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Abstract. We develop error estimates for the semidiscrete conservative spectral method for
the approximation of the elastic and inelastic space homogeneous Boltzmann equation introduced
by Gamba and Tharkabhushanam in [J. Comput. Phys., 228 (2009), pp. 2012–2036]. In addition
we study the long time convergence of such semidiscrete solution to the equilibrium Maxwellian
distribution that conserves the mass, momentum, and energy associated with the initial data. The
numerical method is based on the Fourier transform of the collisional operator and a Lagrangian
optimization correction that enforces the collision invariants, namely, conservation of mass, momen-
tum, and energy in the elastic case, and just mass and momentum in the inelastic one. We present
a detailed semidiscrete analysis on convergence of the proposed numerical method which includes
the L1

− L2 theory for the scheme. This analysis allows us to present, additionally, convergence in
Sobolev spaces and convergence to equilibrium for the numerical approximation. The results of this
work answer a long standing open problem posed by Cercignani, Illner, and Pulvirenti in [Mathemat-

ical Theory of Dilute Gases, Springer, New York, 1994, Chapter 12] about finding error estimates
for a numerical scheme associated with the Boltzmann equation, as well as showing the semidiscrete
numerical solution converges to the equilibrium Maxwellian distribution associated with the initial
value problem.
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1. Introduction. The Boltzmann transport equation is an integro-differential
transport equation that describes the evolution of a single point probability density
function f(t, v, x) defined as the probability of finding a particle at position x with
kinetic velocity v at time t. The mathematical and computational difficulties associ-
ated with the Boltzmann equation are due to the nonlocal and nonlinear nature of
the binary collision operator, which is usually modeled as a bilinear integral form in
d-dimensional velocity space and unit sphere \BbbS d - 1.

The focus of this manuscript is to provide a complete consistency and error analy-
sis and long time convergence to statistical equilibrium states for the Lagrangian-based
conservative spectral scheme proposed in [30] to solve the dynamics of elastic binary
collisions. In particular, the results of this work answer a long standing open problem
posed by Cercignani, Illner, and Pulvirenti in [19, Chapter 12] about finding error es-
timates for a consistent nonlinear Boltzmann deterministic scheme for elastic binary
interactions in the case of hard potentials.
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The problem of computing efficiently the Boltzmann transport equation has inter-
ested many authors that have introduced different approaches. These approaches can
be classified as stochastic methods known as direct simulation Monte Carlo methods
(DSMC) ([8, 47, 49, 29]) and deterministic methods (discrete velocity models [35, 18,
12, 39, 33], Boltzmann approximations–lattice Boltzmann, Bhatnagar–Gross–Krook
operator and spectral methods [25, 14, 46, 9, 11, 16, 45, 34, 23, 24, 42]). Spectral-
based methods, our choice for this work, have been developed by Gamba and Tharkab-
hushanam [30] inspired in the work developed a decade earlier by Gabetta, Pareschi,
and Toscani [25] and later by Bobylev and Rjasanow [14] and Pareschi and Russo [46].
The practical implementation of these methods is supported by the groundbreaking
work of Bobylev [9] using the Fourier transformed Boltzmann equation to analyze
its solutions in the case of Maxwell-type interactions. After the introduction of the
inelastic Boltzmann equation for Maxwell-type interactions and the use of the Fourier
transform for its analysis in Bobylev, Carrillo, and Gamba [11], the spectral-based
approach is becoming the most suitable tool to deal with deterministic computations
of kinetic models associated with the full Boltzmann collisional integral, both for
elastic or inelastic interactions. Recent implementations of spectral methods for the
nonlinear Boltzmann are due to Bobylev and Rjasanow [14] who developed a method
using the fast Fourier transform (FFT) for Maxwell-type interactions and then for
hard-sphere interactions [15] using generalized Radon and X-ray transforms via FFT.
Simultaneously, Pareschi and Perthame [45] developed a similar scheme using FFT
for Maxwell-type interactions. Using [46, 45], Filbet, Mouhot, and Pareschi [23] and
Filbet and Russo in [24] have implemented a scheme to solve the space inhomogeneous
Boltzmann equation. We also mention the work of Ibragimov and Rjasanow [34] who
developed a numerical method to solve the space homogeneous Boltzmann equation
on a uniform grid for variable hard potential interactions with elastic collisions. This
particular work has been a great inspiration for the current paper and was one of the
first steps in the direction of a new numerical method.

