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Abstract. We propose a simple fast spectral method for the Boltzmann collision operator with
general collision kernels. In contrast to the direct spectral method [L. Pareschi and G. Russo, SIAM
J. Numer. Anal., 37 (2000), pp. 1217–1245; I. M. Gamba and S. H. Tharkabhushanam, J. Comput.
Phys., 228 (2009), pp. 2012–2036], which requires O(N6) memory to store precomputed weights and
has O(N6) numerical complexity, the new method has complexity O(MN4 log N), where N is the
number of discretization points in each of the three velocity dimensions and M is the total number
of discretization points on the sphere and M � N2. Furthermore, it requires no precomputation for
the variable hard sphere model and only O(MN4) memory to store precomputed functions for more
general collision kernels. Although a faster spectral method is available [C. Mouhot and L. Pareschi,
Math. Comp., 75 (2006), pp. 1833–1852] (with complexity O(MN3 log N)), it works only for hard
sphere molecules, thus limiting its use for practical problems. Our new method, on the other hand,
can apply to arbitrary collision kernels. A series of numerical tests is performed to illustrate the
efficiency and accuracy of the proposed method.
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Lebedev quadrature
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1. Introduction. Kinetic theory describes the nonequilibrium dynamics of a
gas or any system composed of a large number of particles. When well-known
fluid mechanical laws of Navier–Stokes and Fourier become inadequate, kinetic equa-
tions provide rich information at the mesoscopic level and have found applications in
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FAST SPECTRAL METHOD FOR BOLTZMANN EQUATION B659

various fields such as rarefied gas dynamics [10], radiative transfer [11], semiconductor
modeling [23], and biological and social sciences [26]. Our main focus in this paper
is the Boltzmann equation, which constitutes the central model in kinetic theory and
takes the form [9, 12, 31]

(1.1)
∂f

∂t
+ v · ∇xf = Q(f), t > 0, x ∈ Ω ⊂ R

3, v ∈ R
3.

Here f = f(t, x, v) is the phase space distribution function, which depends on time t,
position x, and particle velocity v; and Q is the Boltzmann collision operator, which
models binary interactions between particles:1

(1.2) Q(f)(v) =

∫

R3

∫

S2

B(v − v∗, ω) [f(v′)f(v′
∗) − f(v)f(v∗)] dω dv∗.

In this formula, (v′, v′
∗) and (v, v∗) represent the velocity pairs before and after a

collision. The requirement that momentum and energy are conserved during such a
collision means that (v′, v′

∗) can be expressed in terms of (v, v∗):

(1.3) v′ =
v + v∗

2
+

|v − v∗|
2

ω, v′
∗ =

v + v∗
2

− |v − v∗|
2

ω,

where the parameter ω varies over the unit sphere S2. The collision kernel B is a
nonnegative function that depends on its arguments only through |v − v∗| and cosine
of the deviation angle θ (the angle between v − v∗ and v′ − v′

∗). Thus B is often
written as

(1.4) B(v − v∗, ω) = B(|v − v∗|, cos θ), cos θ =
ω · (v − v∗)

|v − v∗|
.

The specific form of B can be determined from the intermolecular potential using
scattering theory [9]. For numerical purposes, a commonly used collision kernel is the
variable hard sphere (VHS) model proposed by Bird [3]:

(1.5) B = bγ |v − v∗|γ , bγ > 0, 0 ≤ γ ≤ 1,

where γ and bγ are constants. In particular, γ = 1 corresponds to hard sphere
molecules and γ = 0 to Maxwell molecules.

The collision operator Q has collision invariants 1, v, and |v|2, that is,

(1.6)

∫

R3

Q(f) dv =

∫

R3

Q(f)v dv =

∫

R3

Q(f)|v|2 dv = 0.

In addition, Q satisfies Boltzmann’s H-theorem, that is,

(1.7)

∫

R3

Q(f) ln f dv ≤ 0,

with equality if and only if f takes on the form of a Maxwellian:

(1.8) M(v) =
ρ

(2πT )
3
2

e− |v−u|2

2T ,

1The variables t and x are suppressed because Q acts on f only through the velocity.

