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A convex polynomial model for planar
sliding mechanics: theory, application,
and experimental validation
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Abstract

We propose a polynomial model for planar sliding mechanics. For the force—motion mapping, we treat the set of gener-
alized friction loads as the 1-sublevel set of a polynomial whose gradient directions correspond to generalized velocities.
The polynomial is confined to be convex even-degree homogeneous in order to obey the maximum work inequality, sym-
metry, shape invariance in scale, and fast invertibility. We present a simple and statistically efficient model identification
procedure using a sum-of-squares convex relaxation. We then derive the kinematic contact model that resolves the con-
tact modes and instantaneous object motion given a position controlled manipulator action. The inherently stochastic
object-to-surface friction distributions are modeled by sampling polynomial parameters from distributions that preserve
sum-of-squares convexity. Thanks to the model smoothness, the mechanics of patch contact is captured while being compu-
tationally efficient without mode selection at support points. Simulation and robotic experiments on pushing and grasping

validate the accuracy and efficiency of our approach.
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1. Introduction

Effective robotic manipulation requires an understanding of
the underlying physical processes. Mason (1986a) explored
using pushing as a sensorless mechanical funnel to reduce
uncertainty. Whitney (1983) analyzed the mechanics of
wedging and jamming during peg-in-hole insertion and
designed the Remote Center Compliance device that signif-
icantly increases the success of the operation under motion
uncertainty. With a well-defined generalized damper model,
Lozano-Perez et al. (1984) and Erdmann (1986) developed
strategies to chain a sequence of operations, each with a cer-
tain funnel, to guarantee operation success despite uncer-
tainty. These successes stem from robustness analysis using
simple physics models.

Planning and control without explicit reasoning about
uncertainty and the task mechanics can lead to undesirable
results. For example, grasp planning (Ferrari and Canny,
1992; Miller et al., 2003) is often prone to failure: the
object moves while the fingers close and ends up in a final
relative pose that differs from planned. Consider the pro-
cess of closing a parallel jaw gripper shown in Figure 1,
the object will slide when the first finger engages con-
tact and pushes the object before the other one touches
the object. If the object does not end up slipping out, it
can be jammed at an undesirable position or grasped at an
unexpected position. A high-fidelity and easily identifiable

model with minimum adjustable parameters capturing all
these possible outcomes would enable the synthesis of a
robust manipulation strategy.

We develop a data-driven but physics-based method for
modeling planar friction. Manipulations employing friction
are ubiquitous in tasks including positioning and orienting
objects by pushing (Akella and Mason, 1998; Dogar and
Srinivasa, 2010; Lynch and Mason, 1996; Mason, 1986a),
controlled slip with dexterous hands (Cole et al., 1992)
and assembly of tight-fitting parts (Whitney, 1983). For
planar manipulation with finite object motion, indetermi-
nacy of the pressure distribution between the object and
support surface leads to uncertainty in the resultant veloc-
ity. Despite such inherent difficulty, algorithms and analy-
ses have been developed with provable guarantees. Mason
(1986a) derived the voting theorem to determine the sense
of rotation of an object pushed by a point contact. Lynch
and Mason (1996) developed a stable pushing strategy when
objects remain fixed to the end effector with two or more
contact points. However, minimal assumptions on friction
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conditions inherently lead to conservative strategies. By
explicitly modeling and identifying the friction space, we
can improve strategies for planning and control.

The paper combines and extends our previous work
(Zhou et al., 2017, 2016). The first contribution is the devel-
opment of a precise and statistically efficient force—motion
model with a computationally efficient identification pro-
cedure. We propose a framework representing planar slid-
ing force—motion models using homogeneous even-degree
sum-of-squares convex (sos-convex) polynomials, which
can be identified by solving a semi-definite programming.
The set of applied friction wrenches is the 1-sublevel set of
a convex polynomial whose gradient directions correspond
to incurred sliding body twist. The second contribution is
a quasi-static kinematic contact solution for manipulation
problems with finite planar sliding motion. The algorithm
maps a commanded rigid position-controlled end-effector
motion to the instantaneous resultant object motion, with
detection of the equilibrium state (jamming or grasping).
The applied wrench is solved as an intermediate output.
We show that single contact with a convex quadratic force—
motion model has a unique analytic linear solution that
extends the approach in Lynch et al. (1992). The case
for a high-order convex polynomial force—motion model
is reduced to solving a sequence of such subproblems.
For multiple contacts (e.g. pushing with multiple points
or grasping) we need to add linear complementarity con-
straints (Stewart and Trinkle, 1996) at the pusher points,
and the entire problem is a standard linear complementarity
problem (LCP).

The inherent stochasticity in frictional sliding is modeled
by sampling the physics parameters from proper distribu-
tions. We validate the model by comparing the simulation
with large-scale experimental data on robotic pushing and
grasping tasks. The model serves as a good basis for both
open-loop planning and feedback control.!

We assume quasi-static rigid-body planar mechanics
(Mason, 1986b) where inertia forces and out-of-plane
moments are negligible. Figure 2 illustrates the outline of
this article. The rest is organized as follows.

Section 2 describes the previous work.
Section 3.1 reviews the background of force—motion
model for sliding.

e Section 3.2 develops the convex polynomial representa-
tion and the identification algorithm.

e Section 3.3 demonstrates model identification results
based on simulation and experimental data.

e Section 3.4 demonstrates stable push action generation
based on the invertible property of the model.

e Section 4 develops the kinematic contact model for
single and multiple frictional contacts.

e Section 4.3 develops the sampling strategies of phys-
ically consistent model parameters that captures the
inherent frictional stochasticity.

e Sections 4.4—4.6 demonstrates simulation and experi-
mental results for pushing and grasping applications.

2. Related work

The mechanics of pushing and grasping involving finite
object motion with frictional support was first studied in
Mason (1986a). A notable result is the voting theorem
which dictates the sense of rotation given a push action
and the center of pressure regardless of the uncertain pres-
sure distribution. Brost (1988) used this result to construct
the operational space for planning squeezing and push-
grasping actions under uncertainty. However, many unreal-
istic assumptions are made in order to reduce the state space
and create finite discrete transitions, including infinitely
long fingers approaching the object from infinitely far away.
In addition, how far to push the object in the push-grasp
action was not addressed. Peshkin and Sanderson (1988a)
provided an analysis on the slowest speed of rotation given
a single point push. Peshkin and Sanderson (1988b) used
this result to design fences for parts feeding. Lynch and
Mason (1996) derived conditions for stable edge pushing
such that the object will remain attached to the pusher with-
out slipping or breaking contact. All these results do not
assume knowledge of the pressure distribution except the
location of the center of pressure. They can be classified
as worse-case guarantees without looking into the details
of sliding motion. Despite being agnostic to pressure distri-
bution, these methods tend to be overly conservative, have
impractical assumptions, or both.