The aforementioned works on deterministic solvers for the nonlinear Boltzmann
transport equation have been restricted to elastic, conservative interactions. Mouhot
and Pareschi [42] have studied some approximation properties of the schemes. Part of
the difficulties in their strategy arises from the constraint that the numerical solution
has to satisfy conservation of the initial mass. To this end, the authors propose the use
of a periodic representation of the distribution function to avoid aliasing. Closely re-
lated to this problem is the fact that spectral methods do not guarantee the positivity
of the solution due to the combined effects of the truncation in velocity domain (of the
equation) and the application of the Fourier transform (computed for the truncated
problem). In addition to this, there is no a priori conservation of mass, momentum,
and energy in [23, 24, 42]. In fact, the authors in [22] presented a stability and conver-
gence analysis of the spectral method for the homogeneous Boltzmann equation for
binary elastic collisions using the periodization approach proposed in those previous
references. In their results, the spectral scheme enforced only mass conservation; as a
consequence, the numerical solutions converge to the constant state, hence, destroying
the time asymptotic behavior predicted by the Boltzmann \scrH -theorem.

It is shown in this manuscript that the conservative approach scheme proposed
in [30] is able to handle the conservation problem in a natural way, by means of
Lagrange multipliers, and enjoys convergence and a correct long time asymptote to
the Maxwelliam equilibrium. Our approximation by conservative spectral Lagrangian
schemes and corresponding computational method is based on an alternative ap-
proach to the work in [14, 34]. This spectral approach combined with a constrained

D
o
w

n
lo

ad
ed

 0
2
/1

6
/1

9
 t

o
 1

2
8
.8

3
.6

3
.2

0
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3536 R. J. ALONSO, I. M. GAMBA, AND S. H. THARKABHUSHANAM

minimization problem works for elastic or inelastic collisions and energy dissipative
nonlinear Boltzmann-type models for variable hard potentials. We do not use periodic
representations for the distribution function and the only restriction of the current
method is that it requires that the distribution function be Fourier transformable at
any time step. This requirement is met by imposing L2-integrability to the initial
datum. The required conservation properties of the distribution function are enforced
through an optimization problem with the desired conservation quantities set as the
constraints. The correction to the distribution function that makes the approximation
conservative is very small but crucial for the evolution of the probability distribution
function according to the Boltzmann equation.

More recently, this conservative spectral method for the Boltzmann equation was
applied to the calculation of the Boltzmann flow for anisotropic collisions, even in
the Coulomb interaction regime [26], where the solution of the Boltzmann equation
approximates the solution for the Landau equation [37, 38]. It has also been extended
to systems of elastic and inelastic hard potential problems modeling of a multienergy
level gas [44]. In this case, the formulation of the numerical method accounts for
both elastic and inelastic collisions. It was also used for the particular case of a
chemical mixture of monatomic gases without internal energy. The conservation of
mass, momentum, and energy during collisions is enforced through the solution of the
constrained optimization problem to keep the collision invariances associated with the
mixtures. The implementation was done in the space inhomogeneous setting (see [44,
section 4.3]), where the advection along the free Hamiltonian dynamics is modeled
by time splitting methods following the initial approach in [31]. The effectiveness of
the scheme applied to these mixtures has been compared with the results obtained
by means of the DSMC method and excellent agreement has been observed.

In addition, this conservative spectral Lagrangian method has been implemented
in a system of electron-ion in plasma modeled by a 2\times 2 system of Poisson–Vlasov–
Landau equations [52] using time splitting methods, that is, staggering the time steps
for advection of the Vlasov–Poisson system and the collisional system including re-
combinations. The constrained optimization problem is applied to the collisional step
in a revised version from [30] where such a minimization problem was posed and solved
in Fourier space, using the exact formulas for the Fourier transform of the collision
invariant polynomials. The benchmarking for the constrained optimization imple-
mentation for the mixing problem was done for an example of a space homogeneous
system where the explicit decay difference for electron and ion temperatures is known
[52, section 7.1.2]. Yet, the used scheme captures the total conserved temperature,
being a convex sum of the ions and electron temperatures, respectively.