D
o
w

n
lo

ad
ed

 0
2
/1

6
/1

9
 t

o
 1

2
8
.8

3
.6

3
.2

0
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B660 I. M. GAMBA, J. R. HAACK, C. D. HAUCK, AND J. HU

where the density ρ, bulk velocity u, and temperature T are given by

ρ =

∫

R3

f dv, u =
1

ρ

∫

R3

fv dv, T =
1

3ρ

∫

R3

f |v − u|2 dv.(1.9)

This implies that in the homogeneous case, the entropy S(f) = −
∫

R3 f ln f dv is
always nondecreasing and reaches its maximum at the equilibrium defined by the
Maxwellian in (1.8).

Proposed by Ludwig Boltzmann in 1872, the Boltzmann equation, (1.1), is one
of the fundamental equations of kinetic theory. Yet its numerical approximation
still presents a huge computational challenge, even on today’s supercomputers. This
is mainly due to the high-dimensional, nonlinear, nonlocal structure of the collision
integral in (1.2). Two approaches have been primarily employed for solving the Boltz-
mann equation numerically: one stochastic and one deterministic. Direct simulation
Monte Carlo (DSMC) methods [3, 27, 8] have been historically popular because they
avoid the curse of dimensionality for this problem; however, they can suffer from
slow convergence for certain types of problems such as transient and low-speed flows
and give noisy results due to their stochastic nature. The other approach is to use
deterministic solvers, which have undergone considerable development over the past
20 years. These methods include discrete velocity models (DVM) [30, 5, 7, 25] and
Fourier spectral methods [28, 6, 29, 16, 17, 18]. DVMs are quadrature-based methods
with grid points that are carefully chosen in order to preserve the conserved quantities
of the collision operator. Spectral methods, on the other hand, compute the collision
operator by exploiting its structure in Fourier space. Compared with DVM, they
can provide significantly more accurate results with less numerical complexity; the
conservation properties are not strictly maintained but are preserved up to spectral
accuracy. Compared with DSMC, they produce smooth, noise-free solutions and can
simulate regimes that particle methods find difficult.

Despite the aforementioned advantages, spectral methods are invariably hindered
in most real-world applications since they require O(N6) operations per evaluation
of the collision operator, with N being the number of discretization points in each
velocity dimension, as well as O(N6) bytes of memory to store precomputed weight
functions. With this type of scaling, the evaluation of the collision operator quickly
becomes the bottleneck when solving large-scale problems [29, 17]. Fast spectral
methods, based on the Carleman representation of the collision integral, have been
proposed in [6, 24]. These methods reduce the complexity of evaluating the collision
operator to O(MN3 log N), where M is the total number of discretization points on
a sphere and M � N2. However, a decoupling assumption for the collision kernel is
needed that restricts application of the method to the hard sphere case, i.e., γ = 1 in
(1.5). In practice, however, γ may take on any value in [0, 1]; in addition, the collision
kernel (1.4) may also have angular dependence. Therefore, the goal of this paper is
to introduce a fast spectral method for the Boltzmann collision operator that can
handle general collision kernels as well as mitigate the memory requirement in the
direct spectral method. Specifically, the numerical complexity of our new method is
O(MN4 log N); no precomputation is required for the VHS model, and only O(MN4)
memory is needed to store precomputed functions for more general collision kernels.
The proposed method can serve as a “black-box” solver in the velocity domain to
be used in conjunction with existing time and spatial discretization methods to treat
more practical problems with complex geometries, multiple temporal/spatial scales,
etc. Since our goal here is to present a simple strategy to accelerate the direct spectral
method without sacrificing much of the spectral accuracy, we will mainly focus on the
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approximation of the collision operator in the numerical examples and consider only
the spatially homogeneous version of the Boltzmann equation (1.1).

The rest of this paper is organized as follows. In the next section, we review the
basic formulation of the direct spectral method and discuss its numerical challenges.
The fast method is then described in section 3. Numerical examples are presented in
section 4 to demonstrate the efficiency and accuracy of the proposed method. The
paper is concluded in section 5.

