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schemes. We study these BC on the physical boundaries of the device and develop a
numerical approximation to model an insulating boundary condition, or equivalently, a

g?{g%ﬁs' pointwise zero flux mathematical condition for the electron transport equation. Such
Boltzmann-Poisson condition balances the incident and reflective momentum flux at the microscopic level,
Boundary pointwise at the boundary, in the case of a more general mixed reflection with momentum
Reflection dependant specularity probability p(k). We compare the computational prediction of
Diffusive physical observables given by the numerical implementation of these different reflection
Specular conditions in our DG scheme for BP models, and observe that the diffusive condition

influences the kinetic moments over the whole domain in position space.
© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The dynamics of electronic transport in modern semiconductor devices can be described by the semiclassical Boltzmann-
Poisson (BP) model

afi 1 qi -
a_tl EVE&'~V}fi—#E~foi=ZQi,j, (11)
J
Vi (€ViV)=) qipi— N®). E=-ViV, (1.2)
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where f;(x, E, t) is the probability density function (pdf) over phase space (x, E) of a carrier in the i-th energy band in posi-
tion %, with crystal momentum fk at time t. The collision operators Q; j(fi, fj) model i-th and j-th carrier recombinations,
collisions with phonons or generation effects. E’()?, t) is the electric field, V (X, t) is the electric potential, 8,‘(]2) is the i-th
energy band surface, the i-th charge density p;(t, X) is the k-average of f;, —q; is the electric charge of the i-th carrier, N(X)
is the doping profile, and € is the electric permittivity of the material.
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The BP model for electron transport on a single conduction energy band for electrons has the form

N T N
Gt a%ie® - Vi — (EG0 Vi =), o
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with the quantum mechanical electron group velocity %Vke(ﬁ), and the electron density p(X,t) = fQ; f@, l;, t) dk. The col-

lision integral operator Q (f) describes the scattering over the electrons, where several mechanisms of quantum nature can
be taken into account. In the low density regime, the collisional integral operator can be approximated as linear in f, having
the form

Q(f):/[S(/?,E)f(t,?c, Ky — Sk, K) f(t, %, E)]dl?’, (15)

£

where S (E, K ) is the scattering kernel, representing non-local interactions of electrons with a background density distribu-
tion. For example, in the case of silicon, one of the most important collision mechanisms are electron-phonon scatterings
due to lattice vibrations of the crystal, which are modeled by acoustic (assumed elastic) and optical (non-elastic) non-polar
modes, the latter with a single frequency wy, given by

Sk, k) = (g + 1) K 8(e (k') — £(k) + hevy)
+nyK8(e(K) — (k) — hwp) + Ko 8(e (k) — e(k)) , (1.6)

with K, Ko constants for silicon. The symbol § indicates the usual Dirac delta distribution corresponding to the well known
Fermi's Golden Rule [13]. The constant nq is related to the phonon occupation factor

hiwp -
hg=|exp\ g7 )1

where Kp is the Boltzmann constant and T; =300 K is the lattice temperature.

The semi-classical Boltzmann description of electron transport in semiconductors is, for a truly 3-D device, an equation
in six dimensions plus time when the device is not in steady state. The heavy computational cost is the main reason why
the BP system had been traditionally solved numerically by means of Direct Simulation Monte Carlo (DSMC) methods [14].
However, after the pioneer work [15], in recent years, deterministic solvers to the BP system were proposed in [16-22].
These methods provide accurate results which, in general, agree well with those obtained from Monte Carlo (DSMC) simula-
tions, often at a fractional computational time. Moreover, these type of solvers can resolve transient details for the electron
probability density function f, which are difficult to compute with DSMC simulators.

The initial methods proposed in [18-21] using weighted essentially non-oscillatory (WENO) finite difference schemes to
solve the Boltzmann-Poisson system, had the advantage that the scheme is relatively simple to code and very stable even
on coarse meshes for solutions containing sharp gradient regions. However, a disadvantage of the WENO methods is that it
requires smooth meshes to achieve high order accuracy, hence it is not very flexible for adaptive meshes.

Motivated by the easy hp-adaptivity and the simple communication pattern of the discontinuous Galerkin (DG) methods
for macroscopic (fluid level) models [23-26], it was proposed in [27,28] to implement a DG solver to the full Boltzmann
equation, that is capable of capturing transients of the probability density function.

In the previous work [27,28], the first DG solver for (1.1)-(1.2) was proposed, and some numerical calculations were
shown for one and two-dimensional devices. In [29], the DG-LDG scheme for the Boltzmann-Poisson system was carefully
formulated, and extensive numerical studies were performed to validate the calculations. Such scheme models electron
transport along the conduction band for 1D diodes and 2D double gate MOSFET devices with an analytic Kane energy band
model.

A DG method for full conduction bands BP models was proposed in [30], following the lines of the schemes in [27-29],
generalizing the solver that uses the Kane non-parabolic band and adapting it to treat the full energy band case. A pre-
liminary benchmark of numerical results shows that the direct evaluation of the Dirac delta function can be avoided, and
so an accurate high-order simulation with comparable computational cost to the analytic band cases is possible. It would
be more difficult or even unpractical to produce the full band computation with other transport scheme. It is worth to
notice that a high-order positivity-preserving DG scheme for linear Vlasov-Boltzmann transport equations, under the action
of quadratically confined electrostatic potentials, independent of the electron distribution, has been developed in [31]. The
authors there show that these DG schemes conserve mass and preserve the positivity of the solution without sacrificing
accuracy. In addition, the standard semi-discrete schemes were studied showing stability and error estimates.

The type of DG method discussed in this paper, as was done in [29], belongs to a class of finite element methods
originally devised to solve hyperbolic conservation laws containing only first order spatial derivatives, e.g. [32-36]. Using
a piecewise polynomial space for both the test and trial functions in the spatial variables, and coupled with explicit and
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nonlinearly stable high order Runge-Kutta time discretization, the DG method is a conservative scheme that has the advan-
tage of flexibility for arbitrarily unstructured meshes, with a compact stencil, and with the ability to easily accommodate
arbitrary hp-adaptivity. For more details about DG scheme for convection dominated problems, we refer to the review paper
[37], later generalized to the Local DG (LDG) method to solve the convection diffusion equations [38] and elliptic equations
[39].

Regarding Boundary Conditions (BC), there are several kinds of BC for BP semiconductor models. They vary according to
the considered device and physical situation. We list below several examples of BC that could arise in the case of electron
transport along a single conduction band.

Charge neutrality boundary conditions, given by [4]

L= - fin(t, %K
fout (£, X, k) L= Np (x)M ' subsetof 92, (1.7)

Pin (, ;‘) r '
where ;3 is the position domain. This BC is imposed in source and drain boundaries, where electric currents enter or exit
the device, to achieve neutral charges there, as poy (X, t) — Np(xX) = 0.

Reflective BC happen in insulating boundaries, usually defined by a Neumann boundary I'y, of 2D and 3D devices. In
general, reflective BC can be formulated as the values of the pdf at the inflow boundary being dependent on the outflow
boundary values

FGk, Olry, =Fr(flry. ). (1.8)

FRr (flrm) denoting that the reflection boundary condition is a function of the outflow boundary values of the probability
density function, where the Neumann Inflow Boundary is defined as

Iy ={& k)X ey, ke, k) -n& <0}, (1.9)

v(k) = %VES(E), (1.10)
with €;; the momentum domain, n(%) outward unit normal, and the Neumann Outflow Boundary is defined as

Iy ={® k)X ey, ke, V&) -n® > 0}. (111)
Specular Reflection BC over the Neumann Inflow Boundary is given by

fl-G.k,t) =Fs(fls) = fl4 R K, t) for (k) ely, t=>0, (112)

&KYeThH, K st vK)=vkK —2n®) - VR n®). (113)

Diffusive reflection is a known condition from kinetic theory, in which the distribution function at the Inflow boundary is
proportional to a Maxwellian [1], [2] with T = Ty = Tw (X) the temperature at the wall

floGk.t) = Fp(fly) =Co (fl4) G e ®/KT G kyery, (114)
o {fl+) & t) = / V) - nR® &k, tydk, (115)
V(k)-n>0

-1

C:C{T](;()}: / |G.n|e_3(ﬁ)/l<BTLdE
v-n<0

Mixed reflection BC models the effect of a physical surface on electron transport in metals and semiconductors, giving
the reflected pdf representing the electrons as a linear convex combination of specular and diffuse components, as in the
formula

fl-Gk.t) = Fu(fl+) =pFs(fl4) + (1 —p) Fp(fl4) (116)
- el
=pfl+& K. 00 + A=p Co’{fls}x e FT, Xk ely.
p is sometimes called specularity parameter. It can either be constant or a function, dependant of the momentum. For
example, the work by Soffer [5] studies a statistical model for the reflection from a rough surface in electrical conduction.
It derives a specularity parameter p(k) which depends on the momentum, given by
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p(E) _ e—41,%|k|2 cos? © , (117)
where [ is the rms height of the rough interface, and © is th angle between the incident electron and the interface surface
normal.

