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Abstract—In this paper, we consider reorienting 3D objects
on a table using a two-finger pinch gripper. Given the 3D
mesh model of the object, our algorithm solves for the gripper
motions that are required to transit between arbitrary object
poses, grasping positions and gripper poses. The two motion
primitives we used, pivoting and compliant rolling, enable us to
decompose the planning problem and solve it more efficiently.
Our algorithm can work with approximated (simplified) mesh
models while being robust to approximation errors, thereby
allowing us to efficiently handle object shapes with originally
thousands of facets. We show the effectiveness of the proposed
method by testing on objects with non-trivial geometry in both
simulations and experiments. Results show that our algorithm
can solve a larger range of reorienting problems with less
number of making and breaking contacts when compared to
traditional pick-and-place based methods, especially when the
gripper workspace is highly constrained.

I. INTRODUCTION

Many works on robot motion planning focus on doing sim-
ple grasping in complicated environments, in which a grasp
is declared successful as soon as it is made. In industrial
applications such as polishing, soldering and assembling,
however, the objects usually lie in a clean environment but
need to be quickly reoriented to a specific pose or a sequence
of poses in the world frame. We call them reorienting
problems. Traditional methods [15], [16], [30], [28], [7],
[32] for 3D reorienting planning only consider the transitions
between stable placements of the object. We call these
problems Stable-Placement-Reorienting. A more general task
is Any-Pose-Reorienting, in which the object transits between
any two 3D poses. In this problem, the solution may not
pass through a stable pose at all. In this paper, we propose
a planning method for Any-Pose-Reorienting.

Without a dexterous hand, pick-and-place is the simplest
motion primitive used for reorienting an object. In pick-and-
place, the manipulator grasps the object firmly, drops it at a
different stable pose then grasps again. However, the motion
plan could be inefficient, because the gripper has to rotate
together with the object; also the method could lost some
potential solutions, because the robot can only attempt grasps
that are feasible for both the initial and the final object poses.
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On the contrary, humans can perform the task elegantly
even with two finger pinch grasps. Humans use a larger
repertoire of motion primitives with the help of extrinsic
dexterity [8] such as gravity, inertia forces and extrinsic
contact forces. However, it remains a challenge to do planing
using extrinsic dexterity for general shaped objects [8]. In
this work we analyze two of the motion primitives that are
helpful for planning, both utilize the table and gravity. The
first one is pivoting on the table, in which the object is
pinch-grasped but can rotate about the grasp axis. Part of
the object is in contact with the table under gravity. The
second motion primitive is compliant rolling on the table, in
which the object is firmly grasped. The object rotates with the
gripper, while maintaining contact with the table underneath.
The robot has compliance in the table’s normal direction, in
order to avoid large impact forces.

When used together, these two motion primitives pro-
vide several benefits. Firstly, the gripper does not need to
follow the rotation of the grasped object during pivoting,
opening possibilities for more efficient solutions. Secondly,
the object motion is kinematically determined by the motion
of gripper under quasi-static assumptions. Comparing with
throwingé&catching [8], pivoting with gravity [31] or inertia
force [26], [10], the proposed motion primitives have lower
requirement on the bandwidth of the robot.

With the two motion primitives, our proposed strategy
could quickly generate motion plan or declare infeasibility
for a given grasp position, making it efficient to select a
grasp. When the task cannot be fulfilled with one grasp, we
perform graph search on an improved Regrasping Graph [32]
to plan a sequence of grasps. The planning can be done in
real time. Most importantly, our method makes it convenient
to analyze the robustness of a motion plan towards modeling
errors, so that we can always plan with a simplified object
mesh model.