2. The direct spectral method. While multiple spectral formulations exist,
we have elected in this paper to adopt the Fourier–Galerkin approach [29] to illus-
trate the idea. The strategy introduced below can be easily applied to other spectral
formulations such as the one based on the Fourier transform [17].

The starting point for the spectral method is a change in the integration variable
v∗ in (1.2) to g = v − v∗. It is then assumed that f has a compact support in
v: Suppv(f) ≈ BS , where BS is a ball centered at the origin with radius S. Of
course, many distribution functions, including the Maxwellian, will not have compact
support. Thus in practice, the support is chosen as some multiple (typically 6 to 8)
of the thermal speed vth =

√
T . It then suffices to truncate the infinite integral in g

to a larger ball BR with radius R = 2S:

(2.1) Q(f)(v) ≈ QR(f)(v) =

∫

BR

∫

S2

B (r, ω · ĝ) [f(v′)f(v′
∗) − f(v)f(v − g)] dω dg,

where

(2.2) v′ = v − g

2
+

r

2
ω and v′

∗ = v − g

2
− r

2
ω,

with r = |g| and ĝ = g/|g| being the magnitude and direction of g, respectively. Next,
one restricts f to the computational domain DL = [−L, L]3 and extends it periodically
to the whole space. For antialiasing purposes, we let L ≥ (3 +

√
2)S/2.2 Then f is

approximated by a truncated Fourier series:3

(2.3) f(v) ≈ fN (v) =

N
2 −1
∑

k=− N
2

f̂kei π
L

k·v, f̂k =
1

(2L)3

∫

DL

f(v)e−i π
L

k·v dv.

By substituting (2.3) into (2.1) and performing a Galerkin projection, one can express
the kth mode of the Fourier expansion of the collision operator as a (discrete) weighted
convolution:

Q̂k :=
1

(2L)3

∫

DL

QR(fN )(v)e−i π
L

k·v dv=

N
2 −1
∑

l,m=− N
2

l+m=k

G(l,m)f̂lf̂m, k= − N

2
, . . . ,

N

2
− 1,

(2.4)

where G(l,m) = G(l,m) − G(m, m) and

(2.5) G(l,m) =

∫

BR

∫

S2

B (r, ω · ĝ) e−i π
L

(l+m)
2 ·g+i π

L
r

(l−m)
2 ·ω dω dg.

2See [29] for more details justifying this choice of L.
3Note that k = (k1, k2, k3) ∈ Z

3 is a multidimensional index so that, for example, the summation
in (2.3) is understood to be over the lattice {k ∈ Z

3 : − N
2

≤ k1, k2, k3 ≤ N
2

− 1}.
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For the VHS model (1.5), the formula for G reduces to

G(l,m) = 16π2bγ

∫ R

0

rγ+2 Sinc

(

π

L
r
|l + m|

2

)

Sinc

(

π

L
r
|l − m|

2

)

dr,(2.6)

where Sinc(x) = sinx/x.
To summarize, a single evaluation of the collision operator Q in the direct spectral

method consists of the following steps:
0. precompute the weight G(l,m)—storage requirement O(N6);

1. compute f̂k using the fast Fourier transform (FFT)—cost O(N3 log N);
2. compute the weighted convolution (2.4)—cost O(N6);
3. take the inverse Fourier transform of Q̂k to obtain Q—cost O(N3 log N).

Step 2 is by far the most expensive step. Indeed, due to the presence of the weights
G(l,m) in the convolution, typical fast methods for convolutions do not apply. Thus
the constrained double summation in (2.4) has to be evaluated directly for every index
k, resulting in O(N6) complexity. Step 0 can be completed in advance, but it requires
a huge amount of memory to store the precomputed weights. This can be a challenge
for large-scale problems, even on supercomputers. For example, when N = 40, it
takes over 30 gigabytes of data to store the weights—an amount that almost reaches
the maximum memory capacity on a typical compute node of Oak Ridge National
Laboratory’s Titan supercomputer.

