3, and a polytropic
index of n=1.5. The inner and outer radii of each simulation were ri=5×1010cm and ro=6.586×1010cm. The variable input parameters are the thermal
diffusivity κ, the kinematic viscosity ν, the Rayleigh number, the Prandtl number, the radial resolution, and the azimuthal resolution. The output parameters are the

dimensional kinetic energy KE, nondimensional kinetic energy KE, the fractional convective flux fconv, the dimensional thermal boundary-layer thickness BLd , the
Reynolds number, and the peak Reynolds number.

6 This is the same cutoff used in Featherstone & Hindman (2016b). Their
reported RaF are too high by a factor of π; we correct for that here.
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The kinetic energy can also be discussed from a nondimen-
sional point of view. To do this, we choose a nondimensional
measure of the kinetic energy KE as

H

M
KE KE. 13

2

2n
º ( )

The nondimensionalization has been carried out using the mass
M contained within the spherical shell, the shell depth, and the
viscous diffusion timescale. Under such a nondimensionalization,
the kinetic energy can be related to the Reynolds number as

KE Re . 142~ ( )

Therefore we do not plot the nondimensional kinetic energy
separately, but do list it for each run in Table 1.

If RaF is large enough to be in the high-RaF regime, then the
kinetic energy is largely insensitive to the level of diffusion.
This implies that the velocity is not strongly dependent on the
level of diffusion and that the Reynolds number should scale
with the viscosity as Re∼ν−1. Given our definition of RaF
and Pr, namely that RaF∼ν−1κ−2 and Pr∼νκ−1, the
Reynolds number scaling becomes Re Ra PrF

1 3 2 3~ - . In
Figure 1(b), we plot the Reynolds number versus RaF Pr−2,
where the different symbols are the same as in panel (a). Each
data point is time averaged. A least-squares fit to the data in the
high-RaF region yields a scaling law of

Re Ra Pr . 15F
2 0.373 0.008µ - ( ) ( )

These results indicate that there are two distinct parameter
regimes: one in which diffusion is an important factor in the
global force balance (the low-RaF region), and one where
diffusion no longer plays an appreciable role in the interior,
bulk global force balance (the high-RaF region).

4.2. Spectral Distribution

We find that the kinetic energy may reach a RaF-independent
regime, but the flow’s morphology is still affected by the level
of diffusion. This can be seen in the relative spectral
distribution of velocity between the high- and low-RaF
systems. Figure 2 shows the velocity power spectra for all of
the runs with Prandtl numbers of Pr=0.25, Pr=1.0, and
Pr=4.0. Each spectrum has been normalized such that it has
unit integrated power. The rows correspond to the different

Prandtl numbers. The first column shows the spectra taken at
the lower convection zone or r/ro≈0.775. The second
column shows the spectra near the upper boundary, or
r/ro≈0.985, in the thermal boundary layer. In each panel,
all of the spectra with the given Prandtl number are plotted.
Each spectrum is colored by RaF Pr, with high values taking on
red tones and low values displaying blue tones. Each spectrum
is a time average over several tens of overturnings.
Across all of the cases, as RaF increases from low values, the

point-wise velocity power increases at nearly all spherical
harmonic degrees. The ℓ-value associated with the peak for
each spectra increases with increasing RaF . This indicates that
smaller-scale structures become more apparent with increasing
RaF . At sufficiently high Rayleigh number, power in the high-ℓ
portion continues to increase, but the low-ℓ portion starts to
decrease. This suggests a break down of large-scale coherent
structures. The highest Rayleigh number runs have lower
power in the large scales compared to the low-
RaFcounterparts. The low-wavenumber region occurs in the
approximate range of ℓ10 for most of the simulations in this
study. This trend occurs for all values of Pr that were studied. If
viscosity played a significant role in the asymptotic regime, one
might expect there to be some variation in the spectra when the
Prandtl number is varied. We do not observe large variations
between the spectra for the Prandtl numbers within our range
indicating that viscosity only plays a minor role in the
asymptotic regime.
The third column in Figure 2 plots shell slices of the radial

velocity taken near the upper boundary, the same location in
radius as the second column. Each slice is a single snapshot in
time. The color scale is the same for all three shell slices with
red tones indicating positive outward flows and blue tones
indicating negative inward flows. The lower Prandtl number
run (the top panel) displays larger velocities and more small-
scale structures compared to the larger Prandtl cases. The
Reynolds numbers of all three slices cover a large range. The
top row Pr=0.25 run has Re=261.2, the middle slice with
Pr=1.0 has Re=56.3, and the bottom slice with Pr=4.0
has Re=11.7. The large range in Reynolds numbers indicates
that the inertial subrange for each simulation is different.
At a sufficiently high Rayleigh number, the integrated KE

becomes independent of the level of diffusion (both thermal
and momentum diffusion). As ν is decreased and RaF is

