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Abstract— In this paper, we consider reorienting 3D objects
on a table using a two-finger pinch gripper. Given the 3D
mesh model of the object, our algorithm solves for the gripper
motions that are required to transit between arbitrary object
poses, grasping positions and gripper poses. The two motion
primitives we used, pivoting and compliant rolling, enable us to
decompose the planning problem and solve it more efficiently.
Our algorithm can work with approximated (simplified) mesh
models while being robust to approximation errors, thereby
allowing us to efficiently handle object shapes with originally
thousands of facets. We show the effectiveness of the proposed
method by testing on objects with non-trivial geometry in both
simulations and experiments. Results show that our algorithm
can solve a larger range of reorienting problems with less
number of making and breaking contacts when compared to
traditional pick-and-place based methods, especially when the
gripper workspace is highly constrained.

I. INTRODUCTION

Many works on robot motion planning focus on doing sim-

ple grasping in complicated environments, in which a grasp

is declared successful as soon as it is made. In industrial

applications such as polishing, soldering and assembling,

however, the objects usually lie in a clean environment but

need to be quickly reoriented to a specific pose or a sequence

of poses in the world frame. We call them reorienting
problems. Traditional methods [15], [16], [30], [28], [7],

[32] for 3D reorienting planning only consider the transitions

between stable placements of the object. We call these

problems Stable-Placement-Reorienting. A more general task

is Any-Pose-Reorienting, in which the object transits between

any two 3D poses. In this problem, the solution may not

pass through a stable pose at all. In this paper, we propose

a planning method for Any-Pose-Reorienting.

Without a dexterous hand, pick-and-place is the simplest

motion primitive used for reorienting an object. In pick-and-

place, the manipulator grasps the object firmly, drops it at a

different stable pose then grasps again. However, the motion

plan could be inefficient, because the gripper has to rotate

together with the object; also the method could lost some

potential solutions, because the robot can only attempt grasps

that are feasible for both the initial and the final object poses.
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On the contrary, humans can perform the task elegantly

even with two finger pinch grasps. Humans use a larger

repertoire of motion primitives with the help of extrinsic
dexterity [8] such as gravity, inertia forces and extrinsic

contact forces. However, it remains a challenge to do planing

using extrinsic dexterity for general shaped objects [8]. In

this work we analyze two of the motion primitives that are

helpful for planning, both utilize the table and gravity. The

first one is pivoting on the table, in which the object is

pinch-grasped but can rotate about the grasp axis. Part of

the object is in contact with the table under gravity. The

second motion primitive is compliant rolling on the table, in

which the object is firmly grasped. The object rotates with the

gripper, while maintaining contact with the table underneath.

The robot has compliance in the table’s normal direction, in

order to avoid large impact forces.

When used together, these two motion primitives pro-

vide several benefits. Firstly, the gripper does not need to

follow the rotation of the grasped object during pivoting,

opening possibilities for more efficient solutions. Secondly,

the object motion is kinematically determined by the motion

of gripper under quasi-static assumptions. Comparing with

throwing&catching [8], pivoting with gravity [31] or inertia

force [26], [10], the proposed motion primitives have lower

requirement on the bandwidth of the robot.

With the two motion primitives, our proposed strategy

could quickly generate motion plan or declare infeasibility

for a given grasp position, making it efficient to select a

grasp. When the task cannot be fulfilled with one grasp, we

perform graph search on an improved Regrasping Graph [32]

to plan a sequence of grasps. The planning can be done in

real time. Most importantly, our method makes it convenient

to analyze the robustness of a motion plan towards modeling

errors, so that we can always plan with a simplified object

mesh model.