3. The new fast spectral method. In the new fast spectral method, we ac-
celerate the summation in (2.4). Let Q̂k = Q̂+

k − Q̂−
k , where

Q̂+
k =

N
2 −1
∑

l,m=− N
2

l+m=k

G(l,m)f̂lf̂m and Q̂−
k =

N
2 −1
∑

l,m=− N
2

l+m=k

G(m, m)f̂lf̂m.(3.1)

Because G(m, m) depends only on m, the loss term Q̂−
k is actually a convolution of

the functions G(m, m)f̂m and f̂l. It can therefore be computed efficiently by FFT in
O(N3 log N) operations, since convolution in the Fourier domain becomes multiplica-
tion in the original domain. What makes the total cost O(N6) is the gain term Q̂+

k .

Our goal is to find an approximation for Q̂+
k that can be expressed as a convo-

lution. To this end, we seek an approximation of G(l,m) in the following decoupled
form:

(3.2) G(l,m) ≈
Np
∑

p=1

αp(l + m)βp(l)γp(m),

where αp, βp, and γp are functions of (l + m), l, and m, respectively, and Np � N3.
Substitution of (3.2) into (3.1) gives

Q̂+
k ≈

N
2 −1
∑

l,m=− N
2

l+m=k

Np
∑

p=1

αp(l+m)βp(l)γp(m)f̂lf̂m=

Np
∑

p=1

αp(k)

N
2 −1
∑

l,m=− N
2

l+m=k

(

βp(l)f̂l

) (

γp(m)f̂m

)

.

(3.3)

The inner summation in (3.3) is a pure convolution of the two functions βp(l)f̂l and

γp(m)f̂m that can be computed in O(N3 log N) via FFT. This, together with the outer
summation, results in a total cost of O(NpN

3 log N) for a single evaluation of Q+.
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To generate a suitable low-rank approximation of the form (3.2), we propose a
simple solution in which, instead of precomputing all the weights G(l,m) in (2.5), we
compute them partially “on the fly” using a quadrature rule. Specifically, we rewrite
G(l,m) as

(3.4) G(l,m) =

∫ R

0

∫

S2

F (l + m, r, ω) ei π
L

r l
2 ·ω e−i π

L
r m

2 ·ω dω dr,

where

(3.5) F (l + m, r, ω) = r2

∫

S2

B (r, ω · ĝ) e−i π
L

r
(l+m)

2 ·ĝ dĝ.

For each fixed r and ω, the integrand in (3.4) is a product of three functions: one
that depends on (l + m), one that depends on l, and one that depends on m. This
is exactly the desired form of (3.2). In order to maintain this structure, we carry out
the integration in r and ω using a fixed numerical quadrature. This yields

(3.6) G(l,m) ≈
∑

r,φ1,φ2

wrwφ1
wφ2

sinφ2 F (l + m, r, ω)ei π
L

r l
2 ·ωe−i π

L
r m

2 ·ω,

where φ1 is the azimuthal angle, φ2 is the polar angle, and wr, wφ1
, and wφ2

represent
the corresponding quadrature weights. Since the radial direction oscillates on the
scale of l−m

2 , the number of quadrature points in r must be at least O(N) in order to
resolve this dimension. For the integration on the sphere, we anticipate that the total
number M of quadrature points needed is much less than N2; this is confirmed in our
numerical results. Thus we are able to obtain an admissible decomposition (3.2) of
G(l,m) with Np = O(MN) � N3. Substituting (3.6) into (3.1), we have

Q̂+
k ≈

∑

r,φ1,φ2

wrwφ1
wφ2

sinφ2 F (k, r, ω)

N
2 −1
∑

l,m=− N
2

l+m=k

[

ei π
L

r l
2 ·ω f̂l

] [

e−i π
L

r m
2 ·ω f̂m

]

.(3.7)

In summary, the proposed fast algorithm for a single evaluation of Q consists of
the following steps:

0. precompute the weights G(m, m) and F (k, r, ω)—storage requirement
O(MN4);

1. compute f̂k using FFT—cost O(N3 log N);
2. compute the loss term Q− using FFT—cost O(N3 log N);
3. compute the gain term Q+ based on (3.7) using FFT—cost O(MN4 log N);
4. compute Q = Q+ − Q−—cost O(N3).