Figure 1. (a) Dimensional kinetic energy vs. flux Rayleigh number RaF for all cases. Colored symbols indicate different Prandtl numbers. Low Prandtl number runs
have higher kinetic energies for a given RaF . Beyond the high-RaF cutoff, denoted by the vertical dotted–dashed line, the kinetic energy tends toward an asymptotic
value. (b) Reynolds number vs. RaF Pr−2. The high-RaF region reaches an asymptotic regime with a power law scaling exponent that is very close to one-third. The
dashed line is Ra PrF

2 0.373-( ) . Colored symbols are the same as in panel (a).
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increased, the flow becomes more turbulent with smaller-scale
structures. To leading-order, once the high-RaF regime is
reached, the total integrated dimensional KE is constant as the
diffusion is further reduced. This fact is largely independent of
Pr for the Prandtl numbers that were within our range,
however, a weak Pr dependence remains because the inertial
subrange is extended as the viscosity is reduced individually.
These trends are similar to those found in the simulations of

Featherstone & Hindman (2016b), which used a Prandtl
number of unity.

4.3. Energy Transport

The energy transport across the layer can be characterized by
four radial energy fluxes: the enthalpy flux Fe, the kinetic
energy flux FKE, the conductive flux Fc, and the viscous flux

Figure 2. Time-averaged velocity power spectra and shell slices for cases with Pr=0.25, Pr=1.0, and Pr=4.0. The power spectra have been normalized such that
each curve has unit integrated power. Each row represents a different value of Pr . The first two columns correspond to power spectra at a single depth within the
convective shell. The dashed black line in the center column has a slope of –5/3 for reference. Within each panel, spectra for all of the cases at that depth and Pr are
displayed. Each curve is colored by RaF Pr with low RaF Pr in blue tones and high RaF cases in red tones. As RaF is increased, the power at low ℓ-values increases
initially. At high RaF , it decreases as high-wavenumber power is generated at the expense of low-wavenumber power. This trend occurs at all of the Prandtl numbers
studied. The last column shows shell slices of the radial velocity taken near the outer boundary at r/ro≈0.985. The larger Pr run shows wider downflow lanes
compared to the small Pr run.
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Fν, which we define as

F c u T , 16e p rr= ¯ ( )
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¶
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respectively. Note that the conductive flux Fc is associated with
the diffusion of entropy perturbations, and it should not be
confused with radiative diffusion arising from the reference
state temperature gradient; that effect is represented by Q in our
models. Averages are taken of these fluxes over several
diffusion times, indicated using brackets. We consider the
contribution of conduction by looking at the fractional
convective flux fconv defined as

f
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Upon rearranging this quantity, we can write
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This resembles the traditional Nusselt number, but differs in
two important ways. First, the traditional Nusselt number does
not include the viscous flux or the kinetic energy flux, both of
which we include. Second, the conductive flux that appears in
our definition is the established conductive flux, not the
conductive flux in the absence of convection. Values of

f1 1 conv-( ) that are of order unity translate to a lack of
convective heat transport. Large values indicate that convection
plays a dominant role over thermal conduction in transporting
energy through the shell. Figure 3(a) plots f1 1 conv-( ) as a
function of RaF Pr. Viscosity is not expected to play a large
role in the heat transport across the shell, which is why we plot
against RaF Pr and not simply RaF . The plot shows a clear

trend that can be fit using least-squares to obtain

f

1

1
Ra Pr 23F

conv

0.275 0.002

-
µ ( ) ( )

with a scaling exponent that is approximately 2/7 (∼0.286).
Other studies have found that the Nusselt number scales with
the Rayleigh number to the 2/9 power (∼0.222; e.g., Gastine
et al. 2015), when a flux based Rayleigh number is used. Our
results have a steeper exponent because we include the viscous
flux and the kinetic energy flux, which act to increase

f1 1 conv-( ) at any given Rayleigh number.

4.4. Boundary-layer Thickness

We can further characterize the role of conduction by
determining how RaF and Pr control the thermal boundary-
layer thickness. We define the thermal boundary-layer thick-
ness in terms of the time-averaged mean entropy, such that

S r S r

S r
dr

sup

sup
, 24BL òd =

á ñ - á ñ
á ñ

( ) ( )
( )

( )

Figure 3. Energy transport and thermal boundary-layer scaling with RaF Pr. (a) Fractional convective flux f1 1 conv-( ) vs. RaF Pr. The dashed line is Ra PrF
0.275( ) ,

very close to a 2/7 scaling. (b) Thermal boundary-layer width plotted vs. RaF Pr . The dashed line is Ra PrF
0.164-( ) , very close to −1/6.

