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Abstract. We establish the L! weighted propagation properties for solutions of the Boltzmann
equation with hard potentials and nonintegrable angular components in the collision kernel. Our
method identifies null forms by angular averaging and deploys moment estimates of solutions to the
Boltzmann equation whose summability is achieved by introducing the new concept of Mittag-Leffler
moments—extensions of L' exponentially weighted norms. Such L! weighted norms of solutions to
the Boltzmann equation are, both, generated and propagated in time, and the characterization of
their corresponding Mittag-Leffler weights depends on the angular singularity and potential rates in
the collision kernel. These estimates are a fundamental step in order to obtain L°° exponentially
weighted estimates for solutions of the Boltzmann equation being developed in a follow-up work.
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1. Introduction. We study generation and propagation in time of L!
exponentially weighted norms, referred to as exponential moments, associated to
probability density functions that solve the Boltzmann equation [10, 11] modeling
the evolution of monoatomic rarefied gases. Binary interactions of gas particles are
described by transition rates from before and after such interactions, usually referred
to as collision kernels. Such kernels are modeled as a product of potential functions
of local relative speed and functions of the scattering angle between the pre- and
postrelative velocities. This angular function may or may not be integrable. When
integrable, the collision kernel is said to satisfy an angular cutoff condition. The par-
ticular case when the angular part of the kernel is bounded is known as the Grad’s
cutoff condition [24]. Otherwise, its nonintegrability, referred to as an angular non-
cutoff, satisfies specific conditions (for details, see section 2).

The concept of exponential moments is associated to the notion of large energy
decay rates for tails. A time-dependent probability distribution function f(¢,v) is
said to have L' exponential moment (tail behavior) of order s and rate 7(t) if, for any
fixed t > 0,
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(1.1) ft,0)er® )" du s positive and finite,
Rd

where we use the notation

(1.2) () == /T + [u]2.

This concept was introduced by Bobylev in [7, 8] and Gamba, Panferov, and Villani
in [20], where they show uniform in time propagation of L' Maxwellian tails (i.e.,
Gaussian in v-space, that is, s = 2) for several type of collision kernels ranging
from Maxwell-type to hard sphere interactions with angular cutoff conditions and by
Bobylev, Gamba, and Panferov in [9] for different values of s € (0,2] in the study
of inelastic interaction with internal heating sources. These groundbreaking works
conceived the idea of controlling exponential moments by proving the summability
of power series expansions on a parameter r(¢). Such formulation was motivated
by formally commuting integration in v-space and the infinite sum derived from the
power series of the exponential function in (1.1), upon which one obtains

— () (v)* . o 7(t) Ty (t)
(13) Rdf(m)qz::o T(g+1) v = ,;0 T(g+1) °

The terms mg,(t), called polynomial moments, are (v)*I-weighted L' norms of the
distribution function f(v,t) that solves the Boltzmann equation. Representation (1.3)
replaces the quest of L' exponential integrability with a given order and rate with
study of summability of infinite sums (time series forms).

A fundamental technique for accomplishing this task (see [8, 9, 20, 3, 5, 29])
consists of controlling the weak form of the collision operator by the means of angular
averaging. These estimates are used to derive a sequence of ordinary differential
inequalities for the polynomial moments of the collisional form. These differential
inequalities are an algebraic sum of a negative term of moments of highest order and
a positive term of bilinear sums of moments of lower orders.

Recently, Alonso et al. [1] introduced a new technique (based on analyzing partial
sums corresponding to the infinite sum appearing in (1.3)) to prove the generation
of exponential moments with orders up to the potential rate and the propagation of
exponential moments with orders up to s = 2 under an angular integrability condition.
It is interesting to note that these results do not rely on the rate of Povzner estimates
for angular averaging, and so the resulting order 7(t) may not be optimal.

All results mentioned above were developed for the case of an integrable angular
collision kernel. This brings us to the setting of this manuscript, the non-cutoff regime.
This manuscript focuses on the study of both generation and propagation in time of
exponential moments for solutions to the initial value problem for the d-dimensional
Boltzmann equation for elastic collisions, in the space homogeneous case, for hard
potentials without the angular cutoff assumption. In this direction, Lu and Mouhot
[26] showed generation of exponential moments of order up to the potential rate in
the collision kernel. In this work, we considerably extend their result by showing
that rates and orders of exponential moments depend on the initial data, as well as
potential and angular singularity rates in collision kernels.

In order to treat the non-cutoff regime, we develop angular averaged estimates
that account for the cancellation of nonintegrable angular singularities by means of
null forms averaging. The other important component is summability of moments,
which is achieved by introducing Mittag-Leffler moments.
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Indeed, the most significant point of this paper is the introduction of Mittag-
Leffler moments as L' Mittag-Leffler weighted norms. They enabled us to extend the
range of orders of exponential moments that can be propagated uniformly in time for
the non-cutoff case. To obtain our result, we encounter the need to study (1.3), where
I'(g + 1) is replaced with I'(ag 4+ 1) for a noninteger @ > 1 (which is reminiscent of
some of the tools used in [9], although no summing of such renormalized moments
was performed there):

7 = ) M
(1.4) Z ['(aq + 1) Zo I'(aq +q1

We observed that the sum appearing on the left-hand side of (1.4) is exactly the
well-known Mittag-Leffler function &, (r(¢){v)®), where &, is defined as

(1.5) Eo(z) = q; Flag 71)"

In analogy to (1.1), this led us to introduce a concept of Mittag-Leffler moments,

a 2 _ . qu(t)aaq
(1.6) / F(t0) Ealat (v) )d”‘;)m’

which are a natural generalization of exponential moments.

Another important aspect of our main result is that the highest order of exponen-
tial moment which can be propagated in time depends continuously on the singularity
rate of the angular cross section. The less singular the angular kernel is, the higher
the order of the exponential moment that can be propagated is. See details in Re-
mark 2.12.

Let us mention one application of L' weighted estimates. In [20], Gamba, Panferov,
and Villani gave a proof to close the open problem of propagation of L°°-Maxwellian
weighted bounds, uniformly in time, to solutions of the Boltzmann equation with
hard potential with a cutoff in the angular kernel. Their result follows from an ap-
plication of a maximum principle of parabolic type, due to the dissipative nature
of the collisional integral, and estimates on the Carleman representation of the gain
(positive) part of the collision operator that depend on the L!-Maxwellian weighted
bounds uniformly propagated in time. We mention here that the extension of such
result on propagation of L>(R%)-exponential weights is currently being worked out
for the non-cutoff and hard potential case in a forthcoming manuscript [21] using the
L' weighted estimates obtained in this manuscript.

Organization of the paper. Section 2 presents the Boltzmann equation with-
out the angular cutoff condition, exponential and Mittag-Leffer moments, and the
statements of the two main results of the manuscript—the angular averaged Povzner
inequalities with angular singularity cancellation in Lemma 2.9 and the generation
and propagation of Mittag-Leffler moments in Theorem 2.11. Section 3 contains the
proof of the angular averaged Povzner inequalities for nonintegrable angular singu-
larity, i.e., Lemma 2.9. This lemma is the main tool for the formation of ordinary
differential inequalities for polynomial moments of all orders, which are covered in
section 4. Section 5 provides details of the proof of the propagation of Mittag-Leffler
moments, while in section 6 we give a new proof of the generation of exponential mo-
ments of order up to the rate of potentials. The final section, the Appendix, gathers
known and technical yet fundamental results used throughout this manuscript.
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2. Preliminaries and main results.

2.1. The Boltzmann equation. We consider the Cauchy problem for the spa-
tially homogeneous (i.e., z-space independent) Boltzmann equation

{ Ouf(t,v) =Q(f. f)t,v), teR*,weR?, d>2
f(0,v) = fo(v).
The function f(¢,v) models the particle density at time ¢ and velocity v of a rarefied

gas in which particle collisions are elastic and predominantly binary. The collisional
operator Q(f, f) is a quadratic integral operator defined via

(2.1)

@2 QU= [ [ (=) Bl o) dodo,

where we use the abbreviated notation f. = f(¢,v.), f' = f(¢t,v'), and f. = f(t,v)).
Vectors v',v. denote precollisional velocities, and wv,v, are their corresponding
posteollisional velocities. Relative velocity is denoted by u = v — v, and its nor-
malization by 4 = wu/|u|. Being an elastic interaction of reversible character that
conserves momentum v + v, = v’ + v, and energy |v|? + |v.|* = |[v/|? + |v.|?, pre-
and postcollisional velocities are related by formulas represented in center of mass
V = (v + v.)/2 and relative velocity © = v — v, coordinates as follows:

!/ /
(2.3) sz’—I—%a, v*:V’—%U, o€ s
The unit vector o € S?!, referred to as the scattering direction, has the direction
of the precollisional relative velocity v’ = v’ — vl,. We bring to the reader’s attention
that the pre- to postcollisional exchange of coordinates satisfy

1
V== (el o),
vl —w 1(\u| u)
— v, = —(|u] 0 — ).
* 2

This representation embodies the relation of the exchange of velocity directions as
just functions of the relative velocity u and the scattering direction o.
The collisional kernel B(|ul, @ - o) is assumed to take the form

(2.4) B(|ul|, 4 - o) = |u|" b(cos §),

where 6 € [0, 7] is the angle between the pre- and postcollisional relative velocities,
and thus it satisfies cosf = 4 - o. In this manuscript we work in the variable hard
potentials case, that is,

(2.5) 0<y<1

We assume that the angular kernel is given by a positive measure b(4 - o) over the
sphere S?~!. In many models, this function is nonintegrable over the sphere, while
its weighted integral is finite. In this manuscript we assume that for some 5 € (0, 2],

i ))//22) being the volume of

the following weighted integral is finite (with [S9~2| = @172

the d — 2 dimensional unit sphere):
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Ag = / b(ii - o) sin” 6 do
§d—1
(2.6) = \Sd*2|/ b(cosf) sin® @ sin?=2 6 df < oc.
0

When =0 (a case that we do not consider), this condition is known as the angular
cutoff assumption, under which the collisional operator can be split into the gain and
loss terms

(27) Q(f7f):Q+(faf>_Q_(faf)a

where

Q (/. F)(ty) = / |, rEB a0 dodo,
Q(f, /)t // J« B(|u], 4 - o) do dv,.

