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Abstract. In the present work, we propose a deterministic numerical solver for the space homo-
geneous Boltzmann equation based on discontinuous Galerkin (DG) methods. Such an application
has been rarely studied. The main goal of this manuscript is to generate a conservative solver for the
collisional operator. As the key part, the weak form of the collision operator is approximated within
subspaces of piecewise polynomials. In order to save the computational cost and to resolve loss of
conservation laws due to numerical approximations, we propose the following combined procedures.
First, the collision operator is projected onto a subspace of basis polynomials up to first order. Then,
at every time step, a conservation routine is employed to enforce the preservation of desired mo-
ments (mass, momentum, and/or energy) by solving a constrained minimization problem with only
linear complexity. The asymptotic error analysis shows the validity and guarantees the accuracy of
these two procedures. The approximated collision integral is finally written as a quadratic form in
a linear algebra setting. The theoretical number of operations for evaluating the complete set of
the approximated collision matrix would be of order O(N3) with N being the total number of free-
dom for d-dimensional velocity space. However, we have found and applied a “shifting symmetries”
property in the collision weight matrix that consists of finding a minimal set of basis matrices that
can exactly reconstruct the complete family of such a matrix. This procedure reduces the compu-
tation and storage of the collision matrix down to O(N2). In addition, the matrix is highly sparse,
yielding actual complexity O(N2−1/d), with d being number of dimensions. Due to the locality of
the DG schemes, the whole computing process is well performed with parallelization using hybrid
OpenMP and message passing interface. The current work only considers the homogeneous Boltz-
mann equation with integrable angular cross sections under elastic and/or inelastic interaction laws.
No transport is included in this manuscript. We only focus on the approximation of time dynamics
for conservative binary collisions. The numerical results on two-dimensional and three-dimensional
problems are provided.
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1. Introduction. The Boltzmann transport equation (BTE) has been the key-
stone of kinetic theories. Extensive efforts have been put onto the numerical treat-
ments for the nonlinear BTE. The main challenges include, but are not limited to, the
high dimensionality of the collision integrals, conservation properties, variable colli-
sion mechanism, and so on. The BTE is an integro-differential transport equation,
with the solution a phase probability density distribution f(x,v, t) measuring the
likelihood to find molecules at a location x with molecular velocities v at a given time
t. The classical BTE models interactions or collisions through a bilinear collision op-
erator, where the collisional kernel models the intramolecular potentials and angular
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scattering mechanisms known as the angular cross section. These intramolecular
potentials model from hard spheres to soft potentials up to Coulombic interactions
(important for plasma collisional modeling). The scattering angular function mod-
els the anisotropic nature of the interactions. The angular cross sections could be
integrable (Grad cutoff kernels) or nonintegrable (Grad noncutoff kernels).

The existence of solutions has been a great mathematical challenge and still re-
mains elusive. Solving the BTE and studying the evolution properties are among
the most fundamental problems in fluid dynamics. The numerical approximation to
solutions has always been a very challenging problem. Extensive efforts have been
put into the numerical treatment of the BTE and other kinetic equations. The main
challenges include, but are not limited to, the high dimensionality in the collision
operator and revealing the collision mechanism through suitable formulating.

Basically, there are a few classes of computational methods for solving the BTE.
One of them is the well-known direct simulation Monte Carlo (DSMC) method, which
was developed initially by Bird [5] and Nanbu [40] and more recently by [44, 45].
DSMC was developed to calculate statistical moments under near stationary regimes
but is not efficient enough to capture transients as well as details of the solution
f(x,v, t). In addition these methods inherit statistical fluctuations that become a
bottleneck in the presence of nonstationary flows or close to continuum regimes. Dur-
ing the last decade, deterministic methods, such as discrete velocity or spectral meth-
ods, have been attracting more attention. Discrete velocity models were developed
by Broadwell [12] and mathematically studied by Cabannes, Illner, and Kawashima
among many authors [13, 36, 37]. More recently these models have been studied for
many other applications on kinetic elastic theory in [7, 15, 39, 55, 33, 48, 49, 50].
Spectral methods, which have been originally developed by Gabetta, Pareschi, and
Toscani [25] and later by Bobylev and Rjasanow [9] and Pareschi and Russo [43], are
supported by the ground breaking work of Bobylev [6] using the Fourier transformed
Boltzmann equation to analyze its solutions in the case of Maxwell-type interactions.

More recent implementations of spectral methods for the nonlinear Boltzmann
equation are due to Bobylev and Rjasanow [10], who developed a method using the
fast Fourier transform (FFT) for Maxwell-type interactions, and then for hard sphere
interactions [11] using generalized Radon and X-ray transforms via FFT. Simultane-
ously, Pareschi and Perthame [42] developed a similar scheme using FFT for Maxwell-
type interactions. Later, Ibragimov and Rjasanow [35] developed a numerical method
to solve the space homogeneous Boltzmann equation on a uniform grid for variable
hard potential interactions with elastic collisions. We mention that, most recently,
Filbet and Russo [23, 24] implemented a method to solve the space inhomogeneous
Boltzmann equation using the previously developed spectral methods in [43, 42]. Re-
cently, a conservative Lagrangian–Spectral method, which uses Fourier transform as
the main tool, was introduced by Gamba and Tharkabhushanam [29, 30], and more
recently by Gamba and Haack [31, 32]. It has the capability of approximating so-
lutions to elastic and inelastic collisional models for both isotropic and anisotropic
noncutoff angular cross sections. Such spectral scheme is also extended to Landau
transport equations modeling collisional plasma in [52], which also combined dis-
continuous Galerkin (DG) scheme to treat the Vlasov subproblem through operator
splitting. For other deterministic schemes, we suggest referring to [4].

While the behavior of the spectral methods may rely on the smoothness of the
underlying solutions, in order to capture more irregular features, the DG [21] method
may be more appropriate due to its locality and flexibility. It is a finite element method
using discontinuous piecewise polynomials as basis functions and numerical fluxes
based on upwinding for stability. Please refer to [21] for more details. For problems of
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3042 CHENGLONG ZHANG AND IRENE M. GAMBA

charge transport in semiconductor devices, DG methods are very promising and have
provided accurate results at a comparable computational cost [16, 17, 18, 19, 20]. It
seems that DG could be a potential method for kinetic equations. However, there
are barely any previous work on full nonlinear BTE. To our best knowledge, one
attempt might be [34], which deals only with a one-dimensional prototype of BTE.
Most recently, Majorana [38] published a work on a DG-based BTE solver. He derived
a set of partial differential equations on t, x by a partial application of the DG method,
which is only on variable v. The collision invariants are used as a basis to guarantee the
conservations laws. However, it is unclear how the collisional integrals are evaluated,
and this evaluation actually requires O(N3) operations. Also very few and limited
numerical results were provided. Another more recent work comes from Alekseenko
and Josyula [1]. Our scheme was developed independently almost at the same time
(see [51]) and is different than the one in [1] in terms of constructing basis functions,
evaluating angular cross section integrals, and the enforcing of conservation routines.
In addition, we are able to provide asymptotic error analysis. We would like to
provide any potential for handling more irregular features in the future, such as rough
boundary conditions, etc.

This paper is organized as follows. Section 2 provides some preliminaries about
the Boltzmann equations; section 3 explains how to project the collision integrals
under our DG scheme and is one of the most important parts, i.e., evaluation of the
collision integrals. Some properties are applied to reduce its complexity, which will be
explained in section 4. Then, section 5 and section 7 introduce our conservation rou-
tine which will be invoked during every time step to enforce preservations of desired
moments. Before showing the numerical results in section 8, we provide the asymp-
totic error analysis in section 6 which verifies that our DG scheme, combined with
the conservation routine, provides good approximations to the original Boltzmann
problem.

2. The Boltzmann equations. The BTE is an integro-differential transport
equation with the solution a phase probability density distribution f(x,v, t) ∈ Ωx ×
R

dv×R+ (where Ωx ⊆ R
dx) measuring the likelihood of finding molecules at a location

x with molecular velocities v at a given time t. The classical BTE models interactions
or collisions through a bilinear collision operator, where the collisional kernel models
the intramolecular potentials and angular scattering mechanisms known as the an-
gular cross section. These intramolecular potentials model from hard spheres to soft
potentials up to Coulombic interactions (important for plasma collisional modeling).
The scattering angular function models the anisotropic nature of the interactions.
The angular cross sections could be integrable (Grad cutoff kernels) or nonintegrable
(Grad noncutoff kernels).