Friction parameter estimation has been proposed to
improve planning and control. Yoshikawa and Kurisu
(1991) solved an unconstrained least-squares problem to
estimate the center of friction and the pressure distribution
over discrete grids on the contact surface. With a similar
set up, Lynch (1993) proposed a constrained linear pro-
gramming procedure to avoid negative pressure assignment.
However, methods based on discretization of the support
surface introduce two sources of error in both localization
of support points and pressure assignment among those
points. We do not need to estimate the exact location of
support points. Coarse discretization loses accuracy while
fine discretization suffers from the curse of dimensional-
ity. In addition, the instantaneous center of rotation (COR)
of the object can coincide with one of the support points,
rendering the kinematic solution computationally hard due
to combinatorial sliding/sticking mode assignment for each
support point.

Goyal et al. (1991) noted that all the possible static
and sliding frictional wrenches, regardless of the pres-
sure distribution, form a convex set whose boundary is
called a limit surface (LS). Analytic construction of a LS
from the Minkowski sum of frictional limit curves at indi-
vidual support points, however, is intractable. Howe and
Cutkosky (1996) presented an ellipsoid approximation of
the LS assuming known pressure distribution. The ellipsoid
is constructed by computing or measuring the major axis
lengths (maximum force during pure translation and maxi-
mum torque during pure rotation). Facets can be added by
intersecting the ellipsoid with planes determined by each
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Fig. 1. Simulation results using the proposed contact model illustrating the process of a parallel jaw gripper squeezing along the y axis

when the object is placed at different initial poses. The initial, final, and intermediate gripper configurations and object poses are shown
in black, red, and gray, respectively. Blue plus signs trace out the center of mass (COM) trajectory of the object. (a) Grasped with offset.

(b) Jamming. (c) Grasped with offset. (d) Slipped to free space.

support point. The pressure distribution (except for com-
putable three-point support with known center of pressure),
nevertheless, is non-trivial to measure. We also show that
the ellipsoid approximation, as the convex quadratic special
case of our convex polynomial representation, is less accu-
rate due to the lack of expressiveness, particularly when the
support regions are scattered.

Lynch et al. (1992) derived the kinematics of single-
point pushing with a centered and axis-aligned ellipsoid
approximation. Based on the kinematic model, Hogan and
Rodriguez (2016) recently proposed using hybrid model
predictive control to generate a sequence of open-loop
pushing commands. Yu et al. (2016) recently presented
a large-scale empirical effort to verify the generalized
Coulomb friction law (Moreau, 1988) and demonstrated
inherent stochasticity in planar sliding motions.

Recent data-driven attempts (Kopicki et al., 2011;
Omrcen et al., 2009) collected visual data from random
push trials and applied “off-the-shelf” machine learning
algorithms to build forward motion models. Our model
identification also embraces a data-driven strategy but bears
in mind that physics principles should guide the design
of the learning algorithm (as constraints and/or priors),
hence increasing data efficiency and generalization perfor-
mance. For example, our training procedure only requires
a few data points (less than 10) and a change of uni-
form surface material or a scaling in object mass does not

require retraining. In addition, different applications based
on the model, as shown later, are physically consistent and
computationally efficient.

3. Force—motion model

We first introduce the following notation.

e O: the object center of mass (COM) used as the origin of
the body frame.? We assume vector quantities are with
respect to the body frame unless specifically noted.

e R: the region between the object and the supporting
surface.

e f,: the surface friction force applied by the object at a
point r in R.

V = [V,; V,; w]: the body twist (generalized velocity).
F = [F,;F,;7]: the generalized friction load. Here
F equals the applied body wrench by the manipulator
when the object is in quasi-static balance.

e p;: each contact point between the manipulator end
effector and object in the body frame.

o v,,:applied velocities by the manipulator end effector at
each contact point in the body frame.

n,,: the inward normal at contact point p; on the object.

e . coefficient of friction between the object and the
manipulator end effector.
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Fig. 2. The robot randomly pokes the object of known shape with a point finger to collect force—motion data. We then optimize a convex
polynomial friction representation with physics-based constraints. Stable pushing and grasping simulations under pose uncertainty are

two example applications of the model.

3.1. Background on planar friction

The classical Coulomb friction law states that for a point
contact with instantaneous planar velocity v = [vy, v,]", the
incurred friction force f = [f;, fy]T the point applies on the
surface is parallel to v, i.e. f/|f] = v/|v|. We refer the read-
ers to Mason (1986a) for details of the friction analysis for
planar sliding under the isotropic Coulomb friction law. In
this paper, we build our analysis on a generalized friction
law formulated first in Moreau (1988), in which v and f
may not be parallel, but only need to obey the maximum
work inequality:

(f=f)v>0 (1)

where f' is an arbitrary element from the set of all possible
static and sliding friction forces.

We can compute the generalized friction load F by
integration over R:

Fx=/1;ﬁxdr,Fy=/Rf,ydr,r=/R(rxfry —nyf) dr (2)

The maximum work inequality in Equation (1) can be
extended to the generalized friction load F and twist V:

F.V:/frx(Vx—a)ry) dr+/f,y(Vy+a)rx) dr
R R
Z/frxvrx +vaWdr=ffr'VrdrzF/'V (3)
R R

among any other possible generalized friction load F'.
Owing to the converse supporting hyperplane theorem
(Boyd and Vandenberghe, 2004), the set of all generalized
friction loads form a convex set . An important work that
inspires us is Goyal et al. (1991) who found that all pos-
sible generalized friction loads during sliding form a LS
constructed from the Minkowski sum of limit curves at indi-
vidual support points. Points inside the surface correspond
to static friction loads. Points on the surface correspond to
friction loads with normals parallel to sliding velocity direc-
tions, forming a mapping between the generalized friction
load and sliding velocity. An ideal LS is always convex due
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to the maximum work inequality but may not be strictly
convex when a single point supports finite pressure. As
shown in Figure 4b, facets can occur since the object can
rotate about one of the three support points whose velocity
is zero with indeterminate underlying friction.

Erdmann (1994) proposed a configuration space embed-
ding of friction. In this work, the third component of F is
F, = 7/p and the third component of V is V; = wp, where
p is the radius of gyration. In doing so, all three components
in F and V have the same unit. Observe that such a normal-
ized representation also obeys maximum work inequality
with p being any characteristic length. In our experiments,
we have found that the normalized representation yields
better numerical condition and different values of p includ-
ing radius of gyration, average edge length, and minimum
enclosing circle radius lead to similar performance.

3.2. Representation and identification

In this section, we propose the sublevel set representation of
friction with desired properties and show that convex even-
degree homogeneous polynomials are valid solutions. Then
we formulate an efficient convex optimization procedure to
identify such polynomials.