The keynote results of the manuscript are stated in Theorem 3.1 in section 3.
The proof of this theorem relies on the Lagrangian correction problem that enforces
conservation at the numerical level. This is a key idea that shows that the conserva-
tive spectral scheme converges to the Gaussian (Maxwellian) distribution in velocity
space. Indeed, the enforcement of the collision invariants is sufficient to show the
convergence result to the Maxwellian equilibrium in the case of a scalar space ho-
mogeneous Boltzmann equation for binary elastic interactions. This is exactly how
the Boltzmann \scrH -theorem works [19]; the equilibrium Maxwellian (2.10) is proven to
be the stationary state due to the conservation properties combined with the elastic
collision law.

In the case of inelastic collisions for either Maxwell type of hard sphere interac-
tions for constant rate of local energy law [11, 27, 40] or visoelastic particle type of
interactions [6, 7], where local energy rates depend on the local impact angle, making
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them an elastic interaction as the interaction is glancing, the number of collision in-
variants to be enforced is just d+1 polynomials. In addition, trivial stationary states
are either a singular distribution or vacuum, and it has been shown that there also
are nontrivial attracting self-similar solutions that develop power tail distributions
in the self-similar framework, as computed in [30] and references therein for an in-
depth discussion of the phenomenon. In particular, it would not be correct to use
approximating schemes that enforce local or global Maxwellian behavior as they will
eventually generate errors. In fact, in the case of the scalar homogeneous Boltzmann
for binary inelastic collisions of Maxwell type, the scheme is able to accurately com-
pute the evolution to self-similar states with power tails, by exhibiting the predicted
corresponding moment growth as performed in [30].

The conservative spectral Lagrangian has also been implemented to numerically
simulate a gas mixture system for chemically interacting gases, [44, 52], where re-
combination terms depend on mass ratios, even if the particle-particle interaction is
elastic. In particular, while each component of the gas mixture does not conserve
energy, the total system does. The resulting conservation scheme, then, enforces the
proper collision invariants for the total system by enforcing a convex combination
of the thermodynamic macroscopic quantities, but not for the collision invariants of
individual components.

Enforcing the system to conserve total quantities by the suitable constrained min-
imization problem associated with initial data for the mixture will select the correct
equilibrium states associated with each system component. A proof of this statement
would require us to adjust the conservation correction estimate of Lemma 3.4 now
extended to the adequate convex combination of collision invariants corresponding
to the initial data of the system, as it was computed in [44] for a 2 \times 2 neon argon
gas mixture, or a 5\times 5 multienergy level gas mixture using the classical hard sphere
model, as well as in [52] for an electronion plasma mixture using the Landau equation
for Coulomb potentials.

The paper is organized as follows. In section 2, the preliminaries and description of
the spectral method for the space homogenous Boltzmann equation are presented. In
section 3, we introduce the optimization problem proving the basic estimates including
spectral accuracy and consistency, results in both elastic and inelastic collisions in
Theorem 3.4. In sections 4, 5, and 6 we develop the existence, convergence, and error
estimates for the elastic interactions scheme, which heavily relies on the analytical
properties of the model for a space homogeneous, monoatomic, single component,
elastic interacting gas for hard potentials and integrable angular cross section kernel.
Finally, in section 7 we show local stability and long time convergence of the method.
In this section we prove that, in fact, all constant in the estimates are uniform in time.
We point out that it is possible to carry out this program for the inelastic framework
of viscoelastic interactions, as all the necessary analytical tools are already available
in [6, 7]. The methodology we follow is summarized in the following steps:

1. In section 4 we prove a priori estimates for the moments and the L2
k-norms of

the scheme under a small negative mass assumption. The analysis involves a
coupled estimate on moments and the L2-norm due to the fact that spectral
methods fundamentally need the L2-theory. An estimate for the amount of
the negative mass produced by the scheme along time is proven as well.

2. We use the a priori estimates of section 4 to prove global existence in section 5.
The key ingredient is to keep the negative mass formation under the numerical
scheme in control. We, then, show propagation of regularity.
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3. In section 6 we develop the error estimates of the scheme using the propaga-
tion of moments and Sobolev norms provided in sections 4 and 5. The core
of the document finishes, in section 7, with a result on the local stability and
exponential convergence of the scheme to the thermal equilibrium. This last
part helps to make all constants found in previous sections uniform in time.