To summarize, our contributions are:

• Quasi-static analysis of the two motion primitives: piv-
oting on the table and compliant rolling on the table;

• A real-time planning framework for Any-Pose-
Reorienting problems using these two motion

primitives;

• Robustness analysis for planning with simplified 3D

mesh models.
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II. RELATED WORK

A. Grasp Planning

The first step of reorienting is to make a grasp. Many

studies on grasping focus on evaluating the quality of a grasp

under different situations [21], [35], [23]. To find a grasp,

the basic idea is to detect antipodal points [6]. For compli-

cated and non-smooth object shapes, people use simplified

model for grasp point sampling, including bounding box

[11], surface sampling [24] or shape primitives [19]. Model

free grasping [12], [20], [25] is also a choice. However,

using shape approximation or model free grasping method

usually provides no guarantee on the quality of the grasp,

which could cause troubles for post-grasping manipulations

including reorienting. In our framework, we directly sample

antipodal grasp points on the original object mesh model

using the method described in [32].

B. Regrasping and Reorienting

Closely related to our work, regrasping problems focus

on changing the pose of object with respect to the gripper.

Dafle et. al. demonstrated by hand-coded trajectories that a

robot with a simple gripper is able to perform dexterous

regraspings by utilizing the extrinsic force resources [8].

Dafle and Rodriguez then used LCP trajectory optimiza-

tion for planning continuous regrasping motions [3] with

extrinsic contact, as well as sampling-based planning for

picking discrete modes [5]. The framework is general enough

for covering re-orienting, however, sampling-based methods

cannot declare infeasibility in finite time, while the nature

of the planning problem (long horizon, hybrid states) makes

the optimization hard to solve.

C. Motion Primitives for Reorienting

Works on pick-and-place reorienting can date back to

1980s, when the mainstream approaches discretize the whole

gripper-object state space with a ”grasp-placement table”

[15], [16], [30]. The set of grasps were selected off-line.

A motion sequence can be obtained by back chaining from

the goal during planning. The approach is then adopted and

improved in several ways. Stoeter et. al. computed the stable

placements of the object and the discretized gripper motion,

built the list of ”Grasp-placement-grasp” triples for searching

online [28]. Cho et. al. stores collision-free states in a

lookup table, then find intermediate placement incrementally

by querying the table [7]. Wan et. al. [32] and Xue et.
al. [33] utilize graph structure to represent gripper&object

feasible poses for efficient online searching. Wan et. al. also

decompose the search of pick-and-place sequence from the

search of grasps for better efficiency. In those works, only

stable placements are discretized and stored as entries in

the table/nodes on the graph. However, it would require too

much memory to discretize the space of 3D poses, thus those

methods only deal with the finite set of stable placements for

an object.

Pivoting has been used as a motion primitive with several

kinds of extrinsic actuations, including inertia force [10],

[26], gravity [2], [22], [27], [31] as well as extrinsic contact

forces [1], [9], [29], [34]. Using inertia force or gravity with

grip force control can improve the speed of object motion,

however, it poses high requirement on the bandwidth of the

robot itself [10], [31], [27]. In [22], the robot lifted up the

object and let the object rotate passively under gravity to

the desired pose, assuming a suitable grasp along the line

of gravity exists. Closely related to our work, Holladay [9]

and Terasaki [29] used pivoting on the table for reorienting

objects. However, in both works they only considered stable

object placements, and analyzed pivoting as a swinging

between two stable placements.

III. PROBLEM DESCRIPTION

Consider a rigid object. Denote the points on its convex

hull as P ∈ R
3×N , its center of mass (COM) as c ∈ R

3.

Here the P and c are measured under the original object

orientation q
(o)
obj ∈ SO(3). We sample a collection of grasp

positions G for the object off-line. A certain grasp position

is denoted by an id g ∈ G. The position of gripper pgrp is

defined as the middle point between the two fingertips. The

orientation of the gripper is denoted as qgrp ∈ SO(3).

Fig. 1: Example of an Any-Pose-Reorienting problem. The

arrows show the axes of the gripper frame.

An Any-Pose-Reorienting problem is defined as follows.

Given the initial and final object poses (not necessarily

stable poses), q
(i)
obj, q

(f)
obj ∈ SO(3), p

(i)
obj, p

(f)
obj ∈ R

3, also the

initial and final grasps and gripper orientations g(i), g(f) ∈
G, q

(i)
grp, q

(f)
grp ∈ SO(3), plan a sequence of collision-free

gripper motions to achieve the transition, as shown in Fig.1.