Reflection BC is a widely studied topic in the context of the kinetic theory of gases modeled by Boltzmann Equations.
However, in the context of kinetic models for electron transport in semiconductors, there is less extensive previous work
related to the study of the effect of reflection boundary conditions such as diffusive, specular, or mixed reflection. An ex-
ample of the list of references where reflection BC are studied for Boltzmann equations in the context of kinetic theory of
gases would include the works of Cercignani [3] and Sone [1], where the specular, diffusive, and mixed reflection BC are
formulated for the Boltzmann Eq. for gases. V. D. Borman, S. Yu. Krylov, A. V. Chayanov [9] study the nonequilibrium phe-
nomena at a gas-solid interface. The recent paper of Brull, Charrier, Mieussens [10] studies the gas-surface interaction at a
nano-scale and the boundary conditions for the associated Boltzmann equation. The recent work of Struchtrup [11] studies
as well the Maxwell boundary condition and velocity dependent accommodation coefficients in the context of gases men-
tioned. It considers the convex combination of specular reflection, isotropic scattering, and diffusive reflection, incorporating
velocity dependent coefficients into a Maxwell-type reflection kernel. It develops a modification of Maxwell’s BC, extend-
ing the Maxwell model by allowing it to incorporate velocity dependent accommodation coefficients into the microscopic
description and satisfying conditions of reciprocity and unitary probability normalization.

Regarding reflectivity in the context of Boltzmann models of electron transport, Fuchs [6] proposed a boundary condition
for the probability density function of free electrons incident in the material surface, which is a convex combination of
specular & diffuse reflection with a constant specularity parameter p. Greene ([7], [8]) studied conditions for the Fuchs BC
in which the specularity parameter p(k) is dependant on the angle of the momentum k, deriving a boundary condition for
electron distributions at crystal surfaces valid for metal, semimetal, & semiconductor surfaces, and showing that Fuchs’ re-
flectivity parameter differs from the kinetic specularity parameter in physical significance and in magnitude. It considers the
unperturbed electron states of a crystal with an ideal perfectly specular surface as standing wave states, and the diffusive
reflection killing partially the incoming wave function. Soffer [5] studies a statistical model for the electrical conduction, and
derives under certain assumptions, such as a rough surface random model with a Gaussian probability of height above or
below a horizontal plane, analytical formulas for a momentum dependant specularity parameter p(k) = exp(—4l$|k\2 cos? ®)
associated to this physical phenomena, abovementioned in (1.17). As mentioned before, I, is the rms height of rough inter-
face, and © is th angle between the incident electron and the interface surface normal.

The reference book of Markowich, Ringhofer, & Schmeiser [12] for semiconductor equations discusses the mathematical
definition of boundaries according to the physical phenomena, and defines accordingly the kind of BC to be imposed at
those boundaries: Dirichlet, Neumann, Inflow and Outflow boundaries. A work of particular importance for us is the one by
Cercignani, Gamba, and Levermore [4]. They study high field approximations to a Boltzmann-Poisson system and boundary
conditions in a semiconductor. The BP system for electrons in a semiconductor in the case of high fields and small devices is
considered. Boundary conditions are proposed at the kinetic level that yield charge neutrality at ohmic contacts, which are
Dirichlet boundaries, and at insulating Neumann boundaries. Both BC, either the one yielding charge neutrality at Dirichlet
boundaries, or the one rendering zero flux of electrons at the boundary, assume that the pdf is proportional to a ground
state associated to an asymptotic expansion of a dimensionless Boltzmann-Poisson system. Then they study closures of
moment equations and BC for both the pdf and for the moment closures. The paper [40] also comments on the study of
boundary conditions for kinetic and macroscopic approximations for the Boltzmann-Poisson system in bounded domains.
Jiingel mentions in his semiconductors book [2] the different kinds of reflection BC common on the kinetic theory of
gases, specular, diffusive, and mixed reflection but no further study of diffusive and mixed reflection BC in the context of
semiconductors is pursued.

We intend to present in this work a mathematical, numerical, and computational study of the effect of diffusive, specular,
and mixed reflection BC in Boltzmann-Poisson models of electron transport in semiconductors, solved by means of Discon-
tinuous Galerkin FEM solvers. We study the mathematical formulation of these reflection BC in the context of BP models for
semiconductors, and derive equivalent numerical formulations of the diffusive and mixed reflection BC with non-constant
p(k), such that an equivalent numerical zero flux condition is satisfied pointwise at the insulating Neumann boundaries at
the numerical level. We present numerical simulations for a 2D silicon diode and a 2D double gated MOSFET, comparing
the effects of specular, diffusive, and mixed reflection boundary conditions in the physical observable quantities obtained
from the simulations.

2. BP system with k coordinate transformation assuming a Kane Energy Band

The Kane Energy Band Model is a dispersion relation between the conduction energy band & (measured from a local
minimum) and the norm of the electron wave vector |k|, given by the analytical function (¢ is a constant parameter, m* is
the electron reduced mass for Si, and h is Planck’s constant)

h2|k|?

e(l14+ae)= >

(218)
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For our preliminary numerical studies we will use a Boltzmann-Poisson model as in [29], in which the conduction energy
band is assumed to be given by a Kane model. We use the following dimensionalized variables, with the related character-
istic parameters

t=t/ty, (X, ¥) =%/, £, =10"%m, t,=10""25s, V,=1V.

A transformed Boltzmann transport equation is used as in [29] as well, where the coordinates used to describe k are: ",
the cosine of the polar angle, the azimuthal angle ¢, and the dimensionless Kane Energy w = &¢/KgT, which is assumed as
the conduction energy band. We will assume that the wall temperature is equal to the lattice temperature, so Tw =T =Ty,
and ax =aKpT. So k(w, u, ), where

> /2m*KgT
k= %\/w(l + agw) (M, J1—p2cos@, /1 —pu? simp) : (2.19)

A new unknown function @ is used in the transformed Boltzmann Eq. [29], which is proportional to the Jacobian of the
transformation and to the density of states (up to a constant factor)

(L, X, y, W, i1, @) = s(W) f(t, %, k) ,

where

s(w)=vwd +agw)(1+20gw). (2.20)

The transformed Boltzmann transport equation for ® used in [29] is

3d>+8( d>)+a( o) + a( P) + a( d>)+a( o) =C(P) (2.21)
ot ' ax &1 ay 82 w 83 o 84 ™ &5P) = . .
The vector (g1, g2) represent the 2D Cartesian components of the electron velocity %V,-(s(ﬁ), in the coordinate system
(w, w, @). The triplet (g3, g4, g5) represent the transport in the phase space of the new momentum coordinates (w, i, @)
due to the self consistent electric field

E(t.x.y) = (Ex(t. %, y). Ey(t..¥).0),
with
VW1 +oagw)
1+ 20w
VWA Fakw) [ 5 s
1+ 20w # ¢

2/ w(d +agw) P
g3() = —Ckm WEx(t, X, ¥) +/1—p2cosp Ey(t,x, y) |,

2wl +agw) . =
=X — " 6, EtxYy,
k 14+ 2agw w EC )

V1 —u?

= —ag—Y P | 1 2 Etx y) — Eyt.x )|,

g4(+) Ck w(1+a,<w)[ M2 Ex(t, X, y) — ucos@ Ey( xy)]
V11— pu?