The BTE with initial boundary values reads

∂f

∂t
+ v · ∇xf + F (x, t) · ∇vf = Q(f, f),(2.1)

f(x,v, 0) = f0(x,v) ,

f(x,v, t) = fB(x,v, t), x ∈ ∂Ωx ,

where f = f(x,v, t). The bilinear integral collisional operator on the right-hand side
of (2.1) can be defined weakly or strongly. It encodes the mixing nature of velocity
pairs interchange. The strong form goes

(2.2) Q(f, f) =

∫

v∗∈Rd,σ∈Sd−1

[f ′f ′
∗ − ff∗]B(|v − v∗|, σ) dσdv∗,
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where, here and in the following, denote f ′ = f(v′), f ′
∗ = f(v′

∗) and f∗ = f(v∗) and
drop the dependencies on x, t. v′, v′

∗ are precollisional velocities corresponding to
postcollisional velocities v, v∗. The integration can also parametrized in terms of the
center of mass and relative velocity. And on the d−1 dimensional sphere, integration
is done w.r.t. the unit direction given by the elastic postcollisional relative velocity.
The elastic interaction law is reversible; hence pre and postcollisional velocities are
interchangeable, obeying

(2.3) u = v − v∗, v′ = v +
1

2
(|u|σ − u), v′

∗ = v∗ −
1

2
(|u|σ − u).

Here is the key for the model; the collision kernel is modeled by the transition
probability rates given by

(2.4) B(|u|, σ) = |u|γb(cos(θ)), γ ∈ (−d, 1]

with angular cross sections

(2.5) cos(θ) =
u · σ
|u| , b (cos(θ)) ∼ sin−(d−1)−α

(

θ

2

)

as θ ∼ 0 , α ∈ (−∞, 2).

Without loss of generality, we can assume

(2.6) b(cos(θ)) =
1

2d−1π
sin−(d−1)−α

(

θ

2

)

.

The regularity parameters γ and α actually correspond to different types of in-
teractions and different power-law molecular potentials. For interaction potentials
obeying spherical repulsive laws

φ(r) = r−(s−1), s ∈ [2,+∞),

the collision kernel and angular cross section are explicit for d = 3; that is, γ =
(s − 5)/(s − 1) and α = 2/(s − 1) (see [14]). As a convention, −d < γ < 0 defines
soft potentials, γ = 0 is the Maxwell molecules type interaction, 0 < γ < 1 describes
variable hard potentials and γ = 1 is the classical hard sphere model. Also, the
angular cross sections can be of short range or long range; that is, b(cos(θ)) can be
integrable for α < 0 and nonintegrable when α ≥ 0. When α = 2, together with
γ = −3, the BTE models the grazing collisions under Coulomb potentials for which
the Boltzmann is not well posed. In this case, the model is given by the Fokker–
Planck–Landau equations that can be obtained in the grazing collision limit [31].

The weak form, or Maxwell form, associated to the collisional integral (2.2),
performed in velocity space is

∫

Rd

Q(f, f)(v)φ(v)dv

(2.7)

=

∫

v,v∗∈R2d

f(v)f(v∗)

∫

σ∈Sd−1

[φ(v′) + φ(v∗
′)− φ(v)− φ(v∗)]B(|u|, σ)dσdv∗dv,

where now the positive contribution localizes the test function in postcollisional ve-
locity states, while the negative part does the same in their relative precollisional
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ones. It is obtained after performing a few change of variables between the pre and
postinteraction velocities.

This formulation can also be written in a double mixing convolution structure
after a change of variable u = v − v∗:

(2.8)

∫

Rd

Q(f, f)(v)φ(v)dv =

∫

v,u∈R2d

f(v)f(v − u)G(v,u)dudv

with

G(v,u) =

∫

Sd−1

[

φ

(

v +
1

2
|u|σ

)

+ φ

(

v − 1

2
|u|σ

)

− φ(v)− φ(v − u)

]

B(|u|, σ)dσ.

(2.9)

This weak formulation is a fundamental template not only for analytical properties of
the solution to the Boltzmann equation but also for the development of deterministic
solvers.

Remark. In the current work, we only consider elastic collisions. Yet the proposed
DG scheme has no dependency on the restitution coefficient and therefore can be
readily extended to the inelastic case.

In spite of its bilinear and nonlocal form, the operator Q(f, f) enjoys many re-
markable properties. Among them, the following are most fundamental [14].

Collision invariants and conservation laws. Observing that the elastic
interaction law (2.3) is equivalent to the relations

(2.10) v′ + v′
∗ = v + v∗ and |v′|2 + |v′

∗|2 = |v|2 + |v∗|2.
It is easy to check that the weak formulation

(2.11)

∫

Q(f, f)φ(v)dv =
1

2

∫

ff∗[φ
′ + φ′

∗ − φ− φ∗]B(|v − v∗|, σ)dσdv∗dv

is identical to zero if

(2.12) φ′ + φ′
∗ = φ+ φ∗.

In addition, the Boltzmann theorem shows that (2.12) holds if and only if φ(v)
is in the space spanned by {φ(v) = 1,v, |v|2}; the d+ 2 test functions, referred to as
collision invariants, that imply mass, momentum, and kinetic energy,

(2.13)

∫

Rd

f(v)dv,

∫

Rd

vf(v)dv,

∫

Rd

|v|2f(v)dv,

respectively, are conserved quantities for solutions f(v, t) of the space homogeneous
Boltzmann equation; i.e., these three quantities will remain constant for such flows.

Entropy dissipation and H theorem. In addition, for any f(v) > 0, if set
φ(v) = log f(v), then one can prove the following dissipation of entropy

∫

Rd

Q(f, f) log f(v)dv ≤ 0.(2.14)

This dissipation relation actually implies that the equilibrium state will be given
by a Maxwellian distribution

M(v) =
ρ

(2πT )
d
2

exp

(

−|v − v̄|2
2T

)

,(2.15)
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where ρ is the macroscopic density, v̄ the macroscopic velocity, and T the macroscopic
temperature (= Rϑ where ϑ is the absolute temperature, R is a gas constant).

From now on, we focus on the approximation of the Boltzmann equation describ-
ing the flow of a probability density f = f(v, t). Therefore, in the current work,
we focus on the approximation to the initial value problem associated to the space
homogeneous problem

(2.16)
∂

∂t
f(v, t) = Q(f, f)(v, t) , f(v, 0) = f0(v)

written in its weak form (2.7).

3. The DG projections and evaluations of the collision integrals. We
work in the velocity domain v ∈ R

d. The general theory of homogeneous Boltzmann
equation shows [8, 28] that if Ωv is a sufficiently large velocity domain such that
the initial state f0 enjoys most of its mass and energy inside it, then Ωv (or one
of comparable size) will also contain most of the mass and energy of the solution f
for any given time t > 0. For example, if the initial state f0 ∈ L1

ea|v|2
(Rd), then

f(v, t) ∈ L1
eb|v|2

(Rd) for some positive constant b ≤ a [2]. Thus, it is reasonable to
assume a compact support for the solution and truncate the whole velocity domain
to finite Ωv = [−L,L)d.

A regular mesh is applied; that is, we divide each direction intoN disjoint elements
uniformly, such that [−L,L] = ⋃k Ik, where interval Ik = [wk− 1

2
, wk+ 1

2
), wk = −L+

(k + 1
2 )∆v, ∆v = 2L

n , k = 0 . . . n − 1, and thus there is a Cartesian partitioning
Th =

⋃

k Ek with uniform cubic element Ek = Ik1
⊗ Ik2

. . . ⊗ Ikd
and multi-index

k = (k1, k2, . . . , kd).
DG methods assume piecewise basis functions; that is,

(3.1) f(v, t) =
∑

k

uk(t) · Φ(v)χk(v)

with 0 ≤ |k| < (n−1)d; with χk(v) as the characteristic function over the element Ek;
coefficient vector uk = (u0

k, . . . ,u
l
k), where l+1 is the total number of basis functions

locally defined on Ek; and basis vector Φ(v) = (φ0(v), . . . , φl(v)).
We choose basis elements Φ(v) as local polynomial in P p(Ek), which is the set of

polynomials of total degree up to p on Ek. For the sake of convenience, we select the
basis such that {φi(v) : i = 0, . . . , l} are orthogonal.

For example, when d = 3, p = 1, local linear basis over element Ek can be set as

(3.2)

{

1,
v1 − wk1

∆v
,
v2 − wk2

∆v
,
v3 − wk3

∆v

}

,

and consequently, the value of f over element Ek is now approximated by

(3.3) f |Ek
(v) = u1 + u2 ·

v1 − wk1

∆v
+ u2 ·

v2 − wk2

∆v
+ u3 ·

v3 − wk3

∆v
.

The treatment of binary collision operators for Boltzmann-type equations is al-
ways important and challenging. The remaining left-hand side, i.e., the advection
part of (2.1), would just follow the standard DG finite element method.

