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Abstract

We propose a polynomial model for planar sliding mechanics. For the force–motion mapping, we treat the set of gener-

alized friction loads as the 1-sublevel set of a polynomial whose gradient directions correspond to generalized velocities.

The polynomial is confined to be convex even-degree homogeneous in order to obey the maximum work inequality, sym-

metry, shape invariance in scale, and fast invertibility. We present a simple and statistically efficient model identification

procedure using a sum-of-squares convex relaxation. We then derive the kinematic contact model that resolves the con-

tact modes and instantaneous object motion given a position controlled manipulator action. The inherently stochastic

object-to-surface friction distributions are modeled by sampling polynomial parameters from distributions that preserve

sum-of-squares convexity. Thanks to the model smoothness, the mechanics of patch contact is captured while being compu-

tationally efficient without mode selection at support points. Simulation and robotic experiments on pushing and grasping

validate the accuracy and efficiency of our approach.
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1. Introduction

Effective robotic manipulation requires an understanding of

the underlying physical processes. Mason (1986a) explored

using pushing as a sensorless mechanical funnel to reduce

uncertainty. Whitney (1983) analyzed the mechanics of

wedging and jamming during peg-in-hole insertion and

designed the Remote Center Compliance device that signif-

icantly increases the success of the operation under motion

uncertainty. With a well-defined generalized damper model,

Lozano-Perez et al. (1984) and Erdmann (1986) developed

strategies to chain a sequence of operations, each with a cer-

tain funnel, to guarantee operation success despite uncer-

tainty. These successes stem from robustness analysis using

simple physics models.

Planning and control without explicit reasoning about

uncertainty and the task mechanics can lead to undesirable

results. For example, grasp planning (Ferrari and Canny,

1992; Miller et al., 2003) is often prone to failure: the

object moves while the fingers close and ends up in a final

relative pose that differs from planned. Consider the pro-

cess of closing a parallel jaw gripper shown in Figure 1,

the object will slide when the first finger engages con-

tact and pushes the object before the other one touches

the object. If the object does not end up slipping out, it

can be jammed at an undesirable position or grasped at an

unexpected position. A high-fidelity and easily identifiable

model with minimum adjustable parameters capturing all

these possible outcomes would enable the synthesis of a

robust manipulation strategy.

We develop a data-driven but physics-based method for

modeling planar friction. Manipulations employing friction

are ubiquitous in tasks including positioning and orienting

objects by pushing (Akella and Mason, 1998; Dogar and

Srinivasa, 2010; Lynch and Mason, 1996; Mason, 1986a),

controlled slip with dexterous hands (Cole et al., 1992)

and assembly of tight-fitting parts (Whitney, 1983). For

planar manipulation with finite object motion, indetermi-

nacy of the pressure distribution between the object and

support surface leads to uncertainty in the resultant veloc-

ity. Despite such inherent difficulty, algorithms and analy-

ses have been developed with provable guarantees. Mason

(1986a) derived the voting theorem to determine the sense

of rotation of an object pushed by a point contact. Lynch

and Mason (1996) developed a stable pushing strategy when

objects remain fixed to the end effector with two or more

contact points. However, minimal assumptions on friction
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conditions inherently lead to conservative strategies. By

explicitly modeling and identifying the friction space, we

can improve strategies for planning and control.

The paper combines and extends our previous work

(Zhou et al., 2017, 2016). The first contribution is the devel-

opment of a precise and statistically efficient force–motion

model with a computationally efficient identification pro-

cedure. We propose a framework representing planar slid-

ing force–motion models using homogeneous even-degree

sum-of-squares convex (sos-convex) polynomials, which

can be identified by solving a semi-definite programming.

The set of applied friction wrenches is the 1-sublevel set of

a convex polynomial whose gradient directions correspond

to incurred sliding body twist. The second contribution is

a quasi-static kinematic contact solution for manipulation

problems with finite planar sliding motion. The algorithm

maps a commanded rigid position-controlled end-effector

motion to the instantaneous resultant object motion, with

detection of the equilibrium state (jamming or grasping).

The applied wrench is solved as an intermediate output.

We show that single contact with a convex quadratic force–

motion model has a unique analytic linear solution that

extends the approach in Lynch et al. (1992). The case

for a high-order convex polynomial force–motion model

is reduced to solving a sequence of such subproblems.

For multiple contacts (e.g. pushing with multiple points

or grasping) we need to add linear complementarity con-

straints (Stewart and Trinkle, 1996) at the pusher points,

and the entire problem is a standard linear complementarity

problem (LCP).

The inherent stochasticity in frictional sliding is modeled

by sampling the physics parameters from proper distribu-

tions. We validate the model by comparing the simulation

with large-scale experimental data on robotic pushing and

grasping tasks. The model serves as a good basis for both

open-loop planning and feedback control.1

We assume quasi-static rigid-body planar mechanics

(Mason, 1986b) where inertia forces and out-of-plane

moments are negligible. Figure 2 illustrates the outline of

this article. The rest is organized as follows.

• Section 2 describes the previous work.

• Section 3.1 reviews the background of force–motion

model for sliding.

• Section 3.2 develops the convex polynomial representa-

tion and the identification algorithm.

• Section 3.3 demonstrates model identification results

based on simulation and experimental data.

• Section 3.4 demonstrates stable push action generation

based on the invertible property of the model.

• Section 4 develops the kinematic contact model for

single and multiple frictional contacts.

• Section 4.3 develops the sampling strategies of phys-

ically consistent model parameters that captures the

inherent frictional stochasticity.

• Sections 4.4–4.6 demonstrates simulation and experi-

mental results for pushing and grasping applications.

2. Related work

The mechanics of pushing and grasping involving finite

object motion with frictional support was first studied in

Mason (1986a). A notable result is the voting theorem

which dictates the sense of rotation given a push action

and the center of pressure regardless of the uncertain pres-

sure distribution. Brost (1988) used this result to construct

the operational space for planning squeezing and push-

grasping actions under uncertainty. However, many unreal-

istic assumptions are made in order to reduce the state space

and create finite discrete transitions, including infinitely

long fingers approaching the object from infinitely far away.

In addition, how far to push the object in the push-grasp

action was not addressed. Peshkin and Sanderson (1988a)

provided an analysis on the slowest speed of rotation given

a single point push. Peshkin and Sanderson (1988b) used

this result to design fences for parts feeding. Lynch and

Mason (1996) derived conditions for stable edge pushing

such that the object will remain attached to the pusher with-

out slipping or breaking contact. All these results do not

assume knowledge of the pressure distribution except the

location of the center of pressure. They can be classified

as worse-case guarantees without looking into the details

of sliding motion. Despite being agnostic to pressure distri-

bution, these methods tend to be overly conservative, have

impractical assumptions, or both.