To summarize, our contributions are:

o Quasi-static analysis of the two motion primitives: piv-
oting on the table and compliant rolling on the table;

e A real-time planning framework for Any-Pose-
Reorienting problems using these two motion
primitives;

o Robustness analysis for planning with simplified 3D
mesh models.
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II. RELATED WORK
A. Grasp Planning

The first step of reorienting is to make a grasp. Many
studies on grasping focus on evaluating the quality of a grasp
under different situations [21], [35], [23]. To find a grasp,
the basic idea is to detect antipodal points [6]. For compli-
cated and non-smooth object shapes, people use simplified
model for grasp point sampling, including bounding box
[11], surface sampling [24] or shape primitives [19]. Model
free grasping [12], [20], [25] is also a choice. However,
using shape approximation or model free grasping method
usually provides no guarantee on the quality of the grasp,
which could cause troubles for post-grasping manipulations
including reorienting. In our framework, we directly sample
antipodal grasp points on the original object mesh model
using the method described in [32].

B. Regrasping and Reorienting

Closely related to our work, regrasping problems focus
on changing the pose of object with respect to the gripper.
Dafle et. al. demonstrated by hand-coded trajectories that a
robot with a simple gripper is able to perform dexterous
regraspings by utilizing the extrinsic force resources [8].
Dafle and Rodriguez then used LCP trajectory optimiza-
tion for planning continuous regrasping motions [3] with
extrinsic contact, as well as sampling-based planning for
picking discrete modes [5]. The framework is general enough
for covering re-orienting, however, sampling-based methods
cannot declare infeasibility in finite time, while the nature
of the planning problem (long horizon, hybrid states) makes
the optimization hard to solve.

C. Motion Primitives for Reorienting

Works on pick-and-place reorienting can date back to
1980s, when the mainstream approaches discretize the whole
gripper-object state space with a “grasp-placement table”
[15], [16], [30]. The set of grasps were selected off-line.
A motion sequence can be obtained by back chaining from
the goal during planning. The approach is then adopted and
improved in several ways. Stoeter ef. al. computed the stable
placements of the object and the discretized gripper motion,
built the list of "Grasp-placement-grasp” triples for searching
online [28]. Cho et. al. stores collision-free states in a
lookup table, then find intermediate placement incrementally
by querying the table [7]. Wan et. al. [32] and Xue et.
al. [33] utilize graph structure to represent gripper&object
feasible poses for efficient online searching. Wan et. al. also
decompose the search of pick-and-place sequence from the
search of grasps for better efficiency. In those works, only
stable placements are discretized and stored as entries in
the table/nodes on the graph. However, it would require too
much memory to discretize the space of 3D poses, thus those
methods only deal with the finite set of stable placements for
an object.

Pivoting has been used as a motion primitive with several
kinds of extrinsic actuations, including inertia force [10],
[26], gravity [2], [22], [27], [31] as well as extrinsic contact

forces [1], [9], [29], [34]. Using inertia force or gravity with
grip force control can improve the speed of object motion,
however, it poses high requirement on the bandwidth of the
robot itself [10], [31], [27]. In [22], the robot lifted up the
object and let the object rotate passively under gravity to
the desired pose, assuming a suitable grasp along the line
of gravity exists. Closely related to our work, Holladay [9]
and Terasaki [29] used pivoting on the table for reorienting
objects. However, in both works they only considered stable
object placements, and analyzed pivoting as a swinging
between two stable placements.

IIT. PROBLEM DESCRIPTION

Consider a rigid object. Denote the points on its convex
hull as P € R3*Y_ its center of mass (COM) as ¢ € R3.
Here the P and ¢ are measured under the original object
orientation qé%)j € SO(3). We sample a collection of grasp
positions G for the object off-line. A certain grasp position
is denoted by an id g € G. The position of gripper pg,p is
defined as the middle point between the two fingertips. The
orientation of the gripper is denoted as ggp, € SO(3).

Fig. 1: Example of an Any-Pose-Reorienting problem. The
arrows show the axes of the gripper frame.