By applying the ith basis function on element Em, φi(v)χm(v) to (2.7) and
operating a change of variables (v,u) ← (v,v∗), where u = v − v∗ is the relative
velocity, we obtain
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∫

v∈Em

Q(f, f)φi(v)dv =

∫

v∈Em,v∗∈Rd

f(v)f(v − u)

·
∫

σ∈Sd−1

[φi(v
′)χm(v′)−φi(v)χm(v)]|u|γb

(

u · σ
|u|

)

dσdudv

=
∑

k

∑

k̄

uT
kGm,i(k, k̄)uk̄,(3.4)

where we recall the postcollisional velocity v′ = v + 1
2 (|u|σ − u). Here, for fixed

k, k̄,m, i, the entry Gm,i(k, k̄) is actually a (p+ 1)d × (p+ 1)d matrix, defined as

Gm,i(k, k̄) =

∫

v∈Ek

∫

v−u∈Ek̄

Φ(v)⊗ Φ(v − u)χk(v)χk̄(v − u)|u|γ

·
∫

Sd−1

[φi(v
′)χm(v′)− φi(v)χm(v)]b

(

u · σ
|u|

)

dσdudv.(3.5)

The key is to evaluate the block entry Gm,i(k, k̄) in (3.5). Due to the convolution
formulation, the integrals w.r.t. v,u can be approximated through triangular quadra-

tures. Indeed, along each dimension, if vi ∈ Iki
, v∗ ∈ Ik̄i

, then (vi,ui) will form a
parallelegram which can be divided into two triangles. See Figure 1.

Evaluating the integrals on the sphere takes most of the effort, because one has
to figure out how the Cartesian cubes intersect with the spheres. We first extract the
angular integrals in (3.5), denoted by gm,i(v,u), and study this form separately:

(3.6) gm,i(v,u) =

∫

Sd−1

[φi(v
′)χm(v′)− φi(v)χm(v)]b

(

u · σ
|u|

)

dσ.

Then, for any fixed v,u, the postcollisional velocity v′ will be on the surface of a

ball centered at v − u

2 with radius |u|
2 .

The angular cross section function b(cos θ) may have nonintegrable singularity
at θ = 0. However, one can avoid the splitting in gain-loss terms in the square
bracket in (3.6), where an expansion of the test function in powers of the vector
v′ − v will cancel the singularity in b(cos θ) to obtain an integrable, using the fact
that |v′ − v| = |u| sin θ

2 . The integrability will depend on the singularity of b(cos θ)
at θ = 0. Our scheme has taken this issue into account.

Fig. 1. Along each dimension, (vi,ui) forms two right triangles.
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The angular integral scheme for evaluating (3.6) proceeds as follows.
1. Integrable b(cos θ). This case allows to split the “gain” and “loss” terms. Only

gain terms involve postcollisional velocity v′ and can be studied separately.
For d = 2, the angular integrals (3.6) can be evaluated analytically. Indeed,

for fixed v,u, the regions over the cycle such that v′ = v−0.5(|u|σ−u) ∈ Em

can be exactly performed by solving a system of trigonometric relations by
setting σ = (sin γ, cos γ) ∈ S1(R2) and finding

(3.7)

{

v1 + 0.5(|u| sin γ − u1) ∈ Im1
,

v2 + 0.5(|u| cos γ − u2) ∈ Im2
.

We have built a programmable routine of deriving all possible overlapped
intervals of γ.

Similarly, for the case d = 3, setting σ = (sin γ cosϕ, sin γ sinϕ, cos γ) ∈
S2(R3), we solve the corresponding trigonometric relations

(3.8)











v1 + 0.5(|u| sin γ cosϕ− u1) ∈ Im1
,

v2 + 0.5(|u| sin γ sinϕ− u2) ∈ Im2
,

v3 + 0.5(|u| cos γ − u3) ∈ Im3
.

The third inequality will give a range for the polar angle γ w.r.t. a preferred
direction, and all integrals w.r.t γ will be performed by adaptive quadratures,
say, CQUAD in the GNU Scientific Library (GSL) [27]. In particular, for any
fixed γ, the first two relations will decide the range of azimuthal angle ϕ
exactly (by invoking the routine mentioned above).
We stress that angle γ above is not necessarily the scattering angle θ defined

in (2.5).

2. Nonintegrable b(cos θ). In this case, we need a more delicate strategy ap-
proach based on an specific choice of angle parametrization that enables a
cancellation of the angular singularity. While we include this strategy for
completeness of the scheme description, the numerical implementation of this
approach will be performed in future work on for the computation of the spec-
tral gap of the linearized Boltzmann equation for nonintegrable cross section
[53].
Thus, we now consider a local spherical coordinate system with u being

the polar direction, i.e., cos θ = u·σ
|u| , as defined in ((2.5)). We show that

our scheme builds a programmable routine of deriving all possible overlapped
intervals of θ by taking a transformation that rotates the polar direction back
onto z-axis of the Cartesian coordinate system.
Such orthogonal rotation matrix A can be constructed explicitly for the

following two cases.
Case d = 2:

(3.9) A =
1

|u|

(

−u2 u1

u1 u2

)

.

Then, z = |u|
2 AT (sin θ, cos θ − 1)

T
and σ = AT (sin θ, cos θ)

T
,
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Case d = 3:

(3.10) A =
1

|u|









u1u3√
u

2
1+u

2
2

u2u3√
u

2
1+u

2
2

−
√

u2
1 + u2

2

− u2|u|√
u

2
1+u

2
2

u1|u|√
u

2
1+u

2
2

0

u1 u2 u3









,

where we assume u2
1 + u2

2 6= 0, otherwise; the rotation matrix is reduced to
the identity matrix.

In the three-dimensional case, we set z = |u|
2 AT (sin θ cosϕ, sin θ sinϕ,

cos θ − 1)T , σ = AT (sin θ cosϕ, sin θ sinϕ, cos θ)
T
.

With this framework, changing the unitary σ ← A−1σ = ATσ and recalling
postcollisional velocity v′ = v + 1

2 (|u|σ − u) yields the angular integration
(3.6) in the convolutional form

gm,i(v,u) =

∫

Sd−1

[φi ◦ χm(v + z)− φi ◦ χm(v)] b(cos θ)dσ

=

∫

Sd−1

[

φi ◦ χm

(

v − u

2
+
|u|
2
σ

)

− φi ◦ χm(v)

]

b(cos θ)dσ.

We take d = 3 for example. The whole domain of (θ, ϕ), i.e., the sphere, can
be divided into the following four subdomains:
(1) S1 = [0, θ0]× [0, 2π];
(2) S2 = [θ0, θ1]× Iϕ(θ);
(3) S3 = [θ0, θ1]× ([0, 2π] \ Iϕ(θ)); and
(4) S4 = [θ1, π]× [0, 2π],
where the angles θ0, θ1 and intervals Iϕ(θ) are determined according to the
following strategy: When v ∈ Em, sin θ0

2 = min(1, 1
|u|dist(v, ∂Em)) since

|z| = |u| sin θ
2 ; when v /∈ Em, θ0 is the smallest possible θ such that v′ lies in

Em. The angle θ1 is the largest possible θ such that v′ lies in Em. The sets
Iϕ(θ) are intervals for ϕ, depending on θ, such that v′ lies in Em.
Due to the characteristic functions in the integrands of gm,i(v,u) (3.11),

we have the following four cases:
(a) 0-0: the case when v′ /∈ Em and v /∈ Em is trivial since it contributes

nothing to the final weight matrix.
(b) 1-0: the case when v′ ∈ Em but v /∈ Em, the effective domain (where

gm,i(v,u) 6= 0) is (θ, ϕ) ∈ S2, and

gm,i(v,u) =

∫

S2

φi(v
′)b(cos θ) sin θdθdϕ.

(c) 0-1: the case when v′ /∈ Em but v ∈ Em, the effective domain is (θ, ϕ) ∈
S3 ∪ S4, and

gm,i(v,u) = −
∫

S3∪S4

φi(v)b(cos θ) sin θdθdϕ.

(d) 1-1: the case when v′ ∈ Em and v ∈ Em, the effective domain is (θ, ϕ) ∈
S1 ∪ S2, and

gm,i(v,u) =

∫

S1∪S2

[φi(v
′)− φi(v)] b(cos θ) sin θdϕdθ.

D
o
w

n
lo

ad
ed

 0
2
/1

6
/1

9
 t

o
 1

2
8
.8

3
.6

3
.2

0
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DG SOLVER FOR HOMOGENEOUS BOLTZMANN EQUATION 3049

Here we need to pay special attention to the integration over S1, where the
singularity cancelled. Recall φi(v) are polynomial basis locally defined
on each element Em and v′ = v + z. Since z ∼ 0, we take the Taylor
expansion of φi(v

′) around v,

φi(v
′)− φi(v) = ∇φi(v) · z+

1

2
zT∇2φi(v)z+O(|z|3).