3.2.1. Polynomial sublevel set representation. Let H(F) be
a differentiable convex function that models the generalized
friction load and velocity as follows.

e The 1-sublevel set L (H)= {F : H(F)< 1} corre-
sponds to the convex set F of all generalized friction
loads.

e The l-level set L;(H)= {F : H(F)= 1} corresponds to
generalized friction loads (during slip) on the boundary
surface of F.

e The surface normals given by gradients {VH(F): F €
Li(H)} represent instantaneous generalized velocity
directions during slip, i.e. ¥ = sVH(F) where s > 0.

Theorem 1. The set of friction loads represented by the 1-
sublevel set of a differentiable convex function follows the
maximum work inequality.

Proof. When the object remains static, F belongs to the
interior of L (H), and V equals zero, the inequality holds
as equality. When the object slips, F € Lj(H), and V is
non-zero, we have for any other generalized friction load
F e Li(H):

V-(F —F)=s(VH(F)-(F — F)) < s(H(F') —H(F)) < 0

where the first inequality is due to the convexity of H(F).
|

In addition to enforcing convexity (discussed in 3.2.2),
we choose H(F) to obey the following properties.

1. Symmetry: H(F)= H(—F) and VH(F)= —VH(—F).

2. Scale invariance: VH(sF) = g(s) VH(F), where g(s) is
a positive scalar function over scalar s.

3. Efficient invertibility: efficient numerical proce-
dures exist for finding a F € L;(H) such that
VH(F) /|VH(F) || =V for a given query unit velocity
V. We denote such an operation as F = H;,,,(V).

Symmetry is based on the assumption that negating the
velocity direction would only result in a sign change in the
friction load. Scale invariance is desirable for two reasons:
(1) scaling in mass and surface coefficient of friction could
only result in a change of scale but not other geometrical
properties of the level-set representation; and (2) predict-
ing the directions of generalized velocities (by computing
gradients and normalizing to a unit vector) only depends
on the direction of generalized force. Such a property is
useful in the context of pushing with robot fingers where
applied loads are represented by friction cones. The inverse
problem of finding the friction load for a given velocity
naturally appears in seeking quasi-static balance for stable
pushing or computing deceleration during free sliding. In
general, an efficient numerical solution to the inverse prob-
lem, which our representation enables, is key to planning
and simulation. One solution family for H(F) that obeys
these properties is the set of strictly convex even-degree
homogeneous polynomials.

Theorem 2. A strictly convex even degree-d homogeneous
polynomial H(F;a)= Y"1 a;(Fo)'" (F,)? (F.)"172 with
m (bounded by (d;rz)) monomial terms parametrized by a
satisfies the properties of symmetry, scale invariance, and
efficient invertibility.

Proof. Proving symmetry and scale invariance are trivial
due to the homogeneous and even-degree form of H(F).
Here, we sketch the proof that efficient invertibility can be
achieved by first solving a simple non-linear least-squares
problem followed by a rescaling.

Construct an objective function G(F) = %H VH(F)-V|?
whose gradient 3¢ = V2H(F)( VH(F) —V). Note that its
stationary point £, which iterative methods such as the
Gauss—Newton or trust-region algorithms will converge to,
satisfies VH(F*) —V = 0. Hence, F* is globally optimal
with value zero. Let AF, = V2H (Ft)_l(V, — V),3 then the
update rule for the Gauss—Newton algorithm is F,.; = F, —
AF;. Although the final iteration point F7 may not lie on the
1-level set of H(F), we can scale F7 by Fy = H(F7)~ '/ Fy
such that H(F7)= 1 and VH(¥7)/||VH(F7) || = V due
to the homogeneous form of H(F). Therefore, Hiu (V)=
Fr. |

3.2.2. Sum-of-squares  convex  relaxation. Enforcing
strong convexity for a degree-two homogeneous poly-
nomial H(F;4A)= FTAF has a straightforward set up
as solving a semi-definite programming problem with
constraint of 4 > €l. Meanwhile, for a polynomial of
degree greater than three whose Hessian matrix V2H(F; a)
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is a function of both F and a, certification of positive semi-
definiteness is NP-hard. However, recent progress (Magnani
et al., 2005; Parrilo, 2000) in sum-of-squares programming
has given powerful semi-definite relaxations of global
positiveness certification of polynomials. Specifically,
let z be an arbitrary non-zero vector in R and y(F,z) =
[z21Fx,z1F), 21 F 2, 20 F 2 Fy 20 F L 23 F 23 F), z3F,]". If there
exists a positive-definite matrix Q such that

2'V2H(F;a)z = w(F,z)" Oy(F,z)> 0 4)

then V2H(F; a) is positive definite for all non-zero F under
parameter a and H(F;a) is called sos-convex. Further,
Equation (4) can be written as a set of K sparse linear
constraints on Q and a.

Tr(A4;Q) = bia, ke{l...K}
Q—el = %)

where A; and b; are a constant sparse element indica-
tor matrix and vector that only depend on the polynomial
degree d. The symbol > implies that the left-hand side is
positive semidefinite. The number of constraints K equals
27 ford = 4.

3.2.3. Identification. This section sets up an efficient con-
vex optimization for identifying the coefficient a of the
polynomial H(F;a) given a set of measured noisy gen-
eralized force—motion {Fic(i .}, Viep..vy} pairs. In our
experiments, we use a homogeneous fourth-order poly-
nomial. The optimization should find the coefficient a
such that the measured forces F; are close to the 1-level
set surface and the corresponding gradients are aligned
well (up to scale) with respect to measured velocities V;.
Let oy = ||VH(Fi;a)—(VH(F;a)-V) Vill3 be the L2-
projection residual of VH(F;;a) onto the measured unit
velocity vector V;, and let ; =( H(F;; @) —1)? be a distance
measurement of F; from the 1-level set of H(F;;a). We set
up the optimization as follows:

N
minimize {lall3 + D _(mai +mp) (©)
’ i=1
subjectto  Tr(AQ)=bia, k=1,....,K (7)

O—el>0 ®)

The first term is for parameter regularization. n; and 7, are
trade-off parameters determined by cross-validation. Equa-
tions (7) and (8) enforce convexity. Note that the objective
is quadratic in a with sparse linear constraints and a semi-
definite constraint on Q. We would like to point out that the
formulation can be adapted online using projected gradient
descent so that the importance of historical data is dimin-
ishing as the object moves, enabling the estimation to adapt
to changing surface conditions.