In 1963, Grad [24] proposed considering a bounded angular kernel b(cos #) and pointed
out that different cutoff conditions could be implemented too. Since then, the cutoff
theory developed extensively, with the belief that removing the singularity of the
angular kernel should not affect properties of the equation. Recently, however, it has
been observed (see, for example, [25], [14], [15], [16]) that the singularity of b(cos#)
carries regularizing properties. This, in addition to the analytical challenge, motivated
further study of the non-cutoff regime.

The typical non-cutoff assumption in the literature is the condition (2.6) with
B = 2. However, we work in the non-cutoff regime where the parameter § € (0, 2] is
allowed to vary, and we will see how the strength of the singularity of b influences our
main result. In this setting, the splitting (2.7) is not valid, which is one of the technical
challenges that the non-cutoff setting brings. In order to address this obstacle, we
exploit angular cancellation properties (for details, see section 3).

Remark 2.1. In the physically relevant case corresponding to the dimension
d = 3, when forces between particles are governed by an inverse-power-law-long range
interaction potential ¢(z) = Cz~®~Y C > 0, p > 2, the angular kernel b(cos6)
has been derived by Grad [24] (see also [12]) and is shown to have the following
form:

b(cosf) sinf ~ C 177, 6—0",
2 p—95
2.8 = =" > 2.
(2.8) O =00 p
Note that this model satisfies (2.6) with any r > v.

Weak formulation of the collision operator Q(f, f). Thanks to the sym-
metries associated to the collisional form Q(f, f), defined in the strong form (2.2), the
collisional operator has a weak formulation that is very important for the analytical
manipulation of the equation. Indeed, for any test function ¢(v), v € R? one has
(see, for example, [12])

(2.9) /Q £ Htv) e //f (v4) G (v,vy) doy do,

R2d

Golv.v.) = /S 00+ 00) — 6(0) — 6(0)) Bllul, o) do.
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Fic. 1. Pre and postcollisional velocities.

The key aspect of the equation in the weak formulation is expressed in the weight G,
as it carries all the information about collisions through the collisional kernel B, which
is averaged over the unit sphere against test functions A¢ = ¢(v')+¢(v})—d(v)—P(vy).
Crucial estimates on the function G4 referred to in the Boltzmann equation literature
as Povzner estimates are described below.

In the angular cutoff case, positive and negative contributions are treated sep-
arately, and such estimates are used to estimate the positive part of G4. A sharp
form of angular averaged Povzner estimates from [8, 9, 20] is obtained for general
test functions ¢(v) which are positive and convex. They are crucial for the study of
moments summability, the main point of this manuscript.

When ¢(v) = (14]v]?)*/2 = (v)*, these estimates, originally developed by Povzner
[31], yield ordinary differential inequalities for moment estimates that lead to an ex-
istence theory and generation and propagation of moments as developed in Elmroth
[18], Desvillettes [13], Wennberg [34], and Mischler and Wennberg [27]. These esti-
mates were also obtained in the non-cutoff case by Wennberg [33] for hard potentials.
Uniqueness theory to solutions of the Boltzmann equation for hard potentials was
first developed by Di Blasio in [17].

When the angular part of the collision kernel is not integrable, i.e., the non-cutoff
case, one needs to expand A¢ in terms of v’ — v and v, — v, since both are multiples
of |u| sin /2. For this strategy to succeed, the spherical integration variable o € S%~!
must be decomposed as ¢ = @ cos + wsinf, corresponding to the polar direction of
the relative velocity u and the azimuthal direction w € S¢~! satisfying u-w = 0. This
decomposition also plays a fundamental role in our derivation of the angular averaged
Povzner with singularity cancellation in the proof of Lemma 2.9.

Remark 2.2. We note that the identity (2.9) can also be expressed in a double
mixing (weighted) convolutional form (][22, 2, 4])

/Qﬁ o) oo =3 [[ 515 0 Golou) duce

R2d

Golvu) = /S G0+ 6" — ) = 6(e) — 6(v — ) BlJul, - 0)do

since both v’ and v/, can be written as functions of v,u and o from (2.3), and so the
weight function Gy (v, u) is an average over o € S~1.
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2.2. Moments of solutions to the Boltzmann equation. From the proba-
bilistic viewpoint, moments of a probability distribution density f(¢,v) with respect
to the variable v are integrals of such density weighted by functions ¢(v). These are
important objects to study, as they express average quantities that have significant
meaning for the model under consideration. They are the so-called observables. In
this sense polynomial moments correspond to such integrals for polynomial weights,
and exponential moments are for exponential weights.

We now recall definitions of polynomial and exponential moments, and we here
introduce the Mittag-Leffler moments, which are a natural generalization of the ex-
ponential moments.

DEFINITION 2.3 (polynomial and exponential moments). Polynomial moment of
order q and exponential moment of order s and rate a are defined, respectively, by

(2.10) mg(t) == y f(t,v) () dv
(2.11) Mos(t) = [ f(t,v) e do.
Rd

Remark 2.4. Using the Taylor series expansion, the exponential moment of order
s and rate « can also be written as the following sum:

oo

(2.12) Mas(t) = 3

q=0

Mgs(t) o
¢

Remark 2.5. Polynomial moments can be expressed in terms of the norm of a
natural Banach space in the context of the Boltzmann equation. Namely, if we denote

Li={f e LYRY): / fv)rdv = / f(+ |v|2)k/2 dv < o0},
Rd Rd
then

(2.13) mq(t) = £ (¢, )Ly

Also, note that
(2.14) £y < [Ifllz;,  for any ¢ <¢'.

Note that this expression is associated to the notion of L' exponential tail behavior
described in (1.1) and (1.3). Consequently, finiteness of exponential moments can be
understood as implying that the function f(¢,v) has an exponential tail in v. In this
paper, we study whether this property can be generated or propagated in time for
the case of variable hard potentials in the non-cutoff case.

Because our summability estimates lead to expressions similar to that of (2.12)
yet having I'(ag + 1) as a generalization of factorials with noninteger a > 1, we are
motivated to use Mittag-Leffler functions, as they are conceived as a generalization
of the Taylor expansion of the exponential function. More precisely, for a parameter
a > 0, the Mittag-Leffler function is defined via

oo

(2.15) Eaw) =S — 2 a0
qZ:(:) I(ag+1)
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Note that for a = 1, the Mittag-Leffler function coincides with the Taylor expansion
of the classical exponential function e*. It is also well known (see, e.g., [19, p. 208]
and for more explicit form [23, Theorem 1]) that for any a > 0, the Mittag-Leffler
function asymptotically behaves like an exponential function of order 1/a, that is,

Ealx) ~ e” asT — 0.

In particular, there exists L > 0 and positive constants ¢y, and Cp, such that

1/a a

. 1/
cre®’ <& (x)<Cre® x> L.

Furthermore, one sees from the definition (2.15) that « — &,(z) is increasing and
E.(0) = 1. Therefore,

_;1/a 1/a
e L e

As a consequence,

1/a

(2.16) ce® < &(x) < cet" forz >0

with ¢ := min{e‘Ll/a,cL} and C := max{&,(L),CL}.

Since (v)? is the building block for our calculations, we prefer to have z? as
the argument of Mittag-Leffler function when generalizing e®* . Hence, using the
estimate (2.16),

(2.17) ce®™ < SQ/S(az/SxQ) < C e, x> 0.

This motivates our definition of Mittag-Leffler moments.

DEFINITION 2.6 (Mittag-Leffler moment). The Mittag-Leffler moment of order s
and rate o > 0 of a function f is introduced via

(2.18) /R F(t,v) Eas(0?* (0)2) du.

Remark 2.7. In the rest of the paper we will use the fact that Mittag-Leffler
moments can be represented as the following sum (a time series form), which follows
from (2.15):

S — mQ(I(t) a2q/s
(2.19) / f(t,v) Eys(@®® (W)H) dv = e
Re Y ; T(Zg+1)
Remark 2.8. Formally, by taking k = 2?‘1, the above sum becomes
Z mps(t) o
I'(k+1)’

ke2Z

and we show it relates to the time series in (1.3) with the difference being that the
summation here goes over the fractions.
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2.3. The main results. There are two important results in this manuscript.
The first one relates to the angular averaged Povzner estimate with cancellation. It
gives an estimate of the weight function G4 in the weak formulation (2.9) when the
test function is a monomial ¢(v) = (v)"?. We denote this weight function by

220)  Goyi= Gu = [ (W0 = (07— (0) Bllul o) dov

LEMMA 2.9. Suppose that the angular kernel b(cos 0) satisfies the non-cutoff con-
dition (2.6) with B = 2. Let r,q > 0. Then the weight function satisfies

Grq(v,v4) < |v — vi|” [_ As (V)™ + (v)™) + A2(<v>rq—2<v*>2 + <U>2<v*>rq—2)
(221 tegrsp Ao S (B = 1) P22 ()2 + (0)2) F 77,

where Ay = [S*72| [ b(cos 6) sin? 0d is finite by (2.6). The sequence Eqr/2 = €q;
defined as

2 s sin?9 \
(2.22) Eq = A—\Sd_2|/ / t (1 - t) dt | b(cosf) sin® @ de,
2 0 0

has the following decay properties. If b(cos @) satisfies the non-cutoff assumption (2.6)
with B € (0,2], then

(2.23) 0 < eqq'™? =0 asq— oo

The sequence £4 is the same as in [26]. Its decay properties (2.23) are also proved
in [26], after invoking angular averaging and the dominated convergence theorem.
Condition (2.23) is crucial for finding the highest-order s of the Mittag-Leffler moment
that can be propagated in time.

Remark 2.10. This lemma relies on the polynomial inequality presented in
Lemma 3.1. The decay rate of e4 is fundamental for the success of summability argu-
ments yet is not relevant for the generation and propagation of polynomial moments.
In the angular cutoff case when term-by-term techniques were used, the corresponding
constant had a rate £, &~ ¢~", with r depending on the integrability of b; see [8, 9, 20].
When the partial sum technique was employed in [1], the precise rate was not needed
any longer. Here, however, in the non-cutoff case, the knowledge of the precise decay
rate of £4 becomes important again because of extra power of ¢ in the last term of
the right-hand side of (2.21).