Vw1 4+ agw)

g5() = — —sing Ey(t,%, y)
50 ) = —Ck s Ay

WA Faxw)y1—p2

1 . o
=—c ¢y Et.x.y),

k
JWA +agw)y/1 — u?
- ty [2KpTL and o — t«qE.
ToV KT 2miKsTL

and éy, é,, é, the orthonormal vector basis in our momentum coordinate space.
The right hand side of (2.21) is the collision operator (having applied the Dirac Delta’s due to electron-phonon scattering,
which depend on the energy differences between transitions)

g1() =¢x

82(:) = ¢

é,-Et,x,y),
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b4 1
C(D)(t, X, Y, W, i, @) =S(W) v:o/dw’/du’d>(t, Xy, w, i1, @)
0 -1
T 1
+/d<p’/du’ i@, %y, w+y, W, @) +c @, x,y,w—y, 1, ¢)]
0 -1

—®(t,x,y,w, 1, )27 [cos(W) +cos(w —y) +c_s(w+ )],

with the dimensionless parameters

2m*t h
(Co,Cy,C_) = ";3 =V2m* KTy (Ko, (ng + DK, ngK), y = K“;{’
BlL
The electron density is
3
V2m*KgT
n(tyt, €sx, £yy) = / Feet, Lox, £y, K) dk = <TBL> o, x,y),
R3
where
+00 1 T
Pt x,y) = / dW/du/dw D(t, X, y, W, L, ). (2.22)
0 -1 0
Hence, the dimensionless Poisson equation is
a ow a ow
— | &— —[e— ) =c t,x,y) — Np(x, , 2.23
8x<r8x>+8y<r8y> plot, %, ¥) —Np(x, y)] (2.23)
with
-3 3 2
2m*KgT 2m*KgT l
Np(x,y) = (%) Np(£«x,£4y) and cp = (%) eiq
0

3. Discontinuous Galerkin method for transformed Boltzmann-Poisson system and implementation of boundary
conditions

The domain of the devices to be considered can be represented by means of a rectangular grid in both position and

momentum space. This rectangular grid, bidimensional in position space and tridimensional in momentum space, is defined
as

Qijkmn = Xij X Kimn,

Xy = [%og x| [y iy ]

K = [Wig Wiy ] ¢ g ey ] [0y 0y ]
where i=1,...Ny, j=1,...Ny, k=1,...Ny, m=1,...Ny,n=1,... Ny,

AX; Ay;j

Xgp =Xt —=. Ypr=yj+—=,

AWy Alm An
Wk:t%:WkiT’ V“m:t%:ﬂmiT’ (Pni%:(Pnj: 7
The finite dimensional space used to approximate the functions is the space of piecewise continuous polynomials which

are piecewise linear in (x, y) and piecewise constant in (w, i, @),

Vi ={V: Vg € Q" (Qijkmn) = P' (Xij) ® P°(Kienn)}. (3.24)
with the set Q1~0(§2,-jkmn) of tensor product polynomials, linear over the element X;; = [Xi,L XH%] X [ij, yH%], and

constant over the element Kymnn, = I:Wk_%, wk+%] X [,um_%, ,um+%] X [(pn_i, (pn+%].

2
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The function @, will denote the piecewise polynomial approximation of ® over elements Qj,

_ (X —Xi) ¥ =y o
q)h—ZI:XI [Tz(t)+X1(t) Axi/2 +Y’®Tyj/2 } I=(,j,k,m,n).

The density pp(t, X, y) on the cell [x,f%, ,+1] X [y]" yH]] is, under this approximation,

Nw Nu N
L& (X —xp) OB

T; Xi Yiikmn ——=2 | AWgApmA
Ph = ;n;;[ ijkmn + Xijkmn ———= AXi/2 + Yijkmn ij/2j| kAUmAPn

Nw Nu Ny

= Z Z Z Tijkmn AWK A pin Ay

k=1m=1n=1

Nw Nu Ny X — X))
- M

+ Z Z injkmnAWkAMm Agn AXi/2
i

k=1m=1n=1

Nw Nll NW
-y
+ Z Z Z Yijkmn AWK A m A@n =2
k=1 m=1n=1 Ayj/2
3.1. DG formulation for transformed Boltzmann equation

The Discontinuous Galerkin formulation for the Boltzmann equation (2.21) is as follows. Find ®j € Vp, s.t.

/ (@) v dS2 — / g1 (V)2 — / £2P1 (V1) 42

Qijiemn Qijiemn Qijiemn
+F —F +Fy —F +FL —Fy+F —F,+F, —F,
= / C(®p) vpdQ. (3.25)
Qijkmn

for any test function v, € Vj. In (3.25), the boundary integrals are given by
Visd Wipd Hng 3 @il

i = / / / / ﬁvlf(xii%u"v w,u,@)dydwdude,

Viid Wil 1 901
Xipd Wi d Py ] Py ]
Fy = / / £PVIX Y1, w, 1, @)dxdwdpde,
l—% Wk—% M1 #p_1
Nl Vipd Pyl $ogd
Fyp = / / PV Yy, w1, 1, @)dxdydude,
i1 yj_l M 19,1
2 2 2
i+ Vil Wil Pyl
Ffj: / / VI Yy, w, w1, @)dxdydwde,
4 Y4 Mg )
1+— }+— I<+ m+2
/ / / / g5d>vh *x,y,w, u, goni1)dxdydwdu,
X 1Y 1W 1M, 1
2 2 2 2

where the upwind numerical fluxes g/sﬁ s=1,...,5 are defined as
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g1+ 181l _ g1 — g1l n
R <I)hlxiﬂ/z—i_ R th|Xij:1/2’

— 82 + 1821 _ 82— 182] "
g2¢|yji]/2 = ( 2 q>h|J/j:tl/2 + 2 (Dh|}’j:tl/2 ’

83+ 183 _ g3 — 183l
g3q>|Wkil/2 = f q)hlwlctl/Z + T q)hr‘!‘_’kil/Z ’
g4+ 184l _ 84 — |8al
g4q>|“mil/2 = 2 ®h|Mmi1/2 + 2 d>h|:;mi1/2 ’
b _ (8 tlgsl - 85 — 18| 4 396
&5 |(/Jni1/2 = 5 (I)hl(ﬂn;u/z + Y q>h|¢ni1/2 . (3.26)

3.2. Poisson equation - local discontinuous Galerkin (LDG) Method

The Poisson equation (2.23) is solved by the LDG method as in [29].
By means of this scheme we find a solution Wy, gy, sy, € W/}, where (g, s) = (3, ¥, 9y¥) and W, = {v : v|x; € P' (X))},
p! (Xij) the set of linear polynomials on X;;. It involves rewriting the equation into the form
ov ov
qa=—-- S=—,
ax ay

9 9 (3.27)
= (€rq) + —— (6rS) =R(t, %, y),
X ay

where R(t,x,y) =cp[p(t,x, ¥) — Np(x, )] is a known function that can be computed at each time step once & is solved
from (3.25), and the coefficient ¢, depends on x, y. The Poisson system is only on the (x, y) domain. Hence, we use the

grid Ijj = [xi_%, xﬂ_%} X [yj_j, yH_%], withi=1,...,Ny, j=1,...,Ny,+M,, where j=Ny, +1,..., Ny + M, denotes the
oxide-silicon region, and the grid in j=1,..., Ny is consistent with the five-dimensional rectangular grid for the Boltzmann
equation in the silicon region. The approximation space is defined as

Wi ={v:vly e P!} (3.28)

Here PZ(I,-j) denotes the set of all polynomials of degree at most £ on I;;. The LDG scheme for (3.27) is: to find gy, sp, ¥p, €
V, such that

Y1

j*j

0=/[qnvh+\l'h(vh)x]dxdy+ / [%v;'(xi,%,y)—®hvg‘(xi+%,y)]dy,
Iij yj_%
X.

O:/[shwh+\llh(wh)y]dxdy+ / [ﬁlhw;”(x,yj_%)—\ilhw;’(x,yﬁ%)]dx,

Iij X,

Yiil Vil
- f €rqn(pn)xdxdy + f € Py Xiy 1, Y)dy — / E?Ihpf{(x,-_%,y)dy
Ii,j yj,% yj,%

Xipl ird

Iij i
= /R(t,x, y)prdxdy (3.29)
Ii.j

hold true for any vy, wy, py € W,f. In the above formulation, we choose the flux as follows, in the x-direction, we use

Uy = W, &G = €q; —[W4]. In the y-direction, we use Uy, = W, €5y = €rs;” —[Wy]. On some part of the domain boundary,
the above flux needs to be changed to accommodate various boundary conditions. For example, in the case of a double gate
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MOSFET device, for the boundary condition of the Poisson equation, ¥ = Ws at source, W = ¥ at drain and ¥ = g
at gate. For the rest of the boundary regions, we have homogeneous Neumann boundary conditions, i.e., %—:I; = 0. The
relative dielectric constant in the oxide-silicon region is €, = 3.9, in the silicon region is €, = 11.7. Near the drain then,
we are given Dirichlet boundary condition, so we need to flip the flux in x-direction: let \ifh(xpr%,y) = \II}T(XH%,y) and

€r71,1(xi+%,y) = erq;(xi+%,y) — [\Ilh](xi+%,y), if the point (xi+%,y) is at the drain. For the gate, we need to flip the flux
. . . . =4 _ + ~ _ — . . .

in y-direction: let Wy(x, yH%) =W, (x, yH%) and €&;sp(x, yH%) =¢€rs;, (%, yH%) — [Wh](x, yH%), if th(i point (x, yH%) is at
the gate. For the bottom, we need to use the Neumann condition, and flip the flux in y-direction, i.e., ¥, = \I/,T, €Sy = €S, -

This scheme described above will enforce the continuity of W and er% across the interface of silicon and oxide-silicon
interface. The solution of (3.29) gives us approximations to both the potential ¥, and the electric field (Ex)n = —cvqn,

(Ey)n = —cCysh.
3.3. RK-DG algorithm for BP, from t" to t"+1

The following RK-DG algorithm for BP is a dynamic extension of the Gummel iteration map. We write below the steps
to evolve from time t" to time t"t1,

1. Compute the electron density pp(x, y,t).

2. Solve Poisson Eq. for the given pj(x, y,t) by Local DG, obtaining the potential ¥}, and the electric field E, = —(qp, Sp).
Compute then the respective transport terms gs, s=1,...,5.

