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Abstract. We develop error estimates for the semidiscrete conservative spectral method for
the approximation of the elastic and inelastic space homogeneous Boltzmann equation introduced
by Gamba and Tharkabhushanam in [J. Comput. Phys., 228 (2009), pp. 2012-2036]. In addition
we study the long time convergence of such semidiscrete solution to the equilibrium Maxwellian
distribution that conserves the mass, momentum, and energy associated with the initial data. The
numerical method is based on the Fourier transform of the collisional operator and a Lagrangian
optimization correction that enforces the collision invariants, namely, conservation of mass, momen-
tum, and energy in the elastic case, and just mass and momentum in the inelastic one. We present
a detailed semidiscrete analysis on convergence of the proposed numerical method which includes
the L1 — L2 theory for the scheme. This analysis allows us to present, additionally, convergence in
Sobolev spaces and convergence to equilibrium for the numerical approximation. The results of this
work answer a long standing open problem posed by Cercignani, Illner, and Pulvirenti in [Mathemat-
tcal Theory of Dilute Gases, Springer, New York, 1994, Chapter 12] about finding error estimates
for a numerical scheme associated with the Boltzmann equation, as well as showing the semidiscrete
numerical solution converges to the equilibrium Maxwellian distribution associated with the initial
value problem.
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1. Introduction. The Boltzmann transport equation is an integro-differential
transport equation that describes the evolution of a single point probability density
function f(t,v,z) defined as the probability of finding a particle at position x with
kinetic velocity v at time ¢. The mathematical and computational difficulties associ-
ated with the Boltzmann equation are due to the nonlocal and nonlinear nature of
the binary collision operator, which is usually modeled as a bilinear integral form in
d-dimensional velocity space and unit sphere S~

The focus of this manuscript is to provide a complete consistency and error analy-
sis and long time convergence to statistical equilibrium states for the Lagrangian-based
conservative spectral scheme proposed in [30] to solve the dynamics of elastic binary
collisions. In particular, the results of this work answer a long standing open problem
posed by Cercignani, Illner, and Pulvirenti in [19, Chapter 12] about finding error es-
timates for a consistent nonlinear Boltzmann deterministic scheme for elastic binary
interactions in the case of hard potentials.
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The problem of computing efficiently the Boltzmann transport equation has inter-
ested many authors that have introduced different approaches. These approaches can
be classified as stochastic methods known as direct simulation Monte Carlo methods
(DSMC) ([8, 47, 49, 29]) and deterministic methods (discrete velocity models [35, 18,
12, 39, 33], Boltzmann approximations—lattice Boltzmann, Bhatnagar—Gross—Krook
operator and spectral methods [25, 14, 46, 9, 11, 16, 45, 34, 23, 24, 42]). Spectral-
based methods, our choice for this work, have been developed by Gamba and Tharkab-
hushanam [30] inspired in the work developed a decade earlier by Gabetta, Pareschi,
and Toscani [25] and later by Bobylev and Rjasanow [14] and Pareschi and Russo [46].
The practical implementation of these methods is supported by the groundbreaking
work of Bobylev [9] using the Fourier transformed Boltzmann equation to analyze
its solutions in the case of Maxwell-type interactions. After the introduction of the
inelastic Boltzmann equation for Maxwell-type interactions and the use of the Fourier
transform for its analysis in Bobylev, Carrillo, and Gamba [11], the spectral-based
approach is becoming the most suitable tool to deal with deterministic computations
of kinetic models associated with the full Boltzmann collisional integral, both for
elastic or inelastic interactions. Recent implementations of spectral methods for the
nonlinear Boltzmann are due to Bobylev and Rjasanow [14] who developed a method
using the fast Fourier transform (FFT) for Maxwell-type interactions and then for
hard-sphere interactions [15] using generalized Radon and X-ray transforms via FFT.
Simultaneously, Pareschi and Perthame [45] developed a similar scheme using FFT
for Maxwell-type interactions. Using [46, 45], Filbet, Mouhot, and Pareschi [23] and
Filbet and Russo in [24] have implemented a scheme to solve the space inhomogeneous
Boltzmann equation. We also mention the work of Ibragimov and Rjasanow [34] who
developed a numerical method to solve the space homogeneous Boltzmann equation
on a uniform grid for variable hard potential interactions with elastic collisions. This
particular work has been a great inspiration for the current paper and was one of the
first steps in the direction of a new numerical method.

The aforementioned works on deterministic solvers for the nonlinear Boltzmann
transport equation have been restricted to elastic, conservative interactions. Mouhot
and Pareschi [42] have studied some approximation properties of the schemes. Part of
the difficulties in their strategy arises from the constraint that the numerical solution
has to satisfy conservation of the initial mass. To this end, the authors propose the use
of a periodic representation of the distribution function to avoid aliasing. Closely re-
lated to this problem is the fact that spectral methods do not guarantee the positivity
of the solution due to the combined effects of the truncation in velocity domain (of the
equation) and the application of the Fourier transform (computed for the truncated
problem). In addition to this, there is no a priori conservation of mass, momentum,
and energy in [23, 24, 42]. In fact, the authors in [22] presented a stability and conver-
gence analysis of the spectral method for the homogeneous Boltzmann equation for
binary elastic collisions using the periodization approach proposed in those previous
references. In their results, the spectral scheme enforced only mass conservation; as a
consequence, the numerical solutions converge to the constant state, hence, destroying
the time asymptotic behavior predicted by the Boltzmann H-theorem.

It is shown in this manuscript that the conservative approach scheme proposed
in [30] is able to handle the conservation problem in a natural way, by means of
Lagrange multipliers, and enjoys convergence and a correct long time asymptote to
the Maxwelliam equilibrium. Our approximation by conservative spectral Lagrangian
schemes and corresponding computational method is based on an alternative ap-
proach to the work in [14, 34]. This spectral approach combined with a constrained
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minimization problem works for elastic or inelastic collisions and energy dissipative
nonlinear Boltzmann-type models for variable hard potentials. We do not use periodic
representations for the distribution function and the only restriction of the current
method is that it requires that the distribution function be Fourier transformable at
any time step. This requirement is met by imposing L2-integrability to the initial
datum. The required conservation properties of the distribution function are enforced
through an optimization problem with the desired conservation quantities set as the
constraints. The correction to the distribution function that makes the approximation
conservative is very small but crucial for the evolution of the probability distribution
function according to the Boltzmann equation.

More recently, this conservative spectral method for the Boltzmann equation was
applied to the calculation of the Boltzmann flow for anisotropic collisions, even in
the Coulomb interaction regime [26], where the solution of the Boltzmann equation
approximates the solution for the Landau equation [37, 38]. It has also been extended
to systems of elastic and inelastic hard potential problems modeling of a multienergy
level gas [44]. In this case, the formulation of the numerical method accounts for
both elastic and inelastic collisions. It was also used for the particular case of a
chemical mixture of monatomic gases without internal energy. The conservation of
mass, momentum, and energy during collisions is enforced through the solution of the
constrained optimization problem to keep the collision invariances associated with the
mixtures. The implementation was done in the space inhomogeneous setting (see [44,
section 4.3]), where the advection along the free Hamiltonian dynamics is modeled
by time splitting methods following the initial approach in [31]. The effectiveness of
the scheme applied to these mixtures has been compared with the results obtained
by means of the DSMC method and excellent agreement has been observed.

In addition, this conservative spectral Lagrangian method has been implemented
in a system of electron-ion in plasma modeled by a 2 x 2 system of Poisson—Vlasov—
Landau equations [52] using time splitting methods, that is, staggering the time steps
for advection of the Vlasov—Poisson system and the collisional system including re-
combinations. The constrained optimization problem is applied to the collisional step
in a revised version from [30] where such a minimization problem was posed and solved
in Fourier space, using the exact formulas for the Fourier transform of the collision
invariant polynomials. The benchmarking for the constrained optimization imple-
mentation for the mixing problem was done for an example of a space homogeneous
system where the explicit decay difference for electron and ion temperatures is known
[52, section 7.1.2]. Yet, the used scheme captures the total conserved temperature,
being a convex sum of the ions and electron temperatures, respectively.

The keynote results of the manuscript are stated in Theorem 3.1 in section 3.
The proof of this theorem relies on the Lagrangian correction problem that enforces
conservation at the numerical level. This is a key idea that shows that the conserva-
tive spectral scheme converges to the Gaussian (Maxwellian) distribution in velocity
space. Indeed, the enforcement of the collision invariants is sufficient to show the
convergence result to the Maxwellian equilibrium in the case of a scalar space ho-
mogeneous Boltzmann equation for binary elastic interactions. This is exactly how
the Boltzmann #H-theorem works [19]; the equilibrium Maxwellian (2.10) is proven to
be the stationary state due to the conservation properties combined with the elastic
collision law.

In the case of inelastic collisions for either Maxwell type of hard sphere interac-
tions for constant rate of local energy law [11, 27, 40] or visoelastic particle type of
interactions [6, 7], where local energy rates depend on the local impact angle, making
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them an elastic interaction as the interaction is glancing, the number of collision in-
variants to be enforced is just d 4+ 1 polynomials. In addition, trivial stationary states
are either a singular distribution or vacuum, and it has been shown that there also
are nontrivial attracting self-similar solutions that develop power tail distributions
in the self-similar framework, as computed in [30] and references therein for an in-
depth discussion of the phenomenon. In particular, it would not be correct to use
approximating schemes that enforce local or global Maxwellian behavior as they will
eventually generate errors. In fact, in the case of the scalar homogeneous Boltzmann
for binary inelastic collisions of Maxwell type, the scheme is able to accurately com-
pute the evolution to self-similar states with power tails, by exhibiting the predicted
corresponding moment growth as performed in [30].

The conservative spectral Lagrangian has also been implemented to numerically
simulate a gas mixture system for chemically interacting gases, [44, 52], where re-
combination terms depend on mass ratios, even if the particle-particle interaction is
elastic. In particular, while each component of the gas mixture does not conserve
energy, the total system does. The resulting conservation scheme, then, enforces the
proper collision invariants for the total system by enforcing a convex combination
of the thermodynamic macroscopic quantities, but not for the collision invariants of
individual components.

Enforcing the system to conserve total quantities by the suitable constrained min-
imization problem associated with initial data for the mixture will select the correct
equilibrium states associated with each system component. A proof of this statement
would require us to adjust the conservation correction estimate of Lemma 3.4 now
extended to the adequate convex combination of collision invariants corresponding
to the initial data of the system, as it was computed in [44] for a 2 X 2 neon argon
gas mixture, or a 5 X 5 multienergy level gas mixture using the classical hard sphere
model, as well as in [52] for an electronion plasma mixture using the Landau equation
for Coulomb potentials.

The paper is organized as follows. In section 2, the preliminaries and description of
the spectral method for the space homogenous Boltzmann equation are presented. In
section 3, we introduce the optimization problem proving the basic estimates including
spectral accuracy and consistency, results in both elastic and inelastic collisions in
Theorem 3.4. In sections 4, 5, and 6 we develop the existence, convergence, and error
estimates for the elastic interactions scheme, which heavily relies on the analytical
properties of the model for a space homogeneous, monoatomic, single component,
elastic interacting gas for hard potentials and integrable angular cross section kernel.
Finally, in section 7 we show local stability and long time convergence of the method.
In this section we prove that, in fact, all constant in the estimates are uniform in time.
We point out that it is possible to carry out this program for the inelastic framework
of viscoelastic interactions, as all the necessary analytical tools are already available
in [6, 7]. The methodology we follow is summarized in the following steps:

1. In section 4 we prove a priori estimates for the moments and the L?-norms of
the scheme under a small negative mass assumption. The analysis involves a
coupled estimate on moments and the L2-norm due to the fact that spectral
methods fundamentally need the L?-theory. An estimate for the amount of
the negative mass produced by the scheme along time is proven as well.

2. We use the a priori estimates of section 4 to prove global existence in section 5.
The key ingredient is to keep the negative mass formation under the numerical
scheme in control. We, then, show propagation of regularity.
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3. In section 6 we develop the error estimates of the scheme using the propaga-
tion of moments and Sobolev norms provided in sections 4 and 5. The core
of the document finishes, in section 7, with a result on the local stability and
exponential convergence of the scheme to the thermal equilibrium. This last
part helps to make all constants found in previous sections uniform in time.

Finally, some conclusion are drawn in section 8 and a useful toolbox is given in
the appendix.

2. Preliminaries.

2.1. The Boltzmann equation and its Fourier representation. The initial
value problem associated with the space homogeneous Boltzmann transport equation
modeling the statistical evolution of a single point probability distribution function
f(t,v) is given by

of

(2.1) S

(t.v) = Q(f, f)(t,v) in (0,T] x R

with initial data f(0,v) = fo. The weak form of the collision integral is given by

(22)
[ eunewan=[ [ .00 =6@)B(u. - o)doduds.

where the corresponding velocity interaction law exchanging velocity pairs {v, w} into
postcollisional pairs {v’,w'} is given by the law

(2.3) v':v+§(|u|07u) and w’:wf§(|u|07u),

where 8 € (1/2,1] is the energy dissipation parameter, v = v — w is the relative
velocity, and ¢ € S%! is the unit direction of the postcollisional relative velocity
u' = v'—w'. The parameter 3 is related to the degree of inelasticity of the interactions
with 5 =1 being elastic and 5 < 1 inelastic interactions.