The second main result, presented as an a priori estimate, consists of two parts.
First, under the non-cutoff assumption (2.6) with 8 = 2, we provide a new proof
of the generation of exponential moments of order s € (0,7]. Second, we show the
propagation in time of the Mittag-Leffler moments of order s € (v,2). When s € (v, 1],
B = 2 in the non-cutoff (2.6) is assumed. When s € (1,2), the angular kernel is
assumed to be less singular. Before we state the theorem, we remind the reader of
the following notation:

L= {f e LYRY : [ flu)rde < oo}.
Rd

This is the natural Banach norm to solve the Boltzmann equation.
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THEOREM 2.11 (generation and propagation of exponential-like moments).
Suppose f is a solution to the Boltzmann equation (2.1) with the collision kernel
of the form (2.4) for hard potentials (2.5) and with initial data fo € L.

(a) (Generation of exponential moments) If the angular kernel satisfies the non-
cutoff condition (2.6) with 8 = 2, then the exponential moment of order 7 is
generated with a rate r(t) = a min{t,1}. More precisely, there are positive
constants C, «, depending only on b, v and initial mass and energy, such that

(2.24) f(t,v) ex ™t gy < C for t>0.
Rd

(b) (Propagation of Mittag-Leffler moments) Let s € (0,2), and suppose that the
Mittag-Leffler moment of order s of the initial data fo is finite with a rate
r = ag, that is,

(2.25) /Rd Jo(v) & (ag/s (v>2) dv < M.

Suppose also that the angular cross section satisfies assumption (2.6):
with =2 if s€(0,1]

(2.26) with = % -2 if se(1,2).

Then there exist positive constants C, «, depending only on My, «g, b, v, and
initial mass and energy such that the Mittag-Leffler moment of order s and
rate r(t) = a remains uniformly bounded in time, that is,

(2.27) f(t,v) &y (aQ/S <v>2) dv<C  for t>0.
R

Remark 2.12. The angular singularity condition 5 = % — 2 in the case of Mittag-
Leffler moments of order s € (1,2), continuously changes from g = 2 (for s = 1) to
B =0 (for s = 2). Hence, condition § = % — 2 continuously interpolates between the
most singular kernel typically considered in the literature, which is (2.6) with § = 2,
and an angular cutoff condition, which corresponds to (2.6) with 8 = 0. This also
tells us that in the most singular case, one can propagate exponential moments of
order s < 1, while in angular cutoff cases, one can propagate exponential moments of
order s < 2 (to be completely rigorous, Theorem 2.11 goes up to 8 > 0, i.e., s < 2,
but [1] already established the case 5 = 0, i.e., s = 2). The less singular the angular
kernel is, the higher the order of the exponential moment that can be propagated is.

Remark 2.13. The propagation result of the theorem can be interpreted in two
ways. First, for a Mittag-Leffler (or exponential) moment of order s to be propagated,
the singularity of b should be such that it satisfies (2.6) with 8 = 2 — 2. On the
other hand, given an angular kernel b that satisfies condition (2.6) with a parameter
B € (0,2], one can propagate Mittag-Leffler (and exponential) moments of order

4
s§5+2.

Remark 2.14. We note that our result is a priori in the sense that it assumes the
existence of solutions. However, two types of solutions can be used in the theorem.
One example are weak solutions, whose existence was proven by Arkeryd [6] and later
extended by Villani [32], under the assumption that initial data has finite mass, energy,
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and entropy and a moment of order 2 + § for any 6 > 0. Another type of solutions
that could be used are measure weak solutions constructed by Lu and Mouhot [26]
(see also the result of Morimoto, Wang, and Yang [28]). These solutions exist if initial
mass and energy are finite, provided that the angular kernel satisfies the condition
Jy b(cos 0) sin? (1 + |log(sin #)|)df < oo, which automatically holds for kernels that
satisfy condition (2.6) with 5 < 2.

Remark 2.15. Thanks to the fact (2.17) that Mittag-Leffler functions asymptot-
ically behave like exponential functions, the propagation result (Theorem 2.11 (b))
can be stated in terms of exponential moments. Namely, first note that

6o¢|v\S < ea(v)5 < Cfeo¢|v|57

where C' = e® since |[v|* < (v)° = (1 + [v]?)%/2 < 1+ |v|? for 0 < s/2 < 1. This,
together with (2.17), implies that finiteness of exponential moment of order s € (0, 2) is
equivalent to the finiteness of the corresponding Mittag-Leffler moment. This, in turn
implies, as a corollary of Theorem 2.11 (b), the propagation of classical exponential
moments. More precisely, suppose that s € (0,2) and that the angular cross section
satisfies (2.6) with g = % — 2. Then, if inital data fy has finite exponential moment
of order s and rate «y, that is,

fo(w)e*dv < My,
Rd'

then there exist positive constants C, o (depending only on My, ag, b, 7y, initial mass,
and energy) such that the exponential moment of order s and rate « of f(¢,v) remains
uniformly bounded in time, that is,

ft,v)edv < ¢ fort > 0.
Rd

Remark 2.16. In the case of the inverse-power-law model described via (2.8), in
which hard potentials correspond to p > 5, the non-cutoff condition (2.6) is satisfied
for B > v. Hence, Mittag-Leffler moments of orders s < 2 — 2 can be propagated
in time. In the graph below, the y-axis represents the order of exponential tails.
The dashed red line marks the highest order of exponential moments that can be
generated, while the blue line marks the highest order of Mittag-Leffler moments that
can be propagated in time. This graph visually confirms that our propagation result
indeed goes beyond the rate of potentials ~.

2 3:2_2
p
1
_ p=5
R I B et ity B A
o _ _-r-
L - 10 11 12 15 W p

2.4. A strategy for proving Theorem 2.11. Details are provided in sections 5
and 6. The proof is inspired by the recent work [1], where propagation and generation
of tail behavior (1.3) is obtained for angular cutoff regimes.
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Our goal is to prove that solutions f(¢,v) of the Boltzmann equation for hard
potentials and angular non-cutoff conditions admit L'-Mittag-Leffler moments with
parameters a = 2 and a(t) = r(t) to be found. Because of the asymptotic behavior
(2.16), that would imply that the asymptotic limit for large values of v is, indeed,
exponential tail in v-space with order s and rate r(¢) = a(t). Thus, our proof is based
on studying partial sums of Mittag-Leffler functions &,(a%x?), with parameter a = %
and with rate «(t).

To this end, we work with nth partial sums associated to Mittag-Leffler functions,
defined as

" Mag(t) o™

n

(2.28) EMa,t) = > Tl 1)
q=0
We need to prove that there exits a positive rate «(t) and a positive parameter
a, both uniform in n, such that the sequence of finite sums converges as n — oo.
In particular, we need show that £"(«,t) is bounded by a constant independent of
time and independent of n. The values for a,« and the bound of the partial sums
are found and shown to depend on data parameters given by the collisional kernel
characterization and properties of the initial data.

In order to achieve all of this, we derive a differential inequality for £ = 2 (o, t).
The first step in this direction is to obtain differential inequalities for moments maq(t)
by studying the balance

(229) maglt) = [ QUD(E0) (1

which is a consequence of the Boltzmann equation. The right-hand side is estimated
by bounding the polynomial moments of the collision operator by nonlinear forms of
moments myg(t) of order up k = 2¢ + v with 0 < v < 1. This requires finding the
estimates of the weak formulation (2.9) with test functions ¢(v) = (v)*. Consequently,
we need to estimate the angular integration within the weight function G 24 (v, v")

(2.30) /S (N (% ()~ (0)) beos B)dor

These estimates will lead, thanks to (2.29) and (2.9), to the following differential
inequality for polynomial moments:

(231) m’zq S —Kl m2g4~ + K2 maq

kq 9

+ Kse4q (¢—1) Z (Z 1) (m2k+7 Mo (q—k) + M2k m2(q7k)+'y)7

k=1 \"
where K1 = A3C,, where Ay was defined in (2.21) and C,, just depends on the rate of
potentials . Similarly K5 and K3 depend on these data parameters as well. The key
property of this inequality is that the highest-order moment of the right-hand side
comes with a negative sign, which is crucial for moments propagation and generation.
Another important aspect of this differential inequality is the presence of the factor
g(g —1) in the last term, which was absent in angular cutoff cases. Because of this, it
will be of great importance to know the decay rate for ¢,.

The second step (section 4) consists in the derivation of a differential inequality

for partial sums £ = EZ(a,t) obtained by adding n inequalities corresponding to
(2.31) for renormalized polynomial moments moq(t)a®?/T'(ag + 1). This will yield

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/16/19 to 128.83.63.20. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

846 M. TASKOVIC, R. ALONSO, I. GAMBA, AND N. PAVLOVIC

d n n n —a n n
(2.32) 60 < o+ (~K1 L) 4+ Kicg + K2 & +eqy a5 “KsCENTL).

In particular we obtain an ordinary differential inequality for the partial sum &£ that

depends on a shifted partial sum Z7 ., defined by

" maggy (1)
2.33 7 t) = e
( ) a,w(a’ ) qgo I(ag+1)

The derivation of the last term in the right-hand side of (2.32) requires a decay
property of combinatoric sums of Beta functions. These estimates are very delicate
and are presented in detail in Lemmas A.6 and A.7 in the Appendix. The constants
K1, K5, and K3 only depend on the singularity conditions (2.6), and so they are
independent of n and on any moment g. The constant ¢,, depends only on a finite
number gy of moments of the initial data. The choice of gg is crucial to control
the long time behavior of solutions to inequality (2.32), and it is done such that
£ @5 “ K3 < K1 /2 after using condition (2.23) in Lemma 2.9.

Finally, after showing that Z;'  (a,t) is bounded below by the sum of two terms
depending linearly on £7(«,t) and on mass mg and nonlinearly on the rate «, we
obtain the following differential inequality for partial sums in the case of propagation
of initial Mittag-Leffler moments:

d n K1 n K1 mo ealia . .
—&Mt) < ——=E&7(t)+ ———=—— + Ko (propagation estimate).
dt 2a2 202

The constant Ky depends on data parameters characterizing go, ¢q, and K;, 7 = 1,2, 3.
In addition, for the generation case, we obtain

d o 1(K1(E;‘—mo)

9 - C’q0> + Ko (generation estimate).