3.3. Identification experiments

We conduct simulation and robotic experiments to demon-
strate the accuracy and statistical-efficiency of our proposed
representation. The model converges to a good solution
with few available data, which saves experimental time
and design efforts. We compare the following four differ-
ent force—motion model representations H: (1) degree-four
convex homogeneous polynomial (poly4-cvx); (2) degree-
four homogeneous polynomial (poly4) without convexity
constraints (3) convex quadratic (quad) as a degree-two
polynomial, i.e. H(F)= FTAF with ellipsoid sublevel set;
and (4) Gaussian process (GP) with squared exponential
kernel as a smooth generic non-parametric data efficient
learning model.#

Denote by V; the ground truth instantaneous gener-
alized velocity direction and V,(F;;H) as the predicted
generalized velocity direction based on H for the input
generalized load F;, we use the average angle §(H)=
% vazl arccos(V,(Fi; H) -V;) between V,(Fi; H) and V; as
an evaluation criterion.

3.3.1. Simulation study. Two kinds of pressure distribution
are studied.

e “Legged” support: Randomly sampled three support
points on a unit circle with randomly assigned pressure.

e “Uniform” support: Uniformly distributed 360 support
points on a unit circle and 400 support points within a
unit square. Each point has the same support pressure.

For each pressure configuration, we conduct 50 experimen-
tal trials. To generate the simulated force-motion data, we
assume a Coulomb friction model at each support point
with a uniform coefficient of friction. Without loss of gener-
ality, sum of pressure over all contact points is normalized
to one and the origin is set as the center of pressure. For
each trial of “uniform” support, we sampled 150 instan-
taneous generalized velocities directions V; uniformly on
the unit sphere and compute the corresponding general-
ized friction loads F;. For each trial of “legged” support,
75 (F;, V;) pairs are uniformly sampled on the facets (same
V; but different F; for each facet) and another 75 pairs
are uniformly sampled in the same fashion as “uniform”
support. In doing so, the dataset has a diverse coverage.
Among the 150 pairs, 50% is used for hold-out testing,
20% is used for cross-validation and four different amounts
(7, 15, 22, 45) from the remaining 30% are used as train-
ing. In order to evaluate the algorithms’ robustness under
noise, we additionally corrupt the training and validation
set using Gaussian noise of standard deviation ¢ = 0.1 to
each dimension of both F; and V; (renormalized to unit vec-
tor). From Figure 3 we can draw the following conclusions.
(1) Poly4-cvx has the smallest §( H) for different amounts
of training data and pressure configurations. (2) Both poly4-
cvx and convex quadratic show superior performance when
data is scarce and noisy, demonstrating convexity is key to
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data-efficiency and robustness. Poly4-cvx model addition-
ally shows larger improvement as more data is available
due to stronger model expressiveness. (3) Poly4 (without
convexity constraint) performs the worst when only few
data is available, but gradually improves as more data is
available for shaping the surface. For noise-free experi-
ments shown in Figure 3b and d, when enough training
data (more than 22) is presented, poly4 performs slightly
better than poly4-convex. We conjecture such difference is
due to the gap between sos-convex polynomials and convex
polynomials (Ahmadi and Parrilo, 2012). GP has similar
performance trends as poly4 but worse on average. (4) Poly-
nomial models enjoy significant performance advantages
when LS is smoother as in uniform point support (approxi-
mation of uniform patch contact). The advantage is smaller
for three-point support whose LS has large flat facets.

3.3.2. Robotic experiment. We mount three screws at
four different sets of locations underneath an alu-
minum right-angle triangular work object that weighs
1.508 kg with edge lengths of 150, 150, and 212.1
mm. The four different sets of support point locations
(in millimeters) with respect to the right angle cor-
ner vertex are [(10,10),(10,130),(130,10)], [(30,30),
(30,90), (90,30)], [(10,10), (10,130), (90,30)], and [(30,30),
(63.33,43.33), (43.33,63.33)]. Given known mass and COM
projection, ideal ground truth pressure for each support
point can be computed by solving three linear equations
assuming each screw head approximates a point con-
tact. Figure 4a shows a flipped view of one arrangement
whose ideal LS is illustrated in Figure 4b, constructed by
Minkowski addition of generalized friction at each single-
point support assuming a Coulomb friction model with
uniform coefficient of friction. Three pairs of symmetric
facets® characterize indeterminate friction force when rotat-
ing about one of the three support points. Comparison
among identified fourth-order homogeneous polynomials
with and without convexity constraint is shown in Figure 4c
and d. We can see that convex-shape constraint is essential
to avoid poor generalization error when little data is avail-
able. Figure 4e and f compare the level sets of a convex
quadratic (ellipsoid) and a sos-convex degree-four homo-
geneous polynomial, demonstrating that the higher-degree
polynomial captures the facets effect better than quadratic
models.

We conduct robotic poking (single-point pushing) exper-
iments on wood and paper board surfaces. In each exper-
iment, we generate 50 pokes (30 for training set, 10 for
validation set, and 10 for test set) with randomly chosen
contact points and pushing velocity directions. During each
pushing action, the robot moves at a slow speed of 2.5 mm
s~! with a total small push-in distance of 15 mm. Each
generalized velocity direction is approximated as the direc-
tion of pose displacement and generalized force is averaged
over the action duration. Figure 5 shows model accuracy
(averaged over four different pressure arrangements) with

Table 1. Comparison of average accuracy with 95% confidence
interval as the amount of training data increases.

10 20 30
poly4-cvx 88.13+1.80 91.33+1.61 93.07+1.45
poly4 85.27+2.12 89.40+1.98 93.00£1.62
quadratic 87.93+1.72 87.20+1.65 88.00+1.39

respect to increase in amount of training data for differ-
ent methods evaluated on both the hold-out test sensor data
and samples from ideal LS. We can see similar performance
trends as in simulation experiments. Note that both evalu-
ations only serve as certain reference criteria. Sensor data
is noisy and all possible force measurements from a single-
point pusher only cover a limited space of the set of friction
loads. We also do not intend to treat the idealized LS as
absolute ground truth as there is no guarantee on a uni-
form coefficient of friction between the support points and
the underlying surface. In addition, the point contact and
isotropic Coulomb friction model are only approximations
of reality. Nevertheless, both evaluations demonstrate the
performance advantage of our proposed poly4-cvx model.