The collision kernel, quantifying the rate of collisions during interactions, carries
important properties that are of fundamental importance for the regularity therory
of the Boltzmann collisional integral. It is assumed to be

(2.4) B(lul,@-0) = u*b(a-0) with 0<A<1.

The scattering angle 6 is defined by cosf = @ - o, where the hat stands for unitary
vector. Further, we assume that the differential cross section kernel b(-0) is integrable
in S, referred to as the Grad cutoff assumption [32], and it is renormalized in the
sense that

(2.5)

/ b(a~a)da:|Sd*2|/ b(cos 0) sin? 2 0do = }SH|/ b(s)(1 —s2)@=3/24s=1,
§d—1 0 1

where the constant |Sd_2’ denotes the Lebesgue measure of S%~2. The parameter
A in (2.4) regulates the collision frequency and accounts for interparticle potentials
occurring in the gas. These interactions are referred to as variable hard potentials
whenever 0 < A < 1, Maxwell-molecules-type interactions for A = 0, and hard spheres

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/16/19 to 128.83.63.20. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

CONSERVATIVE SPECTRAL BOLTZMANN SCHEME ANALYSIS 3539

for A = 1. In addition, if kernel b is independent of the scattering angle we call
the interactions isotropic, otherwise, we refer to them as anisotropic variable hard
potential interactions.

It is worth mentioning that the weak form of the collisional form (2.2) also takes
the following weighted double mixing convolutional form

(2.6) /Rd Qf, f)(v) p(v) dv = (v)f(v —u) G(v,u)dudv.

R2d
The weight function defined by

2.7) Glv,u) = /S [6(v") — 6(v)] B(lul, i o) do

depends on the test function ¢(v), the collisional kernel B(|u|, % - o) from (2.4), and
the exchange of collisions law (2.3). This is actually a generic form of a Kac master
equation formulation for a binary multiplicatively interactive stochastic Chapman—
Kolmogorov birth-death rate process, where the weight function G(v,u) encodes the
detailed balance properties, collision invariants as well as existence, regularity, and
decay rate dynamics to equilibrium.

We also denote by v and ‘w the precollision velocities corresponding to v and
w. In the case of elastic collisions (i.e., § = 1) the pairs {v,/w} and {v’,w'} agree,
otherwise, extra caution is advised.

Collision invariants and conservation properties. The collision law (2.3) is
equivalent to the following relation between the interacting velocity pairs:

vdw=2v+w and |v|*>+|w|® =] *+|w|? - B - B)B(|lu|,q- o).

In particular, when testing with the polynomials ¢(v) = 1, v;, |v|? in R%, it yields
the following conservation relations

1 0

d
(28) — [f| v |dv =] flvi)f(v) 0 B(|u|, @ - o)dodv.dv.
dt/w ol? / [ B(1-5)

The polynomials that make the collisional integral vanish are called collision invari-
ants. Clearly, in the elastic case when 8 = 1, the homogeneous Boltzmann equation
has d + 2 collision invariants and corresponding conservation laws, namely, mass, mo-
mentum, and kinetic energy. For the inelastic case § < 1, the number of invariants
and conserved quantities is d + 1.

Finally, when testing with ¢(v) = log f(v) it yields the inequality (H-theorem
holding for the elastic case)

(2.9)
d
a/ﬂ{dflogfdvz/w@(f)logfdv

_ /Rgdxgi(lw)f(”) (e (K1Y I 1Y ). oyttt

v s (w - 1) B(Jul, - o)doduwdy

R2d ygd—1

1 N .
< /degd_{(w)f(v) /qu <(2ﬁ_1)JB - 1) B(|u|, @ - 0)dodwdv=0 iff g=1.
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Recall the following fundamental result in elastic particle theory:
The Boltzmann Theorem (for § = 1).

[ QUnogf =0 = logf(e) =at v ol
R

where f € LY(R?) for ¢ > 0, where the parameters a, b, and ¢ are determined by the
initial state moments given by the d + 2 collision invariants.

That means that given an initial state fo(v) > 0 for a.e. v € R? we have
Jza fo()(1 + [v]?) dv < 0o In the limit as ¢ — +o0, we expect that f(t,v) converges
to the equilibrium Maxwellian distribution, i.e.,

2
(210) f(t7 U) — M()[mo, ug, @0](’0) = mo(27r@0)_d/2 exp (—1}26’12()|> s

where the density mass, momentum, and energy are defined by

mo 1= /]Rd folv)dv, wg:= L/Rd fo(v)dv, ©g:= (dmo)’l /Rd |U*UO|2 fo(v)dv.

Mo

The Fourier formulation of the collisional form. One of the pivotal points
in the success of the spectral numerical method for the computation of the nonlinear
Boltzmann equation lies in the simplicity of the representation of the collision integral
in Fourier space by means of its weak form. Indeed taking the Fourier multiplier as
the test function, i.e.,

in the weak formulation (2.2), where ( is the Fourier variable, one obtains the Fourier
transform of the collision integral

3 f = ! ey
QDO = 7 [, QU e

1
(Vam)i

Thus, using (2.4), (2.6), (2.7) yields

[ [ s@s)B(u o) (e - ) dodudo.

(2.11)
3F. f :71 ) f(w u bt - o)e Y e"gc‘(l““’_“))— odwdv
ATDO= gz LI [ bt e ( 1) dodud

— (\/Qilﬂ)d /Rd (/Rd F)flv— u)eic'”dv) G p(u,¢)du

_ (\/%)d [ T (O Gl O du,

where the weight function G g(u,() is defined by the spherical integration

(2.12) G (1, ) = [u] /

gd-1

b(i - o) (e*i‘%C'(l“‘““)) - 1) do .
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Note that (2.12) is valid for both isotropic and anisotropic interactions. In addition,
the function G s(u, €) is oscillatory and trivially bounded by |u|* due to the integra-
bility of b(-) from the Grad’s cutoff assumption. Further simplification ensues for the
three-dimensional isotropic case where a simple computation gives

(2.13) G (u, ¢) = [ul* (eigc'“ sinc (%HC'> - 1) :

In addition, recalling elementary properties of the Fourier transform yields

Frat(O) = r Frraf(Q) = / F(C— TaF(©)de

/ fleesmae.

Hence, using this last identity in (2.11), we finally obtain the following structure in
Fourier space:

— 1 . J—

(214) QIO = g [, FC=OF€GH(e. 0
where

(2.15) Chpl€,0) = /R G Qe du.

That is, the Fourier transform of the collision operator m) (¢) is a weighted con-
volution of the inputs in Fourier space with weight @(5 ,0).

As an example, we compute the weight for the isotropic case in three dimensions.
Assume that f has support in the ball of radius v/3L, hence, the domain of integration
for the relative velocity is the ball of radius 2v/3L. Using polar coordinates u = rw,

éE’(ﬁ,C):/ / 2GS0 (rw, ¢)e W dwdr
0 S2

2v/3L
o A+2 [ o 7"»3|C‘ : B :
— 4/0 P (smc (2> sinc (r|2C — 5) — sinc (r§|)> dr

A point worth noting here is that the numerical calculation of expression (2.14) re-
sults in O(N?9) number of operations, where N is the number of discretizations in
each velocity component (i.e., N counts the total number of Fourier modes for each
d-dimensional velocity space). However it may be possible to reduce the number of
operations to O(N??~!logN) for any anisotropic kernel and any initial state. Due to
the oscillatory nature of the weight function (2.16) even in the simple case of three
dimensions for the hard sphere case, when b( - o) = 4, such a calculation cannot be
accomplished by NlogN operations if the initial state is far from a Maxwellian state
or has an initial discontinuity, as claimed in [23].

Notation and spaces. Before continuing with the discussion, we recall the
definition of the Lebesgue’s spaces L¥ (€2) and the Hilbert spaces Hy*(£2). These spaces
will be used during the manuscript. The set Q could be any measurable set in the
case of the L} spaces or any open set in the case of the Hy spaces, however, for our
present purpose 2 is either (=L, L)? or R most of the time:

(2.16)
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LY (Q) - {f N flopcy = (/Q |f(v)<v>’\k}pdv)%< oo} withp € [1,00), k € R,

1
HE (@)= {1 Il = (X IDf3eq)) " < o0} with a e N, keR,
Bla

where (v) := /1 + |v|2. The standard definition is used for the case p = oo,

LY (Q) = {f [ fllpee @) = esssup|f(v)<v>’\k| < oo} with k€ R.

We will commonly use the following shorthand to ease notation when the domain §2
is clear from the context:

Iz =1 llzz s

and the subindex k£ may be omitted in the norms for the classical spaces LP and
H®. In addition, following the notation and language of the classical analysis of
the Boltzmann equation, and including the fact that numerical solutions are not
nonnegative in general, the moments of a function f are denoted by

(2.17) mg(f) == /Rd |f(v)| M do.

2.2. Choosing a computational cutoff domain. In order to make a good
approximation to the probability density f(¢,v), defined for all v € Q := R9, the
solution of the dynamical homogeneous Boltzmann equation initial value problem,
we need to solve the proposed spectral numerical scheme in a computational domain
given by the bounded set Q; € R for a sufficiently large N Fourier modes, as it
will be defined next in the beginning of section 3. In particular, the global collision
operator Q(f, f)(t,v), defined weakly in (2.2), needs to be approximated in such a
computational domain €7, that will be carefully chosen below for the specific task of
solving the homogeneous Boltzmann equation, for a particularly chosen initial datum
being a probability density with a prescribed finite and positive initial mass and
kinetic energy (i.e., the choice of the computational domain depends on the initial
data, as will be carefully explained).

It will be clear, after the discussion of the approximating numerical scheme for
the space homogeneous Boltzmann initial value problem and Theorem 3.1, that there
are two sources of error: one due to the mode truncation and the other due to domain
truncation. Both are always present due to the global nature of the equation. The
key point in the choice of the computational domain Q = (—L, L)? is that the time
dynamics of the analytical solution remains bounded and decays with Maxwellian
tails if initially so following the result in [28]. In particular, it is possible to choose
a large enough cutoff length L, depending on the initial data with a Gaussian decay
rate, whose approximating go(v) satisfies condition (3.8), and supp{go(v)} C Qqr, for
0 < a < 1. As a consequence the periodization of the domain is not necessary, since
the analytical result from [28] combined with the conservation algorithm, secures that
the numerical solution will take values very close to zero (i.e., below machine accuracy)
near the boundary 0€)y. That means it is enough to choose €1, such that, at least,
most of the mass and energy of the true Boltzmann solution f will be contained in it
during the simulation time.

One possible strategy for choosing the size of 2, is as follows: assume, without
loss of generality, a bounded initial datum fy with compact support and having zero
momentum [ fovdv = 0. Then,
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Comg _rolvl?

(2.18) folv) < 7(27T@0)d/2 e 2% |

where mg := f fo is the initial mass, O := f folv|? is the initial temperature, and ro €
(0,1] and Cj > 1 are the stretching and dilating constants. Since the Boltzmann flow
propagates Gaussian weighted Lebesgue norms, refer to [36, 50, 10, 13, 43, 28, 5, 4, 1]
for this and more related theoretical facts on the equation. Thus, there are some
uniform in the time constants r and ¢ depending on the moments of the initial data
as much as the potential rates A and the angular part b of the collision kernel, namely,
r:=7r(fo,\,b) € (0,r0] and C := C(fy,A\,b) > Cy > 1 such that

Cmo _rw|?
W@ 20 ::M(fO;C,T), t>0.

(2.19) f(t,v) <

Now, choose a small quantity § < 1 being the mass proportion of the tails associated
with the Maxwellian M (fo,C,r) from (2.19) that uniformly controls the solution
f(t,v) as in [28]. That is,

o ft,v)(w)2dv < M (fo, C,r){v)2dv < & ; fo(v)(v)2dv = 6(mo + Bg) .

Qf

Therefore, the parameter §, for the solution of the Boltzmann equation , thanks to the
L control of the solution in [28], is interpreted as a domain cutoff error tolerance that
remains uniform in time and solely depends on the approximated initial state, say,
0 < go(v) on the chosen 2, so that the magnitude of 6(my+©y) is well below machine
accuracy. Clearly, the mass proportion § must be small enough for supp(go) CC Q.
Equivalently, one needs to choose the size of L (or the measure of the computational
domain ), such that

fQi M(f()7 C, T)<U>2dv
mo + O

(2.20) <6~0.

In order to minimize the computational effort, one should pick the smallest of such
domains, that is €7, such that

(2.21) for a fixed a <1, supp(fo) C Qur and

that Q¢ satisfies (2.20) in the sense that the numerical approximated initial datum
vanishes in a neighbourhood of the boundary of {25 beyond several orders down of
machine accuracy. In addition, under this conditions we invoke the restriction opera-
tors in Sobolev space arguments, such as (2.27) in the subsection below, which allow
us to make rigorous semidiscrete error estimates in Sobolev norms with respect to
the solution f(t,-) € R? of the homogeneous Boltzmann-Cauchy problem (2.1)—(2.5)
under consideration.