Note we do not care about the translation of the object,

as moving a grasped object on a clean table is trivial. The

problem is a variant of regrasping problem, in that the goal

specifies both the pose of the object about the gripper, and

also their poses relative to the world.

We plan the gripper motion in Cartesian space. To avoid

bad configuration of the manipulator, a dexterous workspace

constraint is defined as follows. Consider the typical setup

of an industrial robot, the gripper position has to stay in a

bounding box ψ, while the gripper tilting angle has an upper

limit |β| < π/2. Zero tilting angle corresponds to the case

where the palm faces downward, with the grasp axis lying

within the horizontal plane.

IV. APPROACH

We start with a list of assumptions used in this work.

1) A horizontal table is in the robot workspace.

2) Motions are quasi-static, i.e. inertia forces are negligi-

ble.
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3) The pre-computed grasp positions are the actual posi-

tions of fingertips after the gripper being closed on the

object.

4) The grasped object will not slip about fingertips, except

for the rotation about grasp axis during a pivoting.

5) For friction, only Coulomb friction and stiction exist

between the object and the table.

6) In terms of collision checking, we consider the gripper

and ignore the robot arm. The workspace constraint

should make sure the gripper has no collision with the

table.

The first motion primitive we adopted is pivoting on the
table. The gripper grasps two antipodal points on the object

surface. The fingertips allow the object to rotate about the

grasp axis, but do not allow tangential slipping. While

contacting the gripper, the object also maintain contact(s)

with the table under gravity, forming a kinematic chain. The

object may or may not slip on the table, depending on the

force exerted from the gripper. This motion primitive is the

source of the additional flexibility of our method.

As we will show shortly, a pivoting grasp may not be

stable under gravity, for which we need to switch to the

second motion primitive, compliant rolling on the table. It

involves the gripper firmly grasping the object and rotating

while maintaining contact between the object and the table.

A hardware implementation of the two motion primitives is

explained in Sec. V.

These two motion primitives introduce the choice of mode

m = {0, 1} as an additional discrete decision variable in the

problem.

A. Mechanics of Pivoting on the Table

Fig. 2: Forces on the object during pivoting, viewing from

the direction of grasp axis. Points O, C, Q are the contact

point, center of mass and grasp point, respectively. Forces

f , g, t are contact reaction force, gravity of object and force

from gripper, respectively.

To simplify the analysis, in this work we fix the orientation

of the grasp axis during pivoting. Then we can consider

pivoting as a 2D motion in the plane perpendicular to grasp

axis, as shown in Fig.2. Previous works on mechanics of

pivoting on the table restricted the points O, C and Q to be

co-linear, and focused on computing the required pushing

force[1]. We remove this restriction and perform stability

analysis for all possible pivoting scenarios.

Denote the Coulomb friction coefficient between the ob-

ject and the table as μ. When the force system (f, g, t) is in

equilibrium, we have (define Ox = 0)

fx + tx = 0,
fy + ty = g,

Cxg +Qytx = Qxty.
(1)

Inertia force is ignored due to the quasi-static assumption.

Eliminate term tx, ty we have

fy =
Qy

Qx
fx + (1− Cx

Qx
)g (2)

A given pivoting scenario (specified by O,C,Q) is stable

as long as a solution of (2) exists, otherwise the system is

out of equilibrium and the object will topple over. We can

discuss the existence of solutions by looking at the fy - fx
curve.

Depending on the geometrical relations of points O,C and

Q in the pivoting plane, we have six scenarios as shown in

Fig.3. In each column, the top figure shows the positions

of C and Q relative to O considered in that situation. The

bottom figure shows the corresponding solution set of friction

force. In all figures, we also show the friction cone at O
(intersection of the 3D friction cone with the pivoting plane)

in black dashed line.

