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Abstract: This paper is a study of 2D manipulation without sensing and planning, by exploring the
effects of unplanned randomized action sequences on 2D object pose uncertainty. Our approach
follows the work of Erdmann and Mason’s sensorless reorienting of an object into a completely
determined pose, regardless of its initial pose. While Erdmann and Mason proposed a method using
Newtonian mechanics, this paper shows that under some circumstances, a long enough sequence
of random actions will also converge toward a determined final pose of the object. This is verified
through several simulation and real robot experiments where randomized action sequences are
shown to reduce entropy of the object pose distribution. The effects of varying object shapes, action
sequences, and surface friction are also explored.
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1. Introduction

Robots are envisioned to manipulate and interact with objects in unscripted environments and
accomplish a diverse set of tasks. Towards this, reducing object pose uncertainty is necessary for
successful task execution. There are natural ways to reduce pose uncertainty including the addition of
physical constraints, relative positioning to a known object’s pose, and actively sensing the desired
object’s pose. In this paper, we explore a novel pose uncertainty reduction technique based on executing
randomized sequence of actions. We evaluate our proposed pose uncertainty reduction technique on
parts orienting, an industrial automation task.

Reducing task state uncertainty in parts orienting systems is an important part of factory
automation, especially product assembly. The problem is to take parts in a disorganized jumble and
to present them one at a time in a predictable pose. Most industrial solutions involve a part-specific
mechanical design. One goal of parts-orienting research is to avoid part-specific mechanical designs,
reducing the time required to develop the automation for a new or redesigned product.

Tray-tilting is one kind of part-agnostic object reorientation system. The original tray-tilting work
was an early entry in a research approach termed “minimalism”. Minimalism refers to “the art of doing
X without Y”, or “finding the minimal configuration of resources to solve a task" [1]. The purpose of
the approach is not just to conserve resources, but to yield insights into the structure of tasks and the
nature of perception, planning, and action.

The role of sensing in the sense-plan-act structure was examined by the tray-tilting work of
Erdmann and Mason [2], which eliminated all uncertainty in the task state without sensing. Rather
than sensing, the discrete set of feasible task states could sometimes be reduced to a singleton through
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judicious choice of actions. So in some tasks, even allowing for the noisy mechanics of frictional
contact, task state uncertainty can be eliminated without sensing.

Initial Pose After 25 tilts After 50 tilts

500
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Tilt Number

Figure 1. Experimental setup (top). An industrial robot tilts an allen key, with April Tag attached, in an
aluminum tray. The overhead camera records the pose of the allen key after each tilt. Each trial (1),
(2), ... (500) performs the same random sequence of actions with a different initial position. The pose
before the sequence, mid-sequence after 25 tilts, and after the sequence of 50 tilts are shown per trial, as
well as the entropy of object pose distribution over 500 total repeated trials (bottom).

While the original paper by Erdmann and Mason [2] examined the role of sensing, this paper is an
extension exploring similar minimalism in planning. We replace Erdmann and Mason’s [2] planned
sequence of actions with a randomized sequence of actions and evaluate the reduction in object pose
uncertainty. Using tray-tilting random actions, instead of planning, can provide simple part-agnostic
designs in factory automation. Our experiments stay close to the original work to focus on the role of
planning. We test the limits of minimalism with respect to system complexity and hope to pursue its
practical applications in future work. For this reason, we adopt the same task domain: planar sliding
of a laminar object in a rectangular tray. The robot can tilt the tray as desired, and the goal is to move
the object to a single final pose, irrespective of its initial pose. If independent actions do not scramble
the task state too much, then occasionally some action maps two initial task states to the same final
task state. Furthermore, we expect the set of feasible task states to approach a singleton, for sufficiently



Entropy 2019, 21 3

long sequences, as seen in Figure 1. The phenomenon, while also reminiscent of contraction mapping,
is similar to an interesting card trick called the Kruskal Count [3], so we have dubbed the phenomenon
as “Kruskal effect”.