3. Solve by DG the advection and collision part of the Boltzmann Equation. A Method of Lines (an ODE system) for the
time dependent coefficients of &, (degrees of freedom) is obtained.

4. Evolve ODE system by Runge-Kutta from t" to t"+1. (If partial time step necessary, repeat Step 1 to 3 as needed).

4. Boundary conditions implementation for 2D-X, 3D-k devices at X, w, L,  boundaries

We will consider in this work 2D devices in position space, which need a 3D momentum description for kinetic equations
modeling semiconductors. For example, a common device of interest is a 2D double gate MOSFET. A schematic plot of it is
given in Fig. 4.1. The shadowed region denotes the oxide-silicon region, whereas the rest is the silicon region. Potential bias
are applied at the source, drain, and gates. The problem is symmetric about the x-axis.

Another possible 2D problem is the case of a bi-dimensional bulk silicon diode, for which the doping is constant all over
the physical domain, and which would have just an applied potential (bias) between the source x =0 and the drain x = Ly
(no gates), with insulating reflecting boundaries at y =0 and y =L,.

We consider in the following sections the different kinds of boundary conditions for 2D devices and their numerical
implementation, either at X-boundaries or at w-boundaries.

4.1. Poisson equation boundary condition

The BC for Poisson Eq. are imposed over the (x, y)-domain.

For example, for the case of a 2D Double gated MOSFET, Dirichlet BC would be imposed to the potential ¥, as we
have three different applied potentials biases, ¥ = 0.5235 Volts at the source x =0, ¥ = 1.5235 Volts at the drain x = Ly,
W = 1.06 Volts at the gates. Homogeneous Neumann BC would be imposed for the rest of the boundaries, that is, 9; ¥ =0.

For the case of a 2D bulk silicon diode, we impose Dirichlet BC for the difference of potential ¥ between source and
drain, ¥ = 0.5235 Volts at the source x =0, ¥ = 1.5235 Volts at the drain x = Ly. For the boundaries y =0, L, we impose
Homogeneous Neumann BC too, that is, 9y W]y, =0, yo=0, L.

4.2. Charge neutrality BC

As in [29], at the source and drain contacts, we implement the charge neutrality boundary condition (1.7). Ghost cells
for i=0 and i = Ny + 1 at the respective boundaries are used, implementing numerically the boundary conditions

) ) Np(i=1)
Pi=0)=d>i=1)——-—,
(i=0) (i )p(izl)
Np (i = Ny)

P@i=Nx+1)= D@1 =Ny - .
‘ I T

4.3. Cut-off BC
In the (w, u, @)-space, we only need to apply a cut-off Boundary Condition. At w = wpax, 5 is made machine zero,

Dpx, ¥y, W, b, @, )l w=wmax = 0. (4.30)
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Fig. 4.1. Schematic representation of a 2D double gate MOSFET device. From Y. Cheng, I. M. Gamba, A. Majorana and C.-W. Shu, ‘A discontinuous Galerkin
solver for Boltzmann Poisson systems in nano devices’, Computer Methods in Applied Mechanics and Engineering, v198 (2009), p. 3143.

No other boundary condition is necessary for w-boundaries, since analytically we have that
eat w=0, g3=0,
e at u==1, g4 =0,
eat 9p=0,7, g5=0,

so, at such regions, the numerical flux always vanishes.

5. Reflection BC on BP

Reflection Boundary Conditions can be expressed in the form

FGEK DIy = Fr(flry,). (5.31)
such that the following pointwise zero flux condition is satisfied at reflecting boundaries, so
0=n® - J& D) =n&)- f V(k) f .k, t) dk. (532)
&

0= / n® - V®) fEk OIr,, dk + / n® - V() f & K, Olr,_ dk,

1-v>0 nv<0
o= [ nfidit [ VonFecrindk.
v-n>0 v-n<0

as in Cercignani, Gamba, Levermore [4], where the given BC at Neumann boundary regions at the kinetic level is such that
the particle flow vanishes. . R

For simplicity we write v = V(k) = Viek)/h. We will study three kinds of reflective boundary conditions: specular,
diffusive, and mixed reflection. The last one is a convex combination of the previous two, but the convexity parameter can
be either constant or momentum dependant, p(k). We go over the mathematics and numerics related to these conditions
below.

5.1. Specular reflection

It is clear that, at the analytical level, the specular reflection BC (1.12) satisfies the zero flux condition pointwise at
reflecting boundaries, since

0.

/ R - k)| F& K, t)

n-v >0 -0V <0

dk — / G - vk FG K, 0| dk
T+ Ty

+

Specular reflection BC in our transformed Boltzmann Eq. for the new coordinate system is mathematically formulated in our
problem as

Sy, w,u, 0, ) =P (X, y,w,u, T —@,t), Xy, wuep ely. (5.33)

To impose numerically specular reflection BC at y =0, L, in the DG method, we follow the procedure of [29]. We relate
the inflow values of the pdf, associated to the outer ghost cells, to the outflow values of the pdf, which are associated to
the interior cells adjacent to the boundary, as given below by
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Syl (X, Y172, W, l, @, 8) = Pp |+ (X, Y12, W, b, T — @, 1),  Y1/2=0, (5.34)
q>h|7(xa yNy+%7 w, u, e, t) = ®h|+(X, yNy_q_%v W, L, T —@, t)? yNy+% = LJ/'
In the case of the boundary y1,, =0, assuming Ayo = Ay1, Agy = A@y, withn" =Ny —n+1,if X, y120 -y, w, b, 0) €

Qiokmn then (x, y12+ Yy, w, u, T — @) € Qi1gmn’- The values of <I>h|j,t1/2 at the related inner and outer boundary cells Qjoxmn

(j=0) and Qjjgmn (j =1) must be equal at the boundary y,2 = 0. Indeed

Pl g 0 V172 W, L @) = @il (X, Y12, W T — @, 1) =

(x —x;) (Y172 — Yo)
Tiokmn + Xiokmn Tl/; i0kmn A/T/Z =
(x —x;) Y12 — ¥y1)
Tilkmn’ + Xilkmn’ : + Yi]kmn’ /—

AXxi/2 Ay1/2

Therefore, from the equality above we find the relation between the coefficients of &, at inner and outer adjacent
boundary cells, given by

Tiokmn = Titkmn'> Xiokmn = Xitkmn'» Yiokmn = —Yitkmn' - (5.35)

Following an analogous procedure for the boundary yn,+1/2, we have

_ _ + _
q>h|9i,Ny+l,kmn (x, INy+1- W 1§ b= thlQi,Ny,kmn/ x, INy+3 Wo i T 208

Then
T +X (x — x;) N N1 = YNy+1) B
i,Ny+1,kmn i,Ny+1,kmn AX{/Z i,Ny+1,kmn AJ’Ny+1/2 =
(X = X)) Ony+3 = INy)
Ti Ny kmn + Xi,Ny,kmn’Ti/2 + Yi Ny kmn Ty/z ) (5.36)
and hence
Ti,Ny+1,kmn = Ti,Ny,kmn’» Xi,Ny-H,kmn = Xi,Ny,kmn’a Yi,Ny-H,kmn = _Yi,Ny,kmn’ .
5.2. Diffusive reflection
The diffusive reflection BC can be formulated as
fE kD= =Fp(fly)=Co{fl4} Gne @/ Gk ery, (5.37)

where o {f|.} X, t) =0 (X,t) and C = C{n(x)} are the function and parameter such that the zero flux condition is satisfied
at each of the points of the Neumann Boundary, so

0= / n fir,, dk + / v-n[CG(&,t)e*E(’?V"B“]dﬁ,

V>0 v-n<0
0= / Vo fir,, dk — o®t)-C / v -] e e ®/KeTL gl
v-n>0 v-n<0

It follows then that

o{fly} & t)= / Vo fir,, &k tdk, (5.38)
V(k)-n>0
-1
cn®}= /Iﬁ-nle‘“w"‘?“dﬁ : (5.39)
v-n<0
. et ®/KTL [0V flry. Gk, 0 dk
fE kD= -0 w : (5.40)

S0 V71 e—e(k)/KpTL gk
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The diffusive reflection BC, formulated in terms of the unknown function & of the transformed Boltzmann Equa-
tion (2.21), is expressed as

Dl_(x,y, W, U, ¢, t) = Fp(@|1) =Co {®|+} (x, y, ) e "s(w), (5.41)
o, y,t)= / n-(g1,82)(w, u, @) Pl.dwdude, (5.42)
(£1,82)'n>0
-1
Cn = / l(g1,82) - nle”"s(w)dwdudgp . (5.43)
(£1,82)-n<0

We have, over the portion of the boundary considered, that n = (0, —1,0) for y =0 and n=(0,1,0) for y = L,. Therefore
e"s(w) [, ol82l @I+ dwdudy
[ g0 1821 €™ s(w) dwdpudg

e "s(w) f+g2>0 |g2| @+ dwdude
f+g2<0 |g2leVs(w)dwdude

@[ (X, yp, W, 1) =

yp=0, (5.44)

D|_(x, yp, W, t) =

. Yyp=Ly. (5.45)

5.2.1. Numerical formulation of diffusive BC for DG

For the DG numerical method, we have to project the boundary conditions to be imposed in the space Vj. Our goal is
to have at the numerical level an equivalent pointwise zero flux condition at the reflection boundary regions.