Finally, for such an estimate (2.21) to be of practical use one would need to com-
pute the precise value of the constants C and r. As a general matter, these constants
come from available analytical estimates, which, although quantitative, are likely far
from optimal. The result is that the choice (2.21) most of the time overestimates the
size of the simulation domain. It is reasonable then, for practical purposes, to simply
set 1, = r = 1 and choose C = C, > 1 as the smallest constant satisfying (2.18)
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(which always exists for any compactly supported and bounded fy). That this choice
of parameters is natural, is noted from the fact that

mo w2

max{go, foo = We 290} < M(fo,C,1)

with equality if and only if fy is the equilibrium Maxwellian as in (2.10) (in such a
case C' = 1).

This propagation property secures a stable numerical simulation of the Boltzmann
equation, provided the numerical preservation of the conservation laws or correspond-
ing collision invariants holds. It also secures, as we will see, the convergence of the
numerical scheme to the analytic solution of the initial value problem and the correct
long time evolution of such a numerical approximation. In this way, the numerical
scheme will converge to the equilibrium Maxwellian as defined in (2.10).

We note that the discussion of this section is fairly independent of the choice
of computational scheme and applies to new approaches such as that recently devel-
oped in [51] for a Galerkin approach to the computation of the space homogeneous
Boltzmann equation for binary interactions.

2.3. Fourier series, projections. In the implementation of a spectral method
the single most important analytical tool is the Fourier transform. Thus, for f €
LY (U) with U open in R?, the Fourier transform is defined by

~

- v)e 1 Vdw
(2.22) 7O = | reeran,

The Fourier transform allows us to express the Fourier series in a rather simple and
convenient way. Indeed, fixing a domain of work Qp := (—L,L)¢ for L > 0, recall
that for any f € L?(f21) one can use the Fourier series to express f as

1 ~ )
_ iCp-v
kezd
where (i = # are the spectral modes and f((;g) is the Fourier transform of f

evaluated in such modes.
The mode projection operator is defined as IIY : L2(Q1) — L?(1) as

(2.24) (I f) (v) = @;Nf(ck)eick.y ;

in other words, it is the orthogonal projection on the “first N%” basis elements. Also
observe that for any integer « the derivative operator commutes with the projection
operator in HZ (). Indeed, note the identity for any f € HS(Qr),

0° (I f) (v) = ﬁ S (i) FlGr)eie
(2.25) . 'k'SNA ‘
= Goy > 0o f (e = (TIF 0 f) (v).

[kI<N

Recall that Parseval’s theorem readily shows
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1. ||HngL2(QL) < HfHLQ(QL) for any N, and with equality for N = co. Also,
2. H(l —Hg)fHLz(QL) N0 as N — oo.
Extension operator for Sobolev regularity propagation. The restriction
of the original problem posed in R? to an approximation problem posed in a bounded
domain ;, introduces some technical issues at the boundary generated by the trun-

cation. We deal with this problem by introducing the following scaled cutoff function
defined by

x(v) := xr(v) = ¢(v/L) with ¢ a smooth nonnegative function,

(2.26) . o .
such that supp{¢} C 0.99[-1,1]* with ¢ =1 in 0.95[—1,1]¢.

The cutoff function x allows for the scheme propagation of higher Sobolev regularity
estimates (it is not necessary for L2-convergence) as it smooths out the boundary
without incurring a meaningful error (provided Q; was well chosen as previously
discussed in subsection 2.2 ). Using the product rule, it follows that

(2.27) X9/l 7y < lxlleallglzeorn) < Cllgllaeay)

for any function g € H*(Qr). Note also that the constant C' := C,, that controls
the operator norm, can be taken independent of L > 1. It is important to observe
that the function xg vanishes near 91y, and so it can be considered as a function in
H?(R?) after using the extension operator who assigns the zero value to any point in
the complement of Qz, that is, E(xg) = 0 in R¥\Qz. In addition the Sobolev norms
of such an extension coincide with those of the restricted xg, which takes values in
a compactly supported set in €2y, that vanishes in a neighborhood of the boundary
09, relative to Q. That precisely means

(2.28) ||E(X9)||Ha(Rd) = [Ix9ll = y) s g€ H*(Qp).

Therefore our choice of the the cutoff function x enable us to implement an extension
operator by null values to all space (for a full discussion of extension operators, see
[48]). These properties will be useful when comparing the continuous and semidiscrete
solutions, which lie in different domains. Furthermore, in the case of L?-convergence
one can simply take y = 1.

Remark 2.1. A common technique found in the literature to deal with the domain
truncation is periodization of the initial data. Why do we not periodize the initial
data, but rather use the extension method on Sobolev spaces for functions that vanish
in a given bounded domain? The answer is that the approximated data and solution
in our problem are probability densities that rapidly decay at large values of velocities
v. In the particular case of the homogeneous Boltzmann equation approximation for
hard potentials and angular integrable collision cross section, as it is developed in
this theory, the crucial issue is to choose the computational domain large enough,
depending on the initial data as previously discussed. Under this choice, the cutoff
function x effectively implements an extension at the cost of a negligible error, as it
will be shown to be of the order O(1/L**) with k > 0 depending on the number of
moments of the initial data.

Remark 2.2. In this deterministic approach, as much as with Monte Carlo meth-
ods like the Bird scheme [8], the z-space inhomogeneous Hamiltonian transport for
non-linear collisional forms is performed by time operator splitting algorithms. That
means, depending on the problem, the computational v-domain 2; can be updated
with respect to the characteristic flow associated with underlying Hamiltonian dy-
namics.
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3. Spectral conservation method. We first introduce a formal analytical
viewpoint needed to study the convergence, stability, and error estimates for the
semi-discrete solution associated with the spectral method derived in [30].

After the cutoff domain €27 has been fixed, we applied the projection operator
(2.24) to both sides of (2.1) to arrive at

oy
ot

Then, it is reasonable to expect that for such a domain 2;, and for a sufficiently large
number of modes N the approximation

(3-2) Y Q(f, f) ~ MY QI f£,II f) in (0,7]) x

will be valid.

Next, there are two issues worth noting: (1) for functions supported in Qf, the
gain operator @1 is supported in Q V3, thus, we will consider it, for simplicity, as
a function in Q7 , and (2) the operator @~ can be exactly computed with a small
computational effort since it is a multiplication operator with a standard convolution.
As a consequence, one is led to consider the scheme

%(t v) = 5,Q% (xg. x9)(t,v) — Q™ (g, x9)(t, v)

3.3) = Qu(g.9)(t.v) i (0.T] x
go(v) : = g =T¥ fo(v), initial data,

(3'1) (t’ U) = HJL\/,Q(fv f)(t7 1}) in (O’T] X Q.

and expect that it should be a good approximation to Hg f. Here, Q, stands for
the unconserved collision operator. In other words, we define the numerical solution
to be gy := g and expect to show that this finite mode solution will be a good
approximation to the solution of the Boltzmann problem in the cutoff domain, that
is g~ f in Qp , provided the number of modes N used is sufficiently large. Classical
spectral accuracy theorems would guarantee such an approximation, yet, fixing the
number of Fourier modes to say N* would strip the conservation properties, as .,
does not preserve the d+2 collision invariants after each time step, and that generates
a source of cumulative error that heavily constrains the meaningful simulation time
of the scheme.

This problem was overcome in [30] with the conservative spectral scheme we are
now analyzing. They introduce a conservation correction by solving a Lagrangian
constrained minimization problem each time step (with O(N) in computational com-
plexity), where the objective function to be minimized is the L?() )-distance from the
unconseved @, to the minimizer X* =: Q). subject to the constraint of preserving the
d+2 collision invariants. To be more precise, the following problem is computationally
solved in [30].

Minimization elastic problem (E): Consider the Banach space

(3.4) B¢ = {X € L*(y) : / X=| Xv=[ XpP?= 0} ,
Qr Qr Qr
and the minimization problem

(3.5) X" := min A*(X):= min /Q (Qu(fs f)(v) —X)de.

XeBe XeBe
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The solution of this problem applied to our semidiscrete framework will be addressed
in the next subsection 3.2. It can be solved by an algorithm, described below in
(3.32)—(3.36), that delivers a unique explicit algorithm discrete vector form

(3.6) Qc(f,f) =X*e N,

associated with any discretization of f on N¢ Fourier modes, where the constraint in
(3.4) is given by the linear equation C°Q, = a°, where the vector a® = 0 € N9+2
for the elastic problem or a¢® = 0 € N9 for the inelastic one. The matrix C®
is explicitly precomputed depending on the quadrature rule used to compute the
integrals associated with the collision invariants.

In the following sections we intend to prove this formalism under reasonable
assumptions. In fact, we study a modification of this problem, namely, the convergence
towards f of the solution g of the problem

994 v) = t,0) in (0,7] x Q
(37) E(av)_Qc(Qvg)(vv) ln( ) ]X L,
go(v) : = gt =T fo(v), initial data,

with Q.(f, f) the solution of the Lagrangian constrained problem (3.5), (3.6), and the
initial datum go satisfies the following condition

f{g0<o} |90(ta 1})|<’U>2d1}
Jigs0y 0t 0){(v)2dv

for some fixed 0 < € < 1/4, where the operator Q.(g,g) is defined as the L?()-
closest function to Q. (g, g) having null mass, momentum, and energy.

We summarize the main results on convergence, error estimates, and asymptotic
behavior in the following theorem, whose rigorous proof is developed in the rest of the
manuscript. As mentioned in the introduction, the following theorem is proved for
the classical elastic model 8 = 1. A rigorous proof for the inelastic model can be done,
at least, for some special regimes such as the viscoelastic particle model [6, 7] with
analog arguments. Additional considerations about self-similar scaling are needed to
obtain sharp long time behavior associated with the model, which will be properly
addressed by the authors in an upcoming manuscript.

(3.8)

e and ||gollr2(a,) < o0

THEOREM 3.1 (error estimates and convergence to Maxwellian equilibrium). Fiz
a nonnegative initial datum fo € L}c N LQ(Rd) with k > k«(fo) > 2, and let f > 0
be the solution of the Boltzmann equation (2.1) with (2.5). Then, there exist a cutoff
domain Lo(fo) > 0 and a number of modes Ny := N(Log, fo) > 0 such that
1. semidiscrete existence and uniqueness: Taking go = IIY fo, the semi-discrete
problem (3.7) has a unique solution g € C(0,T; L N L*(Qy)) for any T > 0,
L> 1Ly, N> No;
2. L2,-error estimates: Taking fo € L3N L2(RY), k" >0, k.(fo) <k <k—1-
% — k", then

sup [[f —gllr2,0,) < C(fo)(Ifo — gollz2, o)
t>0
+ O(L)\k//N(d—l)/2) + O(l/Ld/Q-l-/\k”)) ey , L>Ly, N> Ng;

3. Hp -error estimates: For the smooth case, taking fo € LN H°(RY), k" > 0,
ke(fo) <K <k—-1-a/2— % — k", it follows for any 0 < a < ag that
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}?’+a/2(QL)

sup I1f = gllme, .y < C(fo)(II.fo — gollar
+ O(LA(k’+a/2)+ao/N(d—l)/2+ao)

oy L
+O(1/LY*MNTT L > Ly, N> Ny.

In all cases k, k' > Ek.(fo) > 2, where k.(fo) is a required threshold that
only depends on fy. Also, the constant C(fy) := C(K',a, fo) in items 2
and 3 depends on fy by means of its initial reqularity, and the constant
0:=0(k',a) > 0;

4. Convergence to the equilibrium Mazwellian: For every § > 0 there exists a
simulation time T(6) ~ v~ In (| foll gra(ma)/8) such that for any o < ag

sup |lg — Mollge,) <0, L>Lo, N> Ng,
t>T(5)

where v > 0 is the spectral gap of the linearized Boltzmann operator, and My
is the equilibrium Mazwellian (2.10) having the same mass, momentum, and
kinetic energy as the initial datum fy.

The proof of these statements in Theorem 3.1 is made in the next four sections.
Before starting with the details of the proof, we introduce the shorthand notation

(3.9) 0,:=0(L"), r>0,

which will be extensively used throughout the manuscript.

3.1. Conservation method: An extended isoperimetric problem. Throu-
ghout this section we fix f € L%(Q21). Due to the truncation of the velocity domain the
unconserved discrete operator @, € N defined for N¢ Fourier modes, as a function
in Qf,, does not preserve mass, momentum, and energy. Such a conservation property
is at the heart of the kinetic theory of the Boltzmann equation, thus, it is desirable for
a numerical solution to possess it. In order to achieve this, we enforce these moment
conservations artificially by imposing them as constraints in an optimization problem.

Hence, we first focus on the general form of solution of the minimization problem
(3.4), (3.5), whose proof is presented next.