Finally, some conclusion are drawn in section 8 and a useful toolbox is given in
the appendix.

2. Preliminaries.

2.1. The Boltzmann equation and its Fourier representation. The initial
value problem associated with the space homogeneous Boltzmann transport equation
modeling the statistical evolution of a single point probability distribution function
f(t, v) is given by

(2.1)
\partial f

\partial t
(t, v) = Q(f, f)(t, v) in (0, T ]\times \BbbR d

with initial data f(0, v) = f0. The weak form of the collision integral is given by

\int 

Rd

\scrQ (f, f)(v)\phi (v)dv=

\int 

R2d

\int 

Sd - 1

f(v, t)f(w, t)[\phi (v\prime ) - \phi (v)]B(| u| , û \cdot \sigma )d\sigma dwdv ,
(2.2)

where the corresponding velocity interaction law exchanging velocity pairs \{ v, w\} into
postcollisional pairs \{ v\prime , w\prime \} is given by the law

(2.3) v\prime = v +
\beta 

2
(| u| \sigma  - u) and w\prime = w  - \beta 

2
(| u| \sigma  - u),

where \beta \in (1/2, 1] is the energy dissipation parameter, u = v  - w is the relative
velocity, and \sigma \in \BbbS d - 1 is the unit direction of the postcollisional relative velocity
u\prime = v\prime  - w\prime . The parameter \beta is related to the degree of inelasticity of the interactions
with \beta = 1 being elastic and \beta < 1 inelastic interactions.

The collision kernel, quantifying the rate of collisions during interactions, carries
important properties that are of fundamental importance for the regularity therory
of the Boltzmann collisional integral. It is assumed to be

(2.4) B(| u| , û \cdot \sigma ) = | u| \lambda b(û \cdot \sigma ) with 0 \leq \lambda \leq 1 .

The scattering angle \theta is defined by cos \theta = û \cdot \sigma , where the hat stands for unitary
vector. Further, we assume that the differential cross section kernel b(û\cdot \sigma ) is integrable
in \BbbS d - 1, referred to as the Grad cutoff assumption [32], and it is renormalized in the
sense that

\int 

Sd - 1

b(û \cdot \sigma )d\sigma =
\bigm| \bigm| \BbbS d - 2

\bigm| \bigm| 
\int \pi 

0

b(cos \theta ) sind - 2 \theta d\theta =
\bigm| \bigm| \BbbS d - 2

\bigm| \bigm| 
\int 1

 - 1

b(s)(1 - s2)(d - 3)/2ds=1 ,

(2.5)

where the constant
\bigm| \bigm| \BbbS d - 2

\bigm| \bigm| denotes the Lebesgue measure of \BbbS d - 2. The parameter
\lambda in (2.4) regulates the collision frequency and accounts for interparticle potentials
occurring in the gas. These interactions are referred to as variable hard potentials
whenever 0 < \lambda < 1, Maxwell–molecules-type interactions for \lambda = 0, and hard spheres
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for \lambda = 1. In addition, if kernel b is independent of the scattering angle we call
the interactions isotropic, otherwise, we refer to them as anisotropic variable hard
potential interactions.

It is worth mentioning that the weak form of the collisional form (2.2) also takes
the following weighted double mixing convolutional form

\int 

Rd

Q(f, f)(v)\phi (v) dv =

\int 

R2d

f(v)f(v  - u)\scrG (v, u)dudv .(2.6)

The weight function defined by

\scrG (v, u) =
\int 

Sd - 1

\bigl[ 
\phi (v\prime ) - \phi (v)

\bigr] 
B(| u| , û \cdot \sigma ) d\sigma (2.7)

depends on the test function \phi (v), the collisional kernel B(| u| , û \cdot \sigma ) from (2.4), and
the exchange of collisions law (2.3). This is actually a generic form of a Kac master
equation formulation for a binary multiplicatively interactive stochastic Chapman–
Kolmogorov birth-death rate process, where the weight function \scrG (v, u) encodes the
detailed balance properties, collision invariants as well as existence, regularity, and
decay rate dynamics to equilibrium.