An Any-Pose-Reorienting problem is defined as follows.
Given the initial and final ob]ect goses (not necessarily
stable poses), q(()]gj,q((jo)J € SO(3 pobJ,pobJ € ]R?’,‘also the
initial and final grasps and gripper orientations ¢(, g(f) €
G,qér)p,qg)p € SO(3), plan a sequence of collision-free
gripper motions to achieve the transition, as shown in Fig.1.
Note we do not care about the translation of the object,
as moving a grasped object on a clean table is trivial. The
problem is a variant of regrasping problem, in that the goal
specifies both the pose of the object about the gripper, and
also their poses relative to the world.

We plan the gripper motion in Cartesian space. To avoid
bad configuration of the manipulator, a dexterous workspace
constraint is defined as follows. Consider the typical setup
of an industrial robot, the gripper position has to stay in a
bounding box 1, while the gripper tilting angle has an upper
limit | 5] < /2. Zero tilting angle corresponds to the case
where the palm faces downward, with the grasp axis lying
within the horizontal plane.

IV. APPROACH

We start with a list of assumptions used in this work.

1) A horizontal table is in the robot workspace.
2) Motions are quasi-static, i.e. inertia forces are negligi-
ble.
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3) The pre-computed grasp positions are the actual posi-
tions of fingertips after the gripper being closed on the
object.

4) The grasped object will not slip about fingertips, except
for the rotation about grasp axis during a pivoting.

5) For friction, only Coulomb friction and stiction exist
between the object and the table.

6) In terms of collision checking, we consider the gripper
and ignore the robot arm. The workspace constraint
should make sure the gripper has no collision with the
table.

The first motion primitive we adopted is pivoting on the
table. The gripper grasps two antipodal points on the object
surface. The fingertips allow the object to rotate about the
grasp axis, but do not allow tangential slipping. While
contacting the gripper, the object also maintain contact(s)
with the table under gravity, forming a kinematic chain. The
object may or may not slip on the table, depending on the
force exerted from the gripper. This motion primitive is the
source of the additional flexibility of our method.

As we will show shortly, a pivoting grasp may not be
stable under gravity, for which we need to switch to the
second motion primitive, compliant rolling on the table. It
involves the gripper firmly grasping the object and rotating
while maintaining contact between the object and the table.
A hardware implementation of the two motion primitives is
explained in Sec. V.

These two motion primitives introduce the choice of mode
m = {0, 1} as an additional discrete decision variable in the
problem.

A. Mechanics of Pivoting on the Table

i

g
0 X

Fig. 2: Forces on the object during pivoting, viewing from
the direction of grasp axis. Points O, C, @) are the contact
point, center of mass and grasp point, respectively. Forces
f, g, t are contact reaction force, gravity of object and force
from gripper, respectively.

To simplify the analysis, in this work we fix the orientation
of the grasp axis during pivoting. Then we can consider
pivoting as a 2D motion in the plane perpendicular to grasp
axis, as shown in Fig.2. Previous works on mechanics of
pivoting on the table restricted the points O, C and Q to be
co-linear, and focused on computing the required pushing

force[1]. We remove this restriction and perform stability
analysis for all possible pivoting scenarios.

Denote the Coulomb friction coefficient between the ob-
ject and the table as p. When the force system (f, g,t) is in
equilibrium, we have (define O, = 0)

fm +i, = Oa
fy+ty = 9, (1)
Ca:g + Qyﬁw = thgr

Inertia force is ignored due to the quasi-static assumption.
Eliminate term t,,%, we have

5y = Q—ifx . %)g @)

A given pivoting scenario (specified by O, C, Q) is stable
as long as a solution of (2) exists, otherwise the system is
out of equilibrium and the object will topple over. We can
discuss the existence of solutions by looking at the f, - f,
curve.

Depending on the geometrical relations of points O, C' and
@ in the pivoting plane, we have six scenarios as shown in
Fig.3. In each column, the top figure shows the positions
of C and @ relative to O considered in that situation. The
bottom figure shows the corresponding solution set of friction
force. In all figures, we also show the friction cone at O
(intersection of the 3D friction cone with the pivoting plane)
in black dashed line.