Thus, the differential inequalities (2.32) are reduced to linear ones. Both inequalities
have corresponding solutions for choices on parameters a and « that are independent
on n and time ¢ and will depend on ¢y, which depends only on data parameters.

3. Angular averaging lemma. This section is about the proof of the angu-
lar averaging with cancellation (i.e., Lemma 2.9), a crucial step for controlling mo-
ments and summability of their renormalization by the Gamma function. One of
the tools used in the proof is the following estimate on symmetrized convex binomial
expansions.

LEMMA 3.1 (symmetrized convex binomial expansions estimate). Let a,b > 0,
te€0,1], and p € (0,1] U [2,00). Then
(ta+ (1 —1)b)" + (1 —t)a+tb)" —a? —bP
(3.1) < —2t(1 —t)(a? + V) +2t(1 — t) (ab~! + aP"'b).
Proof. Suppose p > 2. The case p € (0,1] can be done analogously. Due to the
symmetry of the inequality (3.1), we may without the loss of generality assume that

a > b. Since all the terms have homogeneity p, the inequality (3.1) is equivalent to
showing

F(z)>0  Vz>1,
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where F'(z) is defined by
F(z):=(1=2t(1—t)) (2" +1) +2t(1 — t) (2 + 2P 1)
—(tz+(1=1)" = (A -t)z+1)".
It is easy to check that
F'(z) = (p—1) [p(l —2t(1— 1)) 2P 2 4 2t(1 — 1) (p — 2)2P

P op(l—12((1—t)z+ t)’“’]

—ptP(tz+ (1—1))"

As tz+ (1 —t) and (1 —t)z + t are two convex combinations of z and 1 and since
z > 1, we have that tz + (1 —t) < z and (1 —t)z +t < z. Since p > 2, this implies
(tz+ (1 —1)P"2 <272 and ((1 — t)z +t)P~2 < 2P~2. Therefore,

FI/
(Zl) >p(1—2t(1—1))2P"2 + 2t(L —t)(p — 2)zP "% — pt?2P~2 — p(1 —t)%2P 2
p—
=2t(1—t)(p—2)2P73
> 0.

Thus, F(z) > 0 for z > 1. So, F'(z) is increasing. Since F’(1) = 0, we have that
F'(z) > 0 for z > 1. Finally using the fact that F'(1) = 0, we conclude F(z) > 0 for
z > 1. O

We are now ready to prove the new form of the angular averaging with a
cancellation-type lemma. For another version, see [26].

Proof of Lemma 2.9. Recall the definition of the weight G,.4:

(3.2) Grq(v,04) == |v — v*|7/ b(cos ) sin?™2 6 A(v)™? do,
Sd—1

where  A(v)™ = (V)" + (V)" — (V)" — (v,)"9.

This integral is rigorous even in cases when [, , B(|ul,cos#) do is unbounded by
an angular cancellation. A natural way of handling the cancellation is to decompose
o € S% 1 into § € [0,7] and its corresponding azimuthal variable w € S92, i.e.,
o = cosf @ +sinf w, where S2(4) = {w € S¥! : w- 4 = 0}. See Figure 2.

This decomposition allows handling the lack of integrability concentrated at the
origin of the polar direction § = 0. However, it requires a specific way of decomposing

FiG. 2. Decomposition of o.
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(v')?2 and (v.)? that separates the part that depends on w. More precisely, (v')?
and (v.)? are decomposed into a sum of a convex combination of the local energies
proportional to a function of the polar angle 6§ and another term depending on both
the polar angle and w (see the Appendix for details):

(3.3) (V)2 = By, (0) + P(6,w),
(V)2 =By, (r—0) — P(O,w).

Here P(0,w) = |v X v,| sinf (j - w) is a null form in w by averaging, i.e.,

/ P(f,w)dw =0,

gd—2
and E, ,, (f) is a convex combination of (v)? and (v})? given by

Epop. (0) = t (0)% + (1—1) (), where t = SiHQg.

These two fundamental properties make the weight function G,4(v,v,) well defined
for every v and v, for sufficiently smooth test functions (¢ € C?(R?)) even under
the non-cutoff assumption (2.6) with 8 = 2. In fact, Taylor expansions associated to
(v/)74 are a sum of a power of E, ,, (6), plus a null form in the azimuthal direction,
plus a residue proportional to sin” @ that will secure the integrability of the angular
cross section with respect to the scattering angle . Indeed, Taylor expand (v')™
around F(#) up to the second order to obtain

(V)" = (Eyp. (0) + hsin(d) (j - w))
= (B, (0) " + (B, ()7 T hsind (j - w)

w‘g

rq
2

(3.4) + % (E — 1) h? sin? 6 (j - w)? /01(1 —t)[E(0) +thsind (j-w)] “2at.

2
Similar identity can be obtained for (v})"9.

Since the collisional cross section is independent of the azimuthal integration, we
will make use of the following property. Any vector j lying in the plane orthogonal
to the direction of v is nullified by multiplication and averaging with respect to the
azimuthal direction with respect to u, that is, de,g Jrwdw=0.

Therefore, we can write G,4(v, v4) as the sum of two integrals on the S%1 sphere,
whose first integrand contains the zero-order order term of the Taylor expansion of
both (v,)™? and (v')"? subtracted by their corresponding unprimed forms, while the
second integrand is just the second-order term of the Taylor expansion (3.4):

(35) Grq(v,v*) = Il + 12
= [T B 07+ B (= 0797 = (77 = (02)7)
0 Jsd-2
x b(cos ) sin?? 0 dw db

+%(%71) K2 /Oﬂsindf)b(COSO)/Sd_Q(j~w)2/01(1t)

rq

X ([Ev,v* (9) +thsind (] . w):l 2

+ [Ev,v* (71' — 9) — th sin 9] %172> dtdwdé.
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w

.1) to estimate the first integral I;. We use it with

At this point we use inequality (
2% which yields

a={v)%, b= (v.)? and t = cos

SIS

(36) Il < |Sd—2’ /OW _Sin2 9(<U>rq + <'U*>Tq)b(COS 9) Sind_20 a0
2
= — A ((0)™ + (v2)™7) + Az (V)" (v,)? + () (v,) "7 2).

The constant Az was defined after (2.21).
For the second-order term I, we use that (j-w)? <1 and h = v X v.| < (v) (v)
and that (see [26])

+ /” sin”f (0)™172(0,)% + (v)*(04)"72) b(cos §) sin? 20 df
0

(3.7 | By, (0) + thsin (j - w)| < ((0)? + (v.)?) (1 - isin2 0>
to conclude

1< (1) 2. |SH|/O sin 6 b(cos 0)

_ 1—
2(1

After a simple change of variables (¢ — 1 —t) and recalling the definition of constant
€rq/2 in (2.22), we see that

r

wl3

' 2 2 too )\
X/O 2(1 —t) ((v)* + (vs)?) sin 9) dt dé.

rq (Tq ra_g
(3.8) Iy < &y Az ) (5 - 1) ()2 (0.2 ()% + (,)?) 2
Putting together the estimate for I; and for I, we obtain the desired estimate on the
weight Grq(v, vs).

4. Ordinary differential inequalities for moments. In this section we
present two differential inequalities for polynomial moments (Proposition 4.1) which
will be essential for the proof of Theorem 2.11. We also state and prove a result about
generation of polynomial moments in the non-cutoff case (Proposition 4.2). Before
we state the proposition, we recall the “floor function” of a real number, which in the
case of a positive real number z € R coincides with the integer part of z:

(4.1) || := integer part of x.

PROPOSITION 4.1. Suppose all the assumptions of Theorem 2.11 are satisfied.
Let ¢ € N, and define k, = LPTHJ for any p € R to be the integer part of (p 4+ 1)/2.
Then for some constants K1, Kq, K3 > 0 (depending on v, b(cos), dimension d),
we have the following two ordinary differential inequalities for polynomial moments
of the solution f to the Boltzmann equation:

(a) The “myy version” needed for the generation of exponential moments:

(4.2) mi/q(t) < —Kimygiy + Komyg + Kzegy o % (ﬂ B 1)

2
R
X § 27 | (M2ykty Moyg—29k + Moyl Moyg—2vk+~) -
k=1 k—1
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(b) The “may version” needed for propagation of Mittag-Leffler moments:

(4.3) m’2q < =K1 Magy + Komog+ Kzeqq(qg—1)
a
X Z ! : : (M2kty Ma(g—k) + M2k Mgy 1) -
— k—1

In both cases, the constant Ky = A3C., where Ay was defined in (2.21) and C., to be
defined in the proof below, only depends on the vy rate of the hard potentials. Similarly
Ky and K3 also depend on data through the dependence on Ay and C,.

Proof. We start the proof by analyzing m,, with a general polynomial weight
(v)™9. Then by setting r = 7 we shall derive (a), and by setting = 2 we shall obtain
(b). Recall that after multiplying the Boltzmann equation (2.1) by (v)"?, the weak
formulation (2.9) yields

(4.4) my.,(t) = %/ ffe Grg(v,vy) do do,.