Friction parameter estimation has been proposed to

improve planning and control. Yoshikawa and Kurisu

(1991) solved an unconstrained least-squares problem to

estimate the center of friction and the pressure distribution

over discrete grids on the contact surface. With a similar

set up, Lynch (1993) proposed a constrained linear pro-

gramming procedure to avoid negative pressure assignment.

However, methods based on discretization of the support

surface introduce two sources of error in both localization

of support points and pressure assignment among those

points. We do not need to estimate the exact location of

support points. Coarse discretization loses accuracy while

fine discretization suffers from the curse of dimensional-

ity. In addition, the instantaneous center of rotation (COR)

of the object can coincide with one of the support points,

rendering the kinematic solution computationally hard due

to combinatorial sliding/sticking mode assignment for each

support point.

Goyal et al. (1991) noted that all the possible static

and sliding frictional wrenches, regardless of the pres-

sure distribution, form a convex set whose boundary is

called a limit surface (LS). Analytic construction of a LS

from the Minkowski sum of frictional limit curves at indi-

vidual support points, however, is intractable. Howe and

Cutkosky (1996) presented an ellipsoid approximation of

the LS assuming known pressure distribution. The ellipsoid

is constructed by computing or measuring the major axis

lengths (maximum force during pure translation and maxi-

mum torque during pure rotation). Facets can be added by

intersecting the ellipsoid with planes determined by each
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Fig. 1. Simulation results using the proposed contact model illustrating the process of a parallel jaw gripper squeezing along the y axis

when the object is placed at different initial poses. The initial, final, and intermediate gripper configurations and object poses are shown

in black, red, and gray, respectively. Blue plus signs trace out the center of mass (COM) trajectory of the object. (a) Grasped with offset.

(b) Jamming. (c) Grasped with offset. (d) Slipped to free space.

support point. The pressure distribution (except for com-

putable three-point support with known center of pressure),

nevertheless, is non-trivial to measure. We also show that

the ellipsoid approximation, as the convex quadratic special

case of our convex polynomial representation, is less accu-

rate due to the lack of expressiveness, particularly when the

support regions are scattered.

Lynch et al. (1992) derived the kinematics of single-

point pushing with a centered and axis-aligned ellipsoid

approximation. Based on the kinematic model, Hogan and

Rodriguez (2016) recently proposed using hybrid model

predictive control to generate a sequence of open-loop

pushing commands. Yu et al. (2016) recently presented

a large-scale empirical effort to verify the generalized

Coulomb friction law (Moreau, 1988) and demonstrated

inherent stochasticity in planar sliding motions.

Recent data-driven attempts (Kopicki et al., 2011;

Omrcen et al., 2009) collected visual data from random

push trials and applied “off-the-shelf” machine learning

algorithms to build forward motion models. Our model

identification also embraces a data-driven strategy but bears

in mind that physics principles should guide the design

of the learning algorithm (as constraints and/or priors),

hence increasing data efficiency and generalization perfor-

mance. For example, our training procedure only requires

a few data points (less than 10) and a change of uni-

form surface material or a scaling in object mass does not

require retraining. In addition, different applications based

on the model, as shown later, are physically consistent and

computationally efficient.

3. Force–motion model

We first introduce the following notation.

• O: the object center of mass (COM) used as the origin of

the body frame.2 We assume vector quantities are with

respect to the body frame unless specifically noted.

• R: the region between the object and the supporting

surface.

• fr: the surface friction force applied by the object at a

point r in R.

• V = [Vx; Vy; ω]: the body twist (generalized velocity).

• F = [Fx; Fy; τ ]: the generalized friction load. Here

F equals the applied body wrench by the manipulator

when the object is in quasi-static balance.

• pi: each contact point between the manipulator end

effector and object in the body frame.

• vpi
: applied velocities by the manipulator end effector at

each contact point in the body frame.

• npi
: the inward normal at contact point pi on the object.

• µc: coefficient of friction between the object and the

manipulator end effector.
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Fig. 2. The robot randomly pokes the object of known shape with a point finger to collect force–motion data. We then optimize a convex

polynomial friction representation with physics-based constraints. Stable pushing and grasping simulations under pose uncertainty are

two example applications of the model.

3.1. Background on planar friction

The classical Coulomb friction law states that for a point

contact with instantaneous planar velocity v = [vx, vy]T, the

incurred friction force f = [fx, fy]T the point applies on the

surface is parallel to v, i.e. f/|f| = v/|v|. We refer the read-

ers to Mason (1986a) for details of the friction analysis for

planar sliding under the isotropic Coulomb friction law. In

this paper, we build our analysis on a generalized friction

law formulated first in Moreau (1988), in which v and f

may not be parallel, but only need to obey the maximum

work inequality:

( f − f′) ·v ≥ 0 (1)

where f′ is an arbitrary element from the set of all possible

static and sliding friction forces.

We can compute the generalized friction load F by

integration over R:

Fx =

∫

R

frx dr, Fy =

∫

R

fry dr, τ =

∫

R

(rxfry − ryfrx) dr (2)

The maximum work inequality in Equation (1) can be

extended to the generalized friction load F and twist V:

F · V =

∫

R

frx(Vx − ωry) dr +

∫

R

fry(Vy + ωrx) dr

=

∫

R

frxvrx + fryvry dr =

∫

R

fr · vr dr ≥ F′ · V (3)

among any other possible generalized friction load F′.

Owing to the converse supporting hyperplane theorem

(Boyd and Vandenberghe, 2004), the set of all generalized

friction loads form a convex set F . An important work that

inspires us is Goyal et al. (1991) who found that all pos-

sible generalized friction loads during sliding form a LS

constructed from the Minkowski sum of limit curves at indi-

vidual support points. Points inside the surface correspond

to static friction loads. Points on the surface correspond to

friction loads with normals parallel to sliding velocity direc-

tions, forming a mapping between the generalized friction

load and sliding velocity. An ideal LS is always convex due



Zhou et al. 253

to the maximum work inequality but may not be strictly

convex when a single point supports finite pressure. As

shown in Figure 4b, facets can occur since the object can

rotate about one of the three support points whose velocity

is zero with indeterminate underlying friction.

Erdmann (1994) proposed a configuration space embed-

ding of friction. In this work, the third component of F is

Fz = τ/ρ and the third component of V is Vz = ωρ, where

ρ is the radius of gyration. In doing so, all three components

in F and V have the same unit. Observe that such a normal-

ized representation also obeys maximum work inequality

with ρ being any characteristic length. In our experiments,

we have found that the normalized representation yields

better numerical condition and different values of ρ includ-

ing radius of gyration, average edge length, and minimum

enclosing circle radius lead to similar performance.

3.2. Representation and identification

In this section, we propose the sublevel set representation of

friction with desired properties and show that convex even-

degree homogeneous polynomials are valid solutions. Then

we formulate an efficient convex optimization procedure to

identify such polynomials.

3.2.1. Polynomial sublevel set representation. Let H(F) be

a differentiable convex function that models the generalized

friction load and velocity as follows.