LEMMA 3.2 (elastic Lagrange estimate). The problem (3.5) has a unique mini-
mizer given by

d
(310) Q1)) =X = Qull N~ 5 (1 + D rvs +rasalol?).

j=1
where v;, for 1 < j < d+ 2, are Lagrange multipliers associated with the elastic
optimization problem. They are given by
Y1 = Oapu + Oay26u ,
(311) Yi+1 = Od+2/”'£7 ] = 1a27"' ada
Ya+2 = Od+2pu + Odta€y
with O, defined in (3.9) and the parameters py, ey, i3, are the numerical moments of

the unconserved numerical collision operator, defined below in (3.15). The minimized
objective function can be estimated by
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A(Qef, ) =[|Quf ) = Qelf: )32,

d
< C(d) (%de + 3 L 4 L)

(3.12) =

d+1

Ld+1 + Z”J )

In the particular case of dimension d = 3 the estimate becomes

(3.13)
1Quts. H=Qelf. )30

5P

4 4
C e2
= 297L3+ 3 ) AL + Ayl + BAE LT < (pi + 25+ ZM?)
j=2

j=2

Proof. From the calculus of variations when the objective function is an integral
equation and the constraints are integrals, the optimization problem can be solved by
forming the Lagrangian functional and finding its critical points. Set

P1(X): = X(v)dv,
Qr

1/Jj+1(X)::/ v X(v)dv Vj=1,2,...,d,
Qr

bapa(X) : = /Q [0[2X (0)dv

and define

d+2
H(X, X' ) : *ZW/% 7/ h(v, X, X', ~)dv.

Qr

We introduce
h(’l},X,X/,"}/) = (Qu(f,f)(v) 7X(U)) +71X +ZVJ+11}] +7d+2|v| X( )

In order to find the critical points one needs to compute DxH and D.,H. The
derivatives D.,H just retrieve the constraint integrals. For multiple independent
variables v; and a single dependent function X (v) the Euler-Lagrange equations are

ODsh
Dah(v, X, X', ~) = Z (0, X, X",7) = 0.
j=1
We used the fact that h is independent of X’. This gives the following equation for
the conservation correction in terms of the Lagrange multipliers:

d

(3.14) 2(X(v) = Qu(f, ) + M + D js1vj + Yaralv]* =

Jj=1

and, therefore, Qc(f, f)(1) = X*(v) = Qu(f, N)(0) =% (1 + Xy 105+ as2ol?).
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Let g(v,7) =m +Z?:1 Yj+1V; +Ya+2|v[?. Substituting (3.14) into the constraints
¥ (X*) =0 gives

1
pui= [ Qulr )= 5 / g,

319 o= [ w@ur o= [ i j=120

Qr,
€y i= /QL |U|2Qu(f’ fHw)dv = ;/QL |U|2g(v,’)’)dv.

Identities (3.15) form a system of d + 2 linear equations with d + 2 unknown variables
that can be uniquely solved. Solving for the critical ~;,

71 = Oapu + Oay2ey ,
(3.16) Vi1 = Oapt, , j=1,2,....d,
Ya+2 = Odqq2pu + Ogqaey .

Hence, relation (3.11) holds. Substituting these values of critical Lagrange multipliers
(3.16) into (3.14) gives explicitly the critical Q.(f, f)(v) := X*(v). Moreover, the
objective function A°(X) can be computed at its minimum as

(3.17)
A%Qc(f, 1))

Qur 1) = @l ey = [ (@ulFN) = X" () o

d
2
= %/ (71-1— E 7j+1vj+%l+2\v|2) dv
Q

L j=1
<2 [ (s
Qr

< 0(d) (2ny‘1 +(

(54105) + Vi galol*)

(- 10=

J

]2_+1)Ld+2 + 73+2Ld+4>7

j=1
where C(d) is a universal constant depending on the dimension of the space. Hence,

using the relation (3.16) in the right-hand side of (3.17), yields a bound from above
to the difference of the conserved and unconserved approximating collision operators

d+1

C(d 2
(318 Qul ) = Qe D]y < 2 (2 E=R
j=2

Ld

and, therefore, the Lagrange estimate (3.12) holds. Upon simplification one can obtain
a detailed estimate for the three-dimensional case, given by

(3.19)
2 .
1Qu(f. f) = Qelf Dl 20y = 2HL + F (43 + 73 + DL + dnysL® + B3 LT

C /., € - 9
j=2

which is precisely (3.13). That this critical point is in fact the unique minimizer
follows from the strict convexity of A€. 0
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Similarly, as was also proposed in the simulations of [30], one can form the opti-
mization problem for the inelastic case. The only difference is that now only (d 4 1)-
collision invariants are conserved:

Minimization inelastic problem (IE): Minimize in the Banach space

Bi:{Xeﬁ(QL);/ X = XU:O},
QL QL

the functional

2

(3.20) A= [ (Qur D - ) a.

As in the elastic case, we state a rather similar analog to the Lagrange estimate
for the inelastic collision law. The proof of this statement is similar to the case of
elastic interactions, and we leave it to the readers.

LEMMA 3.3 (inelastic Lagrange estimate).  The problem (3.20) has a unique
minimizer given by

d
A . 1
(B:21) QLN =X 0) = Qulf. HE) = 5 (3 + X ).
j=1
The v; are Lagrange multipliers associated with the inelastic optimization problem
given by

7= Odpu )

(3.22) -
'Yj+1:Od+2M3“ ]:1a25"'ad'

In particular, for the three-dimensional case the minimized objective function is
% * ine 2 B
(3.23)  A(XY) =[|Quf, f) = QU (f. Nl agq,) = 2EL° + 5 (35 + 73 +75) L

Conservation correction estimate. We develop here a useful estimate between
the unconserved and conserved discrete collisional forms.

Definition. For any fixed f € L?(1) the conserved operator Q.(f, f) is defined
as the minimizer of problem (E) defined by (3.10) (or problem (IE) in the inelastic
case defined by (3.21)).

Note that the minimized objective function (3.12) in the elastic optimization prob-
lem depends only on the unconserved moments py, iy, and e, of Q. (f, f). Since these
quantities are expected to be approximations to zero, then the conserved projection
operator is a perturbation of @Q,(f, f) by a second order polynomial in the elastic
case. Similarly, it is a perturbation by a first order polynomial in the inelastic case.

THEOREM 3.4 (conservation correction estimate/elastic case). Fiz f € L?(y),
then the accuracy of the conservation minimization problem is proportional to the
spectral accuracy. That is, for any k' > k > 0 it follows that

(3.24)
CL)\k
[(@elf. ) = Qult Dol 2, < g izl = )@ O X e
+ mowmwuk»(mwﬂ(f)mo(f) +Zi(f)) .
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where C' is a universal constant and Z: (f) is defined by

K —1

(3.2 Zef)= 3 (1) miathmis(s)

=0

depending on the moments up to order k' (See also Appendix (A.3)). As before, we
are using the shorthand O, := O(L™").

Proof. Using Lemma 3.2 for elastic interactions, given a 0 < k € R, estimate

(3.26)

| @c.) = Quir, £ 101

d

|1 2 ke
L2(y) - HE(I\VI +;’Yj+17)j +’7d+2|1}| )|U‘ ‘

L2(Qr)

C L

= @kt ) (I’”'Ldm + |y | L2 |’Yd+2|L2+d/2).

For any f € L?(Qr) the Lagrange multipliers vj, 1 < j < d+ 2, can be estimated by
observing that

(3.27)
[ Qe =] [ @
Qr Qr

—QUENE)EE [ QUSR]

< H(l - HéVL)QJr(X.ﬂ Xf)HLZ(QL)||wHL2(QL) + Iw
for I defined by

829 to=| [ Qx| Qs 0, ]

4\0.95Q,

Since
11|20y ~ L2,
(329) || Uj HL2(QL) ~ Ld/2+1 for J=123, "'ada
ol L2y ~ LY2F2,

then, for ¢ = 1,97, |v|? with j = 1,2, ...d, the corresponding estimate (3.27) combined
with (3.29) yields the following estimates to the unconserved moments defined in
(3.15):

lpul < CLY2[|(1 = 1L)QT (O f Xl 12y + 11
(3.30)  |uh] < CLYP (1 = 13L)QT S X o,y + Loy T=12,3,...d,
leu] < CLY222) (1 = IL) QT (o X )| o,y + Lo -
Therefore, using (3.30) in (3.16), Lagrange multipliers are estimated by
11l = Ogpa /(1 = TI)QT (x f, Xf)HLz(QL) + Oali + Ogy21y2,
(3.31) |l = Ogyosa||(1 = TIEL)QT (x Xf)HLz(QL) + Ogyoly;,, j=1,2,3,...d,
Yav2] = Oayaol| (1 — T13)QT (X f, Xf)HLz(QL) + Oay2li + Odialjy)2.
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Finally, the Lagrangian critical parameters from (3.26) are estimated by (3.31) to
yield

C
H (QC(fa f)_Qu(fv f))|v|Ak||L2(QL):W (LMCH(]' - Hé\]L)Q+(Xf7 Xf)Hiz(QL)

+ Og/2-xak 11 + Ogjap1-xi Lo,
+ Og/212- 2k I|v\2)-

In order to estimate the second term in the above inequality, the terms I, defined
in (3.28) are estimated combining classical moment estimates for binary collisional
integrals for elastic interactions with hard potentials as shown in Theorem A.2 in the
appendix. In particular, for any k£’ > 0 and A € [0, 2]

max {7, Lil]v_mLJIIv\Q} <coL™ (a1 Ocf) moCxf) + Zw (xf))
<CL™MW (mr1(f) mo(f) + Zi (f)).

Therefore, a simple calculation shows

Ouj2—xiT1+Oas241-x1lv, +Oaoto— iz = Oajairie—k) (Mir1 (F)mo(f)+Zi (f)),

and so inequality (3.26) holds.

This estimate also follows for the inelastic collisions case. Their computations
follow in a similar fashion using Lemma 3.3, the Lagrange multipliers (3.22), and the
first two inequalities in (3.30). 0

3.2. Semidiscrete conservation method: Lagrange multiplier method.
In this subsection we consider the discrete version of the conservation scheme. For
such a discrete formulation, the conservation routine is implemented as a Lagrange
multiplier method where the conservation properties of the discrete distribution are
set as constraints. Let M = N9, the total number of Fourier modes. For elastic
collisions, p = 0, m = (mq,...,mgq) = (0,...,0) and e = 0 are conserved, whereas
for inelastic collisions, p = 0 and m = (mq,...,mg) = (0,...,0) are conserved. Let
wj > 0 be the integration weights for 1 < j < M and define

(3.32) Q.= ( Qui Quz2 - Quuwm )T

as the distribution vector at the computed time step, and

(333) Q=( Qi Qo Q)

as the corrected distribution vector with the required moments conserved. For the
elastic case, let

wj
V1 Wy
(3:34) Cl s = - L 1<j<M,
Vg Wy
[0j1% w;
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be the integration matrix, where the w;,j = 1... M, are fixed set of quadrature
points, and

T
e —( 4 a4 .o d d
(3.35) a0 ( TP @M TMd 3¢ )

be the vector of conserved quantities. With this notation in mind, the semidiscrete
conservation method corresponding to (3.4), (3.5) is written as the constrained opti-
mization problem

(3.36)
find the vector Q, € RM | such that it is the unique solution of

A(Q,) = {min 1Q, — Q|2 : C°Q, = a® with C° € RH>*M Qe RM a° ¢ Rd+2}.

In order to solve the constrained minimization problem A(Qc), we employ the
Lagrange multiplier method proposed by two of the authors [30] in 2009. The proposed
algorithm works as follows.

Let v € R%2 be the Lagrange multiplier vector. Then the scalar objective
function to be optimized is given by

M
(3.37) L(Qu) = 3 [Quy — Qey|* +77(CQ, —ac),
j=1

where C¢ is given by the integration matrix that computes the number of collision
invariants associated with the conservation problem (i.e., d + 2 for the elastic case or
d + 1 for the inelastic one). This matrix is independent of the solution and the time
parameter. Hence, it can be precomputed and used for different initial data and time
steps.

Equation (3.37) can be solved explicitly for the corrected distribution value and
the resulting equation of correction be implemented numerically in the code. Indeed,
taking the derivative of L(QC,’)/) with respect to Q. ;, for 1 < j < M and +;, for
1<i<d+2

oL 1
:07 ]:177M = Qc:Qu—i_i(Ce)T’Y'
an,j

(3.38) 5

Moreover,

oL B
i -

i=1,...,d+2 = C°Q,=a°

retrieves the constraints. Solving for -,

(3.39) ce(C)Ty =2(a° — C°Q,).

Now C°(C)T is symmetric and, because C€ is an integration matrix, it is also positive
definite. As a consequence, the inverse of C°(C°)? exists and one can compute the

value of v simply by

v =2(C(C)T)(a® ~- CQ,).
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Substituting 4 into (3.38) and recalling that a¢ = 0,
Q. = Q,+(C)"(C(C)T) ' (a° - €°Q,)
= [1- ()7 (cr e e @,

where [ = N x N is identity matrix. In the following, we call this conservation routine
Conserve. Thus,

(3.41) Conserve(Q,) = Q. = An(C°) Q, .

Define D; to be any time discretization operator of arbitrary order. Then, the discrete
problem that we solve reads

(3.42) D;f=Axn(C%Q,.
Thus, multiplying (3.42) by C° it follows the conservation of observables
(3.43) Dy (C°f) = C°Dyf = C°AN(C°)Q, =0,

W=
where we used the commutation C®D; = D;C*® valid since C° is independent of time;
see [30] for additional comments.