R2d

The weight function G,, can be estimated as in Lemma 2.9, which yields

mio@ <=2 [ [ Elo =l (@ o,

2 Rd JRA

w2 [T gl (e - R dude,
2 R4 JRA
Ag rq (rq
+ ey (3 -1)
(4.5) X / / [ fo o =07 (0)2(0.)? ((v)* + (v*>2)%_2dvdv*.
Re JRA

We estimate |v — v,|7 via elementary inequalities
(46)  Jo—wl SO +@))  and  Jo—ul" > Cylo) = (),
where C,, = min{1,2' 7} (see, for example, [1]). As an immediate consequence,

[v = v 7 ((0)" 4 (0.)") > (Co(0)7 = (0.)7) (V)™ + (Cy{va)T = (v)7) (vs)™
(4.7) = Cy ()™ + (ve)" 1) — ((0) v + (0)7(v,)"9)

and

v = w7 ((0)" 72 (0:) + (v)*(0:)" )
< () + (02)7) ((0)™ 72 (0a)? + (0)* (0,)™7?)
(4.8) <2077 ((0)" 1 (0:)7 + ()7 (0.)"),

where the last inequality uses Lemma A.1. Combining (4.5) with (4.7) and (4.8) we
obtain
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Ay
7¢J”§*3*”/k/fﬂ«wwﬂ+wnwwﬂww
Rd JR4

+ % (1+2¢57) /Rd ()07 + ()7 () ) dodo

Az Erq/2 Tq (Tq
7%73(3—9
X /~/]R?d ff*(<1)>’7 + <U*>’Y)<U>2<v*>2(<v>2 + <U*>2)%72dvdv*

< — Ay Cymo(t)mrq14(t) + A2(1 + 20;1)7”7 (t)mqq(t)

N Azerg/2 7q (g B 1)
20, 2 \2

) / F () A+ (00)7)(0) (0a)?(0)° + (0.)7) 7 2 dudo.
R2d

Therefore, since 0 < v < 1, by conservation of mass and energy, mg(t) = mo(0) and
mv(t) < mQ(O)’

mlW(t) < —Kimrg iy (1) + Ko myg(t) + % Erq/2 % (% B 1)
(4.9) X / fr((v)” + <v*>"’)(v>2<v*>2(<u>2 + <@*>2)%_2dvdv*,
R2d

where K1 = Ay C,mo(0), Kz = Az (1+2C7")my(0), and Kz = %, so these three
Y

constants only depend on the initial mass and energy, on the rate of the potential ~,

and on the angular singularity condition (2.6) that determines the constant As.

From here, we proceed to prove (a) and (b) separately.

(a) Setting r = v in (4.9), applying the following elementary polynomial inequality
which is valid for v € (0,1]

29 a_ 2
5 —2 27

< ()7 + w)*)? 7,

(4.10) ((v)* + (v,)?)

and using the polynomial Lemma A.3 yields

K3 Yq (V4
mfyq(t) S —Kl Mg+~ + K2 Mngq + 7 E’yq/2 7 <? — 1)
<[5 2007+ @) 2 (@0 + (0)2) 7 dude
R2d
K3 Yq (V4
< = Ky mygyy + Ko myg + o S22y (7 - 1) Ffe ((0)7 + (vi)?)
RQd
k%_g q 2
Yy —-
% Z 2 vy (<,U>2'yk+2<v*>'yq—2fyk—2_~_<U>'yq—2—yk—2<v*>27k+2) dvdw,
k=0 k
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X E 2 v (m2’yk+2+’y Myg—2vk—2 T Myg—2vk—2+4~ m27k+2) dvdv,.

Finally, reindexing k to k — 1 and applying Lemma A.1 yields

q q
m/ (t) < - Kl My g4~ +K2 Meyq +K3€"/Q/2 % (% — 1)

1+k
thy-z g 2

X E : 27 ) (M2rktry Mgy + Moyg—2yk4 Mark) dvdos,
k=1 k—1

which completes proof of (a).

(b) Now, we set = 2 in (4.9) and apply Lemma A.3 to obtain

Mig(t) < —K1 Maginy + Kz mag + Kseq q(q — 1)/ fF((o) + (04)7)(v)?(vs)?
R2d

kq—2
x> (q ! 2) (0% (0?0272 4 ()27 (0,)) dud,

k=0
= —K1 Mo~y + Ko mog + Kzeqq(qg—1) / e ((0)7 + (vi)7)
R2d
k}q72 2
% Z (q . >(<U>2k+2<v*>2q—2k—2 + <v>2q—2k—2<v*>2k+2) dvdw,
k=0
= —Ki1 magy~y + Ko mag + Kz eqq(g—1)
k‘l
X Z 1 : 2 (m2k+'y Mag—2k + Mok m2q—2k+'y)-
= k-1

The last equality is obtained by reindexing k to k£ — 1 and using that 1 + kq_2 = kq.
This completes proof of (b). d

PROPOSITION 4.2 (polynomial moment bounds for the non-cutoff case). Suppose
all the assumptions of Theorem 2.11 are satisfied. Let f be a solution to the homoge-
neous Boltzmann equation (2.1) associated to the initial data fo:

1. Let the initial mass and energy be finite, i.e., ma(0) bounded; then for every
p > 0 there exists a constant B,, > 0, depending on 2"P, v, mo(0), and A
from condition (2.6), such that

(4.11) Myp(t) < Byp max{1,t""P/7}  for all r € RT andt>0.
2. Furthermore, if m,,(0) is finite, then the control can be improved to

(4.12) myp(t) < B, forall r € RT andt > 0.
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Proof. These statements can be shown by studying comparison theorems for ini-
tial value problems associated with ordinary differential inequalities of the type

y'(t) + Ay'Te(t) < By(t)

and comparing them to classical Bernoulli differential equations for the same given
initial y(0). In our context, these inequalities are a result of estimating moments for
variable hard potentials, i.e., v > 0 as indicated in (2.5). Comparison with Bernoulli-
type differential equations was classically used in angular cutoff cases in [33, 34, 27, 1].
Also, it was used in the proof of propagation of L' exponential tails for the derivatives
of the solution of the Boltzmann equation by means of geometric series methods in
[9, 20, 3].

In fact, the extension to the non-cutoff case follows in a straightforward way
from the moment estimates in Proposition 4.1. Indeed, the moment estimates, from
either (4.2) or (4.3), show that the only negative contribution is on the highest-order
moment, being either m,q4~, with v > 0 for » = 7 or 2, respectively. Then, due to
the fact that v > 0, an application of the classical Jensen inequality with the convex
function () = 2'+7/(P) yields

Myptry () > maW(Tp)(O) m,{;V/(Tp) (t) for all t > 0.

Applying this estimate to the negative term in either (4.2) or (4.3) results in the
following estimate:

(4.13) my, < Brpmyp — Kimypiy < Bppmyy, — Klmi;“//(rp)7

with r either 4 in (4.2) or 2 in (4.3). The constants are K; = K;(7y, A2) with 0 < v
<1 and A, from the angular integrability condition (2.6) and B,, = B,,(K2,2"PK3)
after using that ¢, < 1, where K> and K3 also depend on the initial data and collision
kernel through v and As.

Therefore, as in [33], we set

y(t) == myp(t), A:= Ky, B:= By, and ¢ =v/(rp).

The bound (4.12) then follows by finding an upper solution that solves the associated
Bernoulli ODE

Y (t) = By(t) — Ay *(t)
with finite initial polynomial moment y(0) = m,.,(0). This yields that for any ¢ > 0,

A —rp/
mp(t) < {mrp”/ 09)(0) e~ BV 00 4 2 (1 - eth/(m))]

{g (1 _ e—th/(rp))

—rp/7
<A)rp/v (;per/rp) P < 1,

IA

} —rp/y

N

5
(1= e BUo) TP s

B

(4.14) < B,, max{1,t""P/7},

where B, := (é(rlp)—rp/v max{(%e’)’Brp/Tp)—rp/“/’ (1—e vBrp/(rp))—rp/v}_
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Now, since m,,(t) is a continuous function of time, if m,,(0) is finite for any
rp > 1, then the bound for strictly positive times we just obtained in (4.14) implies

(4.15) Myp(t) < By

for possibly different constants B,.,. We finally stress that constants B,., depend on
2"P v, m2(0), and Az from condition (2.6). O
5. Proof of Mittag-Leffler moments’ propagation.

Proof of Theorem 2.11 (b). Let us recall representation (2.19) of the Mittag-
Lefller moment of order s and rate a in terms of infinite sums

> t) o24/s
5.1 tv) Eys(a®* (v)?) dv = L.
(51) [ o) e o) > et D
We introduce abbreviated notation a = % and note that since s € (0,2), we have
2
(5.2) l1<a:=-<o0.
s

We consider the nth partial sum, denoted by £, and the corresponding sum, denoted

by Z7 ., in which polynomial moments are shifted by «. In other words, we consider
n aq n aq
ex(ony =3 T g (g =y e e
= Tlag+1) = Tlag+1)
For each n € N, define
(5.3) T, :=sup{t > 0| E}(a,7) < 4My, for all T € [0,¢)},

where the constant My is the one from the initial condition (2.25).
This parameter T,, is well defined and positive. Indeed, since o will be chosen to
be at least smaller than «g, then at time t = 0 we have
" Mgy (0) o mgq

eno) =S Mo /ﬁ 0)E a0/ (0)?) dv < 40,
= I'(ag+1) qOI‘aq+1

uniformly in n. Therefore, since partial sums are continuous functions of time (they
are finite sums and each mgy(t) is also continuous function in time t), we conclude
that £ (o, t) < 4Mj holds for ¢ on some positive time interval denoted [0, ¢,) with
t, > 0 (and hence T,, > 0).

Next, we look for an ordinary differential inequality that the partial sum £ (a, t)
satisfies, following the steps presented in subsection 2.4. We start by splitting
d.gn(q,t) into the following two sums, where index gy will be fixed later, and then

at‘a
apply the moment differential inequality (4.3):

go—1

d mb, () a® " mb () a™
7(c/-n ,t — q q
dt ale:t) ;} T(ag+1) +; T(ag+1)
1 n a
~ qu(t) K, Z m2q+"f + Ky m2q(t) ad
F(aq+1 q+1 — T'(aq+1)
=0 q=qo
€ q q a ks q—2
Ky 4t a _ _
a3 LSS (02 )
(54) =: SQ*Kl Sl+K2 SQ+K3 53.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/16/19 to 128.83.63.20. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

MITTAG-LEFFLER MOMENTS FOR THE BOLTZMANN EQUATION 855

We estimate each of the four sums Sy, 51,52, and S separately with the goal of
comparing each of them to the functions &' (a, t) and I}, (o, t). We remark that the
most involving term is S3. It resembles the corresponding sum in the angular cutoff
case [1], with a crucial difference that our sum S5 has two extra powers of ¢, namely,
q(q — 1). Therefore, a very sharp calculation is required to control the growth of
S3 as a function of the number ¢ of moments. This is achieved by an appropriate
renormalization of polynomial moments within S5 and also by invoking the decay rate
of associated combinatoric sums of Beta functions developed in the Appendix A.

The term Sy can be bounded by terms that depend on the initial data and the
parameters of the collision cross section. Indeed, from Proposition 4.2, the propagated
polynomial moments can be estimated as follows:

(5.5) my, <B, and m, < B,B, for any p > 0,

where the constant B, defined in (4.14) depends on ~, the initial p-polynomial moment
my,(0), and Ay from condition (2.6).