We formulate then the diffusive BC for the DG method as

S| (%, yp, w, W, @, t) =Ty {Fp(Pp|1)}
=T {Con{Ppls} (%, yp. ) e "s(W)},  yp=0,Ly,
where ITj, is the projector of functions into the finite element space Vy, oy, € V}, is a function in our piecewise polynomial
space for (x, y) and C is a parameter such that the zero flux condition is satisfied numerically, so
o= [ Enoudivt [ gnonl-di
£1>0 gn<0
= / g-ndplrdw + / g - Ty {Fp(®pl4)}dw (5.46)
£n>0 £n<0
= / g1 Ppldw + / g- T {Cop (Pnl4} X, yp. e s(w)}dw.
gn>0 g1n<0

In the space V}, of piecewise continuous polynomials which are tensor products of polynomials of degree p in X and of
degree q in w, it holds that

My { L&) 20} =T { LR} T { f2(W) ] (5.47)
Vi ={V 1 VIQm € QP9 (Qijkmn) = PP (Xij) ® PT(Kymn)}-
Therefore, for our particular case we have
My {Con(x, yp. ) e s(w)} = Con(x, yp, ) M {e™s(w)} , (5.48)
so for the numerical zero flux condition pointwise we have that
0= [ Enouldivt [ EnCou (@) e 0y fes(w)) dib
£n>0 gn<0

0= / &0 Pyl di — o (Ohl4) (X, yp. £) C f - 01Ty fes(w)) div.
gn>0 gn<0



314 J.A. Morales Escalante, .M. Gamba / Journal of Computational Physics 363 (2018) 302-328

We observe then that we can obtain a numerical equivalent of the pointwise zero flux condition if we define
-1

Cim=Cc{xy}= / -0 {e ™ sw)ldw |, n==7.
g2=8-n<0

on{®nl+} (X, yp. t) = / g-n®plpdw =0 {Pply} (X, ¥p.t), ¥y =0, Ly.
+y-8>0

In our particular case, in which we have chosen our function space as piecewise linear in (x, y) and piecewise constant
in (w, u, @), the projection of the Maxwellian is a piecewise constant approximation representing its average value over
each momentum cell, that is

— Wk+ —-w
_ e Vs(w)dwdud e Ws(w)dw
My {e WS(W)} = Z Kkmn fkmn Y- Z kanWI—

k,m,n AWkA,leA(pn k,m,n Awk
Therefore, for the particular space we have chosen, we have that
o (@b yp 0= [ g2 @lidit =0 (@4la) (. yp. 0. (5.49)

:tg2>0
Yp=0=y12 =-y), or yp=Ly=yn,+12 (M=+Y),

+g,<0 Wkt1/2
c 1= Awe / e Vs(w)dw / lg2ldwdudp, n==4y,
km.n Wk—1/2 k,m.,n

|- (X, Y. W, b, @, t) = Cop {Ppl+} (X, yp. ) T {e™"s(w)},  yp=0, Ly,

+g,<0 Jee V's(w)dw
O] (x w £ = f:l:g2>0 |g2| CDh|+dW Zk m,n Xkmn = Awy
hl—(X, Yp, W, (L, @, 1) = £4,<0 Jee™Vs(w) dw

k,m,n fkmn |g2ldwdpdg Awg

By the upper index +g> < 0 in a sum we mean to say that the sum is taken over the values of k,m,n for which
+g, =g -1 < 0. We notice that the polynomial approximation o}, is equal to the analytical function o operating on the
polynomial approximation ®;|;. However, the constant C needed in order to achieve the zero flux condition numerically is
not equal to the value of this parameter in the analytical solution. In this case C is an approximation of the analytical value
using a piecewise constant approximation of the Maxwellian (its average over cells).

The approximate operator oy, {®p|+} (x, y,t) gives a piecewise linear polynomial dependant on (x, y) with time depen-
dent coefficients. We have that

Oily e Vi = on (@l ey = [ g2l Ouli dwipud € Vi,
+cos >0
where @y is such that, at the boundary y = y;, of the cell Qjjkmn, it is given by

2(x—xi) 2(y=y))
Ol (t,x,y, W, L, @) = Tukmn(t) + Xijkmn () 7){ + Yukmn(t) TJ .
i J

We define I =ijkmn, so in Q; = Xjj X Kmn. Then,

(x — xj) a,y(t)(y_y]).
AXi/2 Ay;/2
We summarize the main results of these calculations for oy and ®|_, by showing just the ones related to y =L, (the case

y =0 is analogous). At the boundary y =Ly, the inner cells associated to outflow have j = Ny, adjacent to the boundary,
whereas the ghost cells related to inflow have the index j = Ny + 1. We compute the integral o} as

Vw1 +agw)
op{Pnl+} (%, y,0) = / K —————— /1 — u?cosp ®p|+ dwdudyp

oh(x, y.t) =0 (t) + o} (b) (5.50)

14+ 2agw
cos<p>0
< JW(A Fogw)
K
= Z / T 2w T = /1 —u2cose Oyl dwdude.

k,m, T
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Therefore, we have, with I = (i, j,k,m,n), j =N, below, that

T‘ﬂ a ) Hm+1/2 Pn+1/2
w(l+oagw
T; dw 1—pu2d f cos pdo,
Y e [ IS [ o
k.m.n Wi—1/2 Hm—1/2 On-1/2
n< T‘#’ Wkt1/2 a Hm+1/2 Pn+1/2
vywl +agw) +O!KW
of = Z XiNykimn / 1+ 2axw / V1 wrdp / cos pd,
k.m.n Wk—1/2 Hm—1/2 On-1/2
< Wii1/2 ( $n+1/2
Jw(l +a1<w
O‘I = Z Yinykmn / 1+20[1<W / V11— uAdp / cos pdg.
k.m,n Wk—1/2 Hm—1/2 ¥n-1/2

Once the coefficients of oy have been computed, we use them to obtain the polynomial approximation ®p|_, with
j=Ny +1, from (5.49)

n>
x (X — Xi) e~ "s(w)dw
q)h|y Ly — Z Z XiNykmnC |:U, +of Ax /é +01y‘l fkT

i kmn

We have at the same time, by definition, that

=t (x—x)
X — X
q)h|y Ly = Z Xi,Ny+1,kmn |:Ti,Ny+1,k.m,n + Xi,Ny+],k,m,nTi/2 -1 Yi,Ny+1,l<,m,n] .
ikmn

Therefore, the coefficients for ©h| _y, are

Jre Ws(w)dw

0
Ti,Ny—H,kmn(t) = CUiNykm,-,(t) Awg ) (5.51)
Jre Ms(wydw
Xi.Ny+1.kmn (t) = Cai);\lykmn(t)cT (5.52)
Jre Ws(w)dw
Vit ) = =1 o (0 S (5.53)

keeping in mind that our parameter C is given by the formula

ni fk 7W5(W)dw/«/w(l+ou<w /ﬁd,u/coypdgp

14+ 2agw
kmn

5.3. Mixed reflection

The mixed reflection condition is a convex combination of the specular and diffusive reflections:
FG ROl =pflL &K, 0 + (1= p)Co {fl} & e *®/KT &l ery,

p is the Specularity Parameter, 0 < p < 1. p can be either constant or p = p(lz), a function of the wave vector momentum.
For p constant, it can be shown easily that the previous formulas obtained for the specular and diffusive BC, in particular
the previous formulas for o C(x), works also in this case to obtain a zero flux condition at the Neumann boundaries:

- - =0 -
ni= [ vonsides [ V-n[pf@k’,rmm—p)CeKBTLaGc,t)]dk

v-n>0 v-n<0

- - —ed) -
= / V-nfledk+p / V-nf'ledk+1—p)oC / Vv -ne¥sTLdk
v-n>0 v-n<0 v-n<0

=0®,t) — poER, )+ (1—po®t)(-1)=0



316 J.A. Morales Escalante, .M. Gamba / Journal of Computational Physics 363 (2018) 302-328

However, for p(ﬁ) a function of the crystal momentum the same choice of o (X, t) and C(x) as in the diffusive case does not
necessarily guarantee that the zero flux condition will be satisfied at Neumann boundaries. Therefore, a new condition for
C in order to satisfy this condition must be derived. We derive it below.