Compared with the direct spectral method in the previous section, the new method
saves both memory storage (step 0) and computational time (step 3). For the N = 40
case mentioned in section 2, if we take M = 14, the precomputed weights require
only roughly 273 megabytes. This is less than 1% of the memory required for the
direct method. For the VHS model, the function F does not depend on ω and has an
analytical form,

(3.8) F (k, r) = 4π bγ rγ+2 Sinc

(

π

L
r
|k|
2

)

.

Thus no precomputation is needed in this case.
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direct G(l,m)
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Fig. 1. The first 128 × 128 entries of the matrix G(l, m) (size 4096 × 4096) precomputed in the
direct method. N = 16 and other setup is the same as that in section 4.1.

In our numerical implementation, we use the Gauss–Legendre quadrature in the
radial direction r, while for the integration in ω we propose to use the Lebedev
quadrature [21], which is the near optimal quadrature on the sphere and requires fewer
quadrature points than tensor product based Gauss quadratures for a large class of
functions [2]. The Lebedev quadrature is designed to enforce the exact integration
of spherical harmonics up to a given order and only a certain number of quadrature
points are available. To gain a better idea of how this quadrature works, we compare
the weight G(l,m) precomputed in the direct method with the one approximated by
the sphere quadrature. Figure 1 plots a portion of the matrix G(l,m) that is used
in the direct method when N = 16. Figure 2 shows the approximated weight using
different numbers of Lebedev quadrature points M = 14, 38, and 74 (note that in the
fast method, we never generate these matrices explicitly and they are shown here only
for illustration purposes). We can see that the difference decreases as M increases.
Yet, it is also clear that the error is not very small. Indeed, due to the oscillatory
nature of the integrand, one might need a large number of points to approximate the
weight accurately. Nevertheless, if we check the accuracy of the collision operator, we
find that we do not need O(N2) points on the sphere to get a reasonable solution:
in a typical numerical example where N = 32, only M = 14 is needed to reach a
relative 10−6 accuracy for a known isotropic solution and the result is comparable
to the direct method (see section 4.1); a larger M (say, M = 74) may be needed
when considering anisotropic distribution functions (see section 4.2). We mention
that a similar observation has been made for the fast spectral method in [24, 14, 13].
Although that method is based on a different representation of the collision integral,
it also requires numerical discretization on a sphere. We are currently investigating
the reason and we partly attribute this to the smoothing effect of the gain part of the
Boltzmann collision operator [22].

Remark 3.1. The method proposed above can be followed by a postprocessing
subroutine after each evaluation of the collision operator to strictly enforce the colli-
sion invariants in (1.6) [17] for either scalar or system Boltzmann models, where it is
shown that the solution of the scalar problem converges to the equilibrium Maxwellian
state (1.8) [1] or, alternatively, adapted easily to preserve the Maxwellian as a steady
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fast G(l,m) with M=14
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Fig. 2. The weight G(l, m) approximated using different numbers of Lebedev quadrature points.
From left to right: M = 14, 38, and 74. The first row shows the weight itself; the second row shows
its difference from that in the direct method (absolute difference plotted on a log scale). The relative

error
‖Gfast−Gdirect‖∞

‖Gdirect‖∞
in each case is 0.5254, 0.3015, and 0.2649, respectively.

state following [15]. Since the goal of this paper is to present a simple strategy to
accelerate the computation of the weighted convolution (2.4) in the direct spectral
method while maintaining an acceptable level of accuracy, we will mainly focus on
the proposed method itself in the following numerical examples and leave the investi-
gation of aforementioned extensions to future work.

3.1. Further reduction of the algorithm. Further reduction of the algorithm
is possible in both angular and radial discretizations by taking into account the sym-
metry of the collision operator and examining the oscillatory behavior of the weight
function.