The goal of this paper is two-fold. The ultimate practical goal is online autonomous management
of uncertainty in task state, in place of offline human engineering of the task domain. The immediate
scientific goal is to better understand the stochastic nature of manipulation tasks. In particular, studying
the evolution of entropy under a random sequence of actions is a previously unexplored approach
that reveals something of the intrinsic nature of the task. Our results have immediate implications
for machine learning approaches, specifically for the problem of searching for an effective plan, or
estimating the stochastic behavior of a given plan. For proof of concept, we experimented with various
triangular objects. We note that orienting a symmetrical or concave shape with this approach might be
more difficult. For objects similar to allen keys, relatively low tray friction noise, and a long enough
sequence of random actions, we show that the Kruskal effect applies. We also observe that it does not
apply as well to cases with high tray friction noise, and exploration into more cases is left for future
work. The insights we gain from our exploration of the limits of Kruskal effect can lay the foundations
for compartmentalized tray-tilting of a kit of parts in factory automation or 3D pose determination in
future work.

1.1. Previous Work

The problem of presenting a single object from disorganization has interested robotics researchers
as far back as Grossman and Blasgen’s work in 1975 [4]. Grossman and Blasgen introduced a fixed
tilted tray that used vibration to eliminate the effects of friction. An irregular part in the tray would
settle into one of a small number of stable poses, and the robot used a touch probe to disambiguate the
pose. Varkonyi [5] includes additional details on approaches to the problem by using simulation to
systematically evaluate various pose estimators.

Erdmann and Mason [2] substituted a fixed tray with an active tilting tray, and showed that for
some parts, a sequence of tilts would reduce the possible poses to a singleton, completely orienting the
part without a touch probe or any other sensor.

While the tray is not part-specific, the Erdmann and Mason [2] approach uses part-specific motions.
In this paper, we substitute the motions with a random sequence of tilts, which is not part-specific. If
we can identify an interesting class of parts that are oriented by a random sequence, then we have what
is sometimes termed a “universal" parts orienting system. Bohringer et al. [1] includes an overview
of universal parts orienting research, detailing the design and implementation of planar force vector
fields that will orient asymmetric laminar parts.

Sanderson [6] introduced parts entropy in the context of automated manufacturing. We use
probability density functions in the configuration space, SE(2) for planar motion of rigid parts, and we
use entropy to measure and compare distributions. Our calculation of entropy is based on Chirikjian’s
work on computing the discrete entropy of histograms [7].

Pose uncertainty has previously been addressed with the use of action, rather than sensing, in
manipulation. Brost [8] uses squeeze-grasp actions to intrinsically reduce uncertainty of the object’s
position. Goldberg [9] planned sequences of pushes and squeezes to orient planar polygons up to
symmetry. Zhou et al. [10] plans similar sequences based on an efficient simulation of planar pushing.
Berretty et al. [11] proposed an approach of executing pulling actions using overhead fingers for object
reorientation. Akella and Mason [12] applied a similar approach to parts with uncertain shape. Unlike
these previous works, we use a random sequence of actions to reduce the uncertainty associated with
the pose of an object. A random sequence of actions is a part-agnostic plan that minimizes software
complexity and hardware changes for new parts.
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1.2. Paper Overview

First, Section 2 will discuss how we calculate pose uncertainty after every action in the sequences.
Then, experimental setup and results are presented in Sections 3 and 4, respectively. Finally, we discuss
our observations in Section 5 and conclude with directions for future research in Sections 6 and 7.

2. Measuring Order: Entropy

Parts entropy describes the probability distribution of an object’s pose over repeated tasks [6].
We measure object pose uncertainty using parts entropy throughout our randomized action sequences
over many trials. Using parts entropy from Sanderson [6] and notation from Lee et al. [13], we define
an object’s pose in a tray of size a x b with the tuple (x, y, 6) where each coordinate is discretized with
uniform spacing such that

x€{xj:j=1,...,a} on [0,4] (1)
ye{y:k=1,...,8} on [0,0b] ()
0e{bp:m=1,...,v} on [0,27] (3)

The number of discretized intervals are
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where €, and ¢, are the positional and rotational resolutions, respectively. We selected resolutions €,
and €, such that «, B, and 7 are integers. Object poses can only change through a set of tray tilting
actions A. Tilting directions were chosen to make a sequence composed of N actions.

S = {al,az,...,aN},ui €A

where A is the set of tilting actions in the cardinal directions. We execute a sequence S consisting of N
random samples from A with replacement, and track the resulting sequence of object poses. We repeat
the same sequence M times to obtain an estimated pose probability distribution after each action g;,

. 1 .
fi(x,y,0)= nylc,yﬁ )

where V; V0 is the number of object poses that occupy the 3-dimensional interval in space, or voxel,
(x,y,0) after executing action a;.