In particular, for 0 < v < 1, we can fix qg, to be chosen later, such that the
constant

(5.6) Cqp = ;Q?X{Bp, B,B,} with I,, ={0,...,2¢q0 + 1}

depends only on qq, v, A from condition (2.6) and the initial polynomial moments
my(0) for g € I,,. Thus, due to the monotoncity of Li norms with respect to k as
presented in (2.14), both the 2¢-moments and its derivatives, as well as the shifted
moments of order 2¢ + vy, are controlled by c,, as follows:

(5.7) Maq(t), Magi~(t), My, (t) < cgy  forall g€ {0,1,2,...q0}
Therefore, for gy fixed, to be chosen later, Sy is estimated by

qo—1 qo—1

(58) ZI‘aq—i—l qoZI‘aq+1

N~ (o)

q0 T 1 1)
= Tla+1)

<c¢ < cqo e < 2¢q,

for the parameter o small enough to satisfy
(5.9) a < (In 2)1/“ or equivalently e*" < 2.

The second term S; is crucial, as it brings the negative contribution that will yield
uniform-in-n and global-in-time control to an ordinary differential inequality for
&y (a,t). In fact, S is controlled from below by Z;. (a, t) as follows:

n go—1
Magyy n Magyy
Sy = g 4 =7" - E .
' & Tlag+1) T & Tlag+ )

So, Using (5.7) and the estimate just obtained for Sy in (5.8) yields the bound from
below:

qo—1 0%

(510) Sl Z I;’L,,Y — Cqq qgo m I;l,y 2Cq0.
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The sum S5 is a part of the partial sum £, so
(5.11) Sy <&

While this term is positive, it will need to be lower order than the one in the negative
part of the right-hand side.

Finally, we estimate S3 and show that it can be bounded by the product of
Ex(a,t) and I (o, ). We work out the details of the first term in the sum S3 :=
S3,1 + 53,2, that is, the one with may., mag—r). The other sum with may mog—k)4y
can be bounded by following a similar strategy. In order to generate both the partial
sum &7 (a,t) and the shifted one Zi'  («,t), we make use of the following well-known
relations between Gamma and Beta functions (see also Appendix A):

I(ak+1)T(a(g—k)+1)
I'((ak+1)+ (a(g — k) + 1))
T(ak+1)T(a(g—k)+1)

I'(ag +2)

Therefore, multiplying and dividing products of moments maog,ma—k) in S31 by
T(ak 4+ 1)'a(qg — k) + 1) yields

n kq
. gqq(q—1)a q—2
Sua 1= 30 O 3 (1 Dt e

(5.12) B(ak +1,a(g—k)+1) =

4=qo0
k _
- Z gqq(q Zq < 2> Mgk 40 Mg k)aa(q k)
qqoq — \k—1) I(ak + 1) T(a(q — k) + 1)

I'(aq +2)
I'(ag+1)
Note that the factors 7?2(2211; and m;é;{;)—o;c;tnk)
and &) (a,t), respectively.

Next, since I'(ag + 2)/T'(ag + 1) = ag + 1, using the inequality >, ax by
Dk Ok D br, it follows that

x Bak+1,a(q— k) +1)

are the building blocks of I (a, t)

IN

kq

n q o 2
6513 Su<d e+ Dalo-1) (3 (127) Blak+ tatg— 1)+ 1)
9=q0 k=1
kq ak a(q—k)

M2k @ M2(g—k)
x Z T'(ak +1) T'(a(q — k) + 1)

Next we show that the factor
kq

(ag+1)q(g—1) Z (Z:i) B(ak+1,a(qg—k)+1)
k=1

on the right-hand side of (5.13) grows at most as ¢>~¢. Indeed, using Lemma A.6, the
sum of the Beta functions is bounded by C,(aq)~(**®). Therefore, S3.1 is estimated by

n ) kq m2k+’yaak m2(q k)a(l(q_k)
5.14 S310<Ca Y eqq*" n ’
(5.14) 51<Ca ) 244 £~ T(ak +1) T(a(g — k) +1)

9=q0
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where C, is a (possibly different) constant that depends on a. Now, by Lemma 2.9,
the factor g, ¢*>~% decreases monotonically to zero as ¢ — oo if the angular kernel
b(cos ) satisfies (2.6) with 8 = 2a — 2. Hence,

(5.15) €0’ " <eqqy ” for any ¢ > qo ,

and thus the term Ss; is further estimated by

a(q—k)
Moj 4 m2(f1—k)a
_ .
53,17005110 qzqkzl [(ak +1) I(a(g — k) +1)

Finally, inspired by [1], we bound this double sum by the product of partial sums
&y Iy - To achieve that, change the order of summation to obtain

kn n ak a(q—k)
Y Mgk4y Q7" M2(g—k) X
(5.16) S31 < Cqe a
w @ kzzomax{%m} T(ak+ 1) D(alg — k) + 1)

kn ak n a(g—k)
—a M2kt~ Mo (q—k)&
S 011540 qO E : E
k=0 F(ak + 1) max{qo,2k—1} F(a(q o k) + 1)
< Cagg qgia Igﬂ &

obtaining the expected control of S3;. As mentioned above, the estimate of the
companion sum Ss 2 follows in a similar way, so we can assert

(5.17) S3 < Cacqy a “Ex(t) T3, (1)

Next we obtain an ordinary differential inequality for £”(¢) depending only on data
p.arlzmeters and Z}  (t). Indeed, combining (5.8), (5.10), (5.11), and (5.16) with (5.4)
yields

d
(518) a(‘:{? S —Klz-;,y—i-Qqu(l—f—Kl) —&-Kg(‘:g +8q0 qO “C KgI” Er.

a,y “a

Since, by the definition of time T;,, the partial sum &} is bounded by the constant
4Mj on the time interval [0,7,,], we can estimate, uniformly in n, the following two
terms in (5.18):

(519) 26%(1 + Kl) + Ko g;z < 2Cq0(1 + Kl) + 4K My =: Ko,

where Ko depends only on the initial data and go (still to be determined).
Thus, factoring out Z; ., from the remaining two terms in (5.18) yields

a,”y

d
&E;IS—Z% (Kl—qu qo C Kgg )+K0
(520) < _Igﬁ (Kl - 45q0 QO_a Ca K3 MO) + ICO)

where in the last inequality we again used that, by the definition of 7},, we have £} <
4My on the closed interval [0,T,,]. Now, since &g, qg_a converges to zero as qp tends
to infinity (by Lemma 2.9, as b(cos 6) satisfies (2.6) with 5 = 2a — 2), we can choose
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large enough ¢y (depending on ~y, angular kernel (through the constant As), inital
mass mg(0), initial value My of the Mittag-Leffler moment of order s, and s) so that

K
(5.21) Ky —4eg q2 % Cy K3 My > 7§a

For such choice of ¢y we then have

K 1
5.22 —5" o I” Ko.
( ) dt a = + Ko
The final step consists in finding a lower bound for Z7 , in terms of £;'. The following
calculation follows from a revised form of the lower bound given in [1]:

. n Magiy aq )20+ ged
" (t) := t,v)d
av’Y() Z aq+1 Z/v 1 aq+1) f(,U) v
q=0 f
1 / (v)27
> —— f(t,v) dv
a/? qz:(:) (0)> X T(ag+1)
1 n / <v>2q o n (v >2q a®d
= —— f(t,v) dv — / 7]”(15,11) dv
a/? (q;) ra L'(ag +1) =<k I'(ag+1)
1 - a1 a™
> EM(t — — f(t,v) d
_ary/2<a( ;)/Rd].—‘(aq+1)f( U) v
1 o qala—1)
> nopy I
T/ <5a() 7n0§:11aq+ )>
1 1 a1

(5:28) > EI(t) -

Therefore, applying inequality (5.23) to (5.22) yields the following linear differ-
ential inequality for the partial sum &'

d Kymge® °
Zen) < 21~
Lenn < )+

2a @ 207

+ Ko.

Then, by the maximum principle for ordinary differential inequalities,

2072 | Kymge®'™
K 7
202

2a7/2

Ky

2/5( ) gn( ) < Mo + +IC().

l1—a

=My+mpe* +

< 4Mjy

provided that o = « is chosen sufficiently small so that

(5.24) aie , 201"
. moe + K ’Co < 3M0,
1

which is possible since a > 1.
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In conclusion, if o is chosen according to (5.21) and hence depending only on
the initial data, the initial Mittag-Leffler moment, v, and As from (2.6) and if
o = min{ag, (In2)Y/* a1}, from (5.24), we have that the strict inequality £ (t) < 4My
holds on the closed interval [0, T;,] uniformly in n. Therefore, invoking the global con-
tinuity of £ (t) once more, the set of time ¢ for £7(¢) < 4M; holds on a slightly larger
half-open time interval [0, 7}, + ) with g > 0. This would contradict maximality of
the definition of T}, unless T,, = +o0o. Hence, we conclude that T,, = +oco for all n.
Therefore, we in fact have that

EMNayt) <4My for allt >0 for all n € N.

Thus, by letting n — +00, we conclude that £X°(a,t) < 4Mjy for all ¢ > 0. That is,

(5.25) ft,v) 52/S(a2/s (v)?) dv < 4M,y for all t > 0.

Rd
Estimate (5.25) shows that the solution of the Boltzmann equation with the finite
initial Mittag-Leffler moment of order s and rate ag will propagate Mittag-Leffler
moments with the same order s and rate a satisfying o = min{ag, (In2)¥/, a;}.
This concludes the proof part(b) of Theorem 2.11. |

Part(a) of Theorem 2.11 concerns the generation of Mittag-Leffler or exponential
moments. This is proven in the next section.

6. Proof of exponential moments’ generation.

Proof of Theorem 2.11 (a). Notation and strategy are similar to those in the
proof of Theorem 2.11 (b) contained in section 5. The goal is to find a positive
and bounded real valued number « such that the solution f(v,t) of the Boltzmann
equation will have an exponential moment, of order v and rate o min{t, 1}, generated
for every positive time ¢, from the fact that the initial data fo(v) has finite energy
given by Mg := ms(0).