The friction curves in Fig.3 tell us when the system will
remain in static. For example, in scenario I, the object will be
static if the gripper pushes towards contact point O, or pulls
away with a small force. In scenario IV, the object cannot
be static anyway.

There are two possible results when the object is non-
static. In I, II, V and VI, the object will be sliding on the
table. This is fine since we only care about the orientation.
However, in III and IV, the object will topple over under
gravity. We consider these situations as unstable. This ob-
servation leads to the following simple stability criteria:

Theorem 1. A stable solution of pivoting system (1) exists
as long as the following stability condition is satisfied:

i.e. in X direction, the gripper position @ is not in between
contact point O and center of mass C.

Proof. The condition corresponds to I, II, V and VI in Fig.3.
As per the analysis above, the object will always be either
static or sliding without rotation. O

Condition (3) is not necessary. Notice that a solution exists
for scenario III if the gripper pushes towards the contact
point. We do NOT use this solution since it is hard to
implement on hardware (requiring a certain amount of force).
The condition described in theorem 1 has no requirement on
force.

Using Fig.3, the following theorem tells us when the
motion of the object will get stuck on the table:
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Fig. 3: All six possible scenarios and the corresponding solution sets of friction. In the first row of each sub-figure, O is
shown as the black dot,  coordinate of C' is shown by the red line, possible positions of ) are shown as the blue shaded
area. Solid lines in second row show the possible value of friction force under force equilibrium. Dashed lines are the friction

cone.

Theorem 2. Under condition (3), the object can slide on
the table during pivoting, as long as the grasp position Q is
out of friction cone. When Q) is within the friction cone, the
object can only move such that the contact O moves towards
Q in X direction.

Proof. Under condition (3), @ being outside of friction cone
corresponds to scenario II and VI in Fig.3, in which the
frictions f, in both directions are bounded. () being inside
of friction cone corresponds to scenario I and V in Fig.3,
in which the friction f, is bounded only when the gripper
moves away from O. O

The two theorems make it possible to design simple yet
effective planning algorithms.

B. Planning Any-Pose-Reorienting Given A Grasp

As a core module of our method, we firstly discuss how
to solve the reorienting problem when the grasp position on

the object is given. Our strategy contains two stages:
1) Regrasping Rotate the object with respect to the gripper
o 1 (F
tll gopiderp = (ng)j) Lk,
2) Reorienting Use rolling to rotate the object to final pose
(gripper will also arrive the final pose).

The reorienting stage is trivial to plan. A gripper ori-
entation trajectory generated by spherical linear interpola-
tion(SLERP) will be feasible if the initial and final orienta-
tions are feasible.

In the regrasping stage, we fix the orientation of the grasp
axis and let the object rotate about it. Note the initial grasp
axis tilting angle should not be close to 90 degree, as pivoting
would be hard due to insufficient gravitational torque.

Among the two motion primitives, only pivoting can
change the pose of object with respect to the gripper.
However, during the motion the pivoting may be unstable.
Our strategy is to switch to rolling when we cannot ensure
the stability condition, and do pivoting again when it is
safe. Note that computing the switching point analytically
is difficult since the contact position O is a discontinuous
function of object orientation. As a result, we will be working
with a discretized object rotation trajectory.

We now need to solve for a trajectory of continuous
gripper motion as well as discrete choices of modes, under
stability constraints, collision-avoidance (between object and
gripper) constraints and gripper workspace constraints. The
problem takes form of a Mixed-Integer-Programming which
suffers from combinatorial explosion of modes. However,
we can solve it much more efficiently by decomposing the
planning into three levels:

+ (Bottom Level) Object planning: compute a trajectory
of object rotation and mode choices, rotate the object
until the desired gripper orientation hit the further
edge of tilting angle limit, while checking stability and
workspace constraints;

e (Middle Level) Gripper planning: Given object mo-
tion, compute a trajectory of gripper rotations, achieve
nglj Qorp = (qégj)_lqg{, and satisfy collision-avoidance
constraints, tilting angle constraints;

o (Top Level) Full Cartesian planning: compute a tra-
jectory of gripper translation satisfying the rest of
workspace constraints.