The general mixed reflection BC can be formulated as

FGRDI-=p®) fle @K D) + (1—pk) C'o’ {fl4) G.He t®/KT G kyery

where o’ {f|+} (%,t) and C’ are the function and parameter such that the pointwise zero flux condition is satisfied at the
Neumann boundaries

0=n® - J&1)

= - ind ng L(I:) - g
-1 fl+dk + / vy [p(k)f(?c, K. 0|1+ 1 —pk)C'efsTio’(x, t)} dk.
1’]<

Il
<1

v-n>0 v-n<0

(e}

Il
—

<

v fledk+ f V-npk 'l dk — o' G, t)C’ / (1= p()[V - ] e dk,
V>0 v-n<0 v-n<0

we conclude then that

o 1fl) D) = / Vo fldi — / 100l po) FG R 0] dk, (5.54)
v-n>0 v-n<0
-1
') = /(1_p®)|o.n|eﬁdﬁ . (5.55)
v-n<0

The general mixed reflection BC then has the specific form

FG k0| =p) fly R K, 0

" (fypmo ¥ nf Lok = [y, o1V - nlp®)f G O]k )
—p(k))e *s

- —el) - ’
ff'~n<0(1 —p(k)|V-nle¥sTL dk
with &k eTy, GK)eT st v(k)=vk) —2WK) - 9.
Notice that the product C’c”’(,t) has the form

(oo fledk = [y o1 nipGo f K D)L dk)
C'o’'(x,t) =

(5.56)

—ek)

Jie0 = DRIV -] eXaTe di

which for the case of p constant, it reduces to the original function o (X, t) and parameter C {n(?{)}.

If p=ct
fs. >0§'77f|+dE -pf; <0|7"77|f(;€,/?,t)|+d’z
n n

o’ (x _ (
o'(x,t) = %
fg.n<0(1 —p)|v - nlefsT dk
(A=) f5.m0V 1 flsdk
—sk
(1-p) fg.n<0 |V-nleXsTL dk
fV~n>OG ’ T]f|+dE

—e(k)

fV-n<0 [V -n|eXsTL dk
=Co (X.t).

However, for the non-constant case p(E) the new function and parameter q’(}?, t), C'(n) need to be used instead, as the
previous o (, t), C(n) will not satisfy the zero flux condition in general for p(k), since
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0= f Venfledko+ / v-np() f'ldk —o'C’ / (1= p(k)I¥ - nle a7t di
V>0 V.n<0 5n<0
im0V 0 Flrdk + 5, oV nplo) fFG K, 0 dk
Sy po(1 = PRIV - 71T di
fa.n>0§‘17f|+dﬁ

- —ek)
Jin<ol¥ - et dk

C'o'=

—Co(%,t) in general for p(k).

A more general possible case of mixed reflection BC would have a specularity parameter p(x, 12, t) dependent on position,
momentum, and time. The related reflective BC would then be

fl-GRO = pEEOFILER. 0+ (1-pEK0)C*F 00" G OME k)
(k) € Ty, and (X, k') € Ty+, (5.57)

where M(X, E) is the equilibrium probability distribution (not necessarily a Maxwellian) according to which the electrons
diffusively reflect on the physical boundary. o*(X,t) and C*(x,t) are the functions such that the zero flux condition is
satisfied pointwise at insulating boundaries

0=n(?<)'/\7(l?)fdl?= / NG - vk fladk + / N - vk f1-dk
Qz V>0 v-n<0

- / n-Vflidk + / n-v[p(?c,l?,t)f/|++(1—p)c*(?c,r)a*(?c,t)M(ic,l?)]dI?

v-n>0 v-n<0
= [ wifides [0 pEEOSLGR. 06
v-n>0 v-n<0

— 0¥ (% D) C* &, ) / -V (1 ~pG.k, r)) M, kydk .
v-n<0

Therefore we conclude for this reflection case that

o* (f14) Got) = / - OIS |k — / - 91 PGk O f 1+ G, K, D)k, (5.58)
v-n>0 v-n<0
-1
C*G, ) = / |n-V|(1—p(Mr))M(?c,l?)dl? : (5.59)
v-n<0

and then the full BC formula for the p(X, E, t) reflection case is
fl-G R =pEkOfIG K. D+
S0 FIFLedk = [, o0+ VI PG K, f14 R, K, K]
fymeoIn -7l (1 — Gk, t)) M, k)dk .

(1 — pGik, r)) MG, k) [

Remark: p(%, k, t) can be any iid random variable in (%, k, t).

5.3.1. Numerical implementation

The numerical implementation of the general mixed reflection with specularity parameter p(ﬁ) is done in such a way
that a numerical equivalent of the pointwise zero flux condition is achieved.

The general mixed reflection boundary condition in our DG numerical scheme is

pl_ =Ty {Fu (®nly)} (5.60)
=TI {p(W)Pp|+ X, W', 1) + (1 — p(W)C'op {Pp 4} R, ) e ™s(w)}.
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We will be using the notation

w=(w,u, ), dw=dwdudp, W =(Ww,u,m—¢). (5.61)

The specific form of C’ and o’ will be deduced from the numerical analogous of the mixed reflection boundary condition.
We want to satisfy numerically the zero flux condition

0=n(?<)~/V(Vv)d>thv (5.62)
Qy
= [ - nendiv s [ - ne-di
v-n>0 v-n<0

I
—
<

V- Oyl dW + / ¥ Ty {p(@) P11 + (1 — pW))Co (&, e~ s(w) } dw

v-n>0 V<0

= [ Voo~ [ 7m0 @)oo 0) i

v-n>0 v-n<0

+ Ve Ty {(1— p(W)C'op (X, )e™"s(w)} dw. (5.63)
v-n<0

In the space V}, of piecewise continuous polynomials which are tensor products of polynomials of degree p in X and of
degree q in w, it holds that

Oy {AAG) W)} =T { 1®) )} T {20} (5.64)
Vi ={V 1 VIQm, € QP9 (Qijkmn) = PP (Xij) ® PT(Kymn)}-

Therefore, we have for our particular case that

S (1= pW))e™"'s(w)dw

My {(1 = p(W))C'oj X, e Vs(w)} = C'op R 0) | D Xienn

k,m,n kamn dW
Using this, our numerical pointwise zero flux condition is
0= [ Fenouidiv — [ 170 {po@ns G o) di
v-n>0 v-n<0
. . k. (1=pW)e Vs(wydw | _
+ / v-nClopx,t) Z Yo Jiiom _ dw
i AW
V<0 k,m,n femn
= [ Ve — [ pey G} di
v-n>0 v-n<0
. . Ji. (1 =pw)e Ys(wydw | _
+C/O’,4(x, t) / v-n Z Xkmn Riomn = dw
Ji, dw
V<0 k,m,n kmn
= / Vo ®plpdw — / [V | T { p(W) P4 R, W', 1) } dW
v-n>0 v-n<0
S (1= pw)e "s(w)ydw
S o 5 e kmn
—-C Gh(X, t) Z Xkmn / |V : 77|dW /‘K dw
k,m,n V<0 kmn

- / 7 oyl pdiv — / % -0l g {p(#) B4l G, . 0)) di
V>0 v-n<0
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R R R (1 —pw))e~"s(w)ydw
—O’,;(X, t) c Z v -yl dw f[(mnn _ .

k,m,n, 17-17<0Kkmn kamn
We conclude then that we can achieve a numerical equivalent of the pointwise zero flux condition by defining

o (Pnl4) G ) = / V. Dplpdiv / % -0l T {p (@) 0pls G, W, )} dib
v-n>0 v-n<0

/ -1 _ by e ‘/.Kkmn(‘l —p(ﬁ/))e
cm = > /|v~n|dw N

“Vs(w)dw

(5.65)

k,m,n, 17~17<0Kkmn
Therefore, the inflow BC in our DG numerical method is given by the expression

@yl =Ty {p(W)Pp4+ X, W', )}

+ T, { (1= p(W)C’ /V~n¢hl+dw

v-n>0

- /|\7-nlﬂn{p(VV)<I>nI+(?<,\7V’,t)}dW e "s(w)
v-n<0

The particular form of the coefficients defining the piecewise polynomial approximation ®p|_ for the general mixed
reflection BC is presented below for the boundary y = Ly, since the calculations for the case of the boundary y =0 are
analogous.