So, it is not hard to observe that, for terms with lowest power of sin θ,
the azimuthal angle ϕ will be integrated out and leave only powers of
1 − cos θ, which will help cancel the singularity in b(cos θ) from (2.6).
That is,

∫ θ0

0

∫ 2π

0

[φi(v
′)− φi(v)] b(cos θ) sin θdϕdθ

≤ C

∫ θ0

0

(1− cos θ) sin−2−α θ

2
sin θdϕdθ

≤ C

∫ t0

0

t1−αdt

=
C

2− α
t2−α
0

after performing the change of integration coordinates t = sin θ
2 for t0 =

sin θ0
2 and noticing that α < 2.

In practice, the sets S1 and S2 can be combined. The outer integration w.r.t.
the polar angle θ is performed using adaptive quadratures, say, CQUAD in
GSL [27], and the inner integration w.r.t. ϕ is done analytically by calling a
similar routine that derives all possible intervals of ϕ.

Remark. The above routine can be only applied to the case when v,v′ fall onto
the same mesh element (when collision is almost grazing); for other cases, the angular
cross sections can be regarded as integrable (far away from grazing collisions) and
thus can call routines in “integrable b(cos θ).”

After the angular integration terms gm,i(v,u) is performed, plugging it back into
(3.5), we obtain the block matrix Gm,i(k, k̄).

Next, denoting the whole coefficient vector U = (u0, . . . ,uM−1)
T with uk =

(u0
k, . . . ,u

l
k)

T and M = ((l + 1)n)d the total number of degrees of freedom, then the
semi-discrete DG form of the homogeneous Boltzmann equation (2.16) reads

(3.11)
dU

dt
= Q(U)

with initial data being the L2 projection of f0 = f(v, 0). Here the collision vector
Q = (Q0, . . . ,QM−1)

T , and each blockQm is of size (l+1)d×1 with its ith component
being denoted by Qi

m,

(3.12) Qi
m =

∑

k

∑

k̄

uT
kGm,i(k, k̄)uk̄ .

Thus, we obtain the componentwise formulation of (3.11)

(3.13)
dui

m

dt
=
∑

k

∑

k̄

uT
kGm,i(k, k̄)uk̄ .

We will call the matrix Gm,i the Boltzmann collision matrix or simply weight matrix.
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4. Computing and storage complexity of collision matrix reduction
strategy. When computing the approximated weight function Gm,i(k, k̄) of size
M×M from (3.5) for every test function φi(v) defined over element Em, theoretically,
the total computing and storage complexity for the weights would be O(M3), which
can be very expensive.

However, the following features of the collision matrices are crucial for reducing
the weight complexity. They are

• temporally independent and precomputed,
• shifting symmetries,
• sparse,
• parallelizable.

4.1. Shifting symmetry property for uniform meshes. Here we assume a
uniform mesh. First we observe the fact that the postcollisional velocity is calculated

using the law v′ = v+v∗

2 + |v−v∗|
2 σ, which performs shifts both in v∗ and v fixed.

These shifts depend on the spherical integration in a bounded domain, i.e., σ ∈ Em.
Thus, it can be seen that the same shift on both v ∈ Ek and v∗ ∈ Ek̄ lands the

value of v′ for the same shift.
Moreover, considering we work with locally supported basis functions, then the

evaluation of (3.5) will remain invariant for as long as the relative positions between
Ek (Ek̄) and test element Em keep unchanged, and at the same time, the piecewise
basis functions φ(v) on Em are only valued locally upon the relative position of v
inside Em.

This property is summarized as follows.

Shifting symmetry property. If the basis piecewise polynomials φ(v), defined
over element Em, are functions of v−wm

∆v (where wm is the center of cube Em), then
the family of collision matrix {Gm,i} in (3.5) satisfies the shifting symmetry property

(4.1) Gm,i(k, k̄) = Gm̃,i(k − (m− m̃), k̄ − (m− m̃)),

where m, m̃, k, k̄ are d-dimensional multi-indices, and i = 0, . . . , (l + 1)d.
Indeed, recall that Gm,i(k, k̄) is the block matrix evaluated at v ∈ Ek, v∗ ∈ Ek̄,

and the ith test function over element Em. Since the basis functions φ(v) are locally
defined on Em and only valued at v−wm

∆v , the value of φ(v) will stay invariant as long
as elements Ek and Em are shifted by the same amount. Without loss of generality,
we assume basis functions are piecewise constants. Then the integrals in (3.5) now
are

(4.2) Gm(k, k̄) =

∫

v∈Ek

∫

v∗=v−u∈Ek̄

|u|γ
∫

Sd−1

[χm(v′)− χm(v)]b

(

u · σ
|u|

)

dσdudv.

Suppose now a different test function over Em̃ is applied, which means the element
Em is shifted to Em̃. Notice the gain-loss terms in the square bracket in (4.2); it’s not
hard to find that the gain and loss will remain the same as long as v and v′ stay at the
same relative position to the test element. That said, the indices for v and v′ should
be shifted by the same amount m̃−m. This is easily achievable by noticing the elastic
collision law: that the indices for precollisional velocities v and v∗ should be shifted
by same amount m̃ −m. Meanwhile, the same shift on v and v∗ leads to invariant
relative velocity u. Thus, we obtain another block matrix Gm̃(k+ m̃−m, k̄+ m̃−m)
which is valued the same as Gm(k, k̄).

This shifting procedure can be illustratively shown inFigure 2 for a one-dimensional
problem with piecewise constant basis functions.
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Matrix G0 Matrix G1 Matrix G2

Fig. 2. Dots (entries) of the same color are shifted to the neighboring matrices.

This property inspires us to seek possible ways to reduce the actual computing
complexity of all the collision matrices.

Theorem 4.1. There exists a minimal basis set of matrices

B = {Gm,i(k, k̄) : For j = 1 . . . d if mj 6= 0, kj × k̄j = 0;

if mj = 0, kj , k̄j = 0, 1, . . . , n− 1},

which can exactly reconstruct the complete family {Gm,i} through shifting.

Proof. Indeed, without loss of generality, let us only consider piecewise constant
basis functions, i.e., i = 0. And we start from only one layer on one dimension or let
us imagine a one-dimensional prototype problem, i.e., Gm(k, k̄) where m, k, k̄ are one-
dimensional indices. This is corresponding to one velocity component. The complete
family {Gm} will be the tensor product of all layers.

For any m 6= 0 (m = 1, . . . , n − 1), the entries Gm(k, k̄) are obtained through
shifting according to the following policy:

(4.3) Gm(k, k̄) =











G0(k −m, k̄ −m) if k, k̄ ≥ m,

Gl(0, k̄ − k) with l = 1 . . .m if k̄ ≥ k, k < m,

Gl(k − k̄, 0) with l = 1 . . .m if k ≥ k̄, k̄ < m,

which recover the complete set of entries Gm(k, k̄). None of the entries in the basis
set is shifting-equivalent. And it is not hard to observe that if one drops any entry in
the basis set, it will be impossible to recover the original complete family. Thus, we
conclude that the set B is one minimal basis set.

As seen from Theorem 4.1, along each dimension, we only need to compute and
store the full matrix for m = 0, and the first rows and columns for all other m’s. This
requires a computing and storage complexity bounded by 3n2. For d dimensions,
the total complexity will be bounded by 3dN2 with N = nd. Hence, in the actual
algorithm, we only need to compute the minimal set B, which requires a computing
complexity of only O(N2).

4.2. Sparsity. The matrices in the setB are actually highly sparse. The sparsity

of B, again, comes from v′ = v − u

2 + |u|
2 σ. The postcollisional velocity v′ is on the

sphere parametrized by σ ∈ Sd−1, centered at v+v∗

2 , and with radius given by |u|/2.
Thus, not all binary particle collisions between velocities v ∈ Ek and v∗ ∈ Ek̄ could
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Fig. 3. Velocities v, u such that v′ lies in mesh element Em.

Table 1
The computing and storage complexity of basis B.

n Wall clock time (s) Order ] of nonzeros Order
8 3.14899 \ 812884 \
12 39.3773 6.2301 6826904 5.2484
16 228.197 6.1075 30225476 5.1717
20 893.646 6.1176 94978535 5.1311
24 2686.72 6.0375 241054134 5.1054

collide ending up with a postcollisional velocity v′ lying in a given fixed element Em.
Figure 3 illustrates such conditions.

Since, for each v and v∗ fixed, the sphere that contains v′ and v′
∗ in a binary

collision is a (d− 1)-manifold embedded in d dimensions, the counting of such inter-
actions is nonzero when such sphere intersects with element Em. This results in only
an O(n2d−1) of nonzeros in the set B.