We also denote by \prime v and \prime w the precollision velocities corresponding to v and
w. In the case of elastic collisions (i.e., \beta = 1) the pairs \{ \prime v,\prime w\} and \{ v\prime , w\prime \} agree,
otherwise, extra caution is advised.

Collision invariants and conservation properties. The collision law (2.3) is
equivalent to the following relation between the interacting velocity pairs:

v + w = v\prime + w\prime and | v| 2 + | w| 2 = | v\prime | 2 + | w\prime | 2  - \beta (1 - \beta )B(| u| , û \cdot \sigma ).

In particular, when testing with the polynomials \varphi (v) = 1, vj , | v| 2 in \BbbR d, it yields
the following conservation relations

d

dt

\int 

Rd

f

\left( 
 

1
vj
| v| 2

\right) 
 dv =

\int 

R2d

f(v\ast )f(v)

\int 

Sd - 1

\left( 
 

0
0

 - \beta (1 - \beta )

\right) 
 B(| u| , û \cdot \sigma )d\sigma dv\ast dv .(2.8)

The polynomials that make the collisional integral vanish are called collision invari-
ants. Clearly, in the elastic case when \beta = 1, the homogeneous Boltzmann equation
has d+2 collision invariants and corresponding conservation laws, namely, mass, mo-
mentum, and kinetic energy. For the inelastic case \beta < 1, the number of invariants
and conserved quantities is d+ 1.

Finally, when testing with \varphi (v) = log f(v) it yields the inequality (\scrH -theorem
holding for the elastic case)

d

dt

\int 

Rd

f log fdv =

\int 

Rd

Q(f) log fdv

=

\int 

R2d\times Sd - 1

f(w)f(v)

\biggl( 
log

\biggl( 
f(w\prime )f(v\prime )

f(w)f(v)

\biggr) 
+
f(w\prime )f(v\prime )

f(w)f(v)
 - 1

\biggr) 
B(| u| , û \cdot \sigma )d\sigma dwdv

+

\int 

R2d\times Sd - 1

f(w)f(v)

\biggl( 
1

(2\beta  - 1)J\beta 
 - 1

\biggr) 
B(| u| , û \cdot \sigma )d\sigma dwdv

\leq 
\int 

R2d\times Sd - 1

f(w)f(v)

\int 

Sd - 1

\biggl( 
1

(2\beta  - 1)J\beta 
 - 1

\biggr) 
B(| u| , û \cdot \sigma )d\sigma dwdv=0 iff \beta =1 .

(2.9)
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Recall the following fundamental result in elastic particle theory:
The Boltzmann Theorem (for \beta = 1).

\int 

Rd

Q(f) log f = 0 \Leftarrow \Rightarrow log f(v) = a+ b \cdot v  - c| v| 2 ,

where f \in L1(\BbbR d) for c > 0, where the parameters a, b, and c are determined by the
initial state moments given by the d+ 2 collision invariants.

That means that given an initial state f0(v) \geq 0 for a.e. v \in \BbbR d, we have\int 
Rd f0(v)(1 + | v| 2) dv <\infty . In the limit as t\rightarrow +\infty , we expect that f(t, v) converges
to the equilibrium Maxwellian distribution, i.e.,

(2.10) f(t, v) \rightarrow \scrM 0[m0, u0,Θ0](v) := m0(2\pi Θ0)
 - d/2 exp

\biggl( 
 - | v  - u0| 2

2Θ0

\biggr) 
,

where the density mass, momentum, and energy are defined by

m0 :=

\int 

Rd

f0(v) dv , u0 :=
1

m0

\int 

Rd

f0(v) dv , Θ0 := (dm0)
 - 1

\int 

Rd

| v - u0| 2 f0(v) dv .

The Fourier formulation of the collisional form. One of the pivotal points
in the success of the spectral numerical method for the computation of the nonlinear
Boltzmann equation lies in the simplicity of the representation of the collision integral
in Fourier space by means of its weak form. Indeed taking the Fourier multiplier as
the test function, i.e.,

\psi (v) =
e - i\zeta \cdot v

(
\surd 
2\pi )d

in the weak formulation (2.2), where \zeta is the Fourier variable, one obtains the Fourier
transform of the collision integral

\widehat Q(f, f)(\zeta ) =
1

(
\surd 
2\pi )d

\int 

Rd

Q(f, f)e - i\zeta \cdot vdv

=
1

(
\surd 
2\pi )d

\int 

R2d

\int 

Sd - 1

f(v)f(w)B(| u| , û \cdot \sigma )
\Bigl( 
e - i\zeta \cdot v

\prime  - e - i\zeta \cdot v
\Bigr) 
d\sigma dwdv .