The collision operator (1.2) can be written as

Q(f)(v) =

∫

R3

∫

S2

B

(

|v − v∗|,
ω · (v − v∗)

|v − v∗|

)

[f(v′)f(v′
∗) − f(v)f(v∗)] dω dv∗

=

∫

R3

∫

S2

B

(

|v − v∗|,−
ω · (v − v∗)

|v − v∗|

)

[f(v′)f(v′
∗) − f(v)f(v∗)] dω dv∗,(3.9)

where the second equality is obtained by changing ω to −ω and using (1.3). Therefore,
it is sufficient to replace any given collision kernel by its symmetrized version:

Bsym

(

|v − v∗|,
ω · (v − v∗)

|v − v∗|

)

:=
B

(

|v − v∗|, ω·(v−v∗)
|v−v∗|

)

+ B
(

|v − v∗|,−ω·(v−v∗)
|v−v∗|

)

2
.

(3.10)

Using this property, it is easy to show that (3.4) and (3.5) can be rewritten as integrals
on the half sphere S2+:

G(l,m) = 2

∫ R

0

∫

S2+

F (l + m, r, ω) cos

(

π

L
r
l − m

2
· ω

)

dω dr,(3.11)
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where

(3.12) F (l + m, r, ω) = 2r2

∫

S2+

Bsym (r, ω · ĝ) cos

(

π

L
r
(l + m)

2
· ĝ

)

dĝ.

Accordingly, (3.7) becomes

Q̂+
k ≈ 2

∑

r,φ1,φ2

wrwφ1
wφ2

sinφ2 F (k, r, ω)

N
2 −1
∑

l,m=− N
2

l+m=k

[

cos

(

π

L
r

l

2
· ω

)

f̂l cos
(π

L
r
m

2
· ω

)

f̂m

+ sin

(

π

L
r

l

2
· ω

)

f̂l sin
(π

L
r
m

2
· ω

)

f̂m

]

,(3.13)

where φ1, φ2 are now taken only on the half sphere. Note that although there are
two terms in the brackets, the total number of FFTs needed for each r, φ1, φ2 is still
2 as in the complex exponential case. In this way, we can readily reduce both online
and offline (precomputation) cost by a factor of 2.

In the radial direction, one might not need as many as N quadrature points.
Taking (2.6), for example, the maximum value that the argument in the Sinc function
can obtain is πR

L
N
2

√
3. To integrate the Sinc function accurately (this is what the fast

algorithm does), one needs at least two points in each period. Therefore, the total

number of discretization points needed for r is
√

3
2

R
L N . Assuming L = 3+

√
2

4 R (see

section 2), this number is roughly 2
√

3
3+

√
2
N ≈ 0.8N .

Remark 3.2. As the above reductions of the algorithm are not in orders of mag-
nitude, we discuss them here mainly for completeness and for the convenience of
readers. The numerical tests presented in this paper were carried out without these
considerations.

4. Numerical examples. In this section, we perform a series of numerical tests
to validate the accuracy and efficiency of the proposed method. In the first test, we
compare results of the new method to the Bobylev–Krook–Wu (BKW) solution [4, 20],
which is constructed for Maxwell-type interactions (i.e., γ = 0 in (1.5)) and is one
of the few analytical solutions available for the Boltzmann equation. In the second
test, we again consider Maxwell molecules but assume an initial condition that is
anisotropic in v. In this case, there is no analytical solution for the full distribution
function, but exact formulas for higher order moments such as the momentum flow
tensor

(4.1) Pij =

∫

R3

fvivj dv, i, j = 1, 2, 3,

and the energy flow vector

(4.2) qi =
1

2

∫

R3

fviv
2 dv, i = 1, 2, 3,

can be derived. We will also test our method for the hard sphere case by comparing
it with the direct spectral method. Finally, we illustrate the generality of our method
by considering a more realistic, angularly dependent collision kernel.
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In the following, “direct spectral” refers to the direct spectral method, and “fast
spectral” refers to the new method proposed in this paper. The implementation is
in MATLAB and all numerical results are obtained on a laptop computer (MacBook
Pro, 3.0 GHz dual-core Intel Core i7 with 8 GB memory). Further acceleration can
be achieved by careful implementation in C or Fortran.