Given the pose probability distributions, we can compute the system entropy H' following
action a;.

H ==Y Y Y f(xy06)log, f(xyb) 6)

xeX ye) 0cO

H can be interpreted as the number of additional information bits required to specify the object pose. If
the pose distribution is uniform prior to the first tilt, then the entropy would be close to the logarithm
of the number of voxels, H? = log, (a x B x 7). Ideally, the sequence converges to a fully determined
pose, and the entropy drops to zero, HN = 0. In terms of object pose uncertainty, high entropy
corresponds to more uncertainty while low entropy corresponds to low uncertainty.

The main experimental challenge is the number of experiments required to reliably estimate the
probability distribution of the poses. Lane [14] suggests that the number of trials M should satisfy

ax Bxy=2MY3 7)
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where & X B X v is the number of voxels. The implication is that a large number of trials is required
for even a very modest number of voxels. For our physical experiments (Section 4) we selected a
3 x 3 x 3 grid, which requires M = 2460 trials for a high-quality estimate of the probability distribution
of the object poses. We used an action sequence consisting of N = 50 tilts, resulting in a total of
M x N = 123,000 tilts.

Unfortunately, the object and tray wear down after hundreds of tilts, changing the frictional
properties of the system. We therefore settle with M = 500 trials and a total of 25,000 tilts. As
discussed in Section 5 and shown in Figure 9, the number of occupied voxels significantly decreases
after the first couple of actions. After the first tilt, we do not occupy more than 10 voxels. According to
Equation 7, we would need 125 trials for a maximum of 10 voxels to have reliable entropy calculations
for all subsequent tilts. In effect, we have a much smaller number of occupied voxels, which leads us
to believe that the smaller number of trials are sufficient for our experiments. To conduct experiments
on a large scale without the real world challenges such as wear and tear, we look towards simulation.

For analyzing simulation data, we selected a 4 x 4 x 4 grid, which would require M =~ 32,000
trials for high quality estimates of the probability distribution of the poses, according to Equation 7.
Our three simulation experiments in Sections 3.1, 3.2, and 3.3 tested a total of 78 sequences (M = 10,000
trials per entropy trend for the first two experiments and M = 1,000 trials for the third). This results in
almost 78 x 32,000 = 2,500, 000 trials in total if we were to occupy all 4 x 4 x 4 = 64 voxels across the
tested action sequences. Instead, we conducted 600, 000 trials with sequences consisting of 50 actions
resulting in 30, 000, 000 tilts in simulation data.

Please note that the effect of our choice of voxel size is reduced by focusing on the change in
entropy, rather than the absolute entropy [7].

3. Simulation Experiments

Executing the experiment first in simulation enables us to generate the necessary number of trials
required to estimate the object pose distribution with a sufficient pose resolution, across different
action sequences, object shapes, and friction noise levels. For a realistic simulation we used the
multibody contact friction model library in MATLAB Simscape. The tray used in the tray-tilting
experiments was modeled as a box with no lid. The actions were 30-degree tray tilts in any of the eight
cardinal directions. We started with an L-shaped object, mimicking the allen key used by Erdmann
and Mason [2]. In the rest of the paper, we will use the terms actions and tilts interchangeably.

We simulate the contact model as a linear spring damped normal force with parameters selected
to match experimentally observed metal-on-metal interactions. In Section 3.2, we used a few other
polygonal shapes, as shown in Figure 2. All object interactions were modeled similarly, even for varied
object shapes. The friction model is stick-slip with a velocity threshold [15]. To simulate noise during
sliding for the tray friction noise in Section 3.3, the coeffecient of friction is varied spatially with an
amplitude that we can vary to explore the effect of different friction noise levels.

The initial object pose in each trial was sampled from a uniform distribution in the objects
configuration space (CSpace). Samples where the object was in collision with the wall were rejected.
To compute entropy throughout the sequence of actions as described in Section 2, we discretized the
CSpace (x,y,0) into4 x 4 x 4 = 64 (x,y,0) voxels.
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Figure 2. Randomly generated object shapes used in simulation experiments. Density of objects set to
be the same as that of the simulated L-shape allen key.