The friction curves in Fig.3 tell us when the system will

remain in static. For example, in scenario I, the object will be

static if the gripper pushes towards contact point O, or pulls

away with a small force. In scenario IV, the object cannot

be static anyway.

There are two possible results when the object is non-

static. In I, II, V and VI, the object will be sliding on the

table. This is fine since we only care about the orientation.

However, in III and IV, the object will topple over under

gravity. We consider these situations as unstable. This ob-

servation leads to the following simple stability criteria:

Theorem 1. A stable solution of pivoting system (1) exists
as long as the following stability condition is satisfied:

(Qx − Cx) · (Qx −Ox) > 0 (3)

i.e. in X direction, the gripper position Q is not in between
contact point O and center of mass C.

Proof. The condition corresponds to I, II, V and VI in Fig.3.

As per the analysis above, the object will always be either

static or sliding without rotation.

Condition (3) is not necessary. Notice that a solution exists

for scenario III if the gripper pushes towards the contact

point. We do NOT use this solution since it is hard to

implement on hardware (requiring a certain amount of force).

The condition described in theorem 1 has no requirement on

force.

Using Fig.3, the following theorem tells us when the

motion of the object will get stuck on the table:

1633



Fig. 3: All six possible scenarios and the corresponding solution sets of friction. In the first row of each sub-figure, O is

shown as the black dot, x coordinate of C is shown by the red line, possible positions of Q are shown as the blue shaded

area. Solid lines in second row show the possible value of friction force under force equilibrium. Dashed lines are the friction

cone.

Theorem 2. Under condition (3), the object can slide on
the table during pivoting, as long as the grasp position Q is
out of friction cone. When Q is within the friction cone, the
object can only move such that the contact O moves towards
Q in X direction.

Proof. Under condition (3), Q being outside of friction cone

corresponds to scenario II and VI in Fig.3, in which the

frictions fx in both directions are bounded. Q being inside

of friction cone corresponds to scenario I and V in Fig.3,

in which the friction fx is bounded only when the gripper

moves away from O.

The two theorems make it possible to design simple yet

effective planning algorithms.

B. Planning Any-Pose-Reorienting Given A Grasp

As a core module of our method, we firstly discuss how

to solve the reorienting problem when the grasp position on

the object is given. Our strategy contains two stages:

1) Regrasping Rotate the object with respect to the gripper

till q−1
objqgrp = (q

(f)
obj)

−1q
(f)
grp,

2) Reorienting Use rolling to rotate the object to final pose

(gripper will also arrive the final pose).

The reorienting stage is trivial to plan. A gripper ori-

entation trajectory generated by spherical linear interpola-

tion(SLERP) will be feasible if the initial and final orienta-

tions are feasible.

In the regrasping stage, we fix the orientation of the grasp

axis and let the object rotate about it. Note the initial grasp

axis tilting angle should not be close to 90 degree, as pivoting

would be hard due to insufficient gravitational torque.

Among the two motion primitives, only pivoting can

change the pose of object with respect to the gripper.

However, during the motion the pivoting may be unstable.

Our strategy is to switch to rolling when we cannot ensure

the stability condition, and do pivoting again when it is

safe. Note that computing the switching point analytically

is difficult since the contact position O is a discontinuous

function of object orientation. As a result, we will be working

with a discretized object rotation trajectory.

We now need to solve for a trajectory of continuous

gripper motion as well as discrete choices of modes, under

stability constraints, collision-avoidance (between object and

gripper) constraints and gripper workspace constraints. The

problem takes form of a Mixed-Integer-Programming which

suffers from combinatorial explosion of modes. However,

we can solve it much more efficiently by decomposing the

planning into three levels:

• (Bottom Level) Object planning: compute a trajectory

of object rotation and mode choices, rotate the object

until the desired gripper orientation hit the further

edge of tilting angle limit, while checking stability and

workspace constraints;

• (Middle Level) Gripper planning: Given object mo-

tion, compute a trajectory of gripper rotations, achieve

q−1
objqgrp = (q

(f)
obj)

−1q
(f)
grp and satisfy collision-avoidance

constraints, tilting angle constraints;

• (Top Level) Full Cartesian planning: compute a tra-

jectory of gripper translation satisfying the rest of

workspace constraints.