4. A priori estimates, propagation of moments, and L?-norm. In this
section we prove L}C and L% estimates for the approximation solutions {gx} of the
problem (3.7) in the elastic case. For this purpose, we use several well-known results
that require different integrability properties for the angular kernel b. Thus, we will
work with a bounded b to avoid as many technicalities as possible and remarking that
a generalization for b € L'(S9~1) can be made at the cost of technical work [1, 5, 43].
For technical reasons this assumption helps since estimates for the gain part of the
collision operator become bilinear, that is, the role of the inputs can be interchanged
without essentially altering the constants in the estimates. We also restrict ourselves
to the case of variable hard potentials and hard spheres A € (0,1] and remark that
the theory for Maxwell molecules A = 0 needs a different approach.

Recall that we have imposed conservation of mass, momentum, and energy by
building the operator Q.(g,g) with a constrained minimization procedure. Thus,

/Q gl = / Go(0)P(v)dw

Qr

for any collision invariant ¥ (v) = {1,v, [v|?}. However, due to velocity-mode trunca-
tion, the approximating solution g in general may be negative in some small portions
of the domain. This is one of the important technical difficulties that we have to
overcome.

Before starting with the calculations recall the smoothing property of the gain
collision operator QT given in [17, Theorem 2.1],

(1) 1Q* (f: Al -y < Clolaasa Iz quay

where C' is a universal constant only depending on the space dimension d.
Therefore, recalling that supp(Q™(xg, xg)) C Qar and using Parseval’s theorem,
it follows that (for a > 0)
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1= T52)Q* (xg. x| 320,y = D 1Q*+ (xg» x9) (&)

|k|>N
= > |§ ‘ZQ A)2Q* (xg, x9) (&)
k>N Sk
S 2 1 A)*2Q (xg, x9)(&)[”
|k|>N
2+
<zl —8)*2Q* (x9. x9)|| 120,
As a conclusion of the previous two facts, choosing a = %, we obtain an important
estimate used in the following arguments:
(42) 10— 13)Q* (00 %) | 2, < a0
. 2L X9, X9 L2(Qap) — Nd%l X9 L?+>\—1(QL)7

since xg vanishes outside a compactly supported set in 2, so we make use of the
extension norm identity (2.28) that asserts ||Xg||L1+A_1(Q2L) = lIxgllz,, 1) -

4.1. Differential estimates for moments of the scheme. In the analysis of
the following two sections, we assume that a semidiscrete solution g € C (O, T; L*(Q L))
for problem (3.7) where initial condition gy € L?(2;) exists satisfying condition (3.8).
We denote T, > 0 any time that the smallness relation for the negative mass and
energy of g(t,v) and its boundedness in L? holds:

f{ <0} |g( ’ )‘< >2d’U
(43)  sup [ e(t) = = <e sup [lg(t )l < o0
t€[0,T] f{gzo} g(t,v)(v)2dv tel0,T.] @)

for some fixed € > 0 sufficiently small to be specified below in (4.9). Observe that
the conservation scheme and this assumption imply that semidiscrete moments up to
order 2 are controlled by the initial datum. Indeed, for k = {0,2}

[t = [ gl =2 [ gt = [ gt oz [ g
Qr, Qr Qr QL QL
g/ 90\”|k+2€/ gﬂv\’fs/ 90|U|k+2€/ lgllof*.
Qr Qr Qr Qp

Indeed, choosing € < 1/4 one obtains
(4.4) / lg(t,v)||v|*dv < 2/ golv|Fdv fort € [0,T.], k=1,2.
QL L

Remark. Conditions (3.8) and (4.3) are a sort of stability condition for the semi-
discrete scheme.

Next, we start getting estimates for the discrete conserved form (3.7). Indeed,
taking the right-hand side from (3.3) combined with those of (3.1), (3.2), the discrete
equation (3.7) for the numerical scheme can be written in (0,7.] x Qf, as

f‘;} = Q:(9,9) = Qc(g,9) — Qulg, 9) + Q(x9, x9)
- (1-T137)Q™ (xg. x9) —Q~ (1 = X)g, x9) ,

as the second term in this equation is actually null.

(4.5)
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In the next lemma we prepare estimates to obtain an ordinary differential inequal-
ity that will yield uniform estimates to the numerical moments of the semidiscrete
solutions corresponding to the initial value problem (3.7).

LEMMA 4.1. Let g be the solution of the numerical scheme satisfying (4.3) and
set k> kg > 2. Then,
(4.6)

d

%mk(g) < C (mo(go) +mi(9)) —

12 mo(go) [Ak+d/2
2fmk-u(g) +CF”9”L 1 (Qr)

+AT
for any go(v) satisfying the energy ratio condition (3.8). In addition, [y ko are
constants given by (4.8) and (4.12), respectively, defined in the proof of this lemma.

Proof. We fix k > 0 and L > 0 and keep in mind that gg has support in ;, and,
thus, possesses moments of any order. Multiply (4.5) by sgn(g)[v|** and integrate
in QL

d

Ak
3 ), @l

= [ Q(xg.x9)(v)sgn(g)(v) [v|*dv — i Q™ (1= x)g,x9)(v) sgn(g)(v) [v[**dv

/Q L ~ Qu(9.9)(v)) sen(g) o] do

- [ @0 (w0 x0) ) sente) bl

</ Q" (gl gl o ~ / Q™ (9, x9)()sgn(xg) () lo v
+[(Qe(9:9) = Quig D) 01 11 g, + (1= TELQT (xg: XD W™ 11 -

We estimate each term starting with the loss collision operator. Use g = |g| —
to conclude that

- n v)v*do v)||v M Ve U—U*)\’U*U
[ @ axa) (o))l > [ a1l [ gl v

Qr

—Canxe H90||L;rl @) (Mg (g) + mi(9))
where € is the bound from the energy quotient from (4.3). Whence,

(4.7)
/ Q+(|X9|7|X9|)(”)|U|Akdv—/ Q™ (9, x9)(v)sgn(g)(v) oM dv
Qr, Qr

< / Qxgl. [xgl) (@) o] dv
Qr

- [ QU= lal. haD @I+ Caellolly, oy (mia(a) + mua)
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Using the conservative property of the scheme it follows from the discussion in
[13, 6] that

/ QUxal. Ixa) (@) Mdv < / QUxgl, Ixa) (W) [o*dv < Zi(g)
Qr R4

— pe mo(go) mrs1(xg), 3 <k€Z,

where Z(g) depends on the moments of g of order less than or equal to k and py, 7 1
as k — oo being a universal parameter given by

(4.8) Mk::1—2%/Sd71(1+ﬁ-0)kb(d-o)da€(0,1).

We refer to [13, Lemma 3] for details and proof. Choose

(4.9) € < min {% - ™o (90) }

3 2Canx ||90HL;A71(QL)
in (4.7) to conclude that
(4.10)
d 1
Emk(g) < Zi(9) — Pl mo(go) mi+1(9)
+[[(Qclg.9) = Qulg, || 1 g, + (11 =TEL)QT (xg. x| 1 g, -

Using the Cauchy—Schwarz inequality and (3.24) from Theorem 3.4, it follows, for any
k' >k >0, that

H(QC(g7g) - Qu(gag))lv|>\kHL1(QL) < Ld/QH(Qc(gzg) - Qu(gag))llekHLz(QL)

CL/\k+d/2 N N
< WH(I —T50)Q* (X9 x9) || 120
O(L—A(k’—k))
_— / Z ’ .
+ (2)\]€+d>1/2 my +1(g) mo(go) + Zy, (g))
Therefore, after choosing k' = k > 2, one concludes that
4.11 d <27 ! ©
(4.11) &mk(g) <2Z(g) - 3 Ha mo(go) — W my+1(9)

n CL,\k+d/2H(1 - HQ’L)Q+(X9’X9)HL2(QL)

< Cx (mo(go) +mi(g)) — i

OIS0~ I (038 -

where C is a constant independent of k and A.

113 mo(go) mi+1(9)

In the last inequality we used the classical fact that Z, < Cji (mo(g) + mk(g))
for some large constant C) depending only on k. We also chose k sufficiently large to
make the largest moment an absorption term,

1 C > d
4.12 Skyi=—[—— ) —— >2.
#12) B2k (M;mo(go)) 2
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Finally, we use estimate (4.2) in (4.11) to obtain the semidiscrete moment ordinary
differential inequality (4.6). d

LEMMA 4.2 (lower bound estimate). Let h(v) be a function satisfying (4.3) for
€ < 1/2. Assume also that [y, h(w)w dw =0 and that

(4.13) m, = /R () |[wdw < 00, >0,
Then,
(1.12) () () > — S

max {1,mft27)‘)/“}

with C(h) > 0 depending only on the mass and energy of h.
Proof. Notice that in the ball B(0,r) one has for any R > 0 and p > 0,

/ h(w)|v—w\2dw:/ h(w)|v—w\2dw—/ h(w)|v — w|*dw
—w d —w
(415) v <R R ) lv >R

B Jjy—w>r

> C(h) (v)? |h(w)||v — w|*™dw .
For the last inequality we expanded the square in the integral of the right side and
used the fact that the momentum of g is zero. We use in the right side integral of
(4.15) the inequality |v — w| < (v)(w) and the fact that m, < co to obtain

/ h(w)|v — w|?*dw > C(h)(v)? — %(vyﬂi > @@)Q Yve B(0,r),
lv—w|<R

provided

(4.16) R:= (ZmM/C(h))l/”r.

Therefore, using the control (4.3)

/ h(w)|v7w|)‘dw:/ |h(w)||v7w\)‘dw72/ |h(w)||v — w|*dw
R R4 {h<0}

v

(1—26)/ IB(w)[[o — w] dw > (1—26)/ IB(w)[o — w] dew
R4 [lv—w|<R

1—2¢ 1—2¢

P h —w|?dw > C(h)(v)?

>y [l w2 SR o,

valid for any v € B(0,r) and provided € < 1. Moreover, for any A € (0, 1]
/ h(w)|v — w dw > (1 — 26)/ |h(w)||v — w|*dw
R4 R?
A
> (120l (1 - 2)

As a consequence,

(4.17)
C(h)
A A
/Rdh(w7t)|v - U)l d’U}Z(l - 26) <2R2_>‘ 13(0,7‘) + HhHL;/\_l (‘U| - 2) 1B(O,r)°> .

Inequality (4.14) follows from (4.17) choosing 7 = 3'/* in definition (4.16) of R. O
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4.2. Time differential estimates for the Li-norm of the conservative
semidiscrete scheme. The lower bound on the collision operator given in Lemma
4.2 will allow us to control the LZ-norms of g. Multiplying (4.5) by g(v)>** and
integrating on €27, one has

1d , _
5 71912 ) =/ (0)**g QF (xg, xg)dv —/ (0)**g Q™ (g, xg)dv
QL QL

+/Q )9 (Qclg, 9) — Qulg, 9))dv —/Q (v)*g (1 -1137) Q" (xg, xg)dv

L

< /QL@)”’“Q Q*(xg,xg)dv—/ ()9 Q™ (g,xg)dv

Qp,

+ (1(@:(0:9) = Qula D20,

+ (1 - 15.)Q" (xg, x9) ’U|>\kHL2(QL)> 92 <) -

Using smoothing properties of the gain collision operator (see Theorem A.6 in the
appendix or refer to [43, 5]), the lower bound control (4.14), and noticing that C'(g) =
C(go) due to the conservation routine, it follows that

/ (0)**g Q" (xg, xg)dv —/ (0)**g Q™ (g, xg)dv
Qr

Qr
(2=N)/p N\ 61

max |1, my J

= ( {C ; }) ||9||%1(QL)||9||1L§(1§/2L)
(QO) k %
1 C
- ctan - 75 ) ol
max{l,mf”\)/“} 12— L2, ,(20)

with constant C(gy) depending only on mass and energy, m,, defined in (4.13), and
some universal 61 > 1,65 > 1. Meanwhile, again using estimates from Theorem 3.4,
the rest of the terms can be controlled by

1(Qc(g.9) = Qulg, NN*[| 12, ) + (1 = TEL)QT (xg, x9) 01| 12y,
< LM = T157)Q7 (x9: x9) | (e, T Oayz (mis1(9) mo(9) + Zi(9))

with O, defined in (3.9). Therefore, we conclude, provided L > 2max {1, m,l/ﬂ}, that

2—A\ 0
Doy < (e RN
9z = C(g0) Iy @9z @r)
S—(C) —
(4.18) max{l,m,(ff’\)/“} glirz,, Q)

+ L1 = 1)Q* (xg. x9) 12,
+ Ouy2(mi41(9) mo(9)+Z1(9)) -
Plugging (4.2) into (4.18) proves the first part of the following lemma.