Figure 4. Time-averaged mean entropy profiles for three cases in the high-RaF
regime. The vertical dashed lines indicate the location of the boundary layer as
calculated using Equation (24).
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where the brackets indicate a time-average as before and sup
indicates the supremum. Figure 4 shows three examples of the
time-averaged mean entropy profiles and the associated
boundary-layer location as calculated using Equation (24).
We plot the variation of δBL with RaF Pr for different Prandtl
numbers in Figure 3(b). We plot against RaF Pr because we do
not expect the thermal boundary to depend on the viscosity and
the quantity RaF Pr is independent of the viscosity and scales
as RaF Pr∼κ−3. A least-squares fit gives the scaling law

Ra Pr . 25FBL
0.164 0.003d µ - ( ) ( )

The scaling exponent is very close to −1/6 (∼−0.166),
indicating that the boundary-layer width scales purely as the
thermal diffusivity, i.e., BLd kµ . There is no strong
dependence on viscosity within the range of Pr studied here.

We note that the highest Rayleigh number run had a
boundary-layer width of about 3% of the shell depth (∼5Mm).
Our thermal boundary layer lacks the radiative processes at
work in a star like the Sun, but its physical extent is confined to
a similarly small region of the convective domain.

Figure 1 showed that a free-fall regime that is independent of
both viscosity and thermal diffusion could be obtained for
different Prandtl numbers. We find that in order to have a bulk
kinetic energy that is independent of both viscosity and thermal
diffusion, the thermal boundary-layer thickness must depend
on both the Rayleigh number and the Prandtl number with the
scaling law given in Equation (25).

For a fixed Prandtl number, this scaling relation suggests that
the boundary-layer thickness will continually decrease as the
Rayleigh number is increased. In global simulations that
employ explicit diffusivities, the Prandtl number is therefore
critical in maintaining a boundary layer that is confined to a
small region of the convective domain without becoming
vanishingly small as the Rayleigh number is increased.

Certainly, simulations with a conductive boundary layer
cannot match every feature of the Sun’s thermal boundary
layer, for the simple reason that the Sun’s boundary layer is
regulated by radiative transfer instead of thermal conduction. In
a global simulation without radiative transfer, one hopes that
the microphysics of the cooling layer can be ignored and only
the gross properties of the boundary layer (thickness and
entropy contrast) are important. When the boundary layer is
conductive, the entropy contrast and thickness are inherently
linked. Thus, the best one could hope to do is achieve a
physically realistic thickness; this requires that the product
H Ra PrF

1 6-( ) take on the desired thickness, i.e., as the
Rayleigh number is increased, the Prandtl number must be
decreased. This realistic thickness will probably not, however,
coincide with a convective power spectrum that possesses a
realistic inertial range.

5. Perspectives and Conclusions

The results presented here have interesting consequences for
several aspects of stellar/solar convection zone dynamics.
Many of these results will depend on rotation and magnetism,
both of which were omitted in this study.

We find that simulations with a lower Pr number have faster
flows and a broader range of scales compared to those of high
Pr models with the same RaF . The higher Pr models have more
viscous dissipation, resulting in slower flows (equivalent to a

lower Reynolds number). This is consistent with the results
found in O’Mara et al. (2016).
The higher RaF simulations obtain a free-fall state where

diffusion no longer plays an important role in the interior bulk
global force balance. In this state the kinetic energy becomes
independent of both viscosity and thermal diffusion. Similar
results were found in Featherstone & Hindman (2016b),
although their study was restricted to Pr=1.
The boundary-layer thickness scaling suggests that most

simulations may be achieving the correct driving scale with a
modest Rayleigh number of about 106 and a Prandtl number of
unity. The obtained scaling also suggests that in order to
maintain a boundary layer whose physical extent is confined to
a small region of the convective domain in a global simulation
without radiative transfer, the Prandtl number should be
decreased as the Rayleigh number is increased.
We did not find that the Prandtl number substantially alters the

earlier observed behavior in the spectral distribution of the velocity
for Pr unity simulations (e.g., Featherstone & Hindman 2016b). As
the RaF is increased, the convection develops smaller-scale
structures and a corresponding increase in the high-wavenumber
power. The high-wavenumber power increases, but the low-
wavenumber power decreases indicating the break down of
coherent large-scale structures. The spectral range of ℓ�10
appears to be the most sensitive region of the power spectrum. This
occurs for all of the Prandtl numbers studied here.
Our results indicate that care needs to be taken when

interpreting convection simulations and comparing the results
to observations of real solar/stellar systems. Simulations that
do not access a high enough RaF may overestimate the low-
wavenumber power that is accessible to helioseismology.
Stellar convection simulations must run with parameters that
place it in the high-Rayleigh-number regime in order to
correctly capture the integrated kinetic energy and the large-
scale motions of the flow. We used rather modest levels of
diffusion (κ�4×1012 cm2s−1) to put our simulations in
the high-Rayleigh-number regimes.
Most importantly, our simulations did not include rotation or

magnetism. Featherstone & Hindman (2016a) looked at the
effects of rotation, but restricted their study to hydrodynamical,
Pr=1 simulations. It will be important to examine how our
Prandtl number findings are modified by rotation and
magnetism before we can fully trust comparisons of power
spectra between observations and simulations.
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