3.4. Stable push action generation

Prediction of the resultant object twist under a single-point
push action cannot be exactly accurate. A two-point push
action against an edge of the object, however, can be stable
such that the object will remain attached to the pusher with-
out slipping or breaking contact (Lynch and Mason, 1996).
That is, the slider and pusher will move about the same
COR point p.. Given the level set representation H(F), the
condition for determining whether a two-point push with
instantaneous generalized velocity V,,, is stable or not is
equivalent to checking whether the corresponding gener-
alized friction load F,, = H;,(V),) lies in the applied
composite wrench cone F.. To validate predictions based
on the model, we sampled 60 random CORs and execute
with the robot for three different pressure arrangements
on a novel support surface material (hard poster paper).
We use the same triangular block in Figure 4a with two
three-point contacts [(10,10),(10,130),(130,10)] and
[(30,30),(30,90),(90,30)] as well as full patch contact.
The 60 CORs are tight rotation centers within a 400 mm x
400 mm square centered at the COM. A total of 15 out
of the 60 CORs are labeled as stable. The training force—
motion data are collected from pushing the object on a wood
surface. Tables 1 and 2 summarize the classification accu-
racy and positive (stable) class recall measurements of three
invertible methods with respect to increase in the amount
of training data. Figure 6 shows an example (full patch
contact) that the stable regions generated from the identi-
fied poly4-cvx model is much larger than the conservative
analysis as in Lynch and Mason (1996), which misses the
tight/closer rotation centers.
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Fig. 3. Test error comparison for simulation experiments with 95% confidence bar (50 random evaluations) among different methods
as amount of training data increases for three random support points and 360 support points on a ring respectively. (a) Three support
points with noisy training and validation data. (b) Three support points with noise-free training and validation data. (¢) Uniform circular
support points with noisy training and validation data. (d) Uniform circular support points with noise-free training and validation data.
Results for uniform pressure distribution within a square are similar to uniform circular support and omitted for space.

(d) (e) (f)

Fig. 4. Level set friction representations for the pressure arrangement in Figure 4a. (a) Triangular block with three support screws. (b)
Ideal LS with facets. (c) Poly4 fit with 5 training and 5 validation data. (d) Poly4-cvx fit with 5 training and 5 validation data. (¢) Convex
quadratic fit with 10 training and 10 validation data. (f) Poly4-cvx fit with 10 training and 10 validation data. Red dots and blue arrows
are collected generalized forces and velocities from force-torque and motion capture sensor, respectively. Parts (c), (d), (e), and (f) share
the same data.
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surfaces. (a) Test on sensor data (wood surface). (b) Test on data sampled from ideal LS (wood surface). (c) Test on sensor data (paper
board surface). (d) Test on data sampled from ideal LS (paper board surface).

Table 2. Comparison of average positive recall with 95% confi-
dence interval as the amount of training data increases.

10 20 30
poly4-cvx 90.13+3.54 96.69+1.93 98.18+1.32
poly4 79.96+5.25 92.76+2.90 97.18+1.84
quadratic 73.18+4.61 73.38+4.69 73.87+4.63

4. Kinematic contact modeling

With a position-controlled manipulator, we are given a
single-point finger contact at p with inward normal n,,
pushing velocity v, and coefficient of friction p. between
the pusher and the object. The task is to resolve the incurred
body twist V and contact mode (sticking, slipping, break-
ing contact): find a V consistent with the contact mode
at p while the applied wrench, solved as an intermediate
output (not a supplied control), equals the corresponding
generalized friction load.

4.1. Single-point pusher

We introduce the concept of a motion cone first pro-
posed in Mason (1986a). Let the Jacobian matrix J, =
10 —p, _ gT _ gT
01 p | and denote by F; = J, i and F, = J, 1
the left and right edges of the applied wrench cone with
corresponding resultant twist directions V; = VH(F;) and

Y/mm

Fig. 6. Hatched areas correspond to stable COR regions based
on the conservative analysis (Lynch and Mason, 1996). Red trian-
gles are stable CORs and gray stars are non-stable CORs based on
the poly4-cvx model. The two push points are 50 mm wide. The
pusher and the object are covered with electrical tape and gaffer
tape, respectively, with measured coefficient of friction equaling
one.

V, = VH(F,), respectively. The left edge of the motion
cone is v; = J,V; and the right edge of the motion cone
is v. = J,V,. Mason (1986a) showed that if the contact
point pushing velocity v, is inside the motion cone, i.e.
vp € K(v;,v,), the contact sticks. When v, is outside the
motion cone, sliding occurs. If v, is to the left of v;, the
pusher will slide left with respect to the object. Otherwise,
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if v, is to the right of v, the pusher will slide right as shown
in Figure 7.

The following constraints hold assuming sticking
contact:

Vpx = Ve — wpy, (9)

Voy = V) + wpy (10)
1

V= Ek-VH(F), k>0 (11)

T = —pyFy +piF), (12)

In the case of ellipsoid (convex quadratic) representation,
i.e. H(F)= FTAF where 4 is a positive-definite matrix,
the problem is a full rank linear system with a unique
solution. Lynch et al. (1992) give an analytical solution
when A4 is diagonal. We show that a unique analytic solu-
tion exists for any positive-definite symmetric matrix 4. Let
t=[-p,pr,— 117, Equations (9)—(12) can be written as

LV =v, (13)
V = kAF (14)
t'tF=0 (15)

Using the notation D = [JT, 47 't]T and V,, = [v,7,0]", we
can combine the above equations into one linear equation:

(16)

Theorem 3. Pushing with single sticking contact and the
convex quadratic representation of LS (abbreviated as P.1)
has a unique solution from a linear system.

v=Dy,

Proof. From Equation (16), we only need to prove that D is
invertible. u

1. The row vectors of J, are linearly independent and span
a plane.

2. Here J,t = 0 implies t is orthogonal to the spanned
plane.

3. If D is not full rank, then 4~ 't must lie in the spanned
plane and is therefore orthogonal to t. This contradicts
the fact that (t,4~'t) > 0 for positive-definite matrix
A~" and non-zero vector t.

Corollary 1. Pushing with single sticking contact and the
general homogeneous convex polynomial representation of
LS is reducible to solving a sequence of subproblems P.1.

For general convex polynomial representation H(F), the
following optimization is equivalent to Equations (9)—(12):

)
(18)

When H(F) is of the convex quadratic (ellipsoidal) form,
the analytical minimizer is F = 47'D~!'V,. In the case
of high-order convex homogeneous polynomials, we can

miniFmize I, VH(F) —vy||

subject to t'tF=0

0.05F

r | PR

COR

005

-0.1 -0.05 0 0.05 0.1 0.15

X

Fig. 7. Mechanics of single-point pushing. The square has a uni-
form pressure distribution over 100 support grid points sharing
the same coefficient of friction. We use a fourth-order convex
polynomial to represent the LS. The finger’s pushing velocity is
to the right of the motion cone and, hence, the finger will slide
to the right. The instantaneous COR, computed using the model
described in Section 4.1, is marked as a circle with a negative sign
indicating clockwise rotation.

resort to an iterative solution where we use the Hes-
sian matrix as a local ellipsoidal approximation, i.e. set
A, = V?H(F,) and compute Fo.y = 4;'D7'V, until
convergence.