Therefore, while by Theorem 4.1, the calculations of the weights Gm(k, k̄) can be
made in an algorithm with computational complexity of O(n2d), we conjecture that
the corresponding storage complexity is of O(n2d−1). Indeed, we verify this order
complexity with a test run for d = 3 in Table 1 done on a single core of Xeon E5-2680
2.7 GHz processor (on cluster Stampede at the Texas Advanced Computing Center,
TACC [47]).

4.3. Parallelization. The whole weight matrices are only computed once and
stored for further use. Due to the locality of DG schemes, the whole process of
computing B can be well performed using hybrid message passing interface (MPI, a
standardized distributed computing infrastructure) [26] and OpenMP [41]. The colli-
sion weight matrices quantify the contributions of the binary collisions to the evolution
of the distribution functions. For each grid point on the distribution function, the
time evolution is attributed to all possible binary collisions. Furthermore, different
grid points do not need to communicate with each other. Thus, one can distribute all
grid points across the computing node community while keeping the grid information
accessible to each computing node within the community. This is done using MPI.
To further parallelize the computing, on each node, the working load computing, for
example, of matrix entries and matrix-vector computations is shared among threads,
using OpenMP.

Figure 4 shows the parallel efficiency of strong scaling for computing some sets of
the basis matrix.
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Fig. 4. The strong scalability of computing collision matrix (n=18).

5. Conservation routines. The above approximate collision operatorQ doesn’t
preserve the moments as desired due to the truncation of velocity domain. To achieve
the conservation properties, following the ideas in [29], we design an intermediate
routine to force the conservations. This routine will be implemented as a L2-distance

minimization problem with the constraints the preservation of desired moments. The
optimization problem can be solved through the Lagrange multiplier method.

The conservation of moments for the approximate solution fh(t,v) goes, for any
time t,

(5.1)

∫

Ωv

fh(t,v)ϕ(v)dv =

∫

Ωv

fh,0(v)ϕ(v)dv,

where ϕ(v) is one of the d+ 2 collision invariants 1,v1, . . . ,vd, |v|2.
So, our objective is to solve the following.
Conservation routine (functional level). Minimize in the Banach space

Be =
{

X ∈ L2(Ωv) :

∫

Ωv

X =

∫

Ωv

Xv =

∫

Ωv

X|v|2 = 0

}

the functional

(5.2) Ae(X) :=

∫

Ωv

(Quc(f)(v)−X)
2
dv.

Recalling the DG approximation for fh(t,v) in (3.1) and the time evolution for
fh(t,v) (3.11), one can get the conservation requirements on the approximation col-
lision vector Q, defined in (3.11),

(5.3) CQ = 0,

where the (d+ 2)×M dimensional constraint matrix writes

(5.4) C:,j =





∫

Ek
φl(v)dv

∫

Ek
φl(v)vdv

∫

Ek
φl(v)|v|2dv





D
o
w

n
lo

ad
ed

 0
2
/1

6
/1

9
 t

o
 1

2
8
.8

3
.6

3
.2

0
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3054 CHENGLONG ZHANG AND IRENE M. GAMBA

with φl the lth basis function on element Ek and the column index j = (p+1)k+ l =
0, . . . ,M − 1.

To force the conservation, we seek for the L2-distance closest to Qc, which is the
minimizer of the following constrained optimization problem.

Conservation routine (discrete level). FindQc, the minimizer of the problem

min
1

2
(Qc −Q)TD(Qc −Q)

such that CQc = 0.

Due to the orthogonality of the local basis, D is a positive definite diagonal
matrix with its jth entry 1

|Ek|

∫

Ek
(φl(v))

2dv, j = (p+ 1)k + l. For example, in three

dimensions, when p = 0, D is reduced to an identity matrix; when p = 1, with the
orthogonal basis chosen in (3.2),

D = Diag

(

1,
1

12
,
1

12
,
1

12
, 1,

1

12
,
1

12
,
1

12
, 1, . . .

)

.

Remark. Note that with spectral method in [29], the corresponding discrete op-
timization problem actually takes D to be an identity matrix. This is because the L2

norm is aymptotically preserved by the l2 norm of its Fourier coefficients.
To solve the minimization problem, we employ the Lagrange multiplier method.

Denote by λ ∈ R
d+2 the multiplier vector. Then the objective function is

(5.5) L(Qc, λ) =
1

2
(Qc −Q)TD(Qc −Q)− λTCQc.

Solving by finding the critical value of L gives














∂L
∂Qc

= 0

∂L
∂λ

= 0

=⇒
{

Qc = Q+D−1CTλ

CQc = 0
=⇒ λ = −(CD−1CT )−1CQ.

(Here, notice that CD−1CT is symmetric and positive definite and hence its inverse
exists.)

Thus, we get the minimizer Qc

(5.6) Qc = [Id−D−1CT (CD−1CT )−1C]Q,

where Id is an identity matrix of size M ×M . So, Qc is a perturbation of Q.
So, the final conservative semidiscrete DG formulation for the homogeneous equa-

tion is

(5.7)
dU

dt
= Qc.

Obviously it preserves the desired moments. And what’s more, we expect the
approximate solution approaches a stationary state. This is guaranteed by analyzing
the convergence behavior.

6. Asymptotic behavior. The asymptotic error analysis is based on the work
[3]. Readers can find more details of the proofs for many theorems and estimates
invoked here. Some main results and analysis tools being used in this section are also
listed in the appendix.
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Since we are working under a DG framework, it might be necessary to summa-
rize some of the notations and properties regarding DG approximations, which are
introduced at the beginning of Appendix A.

Now, let us go to the asymptotic error analysis. We assume f ∈ C([0, T ];L2(Rd))
to be the solution to the homogeneous BTE (2.16) with initial f0 = f(v, 0). The
Galerkin method allows us to take the L2 projection, Ph : L2(Ωv)→ L2(Ωv), on both
sides of the BTE (2.16)

(6.1)
∂

∂t
Phf(v, t) = PhQ(f)(v, t) in [0, T ]× Ωv.

We introduce the concept of extension operator (Appendix A.1) E : Hα(Ωv) →
L2(Rd), which will be used in future derivations. Its properties are summerized in [3].

The collision operator Q(f) is global in velocity. It is reasonable to expect
PhQ(f) ∼ PhQ(EPhf) for accurate enough projectors (or small enough mesh size
h). Thus the solution to

(6.2)
∂

∂t
g(v, t) = PhQ(Eg)(v, t)

will be a good approximation to Phf , the solution to projected (6.1).
This is not enough, because we are limited to the conservation properties. So,

actually the following initial value problem is studied in our asymptotic analysis,
whose solution is expected to approximate the solution f of the original homogeneous
BTE (2.16).

∂

∂t
g(v, t) = Qc(g)(v, t),

g0(v) = Phf(v, 0),(6.3)

where Qc(g) is the conservation correction to the following unconserved operator
Quc(g):

(6.4) Quc(g)(v, t) = Ph(Q(Eg)χΩv )(v, t),

where χΩv
is the characteristic function on the truncated domain Ωv. It follows that

(6.5) ‖Quc(fh)‖L2(Ωv) . ‖Q(Efh)‖L2(Ωv) . ‖Q(f)‖L2(Ωv).

As is shown in the last section, the conservation correction is the minimizer of
the L2-distance to the projected collision operator subject to mass, momentum, and
energy conservation. It can be shown that the conserved projection operator Qc(fh)
is a perturbation of Quc(fh) by a second order polynomial. See Theorem 3.3 in [3]
for the conservation correction estimate (or see Appendix A.2).

Let us summarize our major estimate result first.

Theorem 6.1 (Hp+1-error estimate). Fix k′, k ≥ 0, and assume nonnegative ini-

tial density function f0 ∈ L1
2 ∩Hp+1

q (Rd) with q = max{k + k′, 1 + d
2γ }, 0 < γ ≤ 1 is

the defined in collision kernel (2.4). g is the DG solution of (6.3), where the piecewise

basis polynomials are of order at most p. For a given simulation time T and index

α ≤ p + 1, there exists an extension Ep+1, a lateral size L0(T, f0) for domain Ωv,

and a small grid diameter h0(T, L, f0, α) for triangulation Th of Ωv such that for any

L ≥ L0, h ≤ h0,
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sup
t∈[0,T ]

‖f − g‖Hα
k (Th) ≤ Ck′eCkT

(

O(Lγk+αhp+1−α) +O(L−γk′

)
)

,

where h = maxEv∈Th
diam(Ev) is the maximal grid diameter for the regular trian-

gulation Th of Ωv; the constants Ck and Ck′ depend on Hp+1
q -norms and moments

of f0.