• The 1-sublevel set L−
1 ( H) = {F : H(F) ≤ 1} corre-

sponds to the convex set F of all generalized friction

loads.

• The 1-level set L1( H) = {F : H(F) = 1} corresponds to

generalized friction loads (during slip) on the boundary

surface of F .

• The surface normals given by gradients {∇H(F) : F ∈

L1( H) } represent instantaneous generalized velocity

directions during slip, i.e. V = s∇H(F) where s > 0.

Theorem 1. The set of friction loads represented by the 1-

sublevel set of a differentiable convex function follows the

maximum work inequality.

Proof. When the object remains static, F belongs to the

interior of L−
1 ( H), and V equals zero, the inequality holds

as equality. When the object slips, F ∈ L1( H), and V is

non-zero, we have for any other generalized friction load

F′ ∈ L−
1 ( H):

V·(F′ − F) = s( ∇H(F) ·(F′ − F) ) ≤ s( H(F′) −H(F) ) ≤ 0

where the first inequality is due to the convexity of H(F).

�

In addition to enforcing convexity (discussed in 3.2.2),

we choose H(F) to obey the following properties.

1. Symmetry: H(F) = H( −F) and ∇H(F) = −∇H( −F).

2. Scale invariance: ∇H( sF) = g( s) ∇H(F), where g( s) is

a positive scalar function over scalar s.

3. Efficient invertibility: efficient numerical proce-

dures exist for finding a F ∈ L1( H) such that

∇H(F) /‖∇H(F) ‖ = V for a given query unit velocity

V. We denote such an operation as F = Hinv(V).

Symmetry is based on the assumption that negating the

velocity direction would only result in a sign change in the

friction load. Scale invariance is desirable for two reasons:

(1) scaling in mass and surface coefficient of friction could

only result in a change of scale but not other geometrical

properties of the level-set representation; and (2) predict-

ing the directions of generalized velocities (by computing

gradients and normalizing to a unit vector) only depends

on the direction of generalized force. Such a property is

useful in the context of pushing with robot fingers where

applied loads are represented by friction cones. The inverse

problem of finding the friction load for a given velocity

naturally appears in seeking quasi-static balance for stable

pushing or computing deceleration during free sliding. In

general, an efficient numerical solution to the inverse prob-

lem, which our representation enables, is key to planning

and simulation. One solution family for H(F) that obeys

these properties is the set of strictly convex even-degree

homogeneous polynomials.

Theorem 2. A strictly convex even degree-d homogeneous

polynomial H(F; a) =
∑m

i=1 ai( Fx)i1 ( Fy)i2 ( Fz)
d−i1−i2 with

m (bounded by
(

d+2

2

)

) monomial terms parametrized by a

satisfies the properties of symmetry, scale invariance, and

efficient invertibility.

Proof. Proving symmetry and scale invariance are trivial

due to the homogeneous and even-degree form of H(F).

Here, we sketch the proof that efficient invertibility can be

achieved by first solving a simple non-linear least-squares

problem followed by a rescaling.

Construct an objective function G(F) = 1
2
‖∇H(F) −V‖2

whose gradient ∂G
∂F

= ∇2H(F) ( ∇H(F) −V). Note that its

stationary point F∗, which iterative methods such as the

Gauss–Newton or trust-region algorithms will converge to,

satisfies ∇H( F∗) −V = 0. Hence, F∗ is globally optimal

with value zero. Let 1Ft = ∇2H(Ft)
−1

(Vt − V),3 then the

update rule for the Gauss–Newton algorithm is Ft+1 = Ft −

1Ft. Although the final iteration point FT may not lie on the

1-level set of H(F), we can scale FT by F̂T = H(FT )−1/d FT

such that H( F̂T ) = 1 and ∇H( F̂T ) /‖∇H( F̂T ) ‖ = V due

to the homogeneous form of H(F). Therefore, Hinv(V) =

F̂T . �

3.2.2. Sum-of-squares convex relaxation. Enforcing

strong convexity for a degree-two homogeneous poly-

nomial H(F; A) = FTAF has a straightforward set up

as solving a semi-definite programming problem with

constraint of A � εI . Meanwhile, for a polynomial of

degree greater than three whose Hessian matrix ∇2H(F; a)
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is a function of both F and a, certification of positive semi-

definiteness is NP-hard. However, recent progress (Magnani

et al., 2005; Parrilo, 2000) in sum-of-squares programming

has given powerful semi-definite relaxations of global

positiveness certification of polynomials. Specifically,

let z be an arbitrary non-zero vector in R
3 and y(F, z) =

[z1Fx, z1Fy, z1Fz, z2Fx, z2Fy, z2Fz, z3Fx, z3Fy, z3Fz]
T. If there

exists a positive-definite matrix Q such that

zT∇2H(F; a) z = y(F, z)T Qy(F, z) > 0 (4)

then ∇2H(F; a) is positive definite for all non-zero F under

parameter a and H(F; a) is called sos-convex. Further,

Equation (4) can be written as a set of K sparse linear

constraints on Q and a.

Tr( AkQ) = bT
k a, k ∈ {1 . . . K}

Q − εI � (5)

where Ak and bk are a constant sparse element indica-

tor matrix and vector that only depend on the polynomial

degree d. The symbol � implies that the left-hand side is

positive semidefinite. The number of constraints K equals

27 for d = 4.

3.2.3. Identification. This section sets up an efficient con-

vex optimization for identifying the coefficient a of the

polynomial H(F; a) given a set of measured noisy gen-

eralized force–motion {Fi∈{1...N}, Vi∈{1...N}} pairs. In our

experiments, we use a homogeneous fourth-order poly-

nomial. The optimization should find the coefficient a

such that the measured forces Fi are close to the 1-level

set surface and the corresponding gradients are aligned

well (up to scale) with respect to measured velocities Vi.

Let αi = ‖∇H(Fi; a) −( ∇H(Fi; a) ·Vi) Vi‖
2
2 be the L2-

projection residual of ∇H(Fi; a) onto the measured unit

velocity vector Vi, and let βi =( H(Fi; a) −1)2 be a distance

measurement of Fi from the 1-level set of H(Fi; a). We set

up the optimization as follows:

minimize
a,Q

‖a‖2
2 +

N
∑

i=1

( η1αi + η2βi) (6)

subject to Tr( AkQ) = bT
k a, k = 1, . . . , K (7)

Q − εI � 0 (8)

The first term is for parameter regularization. η1 and η2 are

trade-off parameters determined by cross-validation. Equa-

tions (7) and (8) enforce convexity. Note that the objective

is quadratic in a with sparse linear constraints and a semi-

definite constraint on Q. We would like to point out that the

formulation can be adapted online using projected gradient

descent so that the importance of historical data is dimin-

ishing as the object moves, enabling the estimation to adapt

to changing surface conditions.