Thus, using (2.4), (2.6), (2.7) yields

\widehat Q(f, f)(\zeta )=
1

(
\surd 
2\pi )d

\int 

R2d

f(v)f(w)

\int 

Sd - 1

| u| \lambda b(û \cdot \sigma )e - i\zeta \cdot v
\Bigl( 
e - i

\beta 
2 \zeta \cdot (| u| \sigma  - u)) - 1

\Bigr) 
d\sigma dwdv

=
1

(
\surd 
2\pi )d

\int 

Rd

\biggl( \int 

Rd

f(v)f(v  - u)e - i\zeta \cdot vdv

\biggr) 
G\lambda ,\beta (u, \zeta )du

=
1

(
\surd 
2\pi )d

\int 

Rd

\widehat f \tau  - uf(\zeta )G\lambda ,\beta (u, \zeta ) du ,

(2.11)

where the weight function G\lambda ,\beta (u, \zeta ) is defined by the spherical integration

(2.12) G\lambda ,\beta (u, \zeta ) := | u| \lambda 
\int 

Sd - 1

b(û \cdot \sigma )
\Bigl( 
e - i

\beta 
2 \zeta \cdot (| u| \sigma  - u))  - 1

\Bigr) 
d\sigma .
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Note that (2.12) is valid for both isotropic and anisotropic interactions. In addition,
the function G\lambda ,\beta (u, \zeta ) is oscillatory and trivially bounded by | u| \lambda due to the integra-
bility of b(\cdot ) from the Grad’s cutoff assumption. Further simplification ensues for the
three-dimensional isotropic case where a simple computation gives

(2.13) Giso(u, \zeta ) = | u| \lambda 
\biggl( 
ei

\beta 
2 \zeta \cdot u sinc

\biggl( 
\beta | u| | \zeta | 

2

\biggr) 
 - 1

\biggr) 
.

In addition, recalling elementary properties of the Fourier transform yields

\widehat f \tau  - uf(\zeta ) =
1

(
\surd 
2\pi )d

f̂ \ast \widehat \tau  - uf(\zeta ) =
1

(
\surd 
2\pi )d

\int 

Rd

f̂(\zeta  - \xi )\widehat \tau  - uf(\xi )d\xi 

=
1

(
\surd 
2\pi )d

\int 

Rd

f̂(\zeta  - \xi )f̂(\xi )e - i\xi \cdot ud\xi .

Hence, using this last identity in (2.11), we finally obtain the following structure in
Fourier space:

(2.14) \widehat Q(f, f)(\zeta ) =
1

(2\pi )d

\int 

Rd

f̂(\zeta  - \xi )f̂(\xi )\widehat G\lambda ,\beta (\xi , \zeta )d\xi ,

where

(2.15) \widehat G\lambda ,\beta (\xi , \zeta ) =

\int 

Rd

G\lambda ,\beta (u, \zeta )e
 - i\xi \cdot udu .

That is, the Fourier transform of the collision operator \widehat Q(f, f)(\zeta ) is a weighted con-

volution of the inputs in Fourier space with weight \widehat G\lambda ,\beta (\xi , \zeta ).
As an example, we compute the weight for the isotropic case in three dimensions.

Assume that f has support in the ball of radius
\surd 
3L, hence, the domain of integration

for the relative velocity is the ball of radius 2
\surd 
3L. Using polar coordinates u = r\omega ,

\widehat Giso(\xi , \zeta ) =

\int \infty 

0

\int 

S2

r2Giso(r\omega , \zeta )e - ir\xi \cdot \omega d\omega dr

= 4

\int 2
\surd 
3L

0

r\lambda +2

\biggl( 
sinc

\biggl( 
r\beta | \zeta | 
2

\biggr) 
sinc

\biggl( 
r| \beta 
2
\zeta  - \xi | 

\biggr) 
 - sinc (r| \xi | )

\biggr) 
dr.