Proof. The proofs can be easily extended from the one in [3]. But here to make
the work complete, we would like to briefly explain how the proofs go. The readers
can refer to [3] for more details.

We will first prove the case α = 0, i.e., the L2
k estimate, and then follow an

induction on the index α.
One can easily observe that, in domain Ωv,

(6.6)
∂

∂t
(f − g) = Q(f, f)−Qc(g) = (Q(f, f)−Q(Eg,Eg))+ (Q(Eg,Eg)−Qc(g)) .

Denote eh = ‖f − g‖L2
k(Th). Multiply on both sides of the above (6.6), piecewise,

by (f − g)〈v〉2γk restricted over each element of the triangulation Th, and sum over
all the elements; we get

(6.7)
1

2

∂e2h
∂t

= I1 + I2.

We estimate I1 and I2 separately.

I1 =

∫

Th

〈v〉2γk(f − g)(Q+(f + Eg, f − Eg) +Q+(f − Eg, f + Eg))

−
∫

Th

〈v〉2γk(f − g)(Q−(f + Eg, f − Eg)−
∫

Th

〈v〉2γk(f − g)Q−(f − Eg, f + Eg))

. ‖f − g‖2L2
k(Th)

+ ‖f − g‖L2
k(Th)

(

‖f‖L2
k+1/2

(Rd\Ωv) + ‖g‖L2
k+1/2

(Ωv\δ−1Ωv)

)

,

where δ is the dilation parameter of the extension operator; .means the estimate con-
stants are independent of parameters T, L, h but only information (norms, moments,
etc.) of f, g themselves. Here, the uniform propagation of higher order moments of
f, g are applied. See Lemma 4.2 in [3].

By Holder’s inequality and conservation correction estimate,

I2 =

∫

Th

〈v〉2γk(f − g)(Q(Eg,Eg)−Qc(g))

. Lγk‖f − g‖L2
k(Th)

(

‖Q(Eg,Eg)−Quc(g)‖L2(Th) + δ2k
′

Od/2+γ(k′−1)‖g‖L1

k′ (Th)

)

,

where and in the following we apply notation Or := O(L−r).
So, combining the above estimates for I1 and I2 gives us

deh(t)

dt
≤ Ceh(t) + ε(t) +$(t),

where, by the standard approximation theory in the broken Sobolev spaces,

ε(t) := CLγk‖Q(Eg,Eg)−Quc(g)‖L2(Th)

. Lγkhp+1‖Q(Eg,Eg)‖Hp+1(Ωv)

. Lγkhp+1‖g‖2
Hp+1

µ (Ωv)

(

µ > 1 +
d

2γ

)
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and

$(t) := C
(

‖f‖L2
k+1/2

(Rd\Ωv) + ‖g‖L2
k+1/2

(Ωv\δ−1Ωv)

)

+Od/2+k′−k−s‖Efh‖L1

k′ (Ωv)

= δ2k
′

Oγ(k′−k−1/2)

(

‖f‖L2

k′ (R
d) + ‖g‖L2

k′ (Ωv) + ‖g‖L1

k′ (Ωv)

)

≤ Oγk′ .

Gronwall’s inequality implies

(6.8) sup
t∈[0,T ]

‖f − g‖L2
k(Th) ≤

(

‖f0 − fh,0‖L2
k(Th) +

∫ T

0

ε(s)ds+ sup
t∈[0,T ]

$(t)

)

eCT

for any T > 0. The lateral size L(T, f0), h ≤ h0(T, L, f0) are decided following the
same argument in Theorem 5.1 in [3].

Additionally, by the standard approximation theory,

‖f0 − fh,0‖L2
k(Th) . Lγkhp+1‖f0‖Hp+1(Ωv).

Thus, the case α = 0 is proved. Assume the result is true for any multi-index β <
α ≤ p+ 1. Then similarly following the above procedures,

∂

∂t
‖∂α(f − g)‖2L2

k(Th)
≤ I1 + I2 + I3.

Using the Leibniz formula and the smoothing effect of the positive collision
operator,

I1 :=

∫

Th

〈v〉2γk∂α(f − g)∂α(Q(f, f)−Q(Eg,Eg))

. ‖∂α(f − g)‖2L2
k(Th)

+ lower order terms.

A typical lower order term is given by

‖∂α(f − g)‖L2
k(Th)‖∂α−β(f + Eg)‖L2

k+µ(R
d)‖∂β(f − Eg)‖L2

k+1
(Rd).

By induction hypothesis,

‖∂β(f − Eg)‖L2
k+1

(Rd)

:≤ ‖∂β(f − g)‖L2
k+1

(Th) + ‖∂βf‖L2
k+1

(Rd\Ωv) + ‖∂βEg‖L2
k+1

(Rd\Ωv)

≤ Ck′eCkT
(

O(Lγ(k+1)+βhp+1−β) + δ2(k+k′)O(L−γk′

)
)

≤ Ck′eCkT
(

O(Lγk+αhp+1−α) + δ2(k+k′)O(L−γk′

)
)

,

where the last inequality holds as long as h ≤ L1−γ .
For I2, by Holder’s inequality and the conservation correction estimate,

I2 :=

∫

Th

〈v〉2γk∂α(f − g)∂α(Qc(g)−Quc(g))

≤ ‖∂α(f − g)‖L2
k(Th)‖∂α(Qc(g)−Quc(g))‖L2

k(Th)

≤ ‖∂α(f − g)‖L2
k(Th)

(

Lγk‖Q(Eg,Eg)−Quc(g)‖L2(Th) + δ2k
′′

Od/2+γ(k′′−k)

)

.
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For I3, by Holder’s inequality and approximation theory,

I3 :=

∫

Th

〈v〉2γk∂α(f − g)∂α(Quc(g)−Q(Eg,Eg))

≤ Lγk‖∂α(f − g)‖L2
k(Th)‖∂α(Quc(g)−Q(Eg,Eg))‖L2(Th)

. Lγk‖∂α(f − g)‖L2
k(Th)h

p+1−α‖g‖2
Hp+1

d/2+γ

.

Finally, we get

∂

∂t
‖∂α(f − g)‖L2

k(Th)

≤ C‖∂α(f − g)‖L2
k(Th) + Ck′eCkT

(

O(Lγk+αhp+1−α) + δ2(k+k′)O(L−γk′

)
)

;

therefore, Gronwall’s inequality will give us the final estimate.

7. Temporal evolution. The approximate solution will be solved at the level
of discrete time. That is, tn+1 = tn +4t, where 4t is the time step size. Since there
are no high order derivatives or diffusive natures in the homogeneous Boltzmann
equation, no CFL condition is imposed. The only restriction on time step size may be
that ∆t should be less than the dimensionalized mean free time. So, we can choose
the simplest forward Euler scheme, which is explicit in time. At each time step, the
conservation routine, denoted CONSERVE, designed in the last section will be called
to force conservations.

So, suppose Un is the coefficient vector (thus the solution) computed at the
current time tn; then the solution for the next time step is obtained through the
following routines:

Qn = COMPUTE(Un) ,

Qc,n = CONSERVE(Qn) ,

Un+1 = Un +4tQc,n .

The Euler scheme is formally first order in time. For higher order accuracy, a
higher order Runge–Kutta scheme can be used whenever necessary. The conservation
routine has to be invoked at every intermediate step of the Runge–Kutta scheme.

At each time step, for the evolution of each mesh element, we have to compute a
quadratic form (3.13) which inevitably involves O(n9) (in d = 3) operations in total.
However, due to the sparsity, the actual order of number of operations for each time
step is O(n8), which is indeed a large number. Fortunately, the reconstructions of
collision matrices and computing of quadratic form (3.13) are well parallelizable for
each Euler step. See Table 2 for the results on time for one single temporal step of
evolution and Table 3 for results on the parallelization for one step of time evolution.
Both tests run on Xeon Intel 3.33 GHz Westmere processors (on cluster Lonestar-
TACC [47]).

From Table 2 we can see the time consumed for one single step grows with an
order slightly less than 8. This is normal, because during time evolution and re-
construction of the whole collision matrix, we only need to retrieve those effective
(nonzero) matrix entries through shifting of the basis set B (see Theorem 4.1). The
grid points (index m) and associated effective entries (indices k, k̄) are shifted to-
gether. Thus, in practice, not every grid point requires a full ergodic of the weight
matrix, or in other words, many grid points only need a partial access to the weight
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Table 2
The wall clock time for one temporal evolution step.

n Wall clock time (s) Order
16 18.3362 \
18 47.6001 8.0993
20 105.155 7.5227
22 216.818 7.5923
24 419.533 7.5862
26 781.282 7.7683

Table 3
The parallelization for one temporal evolution step, for n = 24.