3.3. Identification experiments

We conduct simulation and robotic experiments to demon-

strate the accuracy and statistical-efficiency of our proposed

representation. The model converges to a good solution

with few available data, which saves experimental time

and design efforts. We compare the following four differ-

ent force–motion model representations H: (1) degree-four

convex homogeneous polynomial (poly4-cvx); (2) degree-

four homogeneous polynomial (poly4) without convexity

constraints (3) convex quadratic (quad) as a degree-two

polynomial, i.e. H(F) = FTAF with ellipsoid sublevel set;

and (4) Gaussian process (GP) with squared exponential

kernel as a smooth generic non-parametric data efficient

learning model.4

Denote by Vi the ground truth instantaneous gener-

alized velocity direction and Vp(Fi;H) as the predicted

generalized velocity direction based on H for the input

generalized load Fi, we use the average angle δ(H) =
1
N

∑N
i=1 arccos(Vp( Fi;H) ·Vi) between Vp( Fi;H) and Vi as

an evaluation criterion.

3.3.1. Simulation study. Two kinds of pressure distribution

are studied.

• “Legged” support: Randomly sampled three support

points on a unit circle with randomly assigned pressure.

• “Uniform” support: Uniformly distributed 360 support

points on a unit circle and 400 support points within a

unit square. Each point has the same support pressure.

For each pressure configuration, we conduct 50 experimen-

tal trials. To generate the simulated force–motion data, we

assume a Coulomb friction model at each support point

with a uniform coefficient of friction. Without loss of gener-

ality, sum of pressure over all contact points is normalized

to one and the origin is set as the center of pressure. For

each trial of “uniform” support, we sampled 150 instan-

taneous generalized velocities directions Vi uniformly on

the unit sphere and compute the corresponding general-

ized friction loads Fi. For each trial of “legged” support,

75 (Fi, Vi) pairs are uniformly sampled on the facets (same

Vi but different Fi for each facet) and another 75 pairs

are uniformly sampled in the same fashion as “uniform”

support. In doing so, the dataset has a diverse coverage.

Among the 150 pairs, 50% is used for hold-out testing,

20% is used for cross-validation and four different amounts

(7, 15, 22, 45) from the remaining 30% are used as train-

ing. In order to evaluate the algorithms’ robustness under

noise, we additionally corrupt the training and validation

set using Gaussian noise of standard deviation σ = 0.1 to

each dimension of both Fi and Vi (renormalized to unit vec-

tor). From Figure 3 we can draw the following conclusions.

(1) Poly4-cvx has the smallest δ(H) for different amounts

of training data and pressure configurations. (2) Both poly4-

cvx and convex quadratic show superior performance when

data is scarce and noisy, demonstrating convexity is key to



Zhou et al. 255

data-efficiency and robustness. Poly4-cvx model addition-

ally shows larger improvement as more data is available

due to stronger model expressiveness. (3) Poly4 (without

convexity constraint) performs the worst when only few

data is available, but gradually improves as more data is

available for shaping the surface. For noise-free experi-

ments shown in Figure 3b and d, when enough training

data (more than 22) is presented, poly4 performs slightly

better than poly4-convex. We conjecture such difference is

due to the gap between sos-convex polynomials and convex

polynomials (Ahmadi and Parrilo, 2012). GP has similar

performance trends as poly4 but worse on average. (4) Poly-

nomial models enjoy significant performance advantages

when LS is smoother as in uniform point support (approxi-

mation of uniform patch contact). The advantage is smaller

for three-point support whose LS has large flat facets.

3.3.2. Robotic experiment. We mount three screws at

four different sets of locations underneath an alu-

minum right-angle triangular work object that weighs

1.508 kg with edge lengths of 150, 150, and 212.1

mm. The four different sets of support point locations

(in millimeters) with respect to the right angle cor-

ner vertex are [( 10, 10) , ( 10, 130) , ( 130, 10) ], [(30,30),

(30,90), (90,30)], [(10,10), (10,130), (90,30)], and [(30,30),

(63.33,43.33), (43.33,63.33)]. Given known mass and COM

projection, ideal ground truth pressure for each support

point can be computed by solving three linear equations

assuming each screw head approximates a point con-

tact. Figure 4a shows a flipped view of one arrangement

whose ideal LS is illustrated in Figure 4b, constructed by

Minkowski addition of generalized friction at each single-

point support assuming a Coulomb friction model with

uniform coefficient of friction. Three pairs of symmetric

facets5 characterize indeterminate friction force when rotat-

ing about one of the three support points. Comparison

among identified fourth-order homogeneous polynomials

with and without convexity constraint is shown in Figure 4c

and d. We can see that convex-shape constraint is essential

to avoid poor generalization error when little data is avail-

able. Figure 4e and f compare the level sets of a convex

quadratic (ellipsoid) and a sos-convex degree-four homo-

geneous polynomial, demonstrating that the higher-degree

polynomial captures the facets effect better than quadratic

models.

We conduct robotic poking (single-point pushing) exper-

iments on wood and paper board surfaces. In each exper-

iment, we generate 50 pokes (30 for training set, 10 for

validation set, and 10 for test set) with randomly chosen

contact points and pushing velocity directions. During each

pushing action, the robot moves at a slow speed of 2.5 mm

s−1 with a total small push-in distance of 15 mm. Each

generalized velocity direction is approximated as the direc-

tion of pose displacement and generalized force is averaged

over the action duration. Figure 5 shows model accuracy

(averaged over four different pressure arrangements) with

Table 1. Comparison of average accuracy with 95% confidence

interval as the amount of training data increases.

10 20 30

poly4-cvx 88.13±1.80 91.33±1.61 93.07±1.45

poly4 85.27±2.12 89.40±1.98 93.00±1.62

quadratic 87.93±1.72 87.20±1.65 88.00±1.39

respect to increase in amount of training data for differ-

ent methods evaluated on both the hold-out test sensor data

and samples from ideal LS. We can see similar performance

trends as in simulation experiments. Note that both evalu-

ations only serve as certain reference criteria. Sensor data

is noisy and all possible force measurements from a single-

point pusher only cover a limited space of the set of friction

loads. We also do not intend to treat the idealized LS as

absolute ground truth as there is no guarantee on a uni-

form coefficient of friction between the support points and

the underlying surface. In addition, the point contact and

isotropic Coulomb friction model are only approximations

of reality. Nevertheless, both evaluations demonstrate the

performance advantage of our proposed poly4-cvx model.

3.4. Stable push action generation

Prediction of the resultant object twist under a single-point

push action cannot be exactly accurate. A two-point push

action against an edge of the object, however, can be stable

such that the object will remain attached to the pusher with-

out slipping or breaking contact (Lynch and Mason, 1996).