We conducted three sets of experiments in simulation. Section 3.1 tests whether the Kruskal effect
could be observed for the L-shaped object. Section 3.2 tested other triangular shapes to confirm that the
effect is not specific to L-shaped objects. Finally, Section 3.3 introduced friction noise in our simulation,
to observe its effect on convergence rate. Each set of experiments is described below.

3.1. Kruskal Effect for L-shaped Object

The first set of simulation experiments used a single object, the L-shaped model of the allen
key. We generated 43 distinct random action sequences S, each of length N = 50. Each sequence
was repeated M = 10,000 times, starting from initial poses uniformly sampled from the CSpace as
described above.

o X Lt
0 5 10 15 20 25 30 35 40 45 50
Tilt Number

Figure 3. Kruskal effect for the allen key: M = 10, 000 trials of N = 50 actions were repeated across 43
distinct random sequences. The mean (bold red line that converges by the 20t tilt) is bounded by the
interquartile range (in blue shaded region). The thin black lines show individual sequences’ entropy
trends, some of which approach zero by 50 actions. The shortest converging sequence is shown in

green reaching zero entropy by the 8t tilt.

Figure 3 shows the entropy for each sequence, the mean across all sequences, and the inter-quartile
range. In this instance, the Kruskal effect is readily observed. While the entropy is not monotonically
decreasing, there is a clear trend. Of the 43 sequences tested, 29 converged to zero entropy, with all
poses landing in a single voxel. The majority of data (25-75% or the interquartile range) is within
the blue shaded region in Figure 3. On average, the entropy converges to a value close to zero by
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the 20 tilt. The best randomly generated sequence converges in eight actions (shown as the green
line in Figure 3), whereas the Erdmann and Mason plan converges in five. While not conclusive, the
results suggest that converging plans are common, but optimal plans are rare. This is expected since
the actions were randomly chosen instead of being planned.

3.2. Varying the Object Shape

During the second set of experiments, we tested the effect of varying object shape. We used 15
different triangular object shapes (see Figure 2) and applied the fastest converging sequence we found
for the allen key (shown as the green line in Figure 3). We conducted M = 10, 000 repetitions for each
object, starting at a randomly sampled initial object configuration.

The results are shown in Figure 4. Of the 15 objects tested, 10 converged to zero entropy. The
majority of the data shown by the interquartile range (blue shaded region in Figure 4) oriented the test
object into a single final determined pose. On average, the entropy converges to a value close to zero
by the 27t tilt.

1 ¥ —

JAa"

0 5 10 15 20 25 30 35 40 45 50
Tilt Number

0

Figure 4. Varying the object shape: M = 10,000 trials of N = 50 actions were repeated using the same
random sequence (green line from Figure 3) across 15 various object shapes. The mean (bold red line)
is bounded by the interquartile range (in blue shaded region). The thin black lines represent distinct
object poses, most of which converge by 50 actions.

The best sequence generated for the allen key does not perform as well on the other shapes,
although it still tends to converge in most cases. One interpretation is that some objects are harder to
orient than others, which is not surprising. In the context of pushing, this has already been proven [16].
It is also likely that we have used a part-specific plan, by generating several part-agnostic plans and
then selecting the best for the L-shaped object. We have only restricted to triangular shapes as an initial
exploratory experiment, and studying other convex and concave object shapes is left for future work.

3.3. Varying the Friction Noise

The third set of experiments explored the effect of friction noise with the same 30-degree tray
tilts and L-shaped object randomly initialized in the CSpace. We apply a simple noise model in which
we let the coefficient of friction vary randomly with respect to position within the tray as our real
experiments exhibited spatially varying friction due to wear. Figure 5 shows the low, medium, and
high amplitudes of variation. We randomly generated 20 distinct friction maps, which were grouped
by their mean friction to generate 13 low-noise maps, 3 medium-noise maps, and 4 high-noise maps.
We used the allen key, and the best-performing action sequence found for the allen key in the first
set of experiments, which is shown as the green line in Figure 3. The chosen action sequence that
converges by eight tilts allows for observable medium and high friction noise convergence behavior,
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as low friction noise should converge close to eight tilts. We performed M = 1,000 repetitions for each
friction map, which is sufficient to observe the effect on the probability distribution of pose between
maps.