Number of cores Wall clock time (s)
1 459.967
2 341.771
6 181.561
12 144.485
24 129.691
36 107.907
48 90.2676
72 74.2794

matrix. Table 3 actually shows a low strong scaling efficiency (speedup is far from
linear). This is not surprising because we need to call a parallelized reconstruction
process for each time step, then gather information together and redistribute them
to the computing community. And furthermore, we have to call the conservation
routine, which is essentially serial, at each time step. In addition, when computing
the basis set B, we choose to distribute grid points across the computing nodes while
the basis information associated with each grid point m (see Theorem 4.1) is not of
equivalent size; for example, for m = 0 the full matrix is computed, while for another
m’s, only the first row and column are computed. Hence, some processing elements,
for example, the one containing m = 0, have to be accessed much more frequently
than others, also causing an unbalanced distribution of computing resources.

8. Numerical results. Test 1 is a two-dimensional Maxwell type of elastic col-
lisions, benchmarked by Bobylev–Krook–Wu exact solutions. The initial density dis-
tribution is

(8.1) f(v, 0) =
|v|2
πδ2

exp(−|v|2/δ2).

This problem has an exact solution [22]

(8.2) f(v, t) =
1

2πs2

(

2s− 1 +
1− s

2s

|v|2
δ2

)

exp

(

− |v|
2

2sδ2

)

,

where s = 1 − 1
2exp(−δ2t/8). In the test, we choose the scaling parameter δ = π/6

such that the truncation domain is well chosen by Ωv = [−π, π]. We let it run for 600
time steps with ∆t = 0.1. This example is used to test the accuracy by calculating
the relative L2 errors compared to its exact solution and relative entropy verifying
that the numerical solution will converge to the true equilibrium. See Figure 5 for
the evolution of the marginal density distributions; Figure 6 and Figure 7 show the
relative L2 errors and relative entropy, respectively. The marginal density distribution
is defined as
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Fig. 5. Test 1: Comparison of solutions at time t = 0, 1, 5, 10, 15s. n = 44 per direction; solid
line: exact solution, stars: piecewise constant approximation.

Fig. 6. Test 1: Relative L2 errors, com-
pared with true solution, for different num-
bers of mesh elements.

Fig. 7. Test 1: Relative entropy for dif-
ferent numbers of mesh elements.

fx(vx ∈ Ik) =
1

(∆v)2

∫

Ik

∫

In/2

f(v, t)dvxdvy.

The relative L2 error is defined as
(

∫

Ωv
|fh(v, t)− f(v, t)|2dv

)1/2

(

∫

Ωv
|f(v, t)|2dv

)1/2
.

The relative entropy given by

Hrel(t) =

∫

Ωv

f(v, t) log f(v, t)− fM (v) log fM (v)dv =

∫

Ωv

f(v, t) log
f(v, t)

fM (v)
dv,

(8.3)D
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where fM (v) is the true equilibrium density distribution and is expected to converge
to zero which implies the solution converges to the true equilibrium in the sense of L1.

Remark. In Test 1, numerical simulation results (although not presented here)
can show that our scheme propagates positivity for any given positive time, if initially
so, for piecewise constant basis functions. Meanwhile, the conservation laws (here,
only mass due to the zeroth order of basis polynomials) are expected to hold but only
for a short time. The constrained minimization problem that enforces the d+2 collision
invariants brakes the positivity propagation. We stress that the traditional limiters
reconstruction technique, which focuses on the positivity reconstruction of spatial
fluxes in the transport operator, can only ensure preservation of mass as shown in
Cheng, Gamba, and Proft [20] for a linear Boltzmann collision operator that can only
have one conservation law (mass). We note that the positivity preservation technique
by Zhang and Shu [54] for higher order basis functions works for scalar conservation
laws that only have one conserved quantity (i.e., mass). In fact, enforcing the Gauss–
Lobatto quadratures for positivity flux reconstruction on DG schemes for the nonlinear
Boltzmann collision operator results in an overdetermined set of equations with no
solution.

We stress that the Lagrangian constrained minimization problem presented in
section 5, which enforces the preservation of collision invariants, mitigates the effects
of negativity, as shown the Alonso, Gamba, and Tharkabhushaman in [3]. It is shown
that the numerical solution converges to the equilibrium Maxwellian associated to
the initial data, in the case of the space homogeneous Boltzmann problem. This
implies that, for large time, the negativity points occur at the tails of the probability
distribution function, for which the solution will be close to zero (below machine
accuracy) in the properly chosen computational frame. In addition, it is shown in [3],
that as long as the “negative energy” (second order moment of the negative part of
the density function) stays under control by a small ratio to the “positive energy,”
the system is not only stable, but also the accuracy of the numerical approximations
is guaranteed.

Test 2 is also a two-dimensional Maxwell type of elastic collisions. This example
is used to show the conservation routines. The initial states we take are convex
combinations of two shifted Maxwellian distributions (see Figure 8).

Truncate the velocity domain Ω = [−4.5, 4.5]2, and set number of nodes in each
velocity direction n = 32, 40. The initial density function is a convex combination of
two Maxwellians:

Fig. 8. Test 2: Initial probability distribution: Two shifted Maxwellians.
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Fig. 9. Test 2: Evolution of mass. Fig. 10. Test 2: Evolution of kinetic
energy.

0. 4 5 
- - 1, 0

0. 4 
- - 1 , 2
- - 1 , 4

0. 3 5 
- - - i.1 0
- - - 1 , 5 0

0. 3 
- - - 1 ,1 0 0

0. 2 5 

0. 2 

0. 1 5 

0. 1 

0. 0 5 

0 

- 0. 0 5
- 5 - 4 - 3 - 2 - 1 0 2 3 4 5 

Fig. 11. Test 2: Evolution of PDF with-
out conservation routines.

Fig. 12. Test 2: Evolution of PDF with
conservation routines.

(8.4) f0(v) = λM1(v) + (1− λ)M2(v) ,

with Mi(v) = (2πTi)
−d/2e

−
|v−Vi|

2

2Ti , T1 = T2 = 0.16, V1 = [−1, 0], V2 = [1, 0], and
λ = 0.5.

We test for n = 32 and n = 40 for 1000 time steps to compare the results and
see the long time behavior as well. The probability density distribution functions are
reconstructed with splines.

From Figure 9 and Figure 10, we can see, the scheme with piecewise constant
test functions, as expected, conserves moments for short time; in the long run, due
to the truncation, the tails of the density functions are lifted up and thus moments
are expected to lose. At the same time, finer grids indeed give more accuracy. Since
the basis polynomials are only zero order, it is expected that mass is much better
conserved than higher order moments.

Through the comparison of Figure 11 and Figure 12 we see, after long time, with
no conservation routine, the density distribution collapses due to the truncation of
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the domain. However, with conservation routines, the density function stays stable
when reaching equilibrium. So, the conservation routine works and is necessary for
stability. However, the cost we pay is the loss of positivity.

Test 3 is initialized by a sudden jump on temperatures, i.e., a jump discontinuity
in its initial state and far from equilibrium, as shown in Figure 13. The initial state
is given by

f0(v) =















1

2πT1
exp

(

−|v|
2

2T1

)

, v1 ≤ 0,

1

2πT2
exp

(

−|v|
2

2T2

)

, v1 > 0,

with T1 = 0.3 and T2 = 0.6. The collision is of type two-dimensional hard spheres.
With truncated domain Ωv = [−5, 5], n = 44 in each direction, the DG solution

well captures the discontinuity and converges to equilibrium. See Figure 14 and
Figure 15.

Fig. 13. Test 3: Initial density function.

Fig. 14. Test 3: DG solutions for sud-
den heating problem.

Fig. 15. Test 3: The entropy decay of
DG solutions for sudden heating problem.
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Fig. 16. Test 4: Evolution
of marginal distributions at t =
0, 1, 2.5, 5s; dots are the piecewise con-
stant value on each element; solid lines
are spline reconstructions.

Fig. 17. Test 4: Entropy decay.

Fig. 18. Test 4: Temperature relaxations along x and y directions.

Test 4 is testing on the three-dimensional homogeneous Boltzmann equation with
Maxwell molecular potential, with initial

f0(v) =
1

2(2πδ2)3/2

[

exp

(

−|v − 2δe|2
2δ2

)

+ exp

(

−|v + 2δe|2
2δ2

)]

,

where parameters δ = π/10 and e = (1, 0, 0). Ωv = [−3.4, 3.4]3; n = 30.
Figure 16 shows the evolution of the marginal density distributions, which is

defined as

fx(vx ∈ Ik) =
1

(∆v)3

∫

Ik

∫

In/2

∫

In/2

f(v, t)dvxdvydvz.