4.1. Maxwell molecules—BKW solution. When the collision kernel B =
1/(4π) is a constant, one can construct an exact solution to the spatially homogeneous
Boltzmann equation

(4.3)
∂f

∂t
= Q(f), t > 0, v ∈ R

3.

This solution takes the form

(4.4) f(t, v) =
1

2(2πK(t))3/2
exp

(

− v2

2K(t)

) (

5K(t) − 3

K(t)
+

1 − K(t)

K2(t)
v2

)

,

where K(t) = 1 − exp(−t/6). The initial time t0 has to be greater than 6 ln(5/2) ≈
5.498 for f to be positive. We take t0 = 5.5.

Since f given in (4.4) satisfies (4.3) exactly, the time derivative of f gives

Q(f) ≡ ∂f

∂t

=

{(

− 3

2K
+

v2

2K2

)

f +
1

2(2πK)3/2
exp

(

− v2

2K

) (

3

K2
+

K − 2

K3
v2

)}

K ′,(4.5)

where K ′(t) = exp(−t/6)/6. Using (4.5), we can verify the accuracy of the proposed
method without introducing additional time discretization error. We pick an arbitrary
time t = 6.5 and compare the numerical error and evaluation time of the direct and
fast spectral methods. The results are shown in Tables 1 and 2, from which we see
that only 14 points are needed on the sphere for the fast method to obtain comparable
accuracy to the direct method. Meanwhile, the speedup is about a factor of 300, even
for the moderate value N = 32. When N = 64, the direct method requires too much
storage for precomputed weights to fit within the available memory; it is therefore
omitted. This restriction highlights the advantage of the proposed method in terms
of memory.

Table 1

‖Qnum(f) − Qext(f)‖L∞ evaluated at t = 6.5. N is the number of discretization points in each
velocity dimension. In the fast spectral method, N-point Gauss quadrature is used in the radial
direction and the M = 14 Lebedev rule is used for the sphere integration. We set R = 6 (integration
range) and L = (3 +

√
2)R/4 ≈ 6.62 (computational domain).

N Direct spectral Fast spectral M = 14
8 6.91e-04 7.33e-04
16 7.83e-05 7.63e-05
32 3.90e-08 3.90e-08
64 — 3.81e-08

Table 2

Average running time for one time evaluation of the collision operator. Same parameters as in
Table 1.

N Direct spectral Fast spectral M = 14
8 0.09s 0.14s
16 6.31s 0.26s
32 542.34s 1.78s
64 — 33.15s
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Fig. 3. Time evolution of ‖fnum − fext‖L∞/‖fext‖L∞ . RK4 with ∆t = 0.1 for time discretiza-
tion. Other parameters are the same as in Table 1.

We next couple the fast collision solver with time discretization to numerically
solve the Boltzmann equation (4.3). A fourth-order Runge–Kutta method is used to
ensure that the temporal error does not pollute the spectral accuracy in velocity. The
results are shown in Figure 3. The fast method basically produces very similar results
to the direct method. Other norms behave similarly but are omitted for brevity.

4.2. Maxwell molecules—moments. Consider again the constant collision
kernel B = 1/(4π). For the initial condition

f(0, v) =
1

2(2π)3/2

{

exp

(

− (v − u1)
2

2

)

+ exp

(

− (v − u2)
2

2

)}

,(4.6)

with u1 = (−2, 2, 0) and u2 = (2, 0, 0), the exact formulas for the nonzero components
of P and q (cf. (4.1) and (4.2)) are given by

P11 =
7

3
exp

(

− t

2

)

+
8

3
, P22 = −2

3
exp

(

− t

2

)

+
11

3
,

P33 = −5

3
exp

(

− t

2

)

+
8

3
, P12 = −2 exp

(

− t

2

)

,(4.7)

and

q1 = −2 exp

(

− t

2

)

, q2 = −2

3
exp

(

− t

2

)

+
43

6
.(4.8)