The proof works with the exponential forms of order . From this viewpoint,
the difference with respect to the propagation of the Mittag-Leffler moments result
obtained in the previous section is that the propagation result had to be established
for every order s € (0,2), while now the generation of Mittag-Leffler moments of order
s and rate « implies generation of such moments for all smaller orders 0 < s. Hence,
it suffices to consider just the order s = ~.

First, for an arbitrary positive and bounded number «, we denote the nth partial
sum of the exponential moment of order v by EZ(at,t) and the corresponding one in
which polynomial moments are shifted by v by I (at, t), that is,

n n

(6.1) E"(at,t) = Z Myqg(t) (at)? Z Mg (t) (at)?

= T+l = o
n _ "~ Mg iq (t) () _ T~ Mg s (t) ()
(6.2) I (at,t) = qz:;) CES T qz:;) J .

The form EZ(at,t) is the exponential moment of order v with rate a of the probability
density f in the Mittag-Leffler representation.
Define the time 7} as follows:

(6.3) Ty :=min {1, sup{t>0|E}(ar,7) <4M;, forall7e[0,t) }}.

n
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Ty is well defined where now the constant Mg is the sum of the initial conserved
mass and energy, i.e., Mi = Mj(t) = [ f(v,t)(v)?dv = [ fo(v){v)?dv as in the
initial condition for the generation of the Mittag-Leffler moments estimate (2.24).
Since moments are uniformly in time generated for the hard potential case, even for
angular non-cutoff regimes (see [33]), then every finite sum E(at,t) is well defined
and continuous in time. Note that for ¢ = 0, we have that E(a0,0) = mo < 4Mg.
Then, as in the previous case, continuity in time of partial sums E?(at, t) implies that
EM(at,t) < 4M{ holds for ¢ on some positive time interval [0, ¢} ), which implies that
T > 0. In addition, the definition (6.3) implies that T* < 1 for all n € N.

As we did in the previous section for the proof of propagation of Mittag-LefHler
moments, we search for an ordinary differential inequality for Efy‘(ozt,t), depending
only on data parameters and on Z7_ (at, t), for a positive and bounded real valued «
to be found and characterized.

To this end, we start by computing

n

(6.4) iEf;(at, h=ay_

Mag(t) (ot a-1 - m;q(t) (at)?
u () (@t | 3

(¢ —1)!

q=1

g (8) ()1t RS mly () (ah)? I my(f) (at)?
e e S

q=1 q=0 q=qo

where index ¢o will be fixed later. The first sum in this identity is reindexed from
q— 1 to q and estimated by I7_(at,t) (defined in (6.2)) as follows:

n—1 n

t )4 t t)4
PEECEIVICILNS LSO ICH )
q=0 T q=0 e

Next, we replace the term m! () by the upper bound in the ordinary differential
inequality (4.2) just on the sums starting from ¢q, for o > 0, and for

qg 1 3 . g 1 3
. #I= = = = 4 | = | G R
(6.5) kq \‘4 5 + QJ integer part o 15 + 5
d o n Wl ml (1) (at)
&EV (at,t) < aly . (at,t) + E T
q=0
n n
t) (at)? t) (at)?
(6.6) _K1§:M+KZZM
q=qo ¢ 7=q0 q:
i ko g 2
2 : Eyq/2% (5 — 1) (at)? i—=
o - q' 2 k-1
9=q0 k=1

X ((Maykpry () Meyg—2yk (£) + Mk () Myg—2yk4~ (1) )
=: aﬂjﬁ(att) + So— K151+ Ky Sy + K3 S3.

We stress that the positive constant K; = As C depends only on the collision cross
section with Ay defined in (2.21) and C, only depending on 0 < v < 1. In the
following, we will estimate the terms in (6.6) to show that the negative one is of
higher order uniformly in time ¢ for a choice of o and ¢y that depend only on the
initial and collision kernel data.
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The term Sy can be bounded by terms that depend on the initial data and the
parameters of the collision cross section. Indeed, as was the case for the propagation
estimates, from Proposition 4.2, setting r =  in (4.14), the generated polynomial
moments can be estimated by

(6.7) Maq(t) < Byyg ng{lafq} and

g (t) < Bygtiyg(t) < BygBog I{l;—)g({l,t_q},

where the constant B4, now from (4.14), also depends on m2(0), 7, ¢, and Ay from
condition (2.6). Next, for gy fixed, to be chosen later, set

(6.8) Co i= _ Imax 1}{Bw’ BygByg}

q€{0,...,q0—

and then both the 2g-moments and its derivatives are controlled by c; as follows:

(6.9)  mag(t), (1) <

o rpfg{{l,t_q} for all ¢ € {0,...,q0 — 1}.

Thus, we can estimate Sy, for a fixed qg, to be defined later, by

T~ mly (1) (at)?

Sui= 3 = g

q=0

. o & ()
< ¢, max{L,1 }ZO "
o

qo—1

al

* q =

(6.10) <, r{l;ig({t ,1} EO 4
q:

(6.11) <ce” < 2¢y,

uniformly in ¢ € [0,7;%] C [0, 1] for any o < In2. To obtain inequality (6.10) we used
that ¢ < T* < 1.
The sum S is a part of the partial sum EZ; hence,

n q
(6.12) Sy i= Z M < EX (o, t).

9=q0

The sum S; needs to be bounded from below because of the negativity of the term
K, 51. To this end, using again the time-dependent estimates for moments from
Proposition 4.2, the estimate from below follows for ¢ € (0,7,¥] C (0, 1] as

n qo—1

& mgn Mgy ()t
9=4q0 q q=0 q

go—1 _
maxo<i<i{1,t (vq+7)/7}(at)q

= I’TYL»’Y(at’t) - 020 2 : q!
q=0

go—1 , .1
. 7 (at)?
> 1ot -, S0 e
q=0 E
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% qo—1

_ €q af
= I3, (at,t) - TO Z m
=0 7
C*
> 17 (at,t) — %ea
2c;
> I3, (at, 1) — —%

The estimate for the double sum term in S3 uses an analogous treatment to the one
in the previous section to obtain the Mittag-Lefler moment’s propagation. More
precisely, set S3 := S31 + 53,2, and we make use of the identity (A.4) written in the
format

(6.14) I(2k+ 1)I(qg—2k+1)=B2k+1,q—2k+1)T(q+2)

to obtain

Mkt () (at)?* Myq—2vk(t) (at)i—2F

T(2k+1) T(q—2k+1)

I'(g+2)
P(g+1)

<eyqorz )0+ D% (% B 1)

9=q0

X B(2k +1,q — 2k + 1)

Eq.

M2yk+(t) (at)?* Moyg—24k(t) (at)
<2 215?21“1) r(zk—zk+1)

q—2k

k=1
koo (42

(6.15) <Y |2 7 |B@k+1,q-2k+1)
k=1 \ k—1

The last inequality was obtained via the inequality >, apbr < >, ar Y, by and the
fact that e, decreases in ¢. Again, using the estimate of Lemma A.7, the sum of the
Beta functions is bounded by Cg~3, with C a uniform constant independent of g¢.

Therefore,
koo (42
(q+1)¥(%—1) S l2 7| B@Ek+1,q-2k+1)
=t \ k-1
(6.16) <@+ P (F-1)d* <0

uniformly in g. Then, estimating the right-hand side of (6.15) by the estimate (6.16)
just above yields

n kq,

Maykn (t) () moygayi(t) ()
(6.17)  S31 < K3 Oy ey492 Z Z 7FJ(r;k +1) WF(‘;— 2k +1)

q—2k

q=qo \ k=1
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Finally, as was the case for the propagation estimates in the previous section,
changing the order of summation in the right-hand side of (6.17) yields a control by
a factor EZ(at,t) I (at,t) as follows. Recalling the definition of k4, from (6.5) and
evaluating it for n instead of ¢ yields

gty . 2k —2k
Mayhty ()™ Mgy (at)
S3.1 < Cyeyg0/2 Z Z o
=0 gma(mar—zy  CEHL Tla—2k+1)
Lﬂ+§,lj . )
=Cy¢ /2 ' i ’ mQ'ﬂH—’y(t) (Oét)zk Z m'yq—Q»yk(t)(ozt)q 2k
- =790 -
k=0 F(2k + 1) g=max{qo,4k—2} F(q 2k + 1)
g+3-4)
Moty (1) (at)?*
SCiewz 2. “rgpyn o Biebd
k=0

< Cyeqq02 I, (at, t) EX(at, t).
An analogous estimate can be obtained for S35, so overall we have
(6.18) S3 < 20 e44,/2 I, (at, t) EY(at, ).

Therefore, combining estimates (6.11), (6.13), (6.12), and (6.18) with (6.6) yields the
following differential inequality for EY = EZ(at,t) depending on 77, = Iﬁﬁ(at, t):

d . 2ck
G <2t (SR T Ky TSR Ky B 4 22,0, OB T3 ) 4 o)
This inequality is the analog to the one in (5.18) for the propagation argument. Since
the partial sum EZ(at,t) is bounded by 4M{ on the interval [0, 7};] uniformly in n
and T,y <1, then the right-hand side of the above inequality is controlled by

d 2K16

&E,?(Ott, t) < —I;‘ﬁ(at,t) (Kl — SME; 5’yqo/2C’YK3 - a) + 4Mg Ko+

do *
: + 20q0.

Next, since t <T7* <1, ¢~ > 1, so the above estimate is further bounded by

d n n * ’C
EEV (at,t) < =17 (at,t) (K1 — 8M{ £,gy/2C1 K3 — ) + %
with 0 < Ky, = 2¢;, +4Mj K2 +2K ¢, only depending on data parameters, including
qo, independent of n.
Finally, since €.4,/2 converges to zero as qo goes to infinity, we can choose large
enough ¢o and small enough « so that b(cos0) satisfies (2.6) with § = 2a — 2),

K
(6.19) Ky —8¢4 ¢ K3 — > 71
which yields
d n Kl n IC‘I
(6.20) &é‘a (art,t) < — 7Im(onf,t) + TO
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Therefore, the final step consists in finding a lower bound for Z}! . (at,t) in terms of
EM(at,t) as follows:

n n+1
n _2 :mv(qul)(t) (at)? _ 2 : moq(t) (at)? q
Liolat,t) = q! N q! at
qg=1

q=0
n

1 Moyq(t) (at)?  EZ(t at) — Mg
1 o) (o) _ |

|
at por q! at

(6.21)

vV

Combining (6.20) and (6.21) yields

d ., 1 (K1 (B2 — M) K, n oY%
Gt < — (;a —Icq0> = E"— My — 22K, -

Then choosing a small enough « such that

2 Ky Mg
(6.22) Mg + —aICqO < 2Mj or equivalently o< =70
K1 ZICQO
yields
d n Kl n * *
(6.23) aE7 (at,t) < ~5ai (EZ (at,t) —2Mg)  Vte[0,T;].