The planning starts from the bottom to the top, rejects
a solution immediately if one level is infeasible. In the
following we explain each level in detail.

1) Object rotation planning: Firstly, we pick an object
rotation direction based on qc()lgj. We plan the object motion
with algorithm 1. If the algorithm returns failure, we try
the other direction. A¢ is chosen to be one degree in our
implementation. Rot(v,n, @) is the abbreviation for rotating
vector v about axis n by 6. Here we can check the workspace
constraints that are determined only by the fingertip posi-
tions. If there is no violation, we obtain a trajectory of object
rotations and choices of modes.

2) Gripper rotation planning: To efficiently check the
collision between the object and the gripper, we compute
for each grasp position the array of collision-free gripper
angles in the object frame during off-line computation. The
array has an entry for every one degree. We can illustrate
the gripper rotation planning problem in Fig.4. Object and
gripper rotation are denoted by horizontal and vertical axis,
respectively. Our task is to find a path from the initial gripper
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Algorithm 1 Object rotation planning

i f f .
Input : q(()gj, q(()b)j7 qérL,P, grasp axis n

1: Compute the total rotation angle ¢, discretize it into array
® by A¢

2: Initialize motion mode array M < ()

3: for each element ¢ € ® do

4:  Rotate object: P « Rot(P1,n, ¢)

if Workspace constraint is violated then
return failure

end if

Compute m € {0(rolling), 1(pivoting)} using (3)

9: M + [M R m]

10: end for

11: return M, ¢

® W

rotation angle to any point on the green line (where the
desired relative angle is satisfied), while staying within tilting
angle limit (grey dotted lines) and avoiding collision region
(red shaded areas). Note that within the rolling zones (blue
shaded areas), the change rates of gripper rotation and object
rotation have to be the same. For computational efficiency,
we solve for a path using a simple heuristics: use piecewise
linear lines and always minimize gripper tilting. We omit the
algorithm details here. We denote resulted gripper rotation
plan as 2, with the same dimension as ®.

Gripper »
Rotation

L
" Object
Rotation

Pivoting

Rolling Pivoting

Fig. 4: Illustration of the gripper rotation planning problem
in the gripper-object rotation space. An example solution is
shown as the yellow line.

3) Full Cartesian planning: Finally we compute the 3D
translations of the gripper for each time-step of motion. At
the beginning of the algorithm, we re-sample the rotation
plan gqpj, gerp, M to avoid large jumps in gripper rotations.
For each sampled time-step, if sliding is possible (determined
by theorem 2), we move the gripper towards the center of
workspace. Otherwise the gripper position is decided by
rotating the object about the current contact point on the
table.

C. Robust Planning with Simplified Mesh Model

The computation in section I'V-B involves manipulating the
convex hull of the object mesh model. For delicate models
with thousands of facets, the algorithm can be slow. We

instead work with a simplified (triangle counts reduced) mesh
model, and plan robustly against the modeling error.

Denote the Hausdorff distance between the original and
simplified convex hull as dg:

dH(P,f’) = max{ sup inf CZ(P,:FA’)7 sup inf d(P,f’) +
pEP pEP pep PEP
4)

we have the following theorem:

Theorem 3. Denote P as the vertices of the simplified mesh
model under a certain object pose. Denote a € P as the
bottom point on the simplified model, i.e.
ay = mlll D=
peEP
Then the actual contact point e € P between the original
model and the table, defined by

€, = Egg Pz
must be within the following set:
e e {BdH(ﬁmﬁi eP, pi.<a.+ 2dH}
B,.(p) denotes the ball of radius r centered at point p.