3

0.2

Floor Friction Modulation
3
3
y [m]
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Figure 5. Spatially varying floor friction with low (left), medium (middle), and high (right) variation

The results are shown in Figure 6. For the low noise maps, 10 of the 13 entropy trends converged
to zero entropy. On average, entropy converges to a value close to zero by the 9" tilt.

Figure 6 also shows the results for medium and high noise. None of the medium- or high-noise
maps converged to zero entropy. In both cases, the Kruskal effect is observable in that the general
trend of entropy is decreasing, although they tend to not converge to zero entropy within 50 actions.
These results show that lower friction noise positively affects the probability distribution of object
poses towards convergence. It is also likely that better-performing sequences exist for higher friction
noise levels. Longer sequences are necessary to draw conclusions as to whether entropy for medium
and high friction noise will level off or converge after more than 50 tilts.

I High Friction Floor Noise
5 [ Medium Friction Floor Noise
[1 Low Friction Floor Noise

0 5 10 15 20 25 30 35 40 45 50
Tilt Number

Figure 6. Varying the friction noise: M = 1,000 trials of N = 50 actions repeated using the same
random sequence (green line from Figure 3) with 20 distinct floor friction noise amplitudes. The mean
(bold red line) is bounded by the interquartile range for each category of friction floor noise illustrated
in Figure 5—low, medium and high.

4. Physical Experiments

The simulation results suggests that the Kruskal effect can be observed for 2D objects, with
significant entropy reduction for a variety of triangular objects and friction noise levels. However,
physical rigid body interactions can be complex to simulate accurately. The goal of the physical
experiments is to test the validity of the simulations. We tested one of the randomly generated
sequences consisting of 50 actions. We used a 6-DOF ABB IRB 120 robotic arm tilting a 200 mm square
aluminum tray. The object is a 77.5x27.5 mm allen key with an April Tag [17] to track the object with
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an overhead camera, as pictured in Figure 7. The tilting actions were 30-degree tilts in each of the
eight cardinal directions. We ran M=500 trials which is less than the number of trials suggested by
Equation 7, but due to wearing down of the tray from metal-metal interactions we restrict ourselves to
less trials and thus lower resolution (3 x 3 x 3 grid). This inevitably leads to a less accurate estimate of
the entropy, but we still expect to see the downward trend if the Kruskal effect is observed.

Figure 7. Experimental setup. An industrial robot tilts an allen key, with April Tag attached, in an
aluminum tray. The overhead camera records the pose of the allen key after each tilt.

It is important that each trial be independent of the preceding trial, and that the initial poses
approximate a uniform sampling of the CSpace. To that end, the robot shook the tray vigorously prior
to the start of every sequence. The success of that approach is easily assessed by checking the initial
entropy H. A uniform distribution over 27 voxels would yield an entropy of about 4.75. However,
finite sampling from a uniform distribution is not likely to yield a uniform distribution. Numerical
experiments for a dataset of 500 samples drawn into 27 bins suggested an expected initial entropy of
approximately 4.72. The measured entropy of our initial distribution is around 3.9, for a difference of
just under one bit. We attribute the difference to the fact that some of our CSpace volume & x Y x @
is infeasible due to collisions with walls, and to small limitations in our vigorous shaking motion.

obv
0 5 10 15 20 25 30 35 40 45 50

Tilt Number
Figure 8. Robot Entropy Data: M = 500 trials of N = 50 actions repeated on the robot using the same

sequence that was used in simulation experiments 3.2 and 3.3.

Entropy is calculated in the same way as Section 3, discretizing the tray volume into 3 X 3 x 3 = 27
(x,y,0) voxels. Corresponding results are shown in Figure 8. The entropy line is quite noisy which
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makes it difficult to draw confident conclusions, but the general trend is downwards and indicative of
the Kruskal effect. In future work, real world issues, such as wear and tear, should be addressed to
obtain more trials and finer resolution for more concrete inferences.

5. Discussion

In this section, we will discuss the results presented in Sections 3 and 4, draw conclusions and
discuss insights for future exploration.

From the planner proposed by Erdmann and Mason [2], we know that planned actions can orient
an allen key to a final determined pose. Although their proposed sequence efficiently oriented the
object, we wanted to explore how random sequences would perform at the same task. Towards this
end, Section 3.1 tests various random sequences on the same test object. Almost all sufficiently long
sequences significantly reduce the entropy, and most sequences result in zero entropy. We show
that the Kruskal effect applies for any random sequence to mostly or completely reduce object pose
uncertainty.