The planning starts from the bottom to the top, rejects

a solution immediately if one level is infeasible. In the

following we explain each level in detail.
1) Object rotation planning: Firstly, we pick an object

rotation direction based on q
(i)
obj. We plan the object motion

with algorithm 1. If the algorithm returns failure, we try

the other direction. Δφ is chosen to be one degree in our

implementation. Rot(v, n, θ) is the abbreviation for rotating

vector v about axis n by θ. Here we can check the workspace

constraints that are determined only by the fingertip posi-

tions. If there is no violation, we obtain a trajectory of object

rotations and choices of modes.
2) Gripper rotation planning: To efficiently check the

collision between the object and the gripper, we compute

for each grasp position the array of collision-free gripper

angles in the object frame during off-line computation. The

array has an entry for every one degree. We can illustrate

the gripper rotation planning problem in Fig.4. Object and

gripper rotation are denoted by horizontal and vertical axis,

respectively. Our task is to find a path from the initial gripper
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Algorithm 1 Object rotation planning

Input : q
(i)
obj, q

(f)
obj, q

(f)
grp,P, grasp axis n

1: Compute the total rotation angle φ̄, discretize it into array

Φ by Δφ
2: Initialize motion mode array M ← ∅
3: for each element φ ∈ Φ do
4: Rotate object: P̂ ← Rot(P(i), n, φ)
5: if Workspace constraint is violated then
6: return failure

7: end if
8: Compute m ∈ {0(rolling), 1(pivoting)} using (3)

9: M ← [M,m]
10: end for
11: return M , Φ

rotation angle to any point on the green line (where the

desired relative angle is satisfied), while staying within tilting

angle limit (grey dotted lines) and avoiding collision region

(red shaded areas). Note that within the rolling zones (blue

shaded areas), the change rates of gripper rotation and object

rotation have to be the same. For computational efficiency,

we solve for a path using a simple heuristics: use piecewise

linear lines and always minimize gripper tilting. We omit the

algorithm details here. We denote resulted gripper rotation

plan as Ω, with the same dimension as Φ.

Fig. 4: Illustration of the gripper rotation planning problem

in the gripper-object rotation space. An example solution is

shown as the yellow line.

3) Full Cartesian planning: Finally we compute the 3D

translations of the gripper for each time-step of motion. At

the beginning of the algorithm, we re-sample the rotation

plan qobj, qgrp,M to avoid large jumps in gripper rotations.

For each sampled time-step, if sliding is possible (determined

by theorem 2), we move the gripper towards the center of

workspace. Otherwise the gripper position is decided by

rotating the object about the current contact point on the

table.

C. Robust Planning with Simplified Mesh Model

The computation in section IV-B involves manipulating the

convex hull of the object mesh model. For delicate models

with thousands of facets, the algorithm can be slow. We

instead work with a simplified (triangle counts reduced) mesh

model, and plan robustly against the modeling error.

Denote the Hausdorff distance between the original and

simplified convex hull as dH :

dH(P, P̂) = max{ sup
p∈P

inf
p̂∈P̂

d(P, P̂), sup
p̂∈P̂

inf
p∈P

d(P, P̂) },

(4)

we have the following theorem:

Theorem 3. Denote P̂ as the vertices of the simplified mesh
model under a certain object pose. Denote a ∈ P̂ as the
bottom point on the simplified model, i.e.

az = min
p̂∈P̂

p̂z

Then the actual contact point e ∈ P between the original
model and the table, defined by

ez = min
p∈P

pz

must be within the following set:

e ∈
{
BdH

(p̂i)|p̂i ∈ P̂, p̂iz ≤ az + 2dH

}

Br(p) denotes the ball of radius r centered at point p.

Proof. The actual height Oz of the table surface is upper

bounded by:

Oz ≤ az + dH .