Figure 17 shows the decay of entropy to its equilibrium state.
Figure 18 shows the relaxations of directional temperature, which as expected

converge to the averaged temperature.
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9. Summary and future work. In this paper, we introduced a conservative
deterministic solver, based on DG methods, for the homogeneous Boltzmann equation.
The tremendous computational cost of the collision matrix is successfully reduced by
finding out a minimal basis set which can exactly reconstruct the complete family of
matrix, and also by implementing parallel computing techniques, e.g., hybrid MPI
and OpenMP. The temporal evolution is also parallelized. Our test computations
have been distributed among up to 256 nodes and 4000 cores on clusters Lonestar and
Stampede affiliated with TACC [47]. During the evaluations, we take the conservation
laws into consideration and design a conservation routine to force the preservations
of desired moments. The conservation routine also helps reduce the computational
cost because it avoids the employment of higher order basis polynomials (actually
piecewise constant basis functions are enough). The accuracy is guaranteed though
asymptotic error analysis.

We believe this is a successful attempt on evaluating the full Boltzmann colli-
sional operators under a DG method framework, which will be the base for future
development of DG finite element methods for kinetic equations and applications
to inhomogeneous transport equations for problems of nonsmooth density functions,
irregular spatial domains, rough boundary conditions, etc.

Also, in the future, we will try to speed up the temporal evolution and test on
more irregular problems with finer DG grids.

Appendix A. Tools for asymptotic behavior study of the DG conserva-
tive solver.

The classical Sobolev spaces are defined as

Wα,p(Ω) = {f ∈ Lp(Ω) : Dβf ∈ Lp(Ω) ∀ multi-indices β such that |β| ≤ α},
Hα(Ω) = Wα,2(Ω),(A.1)

and they are equipped with the norms

‖f‖Wα,p(Ω) =
∑

|β|≤α

‖Dβf‖Lp(Ω) if p <∞,

‖f‖Wα,∞(Ω) = max
|β|≤α

‖Dβf‖L∞(Ω) if p =∞.(A.2)

The weighted Sobolev spaces Hm
α are Hm spaces weighted with 〈v〉α =

(

1 +

|v|2
)γα/2

. That is,

(A.3) ‖f‖Hm
α (Ω) =

∑

|α|≤m

‖Dαf〈v〉α‖L2(Ω).

Here, please note that especially for the asymptotic error analysis for the DG solver,
we include the intermolecular potential parameter γ here. The broken Sobolev spaces

for the partition of Ω are defined as

Wα,p(Th) = {f ∈ Lp(Ω) : f |E ∈Wα,p(E) ∀ E ∈ Th},
Hα(Th) = Wα,2(Th),(A.4)
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and the corresponding norms

‖f‖Wα,p(Th) =
∑

E∈Th

‖f‖Wα,p(E) if p <∞,(A.5)

‖f‖Wα,∞(Th) = max
E∈Th

‖f‖Wα,∞(E) if p =∞.(A.6)

Then, we define the standard d-dimensional L2 projection Ph : f 7→ Phf by

(A.7)

∫

E

Phf(v)φ(v)dv =

∫

E

f(v)φ(v)dv ∀φ ∈ Pl|E .

By Poincare’s inequality and Sobolev embedding theorems, we can prove the
following approximation theory:

‖f − Phf‖L2(Th) . hα+1‖f‖Hα+1(Ω) ∀f ∈ Hα+1(Ω),

‖f − Phf‖L∞(Th) . hα+1‖f‖Wα+1,∞(Ω) ∀f ∈Wα+1,∞(Ω),

‖Phf‖Lp(Th) . ‖f‖Lp(Ω) ∀f ∈ Lp(Ω), 1 ≤ p ≤ ∞,

where h = maxE∈Th
diam(E).

A.1. Extension operators. For fixed α0 ≥ 0, there exists an extension opera-
tor E : L2(Ωv)→ L2(Rd) such that for any α ≤ α0 one has additionally E : Hα(Ωv)→
Hα(Rd). The construction of such operator is well known and has following the prop-
erties [46]:

1. Linear and bounded with

‖Ef‖Hα(Rd) ≤ Cα‖f‖Hα(Ωv) for α ≤ α0.

2. Ef = f a.e. in Ωv.
3. Outside Ωv the extension is constructed using a reflexion of f near the bound-

ary ∂Ωv. Thus, for any δ ≥ 1 we can choose an extension with support in
δΩv, the dilation of Ωv by δ, and

‖Ef‖Lp(δΩv\Ωv) ≤ C0‖f‖Lp(Ωv\δ−1Ωv) for 1 ≤ p ≤ 2,

where the constant C0 is independent of the support of the extension.
4. In particular, properties 2 and 3 imply that for any δ ≥ 1 there is an extension

such that

‖Ef‖Lp
k(R

d) ≤ 2C0δ
2k‖f‖Lp

k(Ωv) for 1 ≤ p ≤ 2, k ≥ 0.

A.2. Lemmas for asymptotic behavior study. Following the arguments in
[3], we have the following.

Lemma A.1 (elastic Lagrange estimate). The problem (5.2) has a unique mini-

mizer given by

X∗ = Qu(f)(v)−
1

2

(

γ1 +

d
∑

j=1

γj+1vj + γd+2|v|2
)

,

where γj, for 1 ≤ j ≤ d + 2, are Lagrange multipliers associated with the elastic

optimization problem. Furthermore, they are given by
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γ1 = Odρu +Od+2eu ,

γj+1 = Od+2µ
j
u , j = 1, 2, . . . , d,

γd+2 = Od+2ρu +Od+4eu .

The estimate constants Or := O(L−r) only depend inversely on |Ωv|. The parameters

ρu, µ
j
u, eu are density, momentum, and kinetic energy associated with the unconserved

collision operator Quc(fh).
In particular, for dimension d = 3, the minimized objective function is given by

(A.8)

Ae(X∗) = ‖Qu(f)−X∗‖2L2(Ωv)
= 2γ2

1L
3 +

2

3
(γ2

2 + γ2
3 + γ2

4)L
5 + 4γ1γ5L

5 +
38

15
γ2
5L

7 .

The minimizer is the expected conservation correction, i.e., Qc(fh) = X∗. So for
the elastic case (conservation up to kinetic energy), the conserved projection operator
Qc(fh) is a perturbation of Quc(fh) by a second order polynomial.

In what follows we denote the moments of a function f by

mk(f) :=

∫

Rd

∣

∣f(v)
∣

∣ |v|γk dv

and

(A.9) Zk(f) :=
k−1
∑

j=0

(

k
j

)

mj+1mk−j .

Besides the above lemma, we list several other results necessary for the final conver-
gence and error estimate, most of which are generalized from the work [3].

Lemma A.2 (conservation correction estimate). Fix f ∈ L2(Ωv); then the accu-

racy of the conservation minimization problem is proportional to the spectral accuracy.

That is, for any k, k′ ≥ 0 and δ > 1, there exists some extension operator E such that

‖ (Qc(f)−Qu(f)) |v|k‖L2(Th) ≤
C

√

(k + d)
Lγk‖Q(Ef,Ef)−Qu(f)‖L2(Th)

+
δ2γk

′

√

(k + d)
Od/2+γ(k′−k)

(

mk′+1(f)m0(f) + Zk′(f)
)

,

where C is a universal constant.

To prove our final convergence estimate, we need another theorem in the L2-
theory of the collision operator, which is the Sobolev bound estimate.

Theorem A.3 (Sobolev bound estimate). Let µ > d
2 + γ. For f, g ∈ Hα

k+µ, the

collision operator satisfies

(A.10) ‖Q(f, g)‖2Hα
k
≤ C

∑

j≤α

(

α

j

)(

‖f‖2
Hα−j

k+γ

‖g‖2
Hj

k+µ

+ ‖f‖2
Hα−j

k+µ

‖g‖2
Hj

k+γ

)

,

where the dependence of the constant is C := C(d, β, α, ‖b‖1).
And also, we need the following Hα

k -norm propagation properties of the solutions.

Lemma A.4 (Hα
k -norm propagation). Assume fh,0 ∈ Hα

k+1+α(Ωv); then there

exists an extension operator Eα such that, for any time T , we can choose a lateral
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size L0(f0, k, α) for the truncated domain Ωv such that for any L ≥ L0 there exists a

small mesh size h0 = maxEv∈Th
diam(Ev),

sup
t∈[0,T ]

‖fh‖Hα
k (Ωv) ≤ max

{

‖fh,0‖Hα
k+1+λ(Ωv), Ck(mk′(g0))

}

, h ≤ h0,

where k′ ≥ k is a finite number of moments. Additionally, Ck is independent of the

parameters L.
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