That is, the slider and pusher will move about the same

COR point pc. Given the level set representation H(F), the

condition for determining whether a two-point push with

instantaneous generalized velocity Vpc is stable or not is

equivalent to checking whether the corresponding gener-

alized friction load Fpc = Hinv(Vpc ) lies in the applied

composite wrench cone Fc. To validate predictions based

on the model, we sampled 60 random CORs and execute

with the robot for three different pressure arrangements

on a novel support surface material (hard poster paper).

We use the same triangular block in Figure 4a with two

three-point contacts [( 10, 10) , ( 10, 130) , ( 130, 10) ] and

[( 30, 30) , ( 30, 90) , ( 90, 30) ] as well as full patch contact.

The 60 CORs are tight rotation centers within a 400 mm ×

400 mm square centered at the COM. A total of 15 out

of the 60 CORs are labeled as stable. The training force–

motion data are collected from pushing the object on a wood

surface. Tables 1 and 2 summarize the classification accu-

racy and positive (stable) class recall measurements of three

invertible methods with respect to increase in the amount

of training data. Figure 6 shows an example (full patch

contact) that the stable regions generated from the identi-

fied poly4-cvx model is much larger than the conservative

analysis as in Lynch and Mason (1996), which misses the

tight/closer rotation centers.
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Fig. 3. Test error comparison for simulation experiments with 95% confidence bar (50 random evaluations) among different methods

as amount of training data increases for three random support points and 360 support points on a ring respectively. (a) Three support

points with noisy training and validation data. (b) Three support points with noise-free training and validation data. (c) Uniform circular

support points with noisy training and validation data. (d) Uniform circular support points with noise-free training and validation data.

Results for uniform pressure distribution within a square are similar to uniform circular support and omitted for space.

Fig. 4. Level set friction representations for the pressure arrangement in Figure 4a. (a) Triangular block with three support screws. (b)

Ideal LS with facets. (c) Poly4 fit with 5 training and 5 validation data. (d) Poly4-cvx fit with 5 training and 5 validation data. (e) Convex

quadratic fit with 10 training and 10 validation data. (f) Poly4-cvx fit with 10 training and 10 validation data. Red dots and blue arrows

are collected generalized forces and velocities from force-torque and motion capture sensor, respectively. Parts (c), (d), (e), and (f) share

the same data.
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Fig. 5. Test error comparison for robotic experiments with 95% confidence bar (50 random evaluations) among different methods as

the amount of training data increases for three support points (averaged over four different arrangements) on wood and hard paper board

surfaces. (a) Test on sensor data (wood surface). (b) Test on data sampled from ideal LS (wood surface). (c) Test on sensor data (paper

board surface). (d) Test on data sampled from ideal LS (paper board surface).

Table 2. Comparison of average positive recall with 95% confi-

dence interval as the amount of training data increases.

10 20 30

poly4-cvx 90.13±3.54 96.69±1.93 98.18±1.32

poly4 79.96±5.25 92.76±2.90 97.18±1.84

quadratic 73.18±4.61 73.38±4.69 73.87±4.63

4. Kinematic contact modeling

With a position-controlled manipulator, we are given a

single-point finger contact at p with inward normal np,

pushing velocity vp and coefficient of friction µc between

the pusher and the object. The task is to resolve the incurred

body twist V and contact mode (sticking, slipping, break-

ing contact): find a V consistent with the contact mode

at p while the applied wrench, solved as an intermediate

output (not a supplied control), equals the corresponding

generalized friction load.

4.1. Single-point pusher

We introduce the concept of a motion cone first pro-

posed in Mason (1986a). Let the Jacobian matrix Jp =
[

1 0 −py

0 1 px

]

, and denote by Fl = JT
p fl and Fr = JT

p fr

the left and right edges of the applied wrench cone with

corresponding resultant twist directions Vl = ∇H(Fl) and

Fig. 6. Hatched areas correspond to stable COR regions based

on the conservative analysis (Lynch and Mason, 1996). Red trian-

gles are stable CORs and gray stars are non-stable CORs based on

the poly4-cvx model. The two push points are 50 mm wide. The

pusher and the object are covered with electrical tape and gaffer

tape, respectively, with measured coefficient of friction equaling

one.

Vr = ∇H(Fr), respectively. The left edge of the motion

cone is vl = JpVl and the right edge of the motion cone

is vr = JpVr. Mason (1986a) showed that if the contact

point pushing velocity vp is inside the motion cone, i.e.

vp ∈ K( vl, vr), the contact sticks. When vp is outside the

motion cone, sliding occurs. If vp is to the left of vl, the

pusher will slide left with respect to the object. Otherwise,
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if vp is to the right of vr, the pusher will slide right as shown

in Figure 7.

The following constraints hold assuming sticking

contact:

vpx = Vx − ωpy (9)

vpy = Vy + ωpx (10)

V =
1

2
k · ∇H(F) , k > 0 (11)

τ = −pyFx + pxFy (12)

In the case of ellipsoid (convex quadratic) representation,

i.e. H(F) = FTAF where A is a positive-definite matrix,

the problem is a full rank linear system with a unique

solution. Lynch et al. (1992) give an analytical solution

when A is diagonal. We show that a unique analytic solu-

tion exists for any positive-definite symmetric matrix A. Let

t = [−py, px, −1]T, Equations (9)–(12) can be written as

JpV = vp (13)

V = kAF (14)

tT F = 0 (15)

Using the notation D = [JT
p , A−1t]T and Vp = [vp

T , 0]T, we

can combine the above equations into one linear equation:

V = D−1Vp (16)

Theorem 3. Pushing with single sticking contact and the

convex quadratic representation of LS (abbreviated as P.1)

has a unique solution from a linear system.

Proof. From Equation (16), we only need to prove that D is

invertible. �

1. The row vectors of Jp are linearly independent and span

a plane.

2. Here Jpt = 0 implies t is orthogonal to the spanned

plane.

3. If D is not full rank, then A−1t must lie in the spanned

plane and is therefore orthogonal to t. This contradicts

the fact that 〈t, A−1t〉 > 0 for positive-definite matrix

A−1 and non-zero vector t.

Corollary 1. Pushing with single sticking contact and the

general homogeneous convex polynomial representation of

LS is reducible to solving a sequence of subproblems P.1.

For general convex polynomial representation H(F), the

following optimization is equivalent to Equations (9)–(12):

minimize
F

‖Jp∇H(F) −vp‖ (17)

subject to tTF = 0 (18)

When H(F) is of the convex quadratic (ellipsoidal) form,

the analytical minimizer is F = A−1D−1Vp. In the case

of high-order convex homogeneous polynomials, we can

Fig. 7. Mechanics of single-point pushing. The square has a uni-

form pressure distribution over 100 support grid points sharing

the same coefficient of friction. We use a fourth-order convex

polynomial to represent the LS. The finger’s pushing velocity is

to the right of the motion cone and, hence, the finger will slide

to the right. The instantaneous COR, computed using the model

described in Section 4.1, is marked as a circle with a negative sign

indicating clockwise rotation.

resort to an iterative solution where we use the Hes-

sian matrix as a local ellipsoidal approximation, i.e. set

At = ∇2H( Ft) and compute Ft+1 = A−1
t D−1Vp until

convergence.