From the definition of Hausdorff distance we know that

points on P is bounded in balls of radius dH centered at

points on P̂:

P ∈
{
BdH

(pi)|pi ∈ P̂
}
.

As a result, the balls that could possibly touch the table are

centered at{
p̂i|p̂i ∈ P̂, p̂iz ≤ Oz + dH ≤ az + 2dH

}
.

To plan robustly, for any condition in Section IV-B that

involves the contact point O, we check it against the range

of possible O instead.

There are many off-the-shelf algorithms for mesh simplifi-

cation developed in computer graphics community [13], [14].

We use an algorithm similar to the one described in [14]

to produce simplified mesh under user-defined Hausdorff

distance.

D. Search for A Sequence of Reorientings

When we cannot finish the task within one reorienting,

we need to search for a sequence of reorientings connected

by place and pick at stable placements. Our method is

built upon Wan’s Regrasp Graph[32], in which a graph

connecting different object-gripper poses is computed off-

line. We improve Wan’s work in two ways. Firstly, we

connect two nodes in our graph as long as they have common

grasp locations, rather than common grasp poses. Thus we

remove the second layer in Wan’s Regrasp Graph, only keep
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the nodes correspond to stable placements. Secondly, we add

the user specified initial and final object poses to the graph

as the starting and ending node during planning time. Since

our graph is very small, this step also add little time to online

computation.

The off-line computation is shown in Algorithm 2.

MeshSim denotes the mesh simplification described in Sec-

tion IV-C. GraspSample and GetStable are the same as in

[32].

Algorithm 2 Off-line Computation

Input : Object mesh model S
1: P ← convexhall(S)
2: P̂ ← MeshSim(P)
3: Sample grasp points G ← GraspSample(S)
4: Compute stable placements V ← GetStable(P̂)
5: for each g ∈ G do
6: Compute collision-free angles for grasp g
7: end for
8: for each v ∈ V do
9: Find the set of feasible grasp positions Gv ∈ G

10: end for
11: Compute the connectivity matrix M for V.

The online search procedure is shown in Algorithm 3. We

use Dijkstra to search for the shortest path, minimizing the

number of grasp changes. For each edge on the path, we run

planner for each grasp that the two nodes of the edge share.

If none of them has a solution, we remove this edge from

graph and run graph search again. Function OneGrasp() can

be implemented as either our method (Section IV-B) or pick

and place. We implement both for comparison.

V. EXPERIMENTS

A. Simulation and Comparison with Pick&Place

We simulate reorienting tasks on 12 objects with non-

trivial shapes (over 2000 facets per object on average)

obtained from Dex-Net [17], as shown in Fig.5. We sample

at most 100 grasp positions for each object. After trimming

similar grasps, around 20 to 80 remaining grasps are used in

planning.

We normalize each object to fit into an 1m × 1m × 1m
cube. For each object, we sample 100 Any-Pose-Reorienting

problems, each with feasible initial and final gripper orienta-

tions. We count a full run of the 1200 problems as a batch.

We run eight batches in total, with tilting angle limit ranging

from 10 to 80 degrees. The performance of our method and

pick&place are shown in Fig.6. Notice that our method can

solve more problems under all conditions. As the tilting angle

limit becomes tighter, the advantage of our method becomes

more obvious. Average rotation and translation shown in

Fig.6b and Fig.6c do not include the gripper motion when the

object is not grasped, and do not include the gripper motion

needed to lift the object off the table during pick&place.

We can observe that our method takes similar rotations and

more translation comparing with pick&place. Finally Fig.6d

Algorithm 3 Online Searching

Input : q
(i)
obj, q

(f)
obj, p

(i)
obj, (q

(i)
grp, q

(f)
grp),V,M,G

1: V ← {V, v(i), v(f)}, where v(i) = q
(i)
obj, v

(f) = q
(f)
obj

2: Find feasible grasp G(i),G(f) ∈ G for new nodes

3: Re-compute the connectivity matrix M for V.