Proof. The actual height O, of the table surface is upper
bounded by:
0, <a,+dy.

From the definition of Hausdorff distance we know that
points on P is bounded in balls of radius dp centered at
points on P:

Pe {BdH (pi)lpi € f’} :

As a result, the balls that could possibly touch the table are
centered at

{ﬁi\ﬁi eP.pi. <O, +dy <a, +2dH}.
0

To plan robustly, for any condition in Section IV-B that
involves the contact point O, we check it against the range
of possible O instead.

There are many off-the-shelf algorithms for mesh simplifi-
cation developed in computer graphics community [13], [14].
We use an algorithm similar to the one described in [14]
to produce simplified mesh under user-defined Hausdorff
distance.

D. Search for A Sequence of Reorientings

When we cannot finish the task within one reorienting,
we need to search for a sequence of reorientings connected
by place and pick at stable placements. Our method is
built upon Wan’s Regrasp Graph[32], in which a graph
connecting different object-gripper poses is computed off-
line. We improve Wan’s work in two ways. Firstly, we
connect two nodes in our graph as long as they have common
grasp locations, rather than common grasp poses. Thus we
remove the second layer in Wan’s Regrasp Graph, only keep
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the nodes correspond to stable placements. Secondly, we add
the user specified initial and final object poses to the graph
as the starting and ending node during planning time. Since
our graph is very small, this step also add little time to online
computation.

The off-line computation is shown in Algorithm 2.
MeshSim denotes the mesh simplification described in Sec-
tion IV-C. GraspSample and GetStable are the same as in
[32].

Algorithm 2 Off-line Computation

Input : Object mesh model S

1: P« convexpall(S)
P MeshSim(P)
Sample grasp points G < GraspSample(S)
Compute stable placements V « GetStable(P)
for each g € G do

Compute collision-free angles for grasp g
end for
for each v € V do

Find the set of feasible grasp positions G, € G
end for
Compute the connectivity matrix M for V.

R AR T ol

—_—
- o

The online search procedure is shown in Algorithm 3. We
use Dijkstra to search for the shortest path, minimizing the
number of grasp changes. For each edge on the path, we run
planner for each grasp that the two nodes of the edge share.
If none of them has a solution, we remove this edge from
graph and run graph search again. Function OneGrasp() can
be implemented as either our method (Section IV-B) or pick
and place. We implement both for comparison.

V. EXPERIMENTS
A. Simulation and Comparison with Pick&Place

We simulate reorienting tasks on 12 objects with non-
trivial shapes (over 2000 facets per object on average)
obtained from Dex-Net [17], as shown in Fig.5. We sample
at most 100 grasp positions for each object. After trimming
similar grasps, around 20 to 80 remaining grasps are used in
planning.

We normalize each object to fit into an 1m X 1m X 1m
cube. For each object, we sample 100 Any-Pose-Reorienting
problems, each with feasible initial and final gripper orienta-
tions. We count a full run of the 1200 problems as a batch.
We run eight batches in total, with tilting angle limit ranging
from 10 to 80 degrees. The performance of our method and
pick&place are shown in Fig.6. Notice that our method can
solve more problems under all conditions. As the tilting angle
limit becomes tighter, the advantage of our method becomes
more obvious. Average rotation and translation shown in
Fig.6b and Fig.6¢ do not include the gripper motion when the
object is not grasped, and do not include the gripper motion
needed to lift the object off the table during pick&place.
We can observe that our method takes similar rotations and
more translation comparing with pick&place. Finally Fig.6d

Algorithm 3 Online Searching

Input 0y @Sy Pongs (@i 2&rb), V.M, G

: Ve {V, 00 v} where ) = q() v = q( )j
2: Find feasible grasp GO, G € G for new nodes
3: Re-compute the connectivity matrix M for V.
4: while true do

s path < Dijkstra(M,v®, (D)