For the boundary yn,+12=Ly, 7- V o4y - § = g o< cos @, which defines the sign of go. Outflow cells have the index
j=Ny. They are cells inside the domain adjacent to the boundary. Inflow cells have the index j = Ny 4 1. They are ghost
cells adjacent to the boundary. We have in our case that

/

ol = / g2 Byl div — / 1821 Ty {p (W) Dyl G, . 0)) dib

cos<p>0 cos <0

115 2 n>NT(p

=Y [ eoudi = 3 [ e {pi el & w0} di
k,m, "Kk k,m,nKkmn

If I=(@,Ny+1,k,m,n) (inflow), I'=(, Ny, k,m,n’), n' = N(’p —n+ 1 (outflow), the projection integrand is given by

n>Ny/2
My { p(W)®p|4 X, W', 1)} = f Xi M[wap( )+Yp(+1)}
1 I ’ I fkmn Ax /2

The coefficients of o, are given below. We have now that I = (i, Ny, k,m,n), I'=(i, Ny, k,m,n"), n'= N(//J —n+1,so
from the previous two formulas then

n< Np/z

/0 ~Vw( +a1<W / /'
SN = Ti(t nxd d 5.66
O'iN, kmn 1( )/ T+ 2axw V1 u | cosedy (5.66)
n>Np/2
Jw( +agw) Jimn POW)dW p(W)dw
- Ty (t)/ /\/ Zduflcowldw e :
k m,n T+ 2akw fkmn
N ”<”P/2 VwiFaw .
0N, = Xi(®) T 2acw \/ d,u cos pdg
k m,n K
11>Np/2

Jw( +a1<w / p(w)dw
_ Xy 2 kmn
(t)/ 1+ 2axw /\/ dM/|C05<P|d<P I ,
kmn mn



320 J.A. Morales Escalante, LM. Gamba / Journal of Computational Physics 363 (2018) 302-328

Density (1/m3) vs. Position (x,y)

Specular

Diffusive --------
Mixed Ct p=0.5
p(k) Soffer eta=0.5 -- -~ -- -

1.02e+21
1.015e+21
1.01e+21
1.005e+21
1e+21
9.95e+20
9.9e+20

0.06

x (microns)

Momentum X-component (Ux: Current) vs. Position (x,y)

Specular
Diffusive
Mixed Ct p=0.5

p(k) Soffer eta=0.5 - -- -- -

0.0000014
0.0000013
0.0000012
0.0000011
0.0000010
0.0000009
0.0000008

0.08
X (microns)

Electric Field X-component (Ex) vs. Position (x,y)

Specular
Diffusive --------

Mixed Ct p=0.5
p(k) Soffer eta=0.5 - -- -- -

0.
X (microns)

Energy Moment <e> vs. Position (x,y)

Specular

03
0.25

(eV)
0.15
0.1
0.05

Momentum Y-component (Uy: Current) vs. Position (x,y)

Specular
Diffusive -

Mixed Ct p=0.5
p(k) Soffer eta=0.5 - -- -- -

4e-09
3e-09
2e-09
1e-09

-1e-09
-2e-09
-3e-09
-4e-09

y (microns)

0.
X (microns)

Electric Field Y-component (Ey) vs. Position (x,y)

Specular
Diffusive --------

Mixed Ct p=0.5
p(k) Soffer eta=0.5 - -- -- -

0.0004
0.0003
0.0002
0.0001

-0.0001
-0.0002
-0.0003

0.

X (microns)

Fig. 6.2. Density p (m~3), Mean energy e (eV), Momentum Uy, U y (10%8 %), Electric Field Components Ey and Ey, and Potential V (Volts) vs Position
(x,y) in (um) plot for Specular, Diffusive, Mixed p = 0.5 & Mixed p(E) = exp(—4n?|k|? sin® @), n =0.5 Reflection for 2D bulk silicon.
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we conclude that the coefficients for ®p|_ are

T imn = Tr Simn P(W)YdW ol Snn (1 = P(W))e™"s(w)dw
s K,m,n — = 1, = )

Y fkmn dw Y fkmn dw
5 Xy Simn P(W)dW Co Jimn (1 — P(W))e™Ys(w)dw

By +Lm.n ! fkmn dw BNy fkmn dw ’
Voo S PODER Ly fiy (1= PO sw)di

b y+ e fkn’mdw I’N}’ fkmndw 7

I'=(,Ny,k,m,n'), I=(,Ny,k,mn). (5.67)

6. Numerical results
6.1. 2D bulk silicon

We present results of numerical simulations for the case of n 2D bulk silicon diode with an applied bias between the
boundaries x =0, Ly, and reflection BC at the boundaries y =0, L, (Figs. 6.2). The required dimensionality in momentum
space is a 3D E(w, I, ). The specifics of our simulations are:

Initial Condition: ®(w)|,—o = Ty {Ne~"s(w)}. Final Time: 1.0 ps.

Boundary Conditions (BC):

k-space: Cut-off — at w = wpqy, © is machine zero.

Only needed BC in (w, w, ¢): transport normal to the boundary analytically zero at 'singular points’ boundaries:
Atw=0,g3=0.At u==+1,84=0.At ¢ =0,7, g5 = 0.

x-space: Charge Neutrality at boundaries x =0, x = 0.15 pum.

Bias-Potential: V|y_9=0.5235V, V|x_015 ym = 1.5235 V.

Neumann BC for Potential at y =0, Ly =12 nm: 9,V |y—0,, = 0.
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2 ), Electric Field Components Ey and Ey, and Potential V (Volts) vs Position

(x, y) in (um) plot for Specular, Diffusive, Mixed p = 0.5 & Mixed p(E) = exp(—4n?|k|? sin® @), n=0.5 Reflection for a 2D double gated MOSFET.

Reflection BC at y =0,y = 12 nm: Specular, Diffusive, Mixed Reflection with constant specularity p = 0.5, and Mixed
Reflection using a momentum dependent specularity p(k) = exp(—4n?2|k|? sin® @), the nondimensional roughness rms height

coefficient being 7 =0.5.

We observe an influence of the Diffusive and Mixed Reflection in macroscopic observables. It is particularly noticeable in
the kinetic moments. For example, the charge density slightly increases with diffusivity close to the reflecting boundaries,
and, due to mass conservation, alters the density profile over the domain. Momentum & mean velocity increase with diffu-
sive reflection over the domain, while the energy is decreased by diffusive reflection over the domain. There is a negligible
difference in the electric field x component below its orders of magnitude for the different reflection cases.
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Fig. 6.3. (continued)

6.2. 2D double gated MOSFET

We present as well the results of numerical simulations for the case of a 2D double gated MOSFET device (Figs. 6.3).
On one hand, the BC for the Poisson Eq. for this device would be the Dirichlet BC W = 0.5235 Volts at the source x =0,
W = 1.5235 Volts at the drain x = Ly, and ¥ = 1.06 Volts at the gates. On the other hand, Homogeneous Neumann BC
9; ¥ =0 are imposed at the rest of the boundaries. Specular reflection is applied at the boundary y = 0 because the solution
is symmetric with respect to y =0 for our 2D double gate MOSFET (Fig. 4.1). At the boundary y = L, we apply specular, dif-
fusive, and mixed reflection BC, both with constant p = 0.5, and with a momentum dependent p(E) = exp(—4n2|k|? sin® @)
with roughness coefficient 7 = 0.5. We use again the initial condition: ®(w)|,—g = I} {ND(x, y)e‘Ws(w)}, running the
simulations up to the physical time of 1.0 ps. We use again as well a cut-off BC in the boundary of the momentum domain,
so @ is machine zero at w = wp,qy, and we apply charge neutrality BC at x=0, x=0.15 pm.

We observe a quantitative difference in the kinetic moments and other observables between the different cases of re-
flective BC, with the physical quantities being of the same order of magnitude. The electron density increases close to the
gates with diffusive reflection, and close to the center of the device, given by the boundary y =0, the density profile is
greater for specular reflection. The energy moment clearly decreases with diffusive reflection over the physical domain. The
momentum x-component for specular reflection is less than for the other reflective cases. There is a difference in the profile
of the electric field x-component between the specular reflection and the other cases that include diffusivity, increasing
it with diffusive reflection close to the drain. The electric field y-component increases with diffusive reflection close to
the boundary y = 0 representing the center of the device. The electric potential is greater for the cases including diffusive
reflection than for the perfectly specular case.