Given an object, it would be possible to produce an object-specific plan by searching random
sequences and selecting the best. However, we consider action sequences that are not object-specific
which is beneficial when introducing new objects. We show this in Section 3.2, where we selected the
best allen key sequence, and repeated it for other triangular shapes. Figure 4 shows that the sequence
reduced entropy to a few poses within 30 tilts. On average, the sequence succeeds at decreasing entropy
for all tested objects, perhaps because the objects are all somewhat similar to the L-shaped object. Even
a part-specific sequence serves as part-agnostic sequence, although a less efficient one. Testing shapes
with more edges, especially with a rectangular tray, could affect the amount of uncertainty in object
pose. A possible extension of this work is to identify such objects and environments.

In Section 3.3, we explore the significance of non-deterministic actions, by introducing a noise
model. While the entropy did generally decrease over the tilting sequence regardless of noise, the
higher the noise, the slower the object poses seemed to converge. The Kruskal effect can be observed
in less than ideal conditions such as high noise, but lower friction noises are more efficient at lowering
pose uncertainty. Future work might extend the sequences to see if the entropy levels off at some
value depending on the friction noise level or determine whether different sequences perform better at
different noise levels.

In Section 4, we show that our theory can be applied to the real world. Even with the noise arising
from variations in setup and execution, the object poses still converge to a relatively low entropy.
In the future we are interested in further exploring the limits of tray tilting actions reducing object
pose uncertainty in the real world and the effects of wear on physical systems through exploitation of
material interactions.

Simulation provided large amounts of data and easily varied parameters to confirm the decrease
in entropy provided by randomized action sequences. The largest entropy decrease among simulation
and robot experiments was after the first move. At first, random initialization causes the object to
be anywhere in the tray and subsequently, only along the edges of the tray after the first tilt. Testing
across different triangular object shapes demonstrated some of the generality in shapes that the system
can tolerate. Simulation using different noise parameters, showed that entropy reduction works under
stochastic conditions.

In some of our sequences, the object pose did not converge completely to 0 after 50 iterations. We
think this is because for some objects, a certain mini-sequence of actions must be executed consecutively
for distinct poses to converge to one pose. When randomly selecting actions, it may sometimes require
a very long sequence for this mini-sequence to appear. This presents an opportunity to learn strategies
that can predict these mini-sequences. Learned strategies can achieve high precision over a specific set
of objects, and orthogonally our approach strives to achieve almost full convergence on a general set of
objects. The majority of the entropy reduction occurs in the first 5 tilts. Figure 9 shows that the number
of voxels occupied from there on continues to oscillate between 2 and 6 voxels. We can use learning to



Entropy 2019, 21 11

converge to a single pose more efficiently after the Kruskal effect achieves clusters or bi-modal states.
This allows for less training data and higher accuracy in object pose. In essence, we can learn to find a
mini-sequence of actions that efficiently reduces pose uncertainty.

20

Number of Occupied Voxels

0 5 10 15 20 25 30 35 40 45 50

Tilt Number
Figure 9. Robot Occupied Voxels Data: M = 500 trials of N = 50 actions repeated on the robot using
sequence that was used in Section 4.

Additionally, for our experiments, small increases in entropy occur due to small changes between
similar poses that map to distinct voxels. Later, these poses will converge again but may take some
time to find the rights actions to realign.

Informally, it is possible to make a few observations about the tray tilting process. The main
order-producing phenomenon is when we drive the object pose to the boundary of the CSpace, i.e. a
contact between object and tray wall. Ideally, this is a projection of the feasible poses to the boundary,
and reduces the dimension of the feasible CSpace. For example, if each dimension of SE(2) is quantized
into N bins, then at the beginning the pose is spread across N3 bins, and after one action it has been
projected to a surface spanned by N2 bins.

Figure 10. The effect of orthogonal actions on object pose. Long blocks represent a manipulator’s two
fingers with which we can execute horizontal and vertical squeeze grasps. Translucent disks indicate
possible initial poses, and opaque disks indicate the resulting final poses after executing the action.
Starting from random initial poses of the disk, the pose uncertainty in (x,y) goes to 0 if the squeeze
grasps are orthogonal.