LEMMA 4.3. Fiz k > 0 and p > 0 and assume g is a solution of the numerical
scheme satisfying (4.3) for a small proportion € < €(go) and cutoff domain L >

2 max {1, m}/”}. Then, the following differential inequality holds:
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6 1/d
9119 @, 19150,

max {1’ ml(izfx\)/u} > 0,
C(go0)
C(g0)

- - lgllzz . (@
maX{LmELQ /\)/M} er/2(0)

L)\k )
+C F||g||Li+A71(QL) + Ouy2 (karl(g) mo(g) + Zk(g))

d
(419)  —lgllezer) < (

for some universal 61,02 > 1 and O, defined in (3.9). Moreover, the negative part of
g satisfies

d., _ _ C
(4.20) 7197 lz200) < Cligoll Ly g ||L2(QL)+F||9||2L§+A71(QL)
+ Og/242(k—1)Mk(9)m0(90) -

Proof. For the part related to the negative mass, note that, writing g = g™ + ¢,
it follows that

QM (9:9) 91g<0y = (@7 (¢",97)+Q (T, 97 ) +Q (g, 9"+ Q1 (97.97))914<0}
(4.21) < (@ (g 9+ Q% (97.9M) 91y<oy -

Thus, using Young’s inequality [3, 2, 43] one concludes that

i C?*(g,g)gl{ggo}dvéfQ (@ (9T,97)+Q (97.9%)) g1iy<0y dv

<C ||b||00||g+||L}(QL)Hg_H%?(QL) <C ||90||L;A_1(QL) HQ_H%%QL) :

In this last inequality it was important the bilinear estimates for QT be valid for
b € L*™. Recall, additionally, that Lemma 4.2 implies

- C(g90) -2
1iy<0y dv > > 0.
/QL Q" (9,9) 9 1{g<oydv > e (Lm0 lg™1z2 ,cr) 2

As a consequence, multiplying (4.5) by g—, integrating in {21, and invoking Theorem
3.4 with ¥ =k—1and k=0, one concludes that

d, _ _
G197 2y < Cllgolly , n)llg™ lz2c0s)
+ O (1 = 13)Q" (x9, X9 || 2y, ) + Oz ae—1ymr(g)molgo)

The proof follows after plugging (4.2) into this estimate. |

4.3. Uniform propagation of moments and Li-norms. Now we are ready
to prove uniform propagation of the scheme provided the requirement on the negative
mass (4.3) is met for 0 < € < €(go). Since Lemmas 4.1 and 4.3 hold for the aforemen-
tioned conditions on €(gp), one has the following two estimates on the k-moment and
the L2-norm:

d 1
amk(g) < Ck (mo(go) + mk(g)) — 13 mo(go) Mmr+1(g)
[ Ak+d/2
+C W”gnirﬁrl(%) , k>ko,
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(2=N)/p 01
d max{l my } 1/d
- < 5
ol < (PN ) ol ol
Clg
- (03 |y (S
max{l }

C
+ EHQHEHH(QL) +04s2ll90l 7160, -

Note that using Young’s inequality,

max{l m(2 A)/u} 61
(P2 ) loll ol
(90)
C(go)

< 01(90) + Cz<go)m21(1+d//d)(2—)\)/ﬂ + 5 {1 /u}
max

HQHL 2(Qr) -

Now, choose ;1 = Ak — 2, so that m, = my(g), and then take k > ko such that
01(1+d'/d)(2 — N\)/p < 1. Then, adding previous two differential equations, one has

d
— (mi(9) + 19l z2e))

dt
C(g
< (Ck(go) — c(go)ymy ¥ (g) — ( 0) w7 l9llzzr) )
max {1 }
C [ E+2)+d/2+2
THQHLQ(QU;

thus, defining X (t) := m(g) + ||9l|22(a,) and performing some algebra it follows that

dX 2 O [Ak+2)+d/2+2 -
(4.22) ~ < max {1,m” Y} <Ck(go) Ce(go) X + 2 T x|

=
With this estimate we are in position to prove the following proposition.

PROPOSITION 4.4. Fizk > k, and assume g is a solution of the numerical scheme
satisfying (4.3) for 0 < e < e(go) with cutoff domain L > 2 max{l,m,lc/()‘k_z)}. Then,
there exists a threshold n(go) > 0 depending only on go such that if

LAGRF2)+d/2402 N (=d1)/2 < (g0
then
312113 mi(9) < max {Ck(g0), mr(90), l9ollz2(0,) } =t ¢k(g0),  and
fliﬁ’ ||9||Li/(QL) < max{ck/ (90); mur+1(90), ||go||L2 QL)} go)
> VO<K <k-—1.

Here k, > ko is such that 61(1 + d'/d)(2 — N)/(Mk. —2) < 1 and Cy(go) a constant
depending on mass and energy of go and k.

Proof. Consider the polynomial p(z) = Cx(go) — ¢(go)z + C na>+2=N/t Note
that for sufficiently small 1, depending only on k& > k., > 2 and the mass and energy of
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go, this polynomial has two positive roots 71 and ro. As 7 vanishes, r1 N\, Ck(g0)/c¢(g0)
and ro /" co. Thus, choose 0 < 7 sufficiently small such that

mi(g0) + lgollz20,) <72,
then, the differential inequality (4.22) written as

dX 2-2
Ty < max{l,mi )/”}p(X)

LA (k+2)+d/2+2

for *=—rz=5z— < 7 implies that

it;IO)X(t) < max {Cy(g0), X(0)} .

This proves the first inequality of the statement and the propagation of |g||z2(q,)-
Provided the latter, we use Lemma 4.3 to conclude the second statement. ]

5. Existence and regularity of the scheme.

5.1. Existence. Now we are ready, thanks to the estimates of the previous
section, to produce a proof of existence and uniqueness of the numerical scheme. We
assume that fo € L2(R?) is supported in Qr, where the choice of the cutoff domain
Q, was discussed in section 2.2, and that gy = Hgfo satisfies

(5.1) 90 ll2(0r) = 0

for N > Ny(go) sufficiently large. Observe also that defining the metric space X C
C(0,T;L*(Qy)) as

X:={feCO,T;L%(Q): sup |f®)llrza.) < 2c5(g0), sup mi(f) < 2¢5(g0)},
te[0,T) t€[0,T7]

and the operator T : X — C(0,T;L*(Q1)) as T(f)(t) = go + /Ot Q.(f)(s)ds,

where k > k, > 2 and c’f, cg are those from Proposition 4.4, one has the estimates for
some a, by, > 0,

sup [ T(f) = T(F)lezqn) < C(, ) LT sup |If = fllrzon)

te[0,T] te[0,T]
sup mi(T(f)) < mi(go) + C(f, ) L™ T, f,feX.
te[0,T]

As a consequence, choosing Ty, := 1/L%t% for L > Lo(go) sufficiently large, it follows
that 7 is a contraction with 7(X) C X. Using the Banach fix point theorem, the
scheme has a unique solution in [0, T} ].

THEOREM 5.1. Set go =1V fy € L}vﬂLQ(QL) with k > ke > 2. For any time T >
0 and domain cutoff L > Lo(T, go) > 0 there exists a number of modes No(T, L, go) >
0 such that the Problem (3.7) has a unique solution g € C(0,T;L*(Qr)) for any
N > Ny satisfying the estimates

sup |lgllz2a.) < (90), sup mi(g) < f(go)
te[0,T] te[0,T]

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/16/19 to 128.83.63.20. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

3564 R. J. ALONSO, I. M. GAMBA, AND S. H. THARKABHUSHANAM

and negative mass estimate

Cllgoll t
g™ (Bl L2, < C(ch,ed)e SEZYNCIS

X (Hgo_\lm(m) +O(L2HN N E-D/2)
+llgoll ) O (1/T2HAED))

Furthermore, the sequence {g = gn} formed with initial condition gy converges strongly
in C(0,T; L*(Qr)) to g, the solution of problem

(5.2)

g d

Frie Q" (x9,x9) — Q™ (9, x9) — %(’71 +3 i1y +’7d+2|”|2) , (tv) €[0,T] xQp,

j=1
with initial condition gy = fo. Above, the coefficients 5 are given in Lemma 3.2 with
parameters (3.11)—(3.15) evaluated at QT (xg, xg) — Q™ (g, xg)-

Proof. We start with 7 > 0 given, L > 2max{1, (2¢c}(go))*/**~2}, and N > 0
such that LAk+2)+d/242 N (=d+1)/2 < p(g0). We discussed that there exists a unique
solution g € X in the interval I := [0,1/L%%]. Note that the negative mass of such
a solution increases continuously in time. Indeed, multiplying the scheme (4.5) by ¢,
it readily follows that
(5.3)

d, W _ a
197 2@y <C(el, &) L= llg™ (t) [ n2(u) Sllg™ (o)l z2(ar) + Clet ) L (1 —to)

Since g~ (0) & 0, it means that the requirement on the negative mass of Proposition
4.4 is satisfied in some interval [0,t.] C I,

(5.4) 0<et)<elgo), tel0,t].

Moreover, L > 0 and N > 0 were chosen to satisfy the requirements as well, therefore,
estimate (4.20) holds in [0,¢.]. Recalling the notation O, as defined in (3.9) and
integrating estimate (5.3), it follows that

Cllgoll 11 ey 4
0 (g5 20 + srrmrys (€3(90))?

g™ Oz, <e
+ Oayaa(k—1) ci(90) mO(QO))
=:¢(t,L,N) <e(T,L,N).

Now, note that
/{ ) l9(t,v)[(v) dv < LY T2 g™ (1) || L2y < LY 2e(t, L, N);
g<0

as a consequence, we can increase L and N, if necessary, so that

(t) .:f{g<o} lg(t, v)[{v)>dv _ f{g<0} lg(t,v)[{v)?dv

’ f{gZO} g(t,v){v)2dv fQL g(t,v){v)2dv — f{g<0} lg(t,v)|(v)2dv
- L/2+2(T, L, N)
= Jo, 90(t,v)(v)2dv — L4/2+2¢(T, L, N)

< €(go) -
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Observe that we used the fact that the scheme conserves mass and energy and assumed
that &k > 1+ 2/, so that L%?*2¢(T, L, N) vanishes as both, L and then N are
chosen sufficiently large. Therefore, for this choice of parameters L > Ly(T, go) and
N > No(T,L,go), a continuation argument shows that the negative mass condition
(5.4) holds, in fact, on the whole interval I. Thus, the a priori estimates of Proposition
4.4 hold in I; so that

(5:5) lg®)llzz0.) < lg0),  mu(g(t)) < ¢igo)  Vielr.

Estimate (5.5) shows that the set X'/2 is a stable set for the dynamics, thus, it allows
us to uniquely extend the solution, by repeating the argument made for I; to the
intervals I; := [(i — 1)/L%F i/Lotb] with 4 = 1,2,..., until [0,7] C UI;. This
proves global existence and uniqueness of the scheme.

Now, in the limit N — oo one has that the sequence {g := ¢V} C X. Since

1Qelf, £)®) = QelF YO 2y < Ol ) LONF(W) — (1) 2y Y F L FEX,

it follows from

t
9(t) = g0 +/ Qc(g,9)(s)ds
0
that for any N, M > Ny and t € [0, T]

g™ (t) — g™ (D)l z20r) < 90 — 98" L2

t
+ Ok, &) Lo / 19V () — g™ (3) 220 ds -

Thus, using Gronwall’s lemma,

k 0 a
g™ (8) = g™ ()l 2200) < 198" = 93" lL2(02,)e T T 50 s N, M — oo.
Thus, {g"} is Cauchy and converges strongly to g, the solution of the problem (5.2)
with initial condition fy = limy_so Hg fo- O

5.2. Uniform Hj Sobolev regularity propagation. In this section we work
with functions in H*(Qy) and take multi-index o with |a] < ap. Recall that
derivatives commute with the projection operator 113} (see (2.25)), for functions in
H{°(Q2p). Therefore, distributing the derivatives in the arguments of the operator
and using the estimates (2.27), (2.28), and (4.2), yields

|01 = T152) Q™ (x9, x9)| 2 o,

(56) CL2(1+)\)
_ N leY 2
= H(l —1l5;,)0 Q+(X97X9)HL2(QQL) < N2 HQHH”(QL)a

where, we recall, that the constant C' := C, can be taken independent of L > 1.
Next, in order to prove propagation of regularity let us fix £k > k., > 2 and

0 <k <Ek—-1-—ap(1+A), and use an induction argument on the derivative order |a/.

The initial step of the induction follows thanks to the propagation of L?,-norms in

Proposition 4.4. For the case |a| > 1, assume the propagation of the H,L?‘J‘:(llJr)\)—norms

and differentiate (4.5) w.r.t. velocity. We arrive at
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0(0%9)

T 9°Q" (xg,x9) — 9°Q (9, x9)

+0%(Qc(g, 9) — Qulg.9)) — 0™ (1 — I5,) Q™ (xg, x9) -

Multiply by 8%g(v)?**" and integrate in the velocity domain Qj, to obtain

d B . ,
5 7 10%9072, 0, S/Q (0°Q™ (x9:x9) — Q™ (9,x9)) 9*g(v)*

24t
(5.7) + ||5'a9||L§,(szL)||3a (Qelg:9) — Qulg,9)) HLi,(QL)
+ ||8a9||Li,(QL)H5a(1 - H§L>Q+(X9>X9)HL2,(QL) =L +1s+13.