6:  Terminate with failure if path = ()

7. plan < ()

8:  for each edge eji € path do

9: ij — Gj N Gg

10: for each g € G do

11: planji, < OneGrasp(
9,050 a5 pS0 (@b, ad))

12: break if plan;;, # ()

13: end for

14: if planji, # () then

15: plan < [plan plani]

16: else

17: Remove e;;, from M

18: plan + 0 and break

19: end if

20:  end for
21:  Terminate with success if plan # ()
22: end while

Fig. 5: The 12 objects used in our simulation.

shows that our method requires significantly less number of
breaking contact than what pick&place requires.

We haven’t optimize the code for speed, yet the average
computation time for solving one problem (or declare failure)
is 43ms in single-thread Matlab, measured on a desktop
with Intel Xeon 3.10GHz CPU. The off-line computation
described in Algorithm 2 takes several minutes per object,
depending on the complexity of the object shape.

B. Hardware Implementation

For experiments, we use an ABB IRB120 robot and a
parallel gripper with a pair of specially designed “two-phase”
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Fig. 6: Simulation results. In all the sub-figures, the horizon-
tal axes are the tilting angle limits in degrees.

fingertips for performing both firm grasp and pivoting, as
shown in Fig.7. Comparing with other designs [4], [29],
our fingertips make it possible to maintain the same contact
patches on the object during the pivoting phase and the
switching between phases, eliminating a source of uncer-
tainty. The contacts between fingertips and the object are
always sticking, reducing the sensitivity of our method to
friction coefficients.

For compliant rolling, the gripper grasps firmly while the
robot performs force control in Cartesian space [18]. We
control the gripper orientation by exact position, while letting
the translation being determined passively by maintaining a
certain force in the Z direction and moving freely in the X
and Y directions. For pivoting, the fingertips rotate freely, the
gripper executes the planned trajectory with position control.

Successful and failed solutions of an example problem are
shown in Fig. 8. The goal is to rotate the screw by 90 degrees
about the X axis. We constraint the maximum gripper tilting
angle to be 40 degrees, under which limit the pick&place
planner has no solution. Our method finds a solution without
breaking contacts (one edge on the regrasp graph). In Fig.

Fig. 7: Our customized gripper is able to switch between the
firm grasp phase and the pivoting grasp phase.

. Failure
(c)

Fig. 8: Rotating a screw by 90 degrees. The first row shows
a successful experiment. The second row is a failure caused
by errors in the initial grasping position and the friction
coefficient between the object and the table.

8 (a) to (b), the solution starts with a rolling to move the
object out of unstable scenario III to stable scenario V in
Fig. 3. Then in subfigures (b), (c) and (d) of the first row,
the solution switches to pivoting to finish the rest of object
rotation without too much gripper rotation. In the bottom row
of Fig. 8, the plan fails to move out of unstable scenario III
before switching to pivoting, causing the object to topple
over towards the wrong direction. This failure is caused by
errors in the initial grasp position and an underestimation of
the friction coefficient between the object and the table.

VI. DISCUSSION AND FUTURE WORK

One thing we learned in planning is that the existence of
reorienting solutions depends heavily on the availability of
grasps. A good number of grasp points distributed all over the
object surface is crucial for both our method and pick&place.

In the current form, our method is not robust against
uncertainties in grasp positions and object COM. Also, the
experiment could fail if our estimation of friction coefficient
between the object and the table is too low. If our estimation
is too high, the planner becomes overly conservative and
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could lose potential solutions. We are working on handling
these deficiencies.

There are a few other interesting directions for future
work. For example, how can we perform pivoting with
normal fingertips (probably equipped with slip detection
sensors) instead of a special mechanism. Slip is inevitable
on normal fingertips, which means the planning algorithm
needs to be robust against uncertainties caused by slip. Also,
it is possible to integrate more motion primitives into our
method, which would appear as additional connections in
the “Regrasping Graph”.
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