When v, is outside of the motion cone, assuming right
sliding occurs without loss of generality, the wrench applied
by the finger equals F,. The resultant object twist V follows
the same direction as V, with proper magnitude such that
the contact is maintained:

V=5V, (19)
T
s=22 % 20)
n, v,

4.2. Multi-contacts

Mode enumeration is tedious for multiple contacts. The
linear complementarity formulation for frictional contacts
(Stewart and Trinkle, 1996) provides a convenient repre-
sentation. Denote by m the total number of contacts, the
quasi-static force—motion equation is given by

V =kVH(F) (21)
where the total applied wrench is the sum of normal and
frictional wrenches over all applied contacts:

F= ZJPT,-(fninPi + Dy f;)

i=1

(22)

Here f,, is the normal force magnitude along the normal n;,
and f;, is the vector of tangential friction force magnitudes
along the column vector basis of Dy, = [t,,, —t,]. The
velocity at contact point p; on the object is given by J,, V.
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The first-order complementarity constraints on the normal
force magnitude and the relative velocity are given by
0 <fo L(n)(J,V=v,))=0 (23)

The complementarity constraints for Coulomb friction are
given by

(24)
(25)

0 <f, L(DL(J,,V—V,)+er) =0
0<X L(uiy —€'f,)=0

where w; is the coefficient of friction at p; and e = [1;1].
In the case of ellipsoid (convex quadratic) representation,
i.e. HF)= FTAF where 4 is a positive-definite matrix,
Equations (21)—(25) can be written in matrix form:

0 [4='/k —NT —LT 0] [V 0
o N 0 0 0 f, a
g1~ 1 o o E||f|T|p] @9
y | 0 nw —ET 0 A 0
[« f,
O<|(B|L|f|=0
LY A
e
where the binary matrix £ € R>"™ equals ,
e
w = [p1,...,un]", the stacking matrix N € R"*3 equals
[nglJpl; o nTmem], the stacking matrix L € R2mx3 equals
(D) Jpis - 3D} Jp, ], the stacking vector a € R” equals
[0} Vp,....,—n) v, 17, and the vector b € R*" equals
[—D;] Vorseeos —D;mvpm]T.

Note that the positive scalar £ will not affect the solu-
tion value of V since f, and f; will scale accordingly.
Hence, we can drop the scalar & and further substitute
V = A(N'f, + L™f,)) into Equation (26) and reach the
standard linear complementarity form as follows:

o [NANT NALT 0 f, a
B|=|LANT LAL™ E||f |+ |Db (27)
y ez —ET 0 A 0
I f,
O0<|B|lL|fi|=0
LY A

Similarly, for the case of high-order convex homogeneous
polynomials, we can iterate between taking the linear Hes-
sian approximation and solving the LCP problem in Equa-
tion (27) until convergence.

Lemma 1. The object is quasi-statically jammed or
grasped if Equation (27) yields no solution.

Figure 8 provides a graphical proof. When Equation (27)
yields no solution, either there is no feasible kinematic
motion of the object without penetration or all the friction

Fig. 8. Using moment labeling (Mason, 2001), the COR has posi-
tive sign (counter-clockwise) and can only lie in the band between
the two blue contact normal lines. Further, the COR must lie on
segment AB (contact point A sticks) or segment CD (contact point
C sticks) since otherwise both contacts will slip, but the total
wrench from the two left edges of the friction cones has negative
moment that cannot cause counter-clockwise rotation. Without
loss of generality, we can assume COR (red plus) lies on segment
AB, leading to sticking contact at A and left sliding at C. Following
a similar analysis using the force dual graphical approach (Brost
and Mason, 1991), each single friction force can be mapped to its
instantaneous resultant signed COR whose convex combination
forms the set of all possible CORs under the composite friction
forces. The COR can either be of positive sign in the upper left
hatched region or negative sign in the lower right hatched region
that contradicts the proposed AB segment. Hence, jamming occurs
and neither the gripper nor the object can move. This corresponds
exactly to the no solution case of Equation (27).

loads associated with the feasible instantaneous twists can-
not balance against any element from the set of possible
applied wrenches. In this case, the object is quasi-statically
jammed or grasped between the fingers. Neither the object
nor the end effector can move.

4.3. Stochastic Modeling

Frictional interaction is inherently stochastic. Two major
sources contribute to the uncertainty in planar motion:
(1) indeterminacy of the supporting friction distribution f;
due to changing pressure distribution and coefficients of
friction between the object and support surface; (2) the
coefficient of friction w. between the object and the robot
end effector. We sample p. uniformly from a given range
and model the effect of changing support friction distri-
bution by sampling the parameters a in H(F;a) from a
distribution that satisfies the following.

1. Samples from the distribution should result in an even-
degree homogeneous convex polynomial to represent
the LS.
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Table 3. Average deviation metric (in millimeters) between the simulated final pose and actual final pose with 95% confidence interval.
The third, sixth, and ninth rows are the deviation from the ground truth initial pose and final pose to indicate how much the object
is moved due to the push. In most cases, the fourth-order convex (poly4) polynomial has better accuracy. The average normalized
percentage error for poly4 is 20.05% and for quadratic is 21.39%. However, the accuracy of a fixed deterministic model is bounded by
the inherent variance of the system.

rectl rect2 rect3 tril tri3 ellipl ellip2 ellip3 hex butter
poly4-delrin ~ 8.284+0.29 5.374+0.23 6.10£0.21 9.71+£0.33 7.544+0.23 7.684+0.51 8.90£1.40 7.35+0.38 6.384+0.28 4.83+0.27
quad-delrin ~ 8.60%0.35 5.9240.14 8.20£0.16 9.90+0.41 8.1840.15 6.85+0.25 6.29+0.24 8.08+0.51 6.424+0.12 5.974+0.23
delrin 35.48 40.53 35.98 36.91 34.66 32.18 38.05 33.37 33.55 34.09
poly4-abs 5.86£0.11 7.48+0.80 3.59+0.12 7.134+0.26 5.17£0.38 8.45+1.13 9.18%+1.26 5.934+0.19 7.56+£0.39 3.94+0.11
quad-abs 6.07£0.16 6.74£0.27 6.1940.18 8.00£0.37 7.17£0.37 6.66+0.28 7.694+0.27 5.78£0.21 8.19+0.21 5.39+£0.15
abs 34.14 39.74 33.98 35.43 32.37 32.68 33.53 32.45 33.23 33.53
poly4-plywood 6.86+0.71 6.86+0.13 5.934+0.33 4.61£0.13 7.21+0.47 4.3940.16 4.99£0.31 5.72+0.31 8.41+0.24 4.72+0.17

quad-plywood 6.20+0.20 7.2240.18 6.88+0.18 5.96+0.19 9.431+0.56 4.4240.12 5.84+0.20 6.46+0.26 8.85 £0.17 6.05+0.22