In Figure 4, we compare the results of the fast method with the formulas above.
Because the solution is anisotropic in v, we need a larger value of M than before
to obtain reasonable accuracy. We find that M = 74, which is still much less than
N2 = 1024, is sufficient to obtain roughly three digits of accuracy for moments. In
Figure 5, we plot differences in the solution of the distribution function computed
with the fast method and the direct method for different values of M . (Since the
exact distribution function is not known, we use the solution of the direct method as
a reference.) We observe that the error decreases quickly as M increases.
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Fig. 4. Maxwell molecules. Time evolution for higher order moments. In each figure, the left
scale shows the result by the fast spectral method, and the right scale shows its difference from the
exact solution. RK4 with ∆t = 0.3 for time discretization. N = 32 in each velocity dimension.
In the fast method, N = 32 in radial direction and M = 74 for sphere integration. R = 10,
L = (3 +

√
2)R/4 ≈ 11.04.

4.3. Hard sphere molecules—moments. We next consider the same example
as in the previous subsection, but for hard sphere molecules. That is, the collision
kernel (1.5) is assumed to be

(4.9) B =
1

4π
|v − v∗|.
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Fig. 5. f fast − fdirect at time t = 6. From left to right: slices along the direction of v1, v2, and
v3. From top to bottom: f fast obtained with M = 14, 38, and 74. Other parameters are the same
as in Figure 4.

In this case, there is no exact formula for either the distribution function or its higher
order moments. Therefore, we use the direct spectral method as a reference solution
and compare it with the new fast method. The results are plotted in Figure 6, from
which we again observe roughly three digits of accuracy for moments.

4.4. Angularly dependent collision kernel. Our final numerical test involves
the variable soft sphere model [19], which is widely used in DSMC calculations. The
model has a collision kernel with both velocity and angular dependence:

(4.10) B = bγ,η|v − v∗|γ(1 + cos θ)η,

where bγ,η is a positive constant and cos θ is given in (1.4). Setting γ = 0.38, η = 0.4,
and bγ,η = 1/(4π), we perform the same test as in section 4.2 using the same set of
discretization parameters.4 In Figure 7, we plot the results for the fast method. Sim-
ilar results for the direct method are omitted because the time it takes to precompute

4The choice of γ and η corresponds to argon gas [3] while the choice of bγ,η , which has no effect
on the efficiency of the algorithm, is simply a matter of convenience. In general, these values are
composite parameters [32] that are used to tune the kernel in order to reproduce experimentally
measured values for viscosity and diffusion. A careful comparison of our method with DSMC for
various benchmark examples will be the subject of future work (for which all physical parameters
and spatial discretization will need to be included).
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Fig. 6. Hard sphere molecules. Time evolution for higher order moments. In each figure,
the left scale shows the result by the fast spectral method, and the right scale shows the difference
between the fast and the direct method. RK4 with ∆t = 0.3 for time discretization. N = 32 in
each velocity dimension. In the fast method, N = 32 in radial direction and M = 74 for sphere
integration. R = 10, L = (3 +

√
2)R/4 ≈ 11.04.

the weights G(l,m) for this model is prohibitive. For the fast method, this step takes
only a few hours.

5. Conclusion. A simple, fast spectral method for the Boltzmann collision oper-
ator has been proposed in this paper. The method is designed to accelerate the direct
method and to relieve the memory bottleneck in its precomputation stage. Through
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Fig. 7. Argon molecules. Time evolution for higher order moments computed by the fast
spectral method. RK4 with ∆t = 0.3 for time discretization. N = 32 in each velocity dimension,
N = 32 in radial direction and M = 74 for sphere integration. R = 10, L = (3 +

√
2)R/4 ≈ 11.04.

a series of examples, we have demonstrated that the proposed method can be orders
of magnitude faster than the direct method while maintaining a comparable level
of accuracy. Furthermore, unlike existing fast spectral methods that can treat only
hard sphere molecules, the proposed method is applicable to general collision kernels
with both velocity and angular dependence. Ongoing work includes a more careful
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analysis of spherical quadratures errors and the development of adaptive quadratures
to further improve the method.
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