When vp is outside of the motion cone, assuming right

sliding occurs without loss of generality, the wrench applied

by the finger equals Fr. The resultant object twist V follows

the same direction as Vr with proper magnitude such that

the contact is maintained:

V = sVr (19)

s =
np

Tvp

np
Tvl

(20)

4.2. Multi-contacts

Mode enumeration is tedious for multiple contacts. The

linear complementarity formulation for frictional contacts

(Stewart and Trinkle, 1996) provides a convenient repre-

sentation. Denote by m the total number of contacts, the

quasi-static force–motion equation is given by

V = k∇H(F) (21)

where the total applied wrench is the sum of normal and

frictional wrenches over all applied contacts:

F =

m
∑

i=1

JT
pi

( fni
npi

+ Dpi
fti ) (22)

Here fni
is the normal force magnitude along the normal ni,

and fti is the vector of tangential friction force magnitudes

along the column vector basis of Dpi
= [tpi

, −tpi
]. The

velocity at contact point pi on the object is given by Jpi
V.
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The first-order complementarity constraints on the normal

force magnitude and the relative velocity are given by

0 ≤ fni
⊥( nT

pi
( Jpi

V − vp) ) ≥ 0 (23)

The complementarity constraints for Coulomb friction are

given by

0 ≤ fti ⊥( DT
pi

( Jpi
V − vp) +eλi) ≥ 0 (24)

0 ≤ λi ⊥( µifni
− eTfti ) ≥ 0 (25)

where µi is the coefficient of friction at pi and e = [1; 1].

In the case of ellipsoid (convex quadratic) representation,

i.e. H(F) = FTAF where A is a positive-definite matrix,

Equations (21)–(25) can be written in matrix form:









0

α

β

γ









=









A−1/k −NT −LT 0

N 0 0 0

L 0 0 E

0 µ −ET 0

















V

fn

ft

λ









+









0

a

b

0









(26)

0 ≤





α

β

γ



 ⊥





fn

ft

λ



 ≥ 0

where the binary matrix E ∈ R2m×m equals







e

. . .

e






,

µ = [µ1, . . . , µm]T, the stacking matrix N ∈ Rm×3 equals

[nT
p1

Jp1
; . . . ; nT

pm
Jpm ], the stacking matrix L ∈ R2m×3 equals

[DT
p1

Jp1
; . . . ; DT

pm
Jpm ], the stacking vector a ∈ Rm equals

[−nT
p1

vp1
, . . . , −nT

pm
vpm ]T, and the vector b ∈ R2m equals

[−DT
p1

vp1
, . . . , −DT

pm
vpm ]T.

Note that the positive scalar k will not affect the solu-

tion value of V since fn and ft will scale accordingly.

Hence, we can drop the scalar k and further substitute

V = A( NTfn + LTft) into Equation (26) and reach the

standard linear complementarity form as follows:





α

β

γ



 =





NANT NALT 0

LANT LALT E

µ −ET 0









fn

ft

λ



 +





a

b

0



 (27)

0 ≤





α

β

γ



 ⊥





fn

ft

λ



 ≥ 0

Similarly, for the case of high-order convex homogeneous

polynomials, we can iterate between taking the linear Hes-

sian approximation and solving the LCP problem in Equa-

tion (27) until convergence.

Lemma 1. The object is quasi-statically jammed or

grasped if Equation (27) yields no solution.

Figure 8 provides a graphical proof. When Equation (27)

yields no solution, either there is no feasible kinematic

motion of the object without penetration or all the friction

Fig. 8. Using moment labeling (Mason, 2001), the COR has posi-

tive sign (counter-clockwise) and can only lie in the band between

the two blue contact normal lines. Further, the COR must lie on

segment AB (contact point A sticks) or segment CD (contact point

C sticks) since otherwise both contacts will slip, but the total

wrench from the two left edges of the friction cones has negative

moment that cannot cause counter-clockwise rotation. Without

loss of generality, we can assume COR (red plus) lies on segment

AB, leading to sticking contact at A and left sliding at C. Following

a similar analysis using the force dual graphical approach (Brost

and Mason, 1991), each single friction force can be mapped to its

instantaneous resultant signed COR whose convex combination

forms the set of all possible CORs under the composite friction

forces. The COR can either be of positive sign in the upper left

hatched region or negative sign in the lower right hatched region

that contradicts the proposed AB segment. Hence, jamming occurs

and neither the gripper nor the object can move. This corresponds

exactly to the no solution case of Equation (27).

loads associated with the feasible instantaneous twists can-

not balance against any element from the set of possible

applied wrenches. In this case, the object is quasi-statically

jammed or grasped between the fingers. Neither the object

nor the end effector can move.

4.3. Stochastic Modeling

Frictional interaction is inherently stochastic. Two major

sources contribute to the uncertainty in planar motion:

(1) indeterminacy of the supporting friction distribution fr

due to changing pressure distribution and coefficients of

friction between the object and support surface; (2) the

coefficient of friction µc between the object and the robot

end effector. We sample µc uniformly from a given range

and model the effect of changing support friction distri-

bution by sampling the parameters a in H(F; a) from a

distribution that satisfies the following.

1. Samples from the distribution should result in an even-

degree homogeneous convex polynomial to represent

the LS.
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Table 3. Average deviation metric (in millimeters) between the simulated final pose and actual final pose with 95% confidence interval.

The third, sixth, and ninth rows are the deviation from the ground truth initial pose and final pose to indicate how much the object

is moved due to the push. In most cases, the fourth-order convex (poly4) polynomial has better accuracy. The average normalized

percentage error for poly4 is 20.05% and for quadratic is 21.39%. However, the accuracy of a fixed deterministic model is bounded by

the inherent variance of the system.

rect1 rect2 rect3 tri1 tri3 ellip1 ellip2 ellip3 hex butter

poly4-delrin 8.28±0.29 5.37±0.23 6.10±0.21 9.71±0.33 7.54±0.23 7.68±0.51 8.90±1.40 7.35±0.38 6.38±0.28 4.83±0.27

quad-delrin 8.60±0.35 5.92±0.14 8.20±0.16 9.90±0.41 8.18±0.15 6.85±0.25 6.29±0.24 8.08±0.51 6.42±0.12 5.97±0.23

delrin 35.48 40.53 35.98 36.91 34.66 32.18 38.05 33.37 33.55 34.09

poly4-abs 5.86±0.11 7.48±0.80 3.59±0.12 7.13±0.26 5.17±0.38 8.45±1.13 9.18±1.26 5.93±0.19 7.56±0.39 3.94±0.11

quad-abs 6.07±0.16 6.74±0.27 6.19±0.18 8.00±0.37 7.17±0.37 6.66±0.28 7.69±0.27 5.78±0.21 8.19±0.21 5.39±0.15

abs 34.14 39.74 33.98 35.43 32.37 32.68 33.53 32.45 33.23 33.53

poly4-plywood 6.86±0.71 6.86±0.13 5.93±0.33 4.61±0.13 7.21±0.47 4.39±0.16 4.99±0.31 5.72±0.31 8.41±0.24 4.72±0.17

quad-plywood 6.20±0.20 7.22±0.18 6.88±0.18 5.96±0.19 9.43±0.56 4.42±0.12 5.84±0.20 6.46±0.26 8.85 ±0.17 6.05±0.22

plywood 31.86 33.22 32.94 32.81 33.78 27.24 28.23 33.29 32.77 34.10

2. The mean can be set as a prior estimate and the amount

of variance controlled by one parameter.