plywood 31.86 33.22 32.94 32.81

33.78

27.24 28.23 33.29 32.77 34.10

2. The mean can be set as a prior estimate and the amount
of variance controlled by one parameter.

The ng degree of freedom Wishart distribution § ~
W(S”, ngr) (Wishart, 1928) with mean n4S,,; and vari-
ance Var(Sy) = ngr( 3‘5 + 3,-,'@7) is defined over symmetric
positive-semidefinite random matrices as a generalization
of the chi-squared distribution to multi-dimensions. For
ellipsoidal (convex quadratic) H(F; 4), we can directly sam-
ple from é W ( Aest, n) Where A, is some estimated value

from data or fitted for a particular pressure distribution.
Sampling from general convex polynomials is hard. Fortu-
nately, we find that sampling from the sos-convex (Magnani
et al., 2005; Parrilo, 2000) polynomials subset is not. The
key is the coefficient vector a of a sos-convex polynomial
H(F;a) has a unique one-to-one mapping to a positive-
definite matrix Q so that we can first sample Q from$
i W(Q, nyr) and then map back to a through Equation (5).
The degree of freedom parameter ngr determines the sam-
pling variance. The smaller ng is, the noisier the system
will be.

4.4. Deterministic pushing model evaluation

We evaluate the single-contact deterministic model on the
large-scale MIT pushing dataset (Yu et al., 2016) and the
data from the identification experiments in Section 3.3.2.
For the MIT pushing dataset, we use 10 mm s~! veloc-
ity data logs for 10 objects’ on the hard surfaces including
delrin, abs, and plywood. The force torque signal is first fil-
tered with a low-pass filter and 5 wrench-twist pairs evenly
spaced in time are extracted from each push action log file.
A total of 10 random train—test splits (20% of the logs for
training, 10% for validation, and the remainder for testing)
are conducted for each object—surface scenario.

Given two poses ¢ = [x1,y1,61] and g2 = [x2,)2,0:],
we define the deviation metric d( ¢, q>) which combines
both the displacement and angular offset as d(qi,q92)=
V1 =22 H(y1 — 322+ p-min( |61 — 6], 27 — |01 —62)),

Table 4. Average deviation (in millimeters) between the simulated
final pose and actual final pose with 95% confidence interval for
three-point support. The wrench—twist pairs used for training the
model are generated from the ideal LS. The third and sixth rows
are the deviation from the ground truth initial pose and final pose
to indicate how much the object is moved due to the push. The
fourth-order convex (poly4) polynomial has better accuracy for
each pressure—surface combination. The average normalized error
for poly4 is 20.48% and for quadratic is 24.97%.

3ptsl 3pts2 3pts3 3pts4
poly4-hardboard 3.524+0.21 2.75+0.25 2.924+0.27 2.80+0.23
quad-hardboard 3.82+0.24 3.63+0.27 3.354+0.23 3.96+0.28
hardboard 16.63 13.86 14.83 15.15
poly4-plywood  3.78+0.11 2.80+0.15 2.84+0.16 3.26+0.11
quad-plywood  4.24+0.15 3.561+0.17 3.28+0.08 4.12+0.13
plywood 16.56 13.81 15.27 14.20

where p is the characteristic length of the object (e.g. radius
of gyration or radius of minimum circumscribed circle).
A one-dimensional coarse grid search over the coefficient
of friction u. between the pusher and object is chosen to
minimize average deviation of the predicted final pose and
ground truth final pose on training data. Table 3 shows
the average metric with a 95% confidence interval. Inter-
estingly, we find that using more training data does not
improve the performance much. This is likely due to the
inherent stochasticity and changing surface conditions as
reported in Yu et al. (2016).

The well-machined objects in the MIT pushing dataset
are close to uniform patch pressure. We also test on discrete
pressures. The triangular object used in the identification
experiments in Section 3.3.2 are given different configura-
tions of three-point discrete support. We use wrench twists
pairs sampled from the ideal LS for training. The coefficient
of friction between the object and pusher is determined by
a grid search over 40% of the logs. We use the remaining
60% to evaluate simulation accuracy. Results are reported
in Table 4.
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Fig. 9. Stochastic modeling of single-point pushing with the fourth-order sos-convex polynomial representation of the LS using
wrench—twist pairs generated from 64 grids with uniform pressure. (a) Stochastic simulation results. (b) Figure 9 of Yu et al. (2016),
reprinted with permission. (c) Ax histogram. (d) Ay histogram. (e) A9 histogram. The degree of freedom in the sampling distribution
equals 20. The contact coefficient of friction between the pusher and the object is uniformly sampled from 0.15 to 0.35. The trajectories

are qualitatively similar to the experimental results in Figure 9 of Yu et al. (2016).
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Fig. 10. Simulation results using the proposed contact model illustrating the process of two-point fingers pushing a circle to reduce

(©)

initial pose uncertainty. A total of 500 initial object center positions are uniformly sampled from a circle of radius 7.88 cm. (a) A total
of 100 pushed trajectories of different initial poses using ellipsoid representation of H(F) with ngr = 200. (b) A total of 100 pushed
trajectories of different initial poses using ellipsoid representation of H(F) with ngr = 10 (larger noise). (c) Kernel density plot of the
convergence region for n4e = 10. Convergent initial poses are in red and the rest are in black.

4.5. Stochastic pushing model simulation

Yu et al. (2016) reported the same 2000 straight-line pushes
in a highly controlled setting result in a distribution of final
poses, demonstrating the inherent stochastic nature of push-
ing. We perform simulations using the same object and
pusher geometry and push distance. The 2000 resultant tra-
jectories and histogram plot of pose changes are shown
in Figure 9. We note that although the mean and variance
pose changes are similar to the experiments with abs mate-
rial in Yu et al. (2016), the distribution resembles a single
Gaussian distribution which differs from the multiple-mode
distribution in Figure 10 of Yu et al. (2016). We conjec-
ture this is due to a time-varying stochastic process where
coefficients of friction between surfaces drift due to wear.
Using a high-fidelity contact model is important to eval-
uate and generate plans for uncertainty reduction. We also
simulate the effects of initial pose uncertainty reduction
with two-point fingers under the stochastic contact model.
The circular object has a radius of 5.25 cm. The two fin-
gers separated by 10 cm perform a straight-line push of
26.25 cm. The desired goal is to have the object centered
with respect to the two fingers. Figure 10a and b compare

the resultant trajectories under different amount of system
noise. We find that despite larger noise in the resultant tra-
jectories, the convergent region of the stable goal pose dif-
fers by less than 5% and the difference is mostly around
the uncertainty boundary. A kernel density plot of the con-
vergence region is shown in Figure 10c for nyr = 10. This
demonstrates multiple constraints can induce a large region
of attraction despite uncertainty.