6.3. Electrons reentering the 2D domain with reflective BC in y and periodic BC in x: comparison of bulk silicon with collisionless
plasma

We consider in this case almost the same physical situation and parameters for the previous section on the 2D bulk sili-
con, except that instead of using the charge neutrality conditions we apply periodic boundary conditions in the x-boundaries,
simulating then that the electrons reenter the material on the opposite x-boundary after the outflow exits the domain. We
compare these simulations with ones in which no collisions are considered, corresponding the latter to the case of a col-
lisionless plasma with reflective BC in y and periodic BC in x. For both cases, bulk silicon with electron-phonon collisions
and the collisionless electron gas, we still apply an external potential such that V =0 at x=0 and V =1 Volt at x = L,.
This can be understood in the framework of periodic BC in x as a periodic sawtooth wave with period equal to the length
of the x-domain. We do this comparison in order to study the effect of the reflective boundary conditions in y, with and
without the influence of the collisions over electrons, and we let the electrons re-enter the domain under periodic boundary
conditions in x, eliminating then the charge neutrality conditions in x and any possible effect due to the latter. Since due
to the periodic BC in x the electrons re-enter the domain after they exit it in outflow, the effect of boundary conditions is
exclusively related to the reflection in the transport domain in the y-boundaries. For example, in Figs. 6.6 we present the
plots of Relative Mass vs Time (ps) for Specular, Diffusive, Mixed with constant and momentum dependent specularity for
different sets of simulations. The top figure is related to simulations for bulk silicon with charge neutrality conditions on the
non-reflecting boundaries, the middle figure is associated to simulations for bulk silicon with periodic boundary conditions
on the non-reflecting boundaries, and the bottom figure is related to the simulations for collisionless electron transport
with periodic boundary conditions on the non-reflecting boundaries. The last two sets of simulations mentioned conserve
the mass during all the time, and these sets isolate the effect of reflection boundary conditions by using periodic boundary
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Fig. 6.4. Density p (m~3), Mean energy e (eV), Momentum Uy, Uy (1028 %), Average Velocity Component Vy, and Potential V (Volts) vs Position (x, y)

in (um) plot for Specular, Diffusive, Mixed p = 0.5 & Mixed p(E) = exp(—4n?|k|? sin? @), n = 0.5 Reflection for electrons in 2D bulk silicon with reflective
BC in y and periodic BC in x.

conditions instead of charge neutrality conditions. The first set associated to charge neutrality conditions in addition to re-
flection boundary conditions, however, have a slight increase in the relative mass of less than 0.5%. This slight increase then
is associated only to the inclusion of charge neutrality conditions and a possible accumulation of numerical error due solely
to it.

We notice in our comparison then the following effects of the collision operator in comparison with the colli-
sionless plasma case. As expected, the main effect of collisions is to decrease the magnitude of the average energy,
average velocity and momentum (therefore the current) of electrons over the domain (Fig. 6.4). The effect of colli-
sions on the distribution of the electron density profile over the domain is negligible. Regarding the isolated effects
of the reflection boundary conditions in the kinetic moments and other physical observables of interest by consid-
ering the collisionless plasma with periodic BC in x, we notice, as earlier in the section for bulk silicon, the slight
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Fig. 6.5. Density p (m~3), Mean energy e (eV), Momentum Uy, Uy (1028 ﬁ), Average Velocity Component Vy, and Potential V (Volts) vs Position (x, y)

in (um) plot for Specular, Diffusive, Mixed p = 0.5 & Mixed p(ﬁ) = exp(—4n?|k? sin® @), n =0.5 Reflection for 2D collisionless electrons with reflective BC
in y and periodic BC in x.

increase of the density profile close to the reflecting boundaries when adding diffusivity in the boundary condi-
tions, and by conservation of mass, a decrease of the density profile over the center of the domain. The mean en-
ergy decreases over the position domain with the inclusion of diffusive reflection BC, as well as the x components
(which are the dominant) of the momentum and velocity (Fig. 6.5). It is important to notice this expected effect
of the isolated reflection BC in the collisionless plasma case, since for the case that includes electron-phonon colli-
sions combined with adding diffusive reflection BC gives actually an increase in the x components of the momen-
tum and velocity compared to the purely specular reflection case (Fig. 6.4). The collisionless plasma with periodic BC
in x and reflection BC in y isolates the effect of the latter then and shows the expected behavior of a decrease in
the mean energy, velocity and momentum x-components when adding diffusivity in the reflection boundary condi-
tions.
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Fig. 6.6. Relative Mass vs Time (ps) plot for Specular, Diffusive, Mixed p = 0.5 & Mixed p(k) = exp(—4n?2|k|? sin® ), n = 0.5 Reflection. The figure on top
is related to the simulations for bulk silicon with charge neutrality conditions on the non-reflecting boundaries. The figure in the middle is associated
to the simulations for bulk silicon with periodic boundary conditions on the non-reflecting boundaries. The bottom figure is related to the simulations
for collisionless electron transport with periodic boundary conditions on the non-reflecting boundaries. The figures show the conservation of mass when
isolating the effect of reflection boundary conditions in the simulations, as the slight increase in the relative mass of less than 0.5% is associated only to
simulations that also include charge neutrality conditions and possibly an accumulation of numerical error due solely to it.

7. Conclusions

We have considered the mathematical and numerical modeling of Reflective Boundary Conditions in 2D devices and their
implementation in DG-BP schemes. We have studied the specular, diffusive and mixed reflection BC on the boundaries of
the position domain of the device. We developed a numerical equivalent of the zero flux condition at the position domain
boundaries for the case of a more general mixed reflection with a momentum dependant specularity parameter p(k). We
compared the influence of these different reflection cases in the computational prediction of moments after implementing
numerical BC equivalent to the respective reflective BC, each one satisfying a mathematical zero flux condition at insulating
boundaries. There are effects due to the inclusion of diffusive reflection boundary conditions over the moments and physical
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observables of the probability density function, whose influence is not only restricted to the boundaries but actually to the
whole domain. Particularly noticeable effects of the inclusion of diffusivity in kinetic moments are the increase of the density
close to the reflecting boundary, the decrease of the mean energy over the domain and, in the case when electron-phonon
collisions for silicon are included, the increase of the x-components of the mean velocity and momentum over the domain,
whereas for the collisionless case, for which only the effects of the reflection boundary conditions are considered (such as
when electrons are allowed to reenter the material via periodic boundary conditions in x), a decrease in those x-components
of mean velocity and momentum is observed, as expected when adding diffusivity to the reflection boundary conditions.

To summarize, specular boundary conditions have the physical meaning of a reflection with a perfectly smooth surface
with no roughness. Diffusive boundary conditions are the opposite case, with the physical meaning of a rough surface that
completely diffuses the momentum. That means, for a fixed X at a time t, since f|_(X, k, t) = Co (X, t) exp(—&(k)), the prob-
ability density function is higher for momentum vectors with a lower energy band value, therefore the momentum with
the highest f|_(X, k t) value, for that given X at time t, occurs at k =0, where the origin of the momentum space has been
chosen as the position of the local energy band valley. Hence, our physical interpretation of the diffusive reflection condition
is that it diffuses the momentum giving a higher probability for lower magnitude momentum values, with highest proba-
bility density value at k = 0. The mixed reflection condition is a convex combination of both, meaning that the reflection
process is partially specular and partially diffuses the momentum, with the probability of specularity potentially depending
on the momentum variable. Estimating which boundary condition is more physical, we believe mixed reflection case may
be the most suitable, as no surface is in practice perfectly specular, and the diffusive reflection is the case in the other end
of the spectrum that minimizes the total reflected momentum. Regarding on how to understand the quantitative differences
between the output for the considered boundary conditions, we propose, in Section 6.3, a numerical study of the different
reflection conditions for collisionless electrons with periodic conditions on the other two boundaries. This case provides the
best understanding of the boundary condition role in the simulation as it isolates effects of the reflection conditions, since
there is no dissipation from collision mechanisms, and the electrons reenter the domain after exiting a periodic boundary.
In fact, we show in Figs. 6.5 that the diffusivity in the boundary condition, as expected, lowers the momentum in the
main direction of transport of the electrons, which is X (the transport in the y direction is negligible), and it also lowers
the energy average. Both of these quantitative differences are expected from the reflection of the electrons with a rough
boundary. Regarding the quantitative difference between the density output, we observe that particles tend to stay closer
to the rough boundaries when increasing the degree of diffusivity in the boundary condition, since the diffusivity decreases
the total reflected momentum as it is more probable to have a reflected momentum with lower magnitudes. Therefore the
density profile increases for more diffusive conditions as it tends to accumulate more particles in the boundary by lowering
their momentum after reflection.

Future research will consider, for example, the inclusion of surface roughness scattering mechanisms in the collision
operator for our diffusive reflection problem in silicon devices. It will be related as well to the inclusion of diffusive reflection
BC with a DG-BP-EPM full energy _band. More importantly, another line of work of our interest for future research will be
the more general case of a p(x,k) specular probability dependant on momentum and position as well, considering in
addition to its mathematical aspects the related numerical issues and the respective computational modeling, intending to
use experimental values of p(X, k) as input for the simulations.
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