The ndf degree of freedom Wishart distribution S ∼

W ( Ŝ, ndf ) (Wishart, 1928) with mean ndf Sest and vari-

ance Var( Sij) = ndf ( Ŝ2
ij + ŜiiŜjj) is defined over symmetric

positive-semidefinite random matrices as a generalization

of the chi-squared distribution to multi-dimensions. For

ellipsoidal (convex quadratic) H(F; A), we can directly sam-

ple from 1
ndf

W ( Aest, n) where Aest is some estimated value

from data or fitted for a particular pressure distribution.

Sampling from general convex polynomials is hard. Fortu-

nately, we find that sampling from the sos-convex (Magnani

et al., 2005; Parrilo, 2000) polynomials subset is not. The

key is the coefficient vector a of a sos-convex polynomial

H(F; a) has a unique one-to-one mapping to a positive-

definite matrix Q so that we can first sample Q̃ from6

1
ndf

W ( Q, ndf ) and then map back to ã through Equation (5).

The degree of freedom parameter ndf determines the sam-

pling variance. The smaller ndf is, the noisier the system

will be.

4.4. Deterministic pushing model evaluation

We evaluate the single-contact deterministic model on the

large-scale MIT pushing dataset (Yu et al., 2016) and the

data from the identification experiments in Section 3.3.2.

For the MIT pushing dataset, we use 10 mm s−1 veloc-

ity data logs for 10 objects7 on the hard surfaces including

delrin, abs, and plywood. The force torque signal is first fil-

tered with a low-pass filter and 5 wrench-twist pairs evenly

spaced in time are extracted from each push action log file.

A total of 10 random train–test splits (20% of the logs for

training, 10% for validation, and the remainder for testing)

are conducted for each object–surface scenario.

Given two poses q1 = [x1, y1, θ1] and q2 = [x2, y2, θ2],

we define the deviation metric d( q1, q2) which combines

both the displacement and angular offset as d( q1, q2) =
√

( x1 − x2)2 +( y1 − y2)2 +ρ ·min( |θ1 −θ2|, 2π −|θ1 −θ2|),

Table 4. Average deviation (in millimeters) between the simulated

final pose and actual final pose with 95% confidence interval for

three-point support. The wrench–twist pairs used for training the

model are generated from the ideal LS. The third and sixth rows

are the deviation from the ground truth initial pose and final pose

to indicate how much the object is moved due to the push. The

fourth-order convex (poly4) polynomial has better accuracy for

each pressure–surface combination. The average normalized error

for poly4 is 20.48% and for quadratic is 24.97%.

3pts1 3pts2 3pts3 3pts4

poly4-hardboard 3.52±0.21 2.75±0.25 2.92±0.27 2.80±0.23

quad-hardboard 3.82±0.24 3.63±0.27 3.35±0.23 3.96±0.28

hardboard 16.63 13.86 14.83 15.15

poly4-plywood 3.78±0.11 2.80±0.15 2.84±0.16 3.26±0.11

quad-plywood 4.24±0.15 3.56±0.17 3.28±0.08 4.12±0.13

plywood 16.56 13.81 15.27 14.20

where ρ is the characteristic length of the object (e.g. radius

of gyration or radius of minimum circumscribed circle).

A one-dimensional coarse grid search over the coefficient

of friction µc between the pusher and object is chosen to

minimize average deviation of the predicted final pose and

ground truth final pose on training data. Table 3 shows

the average metric with a 95% confidence interval. Inter-

estingly, we find that using more training data does not

improve the performance much. This is likely due to the

inherent stochasticity and changing surface conditions as

reported in Yu et al. (2016).

The well-machined objects in the MIT pushing dataset

are close to uniform patch pressure. We also test on discrete

pressures. The triangular object used in the identification

experiments in Section 3.3.2 are given different configura-

tions of three-point discrete support. We use wrench twists

pairs sampled from the ideal LS for training. The coefficient

of friction between the object and pusher is determined by

a grid search over 40% of the logs. We use the remaining

60% to evaluate simulation accuracy. Results are reported

in Table 4.
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Fig. 9. Stochastic modeling of single-point pushing with the fourth-order sos-convex polynomial representation of the LS using

wrench–twist pairs generated from 64 grids with uniform pressure. (a) Stochastic simulation results. (b) Figure 9 of Yu et al. (2016),

reprinted with permission. (c) 1x histogram. (d) 1y histogram. (e) 1θ histogram. The degree of freedom in the sampling distribution

equals 20. The contact coefficient of friction between the pusher and the object is uniformly sampled from 0.15 to 0.35. The trajectories

are qualitatively similar to the experimental results in Figure 9 of Yu et al. (2016).

Fig. 10. Simulation results using the proposed contact model illustrating the process of two-point fingers pushing a circle to reduce

initial pose uncertainty. A total of 500 initial object center positions are uniformly sampled from a circle of radius 7.88 cm. (a) A total

of 100 pushed trajectories of different initial poses using ellipsoid representation of H(F) with ndf = 200. (b) A total of 100 pushed

trajectories of different initial poses using ellipsoid representation of H(F) with ndf = 10 (larger noise). (c) Kernel density plot of the

convergence region for ndf = 10. Convergent initial poses are in red and the rest are in black.

4.5. Stochastic pushing model simulation

Yu et al. (2016) reported the same 2000 straight-line pushes

in a highly controlled setting result in a distribution of final

poses, demonstrating the inherent stochastic nature of push-

ing. We perform simulations using the same object and

pusher geometry and push distance. The 2000 resultant tra-

jectories and histogram plot of pose changes are shown

in Figure 9. We note that although the mean and variance

pose changes are similar to the experiments with abs mate-

rial in Yu et al. (2016), the distribution resembles a single

Gaussian distribution which differs from the multiple-mode

distribution in Figure 10 of Yu et al. (2016). We conjec-

ture this is due to a time-varying stochastic process where

coefficients of friction between surfaces drift due to wear.

Using a high-fidelity contact model is important to eval-

uate and generate plans for uncertainty reduction. We also

simulate the effects of initial pose uncertainty reduction

with two-point fingers under the stochastic contact model.