Recall from Lemma 3.2 that the term Q.(g, g) — Q. (g, g) is a second order polynomial,
therefore, its derivatives are at most a second order polynomial, thus Theorem 3.4
implies

I < II8O‘9|IL;,(QL>(LM (1 -131)Q* (x9. x9) 12(q,
+ Ouay2 (M 11(9)mo(g) + Zk’))~

Additionally, the term I3 is controlled using (5.6),

LR +2(14X) . )
(5.9) I3 < Wlla g”Li,(QL)HgHH‘*(QL)‘

(5.8)

The term I; defined in (5.7) can be controlled implementing the estimate introduced
in [17] and used for the control of Hy/-norms in [43, Theorem 3.5]:

[ 2 a 12
L < Cl9% ] 2, () ||9||H]La|71 ©@n) ~ €0 10%gll72, | q)

T4 (141/2) 1/2
e o 2
(610) < Co0l5z 0~ CO s
where C' 2 < C5 by induction.
1||g||HIL’-|¢—(11+1/A)(QL) > G2 by
We obtain from inequalities (5.7), (5.8), (5.9), (5.10), and (5.6),
Clgo) K +2(1+X)

d (63
3 19%90z, 0y = C2 = ——10% ez, | Lcn) + WHQH%G(QL)'
The same inequality is valid for o = 0, therefore, it is concluded that

dx C(go) L)\k’+2(1+)\)

P R R T Ve
where X (t) := ||g||H;!/(QL). From here, after taking N > Ny(L, go) sufficiently large,
it follows that

X(f) Smax{X(O),4C’1/CQ}7 te [O,T]

Note that in each step of the induction one needs to add (1 4 1/)\) moments, so that

lgll a1 is finite. Having this in mind, let us state the result we just proved.
K +(141/2)

PROPOSITION 5.2. FizT >0, >0, k> ke >2, and0 <k <k—-1—a(14+1/))
and assume gog € HCX’-&-a(l-}—l/)\)(QL)' Then, for any lateral size L > Lo(T,go) there
exists No(T, L, go) > 0 such that

sup ||gll e, (0,) < max {{|goll ), Crr(90)}, N> No.

iy (Qr
tE[O,T] K/ al(1+1/X)
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6. Li and H}' error estimates. We are now in position to write the error
estimates for the spectral conservation scheme. We start with errors in the Li,—norm
and, then, extend it to Sobolev norms. Again, we start fixing for T' > 0, the cutoff
domain L > Ly(T,go) and N > Ny(T, L, go) sufficiently large so that g exists in the
interval [0,T]. Here k > k, > 2 and 0 < k¥’ < k — 1 in order to meet the assumptions
of Proposition 4.4. From the identity

Q(g,9) = Q(xg, x9)
(6.1) +(QU(1 = x)9,9) + Qg, (1 = x)g) + Q((1 = x)g, (1 = x)9))
=: Q(xg, x9) + Eolg,9) ,

and the definition of @, one finds that

Qu(g,9) = Q(9,9) — (Eolg,9) + Q™ (1 = X)9,x9))
=:Q(9,9) — E(g,9) -

Now, observe that subtracting the Boltzmann equation (2.1) and its conserved pro-
jection approximation (3.7) in 7, one obtains

20K’

(6.2)

(6.3)

Multiplying this equation by (f — g)(v) and integrating in ,,

%%”‘f _ g”%i/(QL) = ‘/grz <U>2)\k/(f - g) (Q(fa f) - Q(gvg))) dv

L

n / 0 (f — 9)(Qulg: 9) — Qelgrg)) dv
Qr

+/ () (f - 9)E(g,9) dv
Qr
=1L +1+1s.
The error term I3, from the error term FE(g, g) in (6.2), is simply controlled as

(6.4)
Is < |lgl|

k' 41

®ayll(1 = X)gHLi,H(Rd)”f = 9llz2,00) < Oaj2xer If = 9ll2,01)

where the last inequality holds provided the Li, ld Ak uniformly propagate.
Moreover, using Theorem 3.4 it follows that

1Qu(9:9) = Qel9,9)|[ 2, (2, < C5 L)1 -15)Q% (x9: X9)|| 12 q,
+ Odyoqak M 11457 (9)mo(go) -

Therefore, using the Cauchy—Schwarz inequality and the (4.2) inequality one controls
the term I as

Cs L)\k/
I, < Hf_gHLi,(QL) (N(d_l)/g||9||2L2+W(QL) + Odja4- 2k M 11487 (9)Mo(go)

1

(6.5)
= ||f - gHLZ,(QL) (O(ka’//N(d_l)/z) + Od/2+)\k”) .
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The term [; is more involved. However, it is classical from the Boltzmann theory

that the Dirichlet form of the linearized collision operator with polynomial weights is
essentially nonpositive in the sense that

h=d [ @G- QU e -0 QU 0T+ ) de
rRe  JRAN\Q,

2 C1 2
(6.6) < Cwllf = 9lizz, gay + (@ +2lgollz: _, €~ )|l f - g||Li/+1/2(Rd)
+ Od/2+>\k” If+ g”L}C,(Rd) I = gHLif(Rd) [ gHLi’+1+d/2+k” (R)

<Cpllf - g”%i/(QL) + Ogy24ae (I1f — 9llrz, 0. + Odja4rk) -

The e-term, with 0 < € < €(go), is added in the absorption (second) term to account
for the fact that there may be a set where f + g is negative. This is not a problem
since this set is small, {f + g < 0} C {g < 0}. Here, Cy is a constant that depends
on the moments L}c, 4o and ¢; = ¢;(fo,g90) depends only on the initial mass and
some moment 27 /); see, for instance, [20, Proposition 2.1]. In the last inequality, we
are taking &’ and L sufficiently large so that ¢, /k’ + Cy,/L* + 2H90||L;M e—cy <0,
which is achieved for any e in the aforementioned range. This estimate holds, of
course, provided the Li, 414d/2a4 kv -DOTIS propagate uniformly on [0,7]. Defining

X)) :=|f) - g<t)||2Li,(QL) and combining the estimates (6.6), (6.5), and (6.4),

dX / _
b () < CuX(0)+ (O(L*’“ JNED/2) 4 Od/zm//)\/)? + Oy -
Thus, Gronwall’s lemma implies

(6.7) ts[%%“] Hf_g”%i/(QL) < eck/T(Hfo_gO”ii/(QL)_|_O(L2)\k’/N(d—1)) +Od+2)\k”) )
€10,

This proves the following theorem.

THEOREM 6.1 (LZ-error estimate). Fiz k > k., > 2, k" >0, and k(fo) < k' <
E—1-— % — K" with 0 < fo € LY N LZ(RY) an initial datum and f the solution of
the Boltzmann equation (2.1). For any T > 0 and cutoff domain L(T, fo) > Lo there
exists No(T, L, fo) such that

S 1 =gl ) < eI (I1fo = gollz2, @p) + O(LM* IND/2) 4+ Ogyo g,

N> Np.

The factor Oy i is defined by (3.9). The constants depend on Cyr := Cys (”fOHLi,)

In particular, the strong limit g of the sequence {gn} in C(0,T; L% (S2L)) satisfies the
same estimate.

We study next the improvement in the rate of convergence with respect to the
number of modes N of the approximating solutions towards the Boltzmann solution
provided that the initial configuration is smooth and has at least initial mass and
energy bounded.

THEOREM 6.2 (H%-error estimates). Fiz k >k, > 2, k" >0, a9 > a > 0, and

+

k(fo) <K <k—-1-«a/2- g—)\ — k" and let 0 < fy € LyN HX(RY) be an initial datum
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and f be the solution of the Boltzmann equation (2.1). Fiz T > 0 and cutoff domain
L > Lo(T, fo). Then, there exists No(T, L, fo) such that
(6.8)

Cr
sup [|f = gl 00 < e (Ilfo —gollag, 0
te[0,T]

+O(LMEHa/DFao N d=D/24e0) L 0,0 0n), N > No.
with the factor Og/o1 \p defined as in (3.9).
Proof. Fix ag > 0, k >k, > 2, k" >0, and k(fo) <k <k—1—ag/2— L5 — k"
Now, we perform similar computations to those of the error estimates for Li,, though,

avoiding to resort to the values of g near 9€2;,. Thus, we write, for @, and Q. defined
n (3.3) and (3.7), respectively,

QUf, f) = Qelg, 9) = Qxf, xf) — Q(xg,xg) — Q@ (1 —x)(f — 9), x9)
+ (Qu(gvg) - Qc(gag)) + E(fv f) .

Here E(f, f) := Eo(f,f) + Q ((1 — x)f, xg). Thus, fixing any multi-index a with
|a| < ag, we apply the operator 9% to (6.9), multiply it by 9%(f — g){v)?***", and
integrate in €11, to obtain

(6.9)

L8107 — ) oy = IE+ 5 +IF,

where,
I = / (0} 9 (f—g) (02 QU S XF)—0"QUxgs x9)—0"Q~ (1—x) (f—g), xg)) v,
Ig = / ()W 0°(f — 9) 0 (Qulg. 9) — Qelg-9))dv,

g = [ P or(s - g) 0 B(S )o)e

Qr,
Regarding the term I, we directly use Theorem 3.4 to have
||8a (Qu(gag) - Qc(gag)) HLzI(QL) S ||Qu(gag) - Qc(gvg)HLi/(QL)

< Cs LM ||(1 - T157) Q™ (xg, XQ)HLQ(QL) + Oayoqakrrmir 414k (9)mo(go) -

Therefore, using the Cauchy—Schwarz inequality, inequality (4.2), and Lemma A.1
implies

N Cs L)\k’
I3 < |o*(f - g)”Lk,(QL)(WIg|§{fﬁl/x(QL)+Od/2+>\Ic”mk’+1+k”(g)mO(QO)

=10°(f = 9Dl z2,0.) <O(L’\k,+a°/N(d_1)/2+a°) + Od/2+>\k”) :
The term I$, containing the error term E(f, f), is simply controlled as
ip<ca > (11 (o,
o/ +f'=a
X 07 (L =20z, &) 10 (F = D)2z, (@)
< Co (1 - )f||Hg, L ( Rd)Haa(f - 9)||Li,(QL) < Od/2+/\k”|‘8a(f - g)”Li,(QL) )

() + [|0% f”Lk, 1(Rd)>
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where the last inequality holds provided the H}; /224 k#~OTTI of f uniformly prop-
agates. Finally, for the term I{* one checks that

0 (QIxf, xf) — Qxg:x9)) = 30 (QIX(f — 9), x(f + 9)) + QIx(f + 9), x(f — 9)))
=3@QO“X(f =) x(F+9) + QIX(f +9),0°(X(f =) + D Targ,

o' +p'<a
where
& = S22 Q0 (x(f — 9)), 0% X(f + 9)) + Q0% X(f + 9), 0% (x(f — 9)))) -

Observe that

o’ B’
T 5 12, |, (20) < C0" x(f - 9)||L,Q,+1/2(val)||a (f+9)||L;,+1/2(Rd)
<o x(f - )||Lk,+1/2(Rd) =C0(f - g)”Li,H/Z(QL) + Odqj24 2k

provided the H, |, 22+, "DOTINS are propagated. Therefore,

/Q WMo (f—g) 3 T v

o' +f'<a

QL)(Ca Z ||aa X(f = 9)lle

le/|<|e]

<N10*(f =92 @) T Od/2+)\k”) .

k/+1/2 k'+1/2

Now, the leading order term in If* is the Dirichlet form of the linearized Boltzmann
operator with 0%x(f —g). Thus, similarly to what was done in the Li, error estimate,
it follows that

I < Ck’”aa(f—g)”i? ,(R)
+ (k’ +e—c)|0%(f - 9)||L2 12 (B) + Oa241 10%(f = 9)llr2, ma)

+ Ca Z 0% x(f — 9)HL2 /(QL)+Od+2k”<Ck||f 9||L2 (Qr)

le/|<|e]

+Od/2+/\k”(||aa(f —9>||L2 () +Od/2+)\k”>
+ Ca Z 0% (f — g)HLz RCTS y + Odyarkr -

le’|<|e]

Accordingly, this holds provided the Hy; /2+d/2)+kn~ OIS propagate uniformly on

[0,T]. Also to obtain this estimate we have used the term with 0“Q~ ((1—x)(f—g), x9)
to complete the Lz, +1)2 absorbing norm in the whole R%. As a consequence, defining

X(t) := |0*(f(t) — g(t ))||L2 @) and combining the estimates for I7', I§, and I§

;dxe
2 dt

(t) < Can(t)+O(kal—kao/N(d—l)/Q-‘rozo)\/ﬁ_'_Od/2+>\k”
+Co Y 0™(f =93

lo|<|ex|

k’+1/2(QL) '
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Thus, Gronwall’s lemma implies
Xoe(t) < eZCkT(Xa(O) + O(LQ)\k/+2ag/Nd—1+2aO)

+ 0o +Co S s 07 (T =)0, a))-

k'+1/2
|a,|<‘a|t6[07T]

Estimate (6.8) follows by iteration of this formula on the multi-index order |a| =
1,2,...,agp, using Theorem 6.1 as the starting point. ]

7. Long time behavior. In this final section we address the long time behavior
for the semidiscrete problem given by the conservative spectral scheme approximating
the space homogeneous elastic Boltzmann equation for hard potentials with integrable
angular cross section.