In the simplest case, shown in Figure 10 using squeezing actions of a disk, this projection would
be a normal projection onto a line. These actions would be analogous to tilting a tray back and forth.
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For a second action to combine most effectively with the first, the second line would be orthogonal to
the first, and the final disk position would then be uniquely determined.

In general, the CSpace surfaces that correspond to kinematic constraints cannot be modeled as
linear, nor are the projections linear, but still the toy example may provide some useful insights. The
more closely two actions can be modeled as orthogonal projections, the better.

The main disorder-producing phenomenon might be sliding across the tray floor, where minor
variations in friction can cause rotation of the object. The vagaries of sliding friction can also make it
impossible to say whether an object will stick or slide along a tray wall.

There are also disorder-amplifying phenomena. For example, if the part strikes the wall sharply
it will rebound, and the small variations in initial pose will be integrated over time to produce large
variations. It is this effect we relied upon to randomize the object pose prior to testing a sequence of
actions in our physical experiments.

The effectiveness of a sequence depends on how common and how effective the order-producing
actions are, how frequently combinations occur, and how effectively they combine, versus the frequency
and degree of disorder produced by the other actions. One goal of future work will be to explore this
underlying structure more precisely, as a way of characterizing tasks.

6. Conclusion

Examining the traditional approach of sense-plan-act, we observe the effects of an alternative
approach of executing random sequences of actions without sensing. We show that a sufficiently long
random sequence of actions can move an object from an unknown initial pose to a determined final
pose, regardless of initial pose of the object, varying object shapes, and stochasticity in the environment.
This effect is explored in greater detail through simulation using millions of tilts and observing the
entropy trends over action sequences. We learned how some parameters affect our system: longer
sequences lower object uncertainty, and stochasticity in the environment as well as some variation
in triangular object shapes does not disturb the system. We also illustrated the same effect on a real
robot and saw a decreasing trend in entropy. However, the final entropy is not as low as suggested by
simulation results, due to real world challenges and complications such as wear and tear.

This is a different paradigm than the sense-plan-act approach where the final pose and the action
sequence to achieve that pose are planned; exploring this alternative paradigm and its limitations
could be fruitful. We offer insights into the idea of randomized action sequences instead of planning.
The advantage in our setup is that random tray-tilting actions are not part-specific and reduce system
complexity for new objects. The Kruskal effect can be useful for orienting kit of parts, a difficult
planning problem often encountered in industrial applications. Kit of parts reorienting involves
placing similarly shaped objects in a compartmentalized tray where each compartment holds one
of these objects. A naive planning approach for reorienting would require us to do joint planning
for all the objects in the tray whose complexity would scale with the number of objects. Using the
proposed approach, we can orient many objects without scaling complexity by the number of objects.
More specifically, we can execute the proposed approach on such a compartmentalized tray and by the
end of a random sequence, we expect most objects to be in a determined pose. The manipulator can
retrieve each object from the fixed pose and continue to the next task. If the object was not successfully
grasped, it can benefit from more tilts as the rest of the compartments are refilled and the sequence of
random actions continues. The more tilts an object undergoes, the more certain its final position will
be. Thus, many similarly shaped objects can be simultaneously oriented for a subsequent task.

Finally, the proposed approach is not limited to tray tilting. A randomized sequence of actions
can come in the form of any set of actions performed by a manipulator. For our purposes, this was a
tray attached to the end of an industrial arm. An example of an alternative application of this work
can be to replace the tray with a freely mobile wall, where the set of possible actions is pushing an
object from any angle. In such a robotic system, we would expect the object to reach a determined
pose after a random sequence of actions as well, exhibiting the Kruskal effect.
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7. Future Work

Extensions of this work to various polygons or approximations of non-convex objects and
tray-tilting alternatives, such as pushing, would further explore the effects of randomized action
sequences. The sustainability of our approach can be tested through longer sequences in simulation
and on physical systems, as well as more trials for higher quality estimates of entropy. We are also
interested in ways to capture the order of the system in a data-efficient way. A future goal is to move
towards a tray with a lid that can offer a 3D exploration of part-agnostic tray-tilting to determine 3D
object pose.

To identify action sequences that are efficient at orienting a given object, we could learn a policy,
such as that by Christiansen et al. [18], but with finer discretized tray regions for more accurate object
poses. Another future direction would be to explore potential applications of the proposed approach
in simplifying a pose estimation problem for a manipulation task.
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