The circular object has a radius of 5.25 cm. The two fin-

gers separated by 10 cm perform a straight-line push of

26.25 cm. The desired goal is to have the object centered

with respect to the two fingers. Figure 10a and b compare

the resultant trajectories under different amount of system

noise. We find that despite larger noise in the resultant tra-

jectories, the convergent region of the stable goal pose dif-

fers by less than 5% and the difference is mostly around

the uncertainty boundary. A kernel density plot of the con-

vergence region is shown in Figure 10c for ndf = 10. This

demonstrates multiple constraints can induce a large region

of attraction despite uncertainty.

4.6. Grasping under uncertainty

We conducted robotic experiments to evaluate our con-

tact model for grasping. Figure 11a shows two rectangular

objects with the same geometry but different pressure dis-

tributions. Another experiment is conducted for a butterfly-

shaped object shown in Figure 12a. We use the Robotiq

C-85 2-finger gripper (ROBOTIQ, 2017) and represent it

as a planar parallel-jaw gripper with rectangular fingers in

simulation as shown in Figure 11e and e. Convex quadratic

representations of H(F) are trained from wrench–twist pairs

assuming a uniform friction distribution along the object

boundary. The sampling degree of freedom ndf equals 250

with contact friction coefficient µc sampled uniformly from
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Fig. 11. Experiments on the rectangular objects with different pressure distributions. A total of 600 initial poses are sampled whose

centers are uniformly distributed in a circle of radius of 20 mm and angles are uniformly distributed from −90◦ to 90◦. (a) Two

50 mm × 35 mm rectangles with six points and boundary pressure distribution. (b) Distribution of the simulated post-grasp poses

using the stochastic contact model. (c) Distribution of the experimental post-grasp poses for the boundary pressure. (d) Distribution

of the experimental post-grasp poses for the six-point pressure. (e) Initial uncertainty of 600 poses. (f) Histogram of the simulated

post-distribution. (g) Histogram of the experimental post-distribution for the boundary pressure. (h) Histogram of the experimental

post-distribution for the six-point pressure.

[0.015, 0.02]. For the rectangles of both pressure distri-

butions, the simulated results with the stochastic contact

model match well with the experimental data. Although

exact matching of the distribution is hard to achieve, the

different modes corresponding to different final post-grasp

contact conditions can be well captured to plan a sequence

of grasps that shrink the uncertainty to a singleton (Zhou

et al., 2017). However, the model fails to capture the sta-

bility of grasps and the deformation of objects. In the case

of a butterfly-shaped object, many unstable grasps and jam-

ming equilibria exist, but as the fingers increase the grip-

ping force the object will “fly” away as the stored elastic

energy turns into large accelerations that violates the quasi-

static assumptions of our model, as revealed in the scattered

post-grasp distribution in Figure 12c. We also compare the

cases where dynamics do not play a major role: Figure

12d shows the zoomed in plots to compare with simula-

tion results in Figure 12b. Despite qualitative similarity, the

simulation results deviate more compared with the case for

the rectangular geometry. As shown in the histogram plots

in Figure 12f and h, the simulation returns more jamming

and grasping final states as illustrated by the spikes in θ .

5. Conclusions and future work

In this paper, we have proposed the use of sub-level sets

and gradients of a function to represent rigid-body planar

friction loads and velocities, respectively. The maximum

work inequality implies that such a function needs to be

convex. We additionally require the properties of symme-

try, scale invariance, and efficient invertibility that lead us

to choose a convex even-degree homogeneous polynomial
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Fig. 12. Experiments on the butterfly object. The longer diameter between the convex curves is 39 mm and the shorter diameter between

the concave curves is 28.6 mm. A total of 900 initial poses are sampled where the centers lie uniformly in a circle of radius 30 mm and

the frame angles are uniformly distributed in −90◦ to 90◦. (a) Butterfly-shaped object with boundary pressure distribution used for the

experiment. (b) Distribution of the simulated post-grasp poses using the stochastic contact model. (c) Distribution of the object poses

after the grasping actions from experimental data. (d) Zoomed-in distribution of the object poses after the grasping actions around the

origin. (e) Initial uncertainty of 900 poses. (f) Histogram plot for the simulated post-distribution. (g) Histogram plot of the experimental

post-distribution. (h) Histogram plot of the experimental post-distribution around the origin.

representation. The model enjoys the benefits of both accu-

racy and data efficiency. We then extended the model to the

kinematic contact level that resolves the object twist and

contact mode given the velocity input (single and multiple)

from a position-controlled manipulator. To model the inher-

ent uncertainty in frictional mechanics, we derive methods

that enable sampling from the family of sos-convex poly-

nomials. The models and applications have been validated

with large-scale robotic pushing and grasping experiments.

Although physics-inspired models are data-efficient and

easily generalizable, we also see the limitation of the

imposing assumptions, e.g. failures in the butterfly-shaped

object-grasping experiment due to the first-order quasi-

static model. Much work remains to be done. On the sim-

ulator end: (1) how to increase the accuracy without los-

ing convergence speed for a high-order polynomial-based

representation of H(F); and (2) how to handle penetration

properly when the integration step is large. On the appli-

cation side: (1) how to quickly identify both the mean and

variance of the sampling distribution to match with exper-

imental data; and (2) how to plan a robust sequence of

grasp and push actions for uncertainty reduction using the

stochastic contact model. In the long term, we are interested

in combining learning-based and physics-based techniques

to synthesize robust strategies for contact-rich manipulation

through exploiting task mechanics.
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Notes

1. Our open-source simulation software and data are available at:

https://github.com/robinzhoucmu/Pushing

2. Throughout the paper, we use a local coordinate frame with

the origin set as the projection of the COM onto the supporting

surface. However, the choice of the origin can be any other

point of convenience.

3. In practice, Ft will not be near the point of origin whose H(Ft)

is all zero. A small diagonal regularization can be added to

H(Ft) before inversion to improve numerical stability.

4. The squared exponential kernel gives better performance over

linear and polynomial. Normalizing the input load to a unit

vector improves performance by requiring the GP to ignore

scale. Every (F, V) input pair is augmented with (−F, −V)

for training.

5. The third one is in the back not visible from presented view.

6. We note that adding a small constant on the diagonal elements

of Q̃ improves numerical stability.

7. Despite having the same experimental set up and similar

geometry and friction property to the other two triangu-

lar shapes, the results for object Tr2 is about 1.5–2 times

worse. Owing to time constraints, we have not ruled out the

possibility that the data for object Tr2 is corrupted.
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Appendix. Index to multimedia extensions

Archives of IJRR multimedia extensions published prior

to 2014 can be found at http://www.ijrr.org, after 2014

all videos are available on the IJRR YouTube channel at

http://www.youtube.com/user/ijrrmultimedia

Table of Multimedia Extension

Extension Media type Description

1 Video Model identification and visualization

2 Video Model applications