4.6. Grasping under uncertainty

We conducted robotic experiments to evaluate our con-
tact model for grasping. Figure 11a shows two rectangular
objects with the same geometry but different pressure dis-
tributions. Another experiment is conducted for a butterfly-
shaped object shown in Figure 12a. We use the Robotiq
C-85 2-finger gripper (ROBOTIQ, 2017) and represent it
as a planar parallel-jaw gripper with rectangular fingers in
simulation as shown in Figure 11e and e. Convex quadratic
representations of H(F) are trained from wrench—twist pairs
assuming a uniform friction distribution along the object
boundary. The sampling degree of freedom ngr equals 250
with contact friction coefficient u. sampled uniformly from
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Fig. 11. Experiments on the rectangular objects with different pressure distributions. A total of 600 initial poses are sampled whose
centers are uniformly distributed in a circle of radius of 20 mm and angles are uniformly distributed from —90° to 90°. (a) Two
50 mm x 35 mm rectangles with six points and boundary pressure distribution. (b) Distribution of the simulated post-grasp poses

using the stochastic contact model. (c) Distribution of the experime
of the experimental post-grasp poses for the six-point pressure. (e)

ntal post-grasp poses for the boundary pressure. (d) Distribution
Initial uncertainty of 600 poses. (f) Histogram of the simulated

post-distribution. (g) Histogram of the experimental post-distribution for the boundary pressure. (h) Histogram of the experimental

post-distribution for the six-point pressure.

[0.015,0.02]. For the rectangles of both pressure distri-
butions, the simulated results with the stochastic contact
model match well with the experimental data. Although
exact matching of the distribution is hard to achieve, the
different modes corresponding to different final post-grasp
contact conditions can be well captured to plan a sequence
of grasps that shrink the uncertainty to a singleton (Zhou
et al., 2017). However, the model fails to capture the sta-
bility of grasps and the deformation of objects. In the case
of a butterfly-shaped object, many unstable grasps and jam-
ming equilibria exist, but as the fingers increase the grip-
ping force the object will “fly” away as the stored elastic
energy turns into large accelerations that violates the quasi-
static assumptions of our model, as revealed in the scattered
post-grasp distribution in Figure 12c. We also compare the
cases where dynamics do not play a major role: Figure

12d shows the zoomed in plots to compare with simula-
tion results in Figure 12b. Despite qualitative similarity, the
simulation results deviate more compared with the case for
the rectangular geometry. As shown in the histogram plots
in Figure 12f and h, the simulation returns more jamming
and grasping final states as illustrated by the spikes in 6.

5. Conclusions and future work

In this paper, we have proposed the use of sub-level sets
and gradients of a function to represent rigid-body planar
friction loads and velocities, respectively. The maximum
work inequality implies that such a function needs to be
convex. We additionally require the properties of symme-
try, scale invariance, and efficient invertibility that lead us
to choose a convex even-degree homogeneous polynomial
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Fig. 12. Experiments on the butterfly object. The longer diameter between the convex curves is 39 mm and the shorter diameter between

X/m X/m Y/m

(©

0
-100 0 100
0/degree

0 0
0.02 0.04 0.06 -0.05 0 0.05 -0.02 0 0.02

s

2
=)
3

frequency
frequency
frequency

£

100 160 70
140 60
120 %
: 540

2 80
i Z30

60
2
40 20

20

20 10

0 0 0
-0.05 0 0.05 -0.05 0 0.05 -100 0 100
X/m Y/m 0/degree

(h)

the concave curves is 28.6 mm. A total of 900 initial poses are sampled where the centers lie uniformly in a circle of radius 30 mm and
the frame angles are uniformly distributed in —90° to 90°. (a) Butterfly-shaped object with boundary pressure distribution used for the
experiment. (b) Distribution of the simulated post-grasp poses using the stochastic contact model. (c) Distribution of the object poses
after the grasping actions from experimental data. (d) Zoomed-in distribution of the object poses after the grasping actions around the
origin. (e) Initial uncertainty of 900 poses. (f) Histogram plot for the simulated post-distribution. (g) Histogram plot of the experimental
post-distribution. (h) Histogram plot of the experimental post-distribution around the origin.

representation. The model enjoys the benefits of both accu-
racy and data efficiency. We then extended the model to the
kinematic contact level that resolves the object twist and
contact mode given the velocity input (single and multiple)
from a position-controlled manipulator. To model the inher-
ent uncertainty in frictional mechanics, we derive methods
that enable sampling from the family of sos-convex poly-
nomials. The models and applications have been validated
with large-scale robotic pushing and grasping experiments.

Although physics-inspired models are data-efficient and
easily generalizable, we also see the limitation of the
imposing assumptions, e.g. failures in the butterfly-shaped
object-grasping experiment due to the first-order quasi-
static model. Much work remains to be done. On the sim-
ulator end: (1) how to increase the accuracy without los-
ing convergence speed for a high-order polynomial-based
representation of H(F); and (2) how to handle penetration

properly when the integration step is large. On the appli-
cation side: (1) how to quickly identify both the mean and
variance of the sampling distribution to match with exper-
imental data; and (2) how to plan a robust sequence of
grasp and push actions for uncertainty reduction using the
stochastic contact model. In the long term, we are interested
in combining learning-based and physics-based techniques
to synthesize robust strategies for contact-rich manipulation
through exploiting task mechanics.
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Notes

1. Our open-source simulation software and data are available at:
https://github.com/robinzhoucmu/Pushing

2. Throughout the paper, we use a local coordinate frame with
the origin set as the projection of the COM onto the supporting
surface. However, the choice of the origin can be any other
point of convenience.

3. Inpractice, F; will not be near the point of origin whose H(F;)
is all zero. A small diagonal regularization can be added to
H(F;) before inversion to improve numerical stability.

4. The squared exponential kernel gives better performance over
linear and polynomial. Normalizing the input load to a unit
vector improves performance by requiring the GP to ignore
scale. Every (F, V) input pair is augmented with (—F, —V)
for training.

5. The third one is in the back not visible from presented view.

6. We note that adding a small constant on the diagonal elements
of O improves numerical stability.

7. Despite having the same experimental set up and similar
geometry and friction property to the other two triangu-
lar shapes, the results for object Tr2 is about 1.5-2 times
worse. Owing to time constraints, we have not ruled out the
possibility that the data for object Tr2 is corrupted.
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Appendix. Index to multimedia extensions

Archives of IJRR multimedia extensions published prior
to 2014 can be found at http:/www.ijrr.org, after 2014
all videos are available on the IJRR YouTube channel at
http://www.youtube.com/user/ijrrmultimedia

Table of Multimedia Extension

Extension  Media type Description
1 Video Model identification and visualization
2 Video Model applications