Thus, we start by setting g = Mg—+h, where h := g— M is the perturbation from
the global Maxwellian equilibrium defined in (2.10). Note that under this linearization

Qc(gag) = QC(M0>MO) + QC(Mov h) + Qc(thO) + Qc(ha h) :

Introduce then the linear operators

Ec(h) L= QC(MO? h) + QC(h7 MO) )

L(xh) : = Q(Mo, xh) + Q(xh, Mo) .
The reader recognizes the latter £ as the linearized Boltzmann operator. With the
estimations we have performed in the previous section, it is clear that

d—1

IXQe(Mo, Mo) e ray < O(LM/NZ7) +O(1/LM),
IXLe(h) = LOA) | ey < O(LM/NT) + O(1/LM)
IXQe(h, h) — Q(xh, xh) |l o may < O(LM*/NT4) 4+ O(1/LM) .

For the last two estimates we need h, thus g, having a derivatives and 2k-moments in
Q. This, of course, is guaranteed by the results of section 5 as long as the negative
mass in g is small, € < €(gg). As a consequence,

(r.) X = £(xh) + QUxh, xh) + R(n),

where the remainder is of size [|R(h)| gera) < O(LA’C/N%) + O(1/L*). Now,
classical estimates on the Boltzmann operator and interpolation shows that

3/2
1Qch, X ety < CrllxXhl2 gy

where the constant Cj depends on k’-moments and the H w-norm of h for some kK >
k 4+ 2\ + d. Furthermore, the linearized Boltzmann operation has spectral gap, say
v >0, in HY. See, for example, reference [21, 41]. Thus, we can integrate (7.1) to
obtain that

t t
xh(t) = xho + /O e“=9Q(xh, xh)(s)ds + /0 “EIR(D) (s)ds .
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Since, the remainder R(h) may not have zero mass, momentum, and energy, we apply
the operator 1 — 7, where 7 is the standard projection on the Boltzmann null space
in H¥(RY) LQ/A(Rd), which is given by

wh = Z / v)dv ¢p(v)M(v), M is the normalized Maxwellian.
pe{l,v1, vq4,0]2}

Using the fact that the semigroup and 7 commutes, one has

(1= m)xh(t) = (1 = m)xho + /O e“E=Q(xh, xh)(s)ds + /O L)1 — m)R(h)(s)ds,

where we used that (1 —m)Q(-,-) = Q(-,-). Thus, applying the H-norm we conclude
that

(7.2)
(L = m)xh(t) || zre ey < [[(1 = m)xholl me ey + %(O(L/\k/N%) + O(l/LAk))

t
—u(t—s 3/2
+ i [ ) gy

Now, the conservation routine grants that wh(t) = 0 for any ¢ > 0. Then,

||7TXh||H,g(Rd) =|l=(1— X)hHH;;(Rd) < Ck,a”(l - X)hHL}C(Rd) = O(l/L/\k) .

AS a consequence,
(7.3)
1L = m)XRE g ey = (XA oy + O(L/L) = B0z @) + O (/L)

Thus, estimates (7.2), (7.3), and (2.27) leads to the control

1 d—1
A e @r) < hollre@,) + ;(O(L’\k/N )+ O(l/L”‘?))
(7.4) ¢ 32
0 [ I s = V0.

Observing that
t
Y'(8) = Cr A0l 0,y — ¥ Ci / eI h(s) 3,
0
one concludes, using (7.4), that

(7.5)  Y'(t) + vY () < ChY2(t) + vl hollmp 0,y + O (LY /NZ) + O(1/L ) .

This estimate tell us that if

1 d—1
(76) C’]C\/}7 = Ck\/|h0||HICCX(§2L) + ;(O(LMC/NT) + O(l/L/\k)) <L,
then
(1) IOl 0y < V() S ol )+ (O /NT) +0(1/2M)) 0.

This proves the following local stability estimate for the conservative semidiscrete
solution.
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PROPOSITION 7.1 (local stability for the semidiscrete scheme). Fiz ag > 0 and
let go € Hy () with k >k, > 1+ %, an initial datum for the semidiscrete problem.
Assume that ||go — Mol|me(a,) < 6/2 for 0 < 6 < min{v,e(go)}. Then, there exist
a lateral size Lo(go,v) > 0 and a number of modes No(go, Lo, v) such that for any

a < ag

§1>18||9*M0||Hg(m) <4, L>Lo, N>No,

where My is the Mazwellian having the same mass, momentum, and energy as the
initial configuration gg.

Proof. The result follows from the aforementioned discussion noticing that (7.7)
is valid provided L is taken first sufficiently large and then N := N(L), in a way that
(7.6) is satisfied. Since the constant C} depends on propagations of moments and
the norm H,;°, the validity of (7.7) holds provided the negative mass of g is small.
However, this is clear since

g™ z2(0r) < (g = Mo)lig<orllz(a,) <6 < €(go) - o

As a corollary of the error estimates and the local stability of the scheme, exponential
relaxation to the Maxwellian equilibrium follows in Lebesgue and Sobolev norms.
Indeed, using the classical asymptotic Boltzmann theory [21, 41] for variable hard
potentials,

I = Molls ey < Ciclfollp ey ™'

where v > 0 is the spectral gap of the linearized Boltzmann equation. Thus, for any
0 > 0 we can choose

‘W”Hsmy/ "L o that

(1) T(0) = (5 sup 1=~ Moll g ey < /4.

t>T(8)/2

THEOREM 7.2 (convergence to the Maxwellian equilibrium). Fiz ag > 0 and let
fo € HSP(RY) with k > k. > 1+ %, an initial datum. Then, for every 0 < § <
min{v, e(go)} there exist a lateral size Lo(fo) > 0 and a number of modes No(L, fo)
such that for any a < ag

sup [lg = Mollgeo,) <6, L > Lo, N> No,
t>T(5)/2
where My is the Mazwellian having the same mass, momentum, and energy as the
initial configuration fy.

Proof. Letting T'= T'(4) in Theorem 6.1 for the case ag = 0 or Theorem 6.2 for
the case ap > 0, one concludes that there exist a lateral size Lo(T(d), fo) and number
of modes No(T(d), L, fo) such that

(7.9) sup ||f = gllup@,) <6/4, L>Lo, N> Np.
t€[0,T]

Using the triangle inequality with (7.8) and (7.9) one has that

sup lg — Mollme,) <6/2, L=>Ly, N> Np.
te[T(6)/2,T(9)]

The result follows after invoking the local stability result of Proposition 7.1. O
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Remark 7.3. Since the relaxation of the Boltzmann solution f(¢,v) is exponen-
tially fast for variable hard potentials, the simulation times are relatively short as
noticed in the previous proof. This makes conservative schemes very stable even
when using relatively small working domains and number of modes.

Completion of proof of Theorem 3.1. We just need to discuss the time
uniform nature of the constants appearing in the error estimates. We first observe
that the conservative spectral scheme follows the nonlinear dynamics of the Boltzmann
equation in the time range [0,7(d)/2]. Next, for t > T'(d)/2, the dynamics is relaxed
around the thermal equilibrium, so that, it is controlled by the linear evolution. Hence,

If = 9l @) = If = Mollag@u) + g — Mollag ) <26 for ¢ >T(5)/2.

As a consequence, in the long run, f—g is estimated by the minimum between estimate
(6.8) evaluated at T(0)/2 and 26. As a consequence, we conclude

sup 1f = gllaz ) < OOk T(6) (||f0 —gollug, 00 + O(LM+e/2) a0 /N (d=1)/2+a0)
+ Od/2+>\k) ;

for LZL()(T((;), fo), NZNo(T((s), L()7 fo), and the term Od/2+kk) as defined in (39)
Recalling (7.8), note that

SCTG) (4Ck||f0|H;g(QL)>aC'°/V
— .

The proof of Theorem 3.1 is concluded after minimizing in 6 > 0, which gives 8 =
aCy/v in items 2 and 3.

8. Conclusion. We have studied the global existence and error estimates for the
homogeneous Boltzmann spectral method imposing conservation of mass, momentum,
and energy by Lagrange constrained optimization. The methods and estimates pre-
sented in the document show that imposing conservation of these quantities stabilizes
the long time behavior of the discrete problem because it enforces the collisional in-
variants. In some sense, this in turn enforces the numerical approximation of the
linearized collisional operator to have the same null space as the true linearized colli-
sion operator, which is the one in charge of the long time dynamics. In particular, the
work domain and the number of modes can be chosen such that the discrete solution
approximates with any desired accuracy the stationary state of the original Boltz-
mann problem in the long run. Although spurious tail behavior is experienced when
the optimization is imposed due to the addition of a quadratic polynomial corrector,
the natural property of creation of moments remains in the semidiscrete problem.
This allows one to minimize such spurious behavior by appropriate choice of simula-
tion parameters. We point out here that other correctors, such as Gaussian, might be
more suitable in this respect. Furthermore, conservation of mass and energy limits
the negative mass produced by the numerical scheme which is essential for long time
accurate simulations.

Appendix A.

A.1. Shannon sampling theorem. The following result is an extension of the
standard approximation estimate for regular functions by Fourier series expansions,
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Shannon sampling theorem, to the H*({1y) space. We include here the result for
completeness of the reading.

LEMMA A.1 (Fourier approximation estimate). Let g € H*(p), then

1 L \“
(v2m)d N lgllere@r) -

(A1) 102 =19l 20,y <

Proof. Parseval’s relation gives

I =Tl o) = | D 16
k>N

Furthermore, properties of the Fourier transform imply

1 |5\°‘9(Ck)}

= i T, (e
Therefore,
~ | |Dg(¢)|? 1 Yy [Do9(G)]”
Gn (G = Pl < >N |2 .
k;vgN T e ST e T oY T (¢

Observe that the sum in the last inequality equals the L?-norm square of D%g —
1Y D%g; therefore,

N 2 a
=R 9 1 HDO‘g—H DagHLz(QL) 1 ||D gH%ﬁ(QL)
> (G < o <

Y I G~ oI, ()
Conclude by recalling the definition of (y = 22%. 0

A.2. Estimate on the decay of the collision operator.

THEOREM A.2. The following estimate holds for any k > 0 and X\ € [0,2]:

‘ [ QU@ ds| < Oulmsa(Pmo(s) + Zel).
RA\Qy

The term Zy(f) is defined below in (A.3) and only depends on moments up to order
k. In particular one has

(A.2) Zi(f) < 25 ma(f) me(f).
Proof. For the negative part,

/ Q(f, f)(w)dv | < L / Q= (f1, 1) (@)u]*dv
RA\QL {lv|>L}

<L (mi41mo + mymg) -

For the positive part,

/ QH(f, H)w)dv
RA\QL

< LW / Q11 ()] Mdv
{|lv|>L}

=1 [ @Il [ 1P ododu.d.
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Note,

N Ak /2
[ Wb @)do < bl s (1 + o)

k
k , »
< Mllagseny D (5 ) 1Pl

J=0

Use the inequality |u|* < |v|* + |v.|* with the previous expressions to obtain

/ Q+(f. f)(w)do
RA\QL

< 2||b\|L1(sd—1)[7’\]C (mrs1(f)mo(f) + Ze(f)),

where

k—

(A.3) ( : >m3+1 Pymi—;(f).

j=0

i

[

Furthermore, note that interpolation implies, for 0 < j <k — 1,

k—=1—j k—1—j

My (f) < ma(f) = me(F)TT, mp—y (f) < ma(f)TT my(f) =T

Therefore,

mj1(f) me—; (f) <ma(f)me(f), 0<j<k-1.
This implies that

k—1

2 <m(NmHY (5 ) <2 mnym). i
§=0

A.3. L?-theory of the collision operator. The following theorems follow
from the arguments in [27, 2, 3]

THEOREM A.3 (collision integral estimate for elastic/ inelastic collisions). For
fr9€ L (RYNLE, (RY) one has the estimate

(Ad)  1QUf, D)2y < C (IflL2

2 ®aollglly, @+ 1fllcy,, @ollgllcz, @ a),
where the dependence of the constant is C := C(d, ||b||1).
Theorem A.3 and the Leibniz formula
@ i ; .. .
(A.5) 0%Q(f,g9) = Z < _)Q(aa Jf,87¢g) for multi-indexes j, «,
[71<]e
prove the following theorem; see [27, section 4] for additional discussion.

THEOREM A.4 (Sobolev bound estimate). Let p > 1+ %. For f,g € H,‘C"Jru(Rd),
the collision operator satisfies

(A.6)
10U g < € () (1MW gacun o0y o + 1 g ol )

ifa

where the dependence of the constant is C := C(d, o, ||b]|]1)-
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COROLLARY A.5. Let i > 2+ . For f € ,?‘+H(Rd) the collision operator satis-
fies the estimate

(A7) 1Q(f, f)||Hg(Rd) < CHN%{,;YW(R‘I) :

The dependence of the constant is given by C := C(d, p, ||b]|1).

In this last section of the appendix we discuss briefly the gain of integrability in
the gain collision operator; see [5] for a more detailed discussion.

THEOREM A.6. The collision operator satisfies the estimate for any € > 0 and
k>0:

1QF (g, Pllzz gay < C”bHOOHQHLi(QL)(% £l Lz may + %HfHE?QL)Hini(Rd)) )

d—2

where 0 = é, r = %=, and Cy, is a constant depending only on the dimension.
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