4: while true do
5: path ← Dijkstra(M, v(i), v(f))
6: Terminate with failure if path = ∅
7: plan ← ∅
8: for each edge ejk ∈ path do
9: Gjk ← Gj ∩Gk

10: for each g ∈ Gjk do
11: planjk ← OneGrasp(

g, q
(j)
obj, q

(k)
obj, p

(j)
obj, (q

(j)
grp, q

(k)
grp))

12: break if planjk �= ∅
13: end for
14: if planjk �= ∅ then
15: plan ← [plan planjk]
16: else
17: Remove ejk from M
18: plan ← ∅ and break
19: end if
20: end for
21: Terminate with success if plan �= ∅
22: end while

Fig. 5: The 12 objects used in our simulation.

shows that our method requires significantly less number of

breaking contact than what pick&place requires.

We haven’t optimize the code for speed, yet the average

computation time for solving one problem (or declare failure)

is 43ms in single-thread Matlab, measured on a desktop

with Intel Xeon 3.10GHz CPU. The off-line computation

described in Algorithm 2 takes several minutes per object,

depending on the complexity of the object shape.

B. Hardware Implementation

For experiments, we use an ABB IRB120 robot and a

parallel gripper with a pair of specially designed “two-phase”
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Fig. 6: Simulation results. In all the sub-figures, the horizon-

tal axes are the tilting angle limits in degrees.

fingertips for performing both firm grasp and pivoting, as

shown in Fig.7. Comparing with other designs [4], [29],

our fingertips make it possible to maintain the same contact

patches on the object during the pivoting phase and the

switching between phases, eliminating a source of uncer-

tainty. The contacts between fingertips and the object are

always sticking, reducing the sensitivity of our method to

friction coefficients.

For compliant rolling, the gripper grasps firmly while the

robot performs force control in Cartesian space [18]. We

control the gripper orientation by exact position, while letting

the translation being determined passively by maintaining a

certain force in the Z direction and moving freely in the X

and Y directions. For pivoting, the fingertips rotate freely, the

gripper executes the planned trajectory with position control.

Successful and failed solutions of an example problem are

shown in Fig. 8. The goal is to rotate the screw by 90 degrees

about the X axis. We constraint the maximum gripper tilting

angle to be 40 degrees, under which limit the pick&place

planner has no solution. Our method finds a solution without

breaking contacts (one edge on the regrasp graph). In Fig.

Fig. 7: Our customized gripper is able to switch between the

firm grasp phase and the pivoting grasp phase.

Fig. 8: Rotating a screw by 90 degrees. The first row shows

a successful experiment. The second row is a failure caused

by errors in the initial grasping position and the friction

coefficient between the object and the table.

8 (a) to (b), the solution starts with a rolling to move the

object out of unstable scenario III to stable scenario V in

Fig. 3. Then in subfigures (b), (c) and (d) of the first row,

the solution switches to pivoting to finish the rest of object

rotation without too much gripper rotation. In the bottom row

of Fig. 8, the plan fails to move out of unstable scenario III

before switching to pivoting, causing the object to topple

over towards the wrong direction. This failure is caused by

errors in the initial grasp position and an underestimation of

the friction coefficient between the object and the table.

VI. DISCUSSION AND FUTURE WORK

One thing we learned in planning is that the existence of

reorienting solutions depends heavily on the availability of

grasps. A good number of grasp points distributed all over the

object surface is crucial for both our method and pick&place.

In the current form, our method is not robust against

uncertainties in grasp positions and object COM. Also, the

experiment could fail if our estimation of friction coefficient

between the object and the table is too low. If our estimation

is too high, the planner becomes overly conservative and
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could lose potential solutions. We are working on handling

these deficiencies.

There are a few other interesting directions for future

work. For example, how can we perform pivoting with

normal fingertips (probably equipped with slip detection

sensors) instead of a special mechanism. Slip is inevitable

on normal fingertips, which means the planning algorithm

needs to be robust against uncertainties caused by slip. Also,

it is possible to integrate more motion primitives into our

method, which would appear as additional connections in

the ”Regrasping Graph”.
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