This differential inequality can be integrated using the integrating factor t3a fort > 0.
Indeed, inequality (6.23) is equivalent to

d/x K K
(6.24) —(tm Ev(at,t)) <2My o teE !

Tx.
i vt € (0,7,]

Integrating in 0 < e <t < T}, one readily gets

€ L € Ky
Efyl(atvt) < (E) B E,TYL(OAG,E) +2Mg <1 — (¥> 2“)

< max { EJ (ae, €),2M; } Vit € [e, Ty].

(6.25)

Sending € — 0 in (6.25), it follows that EZ(at,t) < max{E%(0,0),2My5} < 2M{

for any t € [0,7,]. For the last inequality we recall that EZ(0,0) = mo < 2Mj.

Therefore, the strict inequality EZ;(at, t) < 2M§ < 4M§ holds uniformly on the closed

interval [0,7,y]. By continuity of the partial sum, this strict inequality EZ(at,t) <

4M;g then holds on a slightly larger interval, which would contradict maximality of

T from the definition (6.3), unless T" = 1. Hence, we conclude that T, = 1 for all n.
Therefore, we in fact have that

El(at,t) <4Mg for allt € [0,1] for all n € N.

Thus, by letting n — +oo0, we conclude that ES°(at,t) < 4Mg for all ¢ € [0,1].
That is,

(6.26) /R F(80) Ex (@) 0)) dv < 4My for all £ € [0,1]
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To finalize the proof, first set & = min{In2, ay} from (6.11) and with oy satisfy-
ing condition (6.22) that depends on the initial data, v, the collisional kernel, and A,
from the integrability condition (2.6). This « is a positive and bounded real number.

Then note that the above inequality implies that at the time ¢ = 1, the Mittag-
Leffler moment of order v and rate at = « is finite. Now, starting the argument from
t = 1 on, we bring ourselves into the setting of the propagation and conclude that for
t > 1, the Mittag-Leffler moment of the same order v and potentially smaller o than
the one found on time interval [0, 1] remain uniformly bounded for all ¢t > 1.

In conclusion,

(6.27) / f(t,v) <5'2/W((oaf)2/”Y ()?)dv < C forall t €[0,1]
Rd
and
(6.28) / F(t,0) E2/0(0*7 (0)2) dv < C forall ¢ > 1.
Rd

Therefore, we conclude that for all £ > 0, we have
(6.29) f(t,v) &y ((@min{l,t})?7 (v)?) dv < C.
Rd

In particular, this asserts that the solution of the Boltzmann equation with an ini-
tial mass and energy will develop Mittag-Leffler moments or equivalently exponential
high energy tails of order v with rate r(¢) = amin{t, 1}. Therefore, the proof of
Theorem 2.11 is now complete. ]

Appendix A. We gather technical results used throughout this manuscript.
The first two lemmas focus on elementary polynomial inequalities that will be used
to derive ordinary differential inequalities for polynomial moments in section 4.

LeEMMA A.1 (polynomial inequality I). Letb<a < 5. Then for any x,y >0,
(A1) YT 2Tyt < byt ety

Remark A.2. This lemma is useful for comparing products of moments. Namely,
as its consequence, we have that for a fixed s, the sequence {my ms_g} is decreasing
in k for k = 1,2,...,|s/2] := Integer Part of s/2. For example, if s > 4, then
MaMs_2 < M1Ms_1.

Proof. Note that a,b, and s satisfy a —b > 0 and s — a — b > 0. Therefore,
(ya—b _ xa—b) .’Ebyb (ys—a—b _ l‘s—a—b) > 0,

which is easily checked to be equivalent to the inequality (A.1). d

LEMMA A.3 (polynomial inequality IT, Lemma 2 in [9]). Assume p > 3, and let
ky, = |(p+1)/2]. Then for all z,y > 0, the following inequalities hold:

kp—1

kp
p k p—k p—k k p_.p_ D b k p—k p—k k
Z(k>(xy +2P PPy < (z+y)P —aP —y g;(k)(ajy + 2P FyF).

k=1
Remark A.4. Using this lemma, it is easy to see a rough but useful estimate:

kp

(A.2) Z (i) (xkyp—k + xp—kyk) < 2(z +y)P.

k=0
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Next, we recall the basic definitions and properties of Gamma I'(x) and Beta
B(x,y) functions that are useful for the next estimates. They are defined via

0 1
(A.3) I'(z) = / t*le7tdt and  B(ax,y) = / =1 (1 — t)¥Lde,
0 0
respectively. Two fundamental properties of these well-known functions are

I'(z) D(y)

A4 I'z+1)=al(x and B(z,y) = ——=.
(A.4) (¢ +1) = T() (@) = Tt
The following classic result for estimates of generalized Laplace transforms will be
needed to estimate the combinatoric sums of Beta functions to be shown in the sub-
sequent Lemma A.6.

LEMMA A.5. Let 0 < a,R < o0, g € C([0,R]), and S € C([0, R]) be such that
S(0) =0 and S'(z) <0 for all z € [0, R]. Then for any A > 1, we have

R i - 1 o
/0 2271 g(x) M@ de = T(a) <—/\S’(O)) (g(0) + o(1)).

The proof of this estimate is a direct application of the Laplace method for asymptotic
expansion of integrals that can be found in [30, p. 81, Theorem 7.1].

The next two lemmas estimate a combinatoric sum of Beta functions. These
estimates are inspired by the work in Lemma 4 in [9] and Lemma 3.3 in [26]. However,
in our context, the arguments of Beta functions are shifted, so we compute exact decay
rates for our situation. These estimates are crucial to control the growth in g of the
ordinary differential inequality of partial sums of renormalized moments.

The first lemma will be used for the proof of propagation of moments with a = 2/s,
while the second will be used for the generation of moments with s = ~.

LEMMA A.6 (first estimate on combinatoric sums of Beta functions ). Let ¢ > 3
and kq = [(¢ +1)/2]. Then for any a > 1, we have

k
q q_2 1
(A.5) ;;1 (k 3 1)B(akJr La(g—k)+1)<C, (ag)i+e’

where the constant C, depends only on a.

Proof. Reindexing the summation from k =1 to k = 0 by changing k — 1 into k
and rearranging the integral forms defining Beta functions yields

kq

q—2
kz::l <k_1>B(ak+1,a(q—k')+1)
kq—1
- kz:o (q;Q) Bla(k+1)+1,a(qg—k—1)+1)

1 kq—1
_ %/ Z (q ; 2) (xa(k-i-l) (1 _ x)a(q—k—l) + ma(q—k—l) (1 _ x)a(k-i—l)) dr
0 k=0
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kg—2
1t — [(q—2 k .

- - a1 — z)® ak (1 _ a(qg—2—k) a(qg—2—k) 1— ak
2/033( x)kz_o<k)(ac (1—2x) +z (1-2x) )dm
1 1 kp p

_ = a1 — a ak 1— a(p—k) a(p—k) 1 — ak d
2/0 (1 —x) kzzo (k) (m (1-x) +x (1—-x) ) x

after setting ¢ — 2 = p in the last integral. The estimate (A.2) then yields

kq
(Z_i)B(ak—l—l,a(q—k)—i—l)
k=1 N7
1! »
§§ 2*(1—2)*2 (z°+ (1 — )" do
0

1
/ 21— 2)% (2% + (1 — 2)*)72 da
0
1/2
= 2/ 2% g(z) 5@ dz,
0

where g(z) = (1—2)® (2% + (1 — 2)*) "2 and S(z) = log(x* + (1 —x)) for = € [0,1/2].
Finally, applying Lemma A.5 for these g(z) and S(z) as indicated and noting that
9(0) =1 and S’(0) = —a yields the desired estimate:

(A.6) > (q N 2>B(ak: +1a(g—k)+1) < CyT(a+1) (alq)aﬂ . 0

LEMMA A.7 (second estimate on combinatoric sums of Beta functions). Let 0 <
s <1 and q > 3. Then there exits a constant C, independent on q, such that

1+k%7 q 2
5~ 1
(A7) > |2 5| BRk+1,q-2k+1)<C.
= \ k-1 q

2
s

Proof. First we note a simple property of binomial coefficients. For any integer
k € Ny and any real numbers a,a € R that satisfy @ > a > k,

(0)-()

This is easily proved by noting that the binomial coefficient (Z) (and similarly (Z))
can be computed as

(a) a(a—1) (afg-‘-(a—kﬂrl)

Next, since s < 1,

(A.9)

(IS
®» | N
IN
N[
|
)
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Therefore,
hyer g 2
2 s | B2k+1,g—2k+1)
=1 \k—1
kg > /9 2
(A.10) < 2 B2k +1, ¢—2k+1)
k=1 k—1
M9y .
_ 2 B(2k+1,2<§—k:)+1).
k=1 \k—1
Now applying (A.5) yields (A.7). |

Appendix B. Finally, for completeness we include detailed calculation of deriv-
ing the representation of energies from (3.3). Recall that

U+ 1

V= + §|u|cr.

"o [v+vel?  Jv—w? 1
:1 —

(v") + 1 + 1 —|—2|u|0

ol +Jus]? | 1

:1 _— —

+ 2 +2

2 *2 1 1 R

=1+ w + §(v+v*) (v —vy)cosl + §|u||V|sin9(V-w)

|u|(v+ vs) - (Gcos @ + wsin§)

0 0 1
=1+ |v|? cos® 3 + |v,]? sin? B + §|u|\V\ sinf(j - w) sin «

0 0
= (v)? cos® 3 + (v,)%sin? 3 + v X v sinb(j - w),

which coincides with the representation in (3.3).
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