(2.16)

A point worth noting here is that the numerical calculation of expression (2.14) re-
sults in O(N2d) number of operations, where N is the number of discretizations in
each velocity component (i.e., N counts the total number of Fourier modes for each
d-dimensional velocity space). However it may be possible to reduce the number of
operations to O(N2d - 1logN) for any anisotropic kernel and any initial state. Due to
the oscillatory nature of the weight function (2.16) even in the simple case of three
dimensions for the hard sphere case, when b(û \cdot \sigma ) = 4\pi , such a calculation cannot be
accomplished by N logN operations if the initial state is far from a Maxwellian state
or has an initial discontinuity, as claimed in [23].

Notation and spaces. Before continuing with the discussion, we recall the
definition of the Lebesgue’s spaces Lpk(Ω) and the Hilbert spaces H\alpha 

k (Ω). These spaces
will be used during the manuscript. The set Ω could be any measurable set in the
case of the Lpk spaces or any open set in the case of the H\alpha 

k spaces, however, for our
present purpose Ω is either ( - L,L)d or \BbbR d most of the time:
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Lpk(Ω) : =
\Bigl\{ 
f : \| f\| Lp

k(Ω) :=
\Bigl( \int 

Ω

\bigm| \bigm| f(v)\langle v\rangle \lambda k
\bigm| \bigm| pdv

\Bigr) 1
p

<\infty 
\Bigr\} 

with p \in [1,\infty ) , k \in \BbbR ,

H\alpha 
k (Ω) : =

\Bigl\{ 
f : \| f\| H\alpha 

k (Ω) :=
\Bigl( \sum 

\beta \leq \alpha 
\| D\beta f\| 2L2

k(Ω)

\Bigr) 1
2

<\infty 
\Bigr\} 

with \alpha \in \BbbN d , k \in \BbbR ,

where \langle v\rangle :=
\sqrt{} 
1 + | v| 2. The standard definition is used for the case p = \infty ,

L\infty 
k (Ω) :=

\Bigl\{ 
f : \| f\| L\infty 

k (Ω) := esssup
\bigm| \bigm| f(v)\langle v\rangle \lambda k

\bigm| \bigm| <\infty 
\Bigr\} 

with k \in \BbbR .

We will commonly use the following shorthand to ease notation when the domain Ω
is clear from the context:

\| \cdot \| Lp
k(Ω) = \| \cdot \| Lp

k
,

and the subindex k may be omitted in the norms for the classical spaces Lp and
H\alpha . In addition, following the notation and language of the classical analysis of
the Boltzmann equation, and including the fact that numerical solutions are not
nonnegative in general, the moments of a function f are denoted by

(2.17) mk(f) :=

\int 

Rd

\bigm| \bigm| f(v)
\bigm| \bigm| | v| \lambda k dv.

2.2. Choosing a computational cutoff domain. In order to make a good
approximation to the probability density f(t, v), defined for all v \in Ω := \BbbR d, the
solution of the dynamical homogeneous Boltzmann equation initial value problem,
we need to solve the proposed spectral numerical scheme in a computational domain
given by the bounded set ΩL \in \BbbR d for a sufficiently large N Fourier modes, as it
will be defined next in the beginning of section 3. In particular, the global collision
operator Q(f, f)(t, v), defined weakly in (2.2), needs to be approximated in such a
computational domain ΩL that will be carefully chosen below for the specific task of
solving the homogeneous Boltzmann equation, for a particularly chosen initial datum
being a probability density with a prescribed finite and positive initial mass and
kinetic energy (i.e., the choice of the computational domain depends on the initial
data, as will be carefully explained).

It will be clear, after the discussion of the approximating numerical scheme for
the space homogeneous Boltzmann initial value problem and Theorem 3.1, that there
are two sources of error: one due to the mode truncation and the other due to domain
truncation. Both are always present due to the global nature of the equation. The
key point in the choice of the computational domain ΩL = ( - L,L)d is that the time
dynamics of the analytical solution remains bounded and decays with Maxwellian
tails if initially so following the result in [28]. In particular, it is possible to choose
a large enough cutoff length L, depending on the initial data with a Gaussian decay
rate, whose approximating g0(v) satisfies condition (3.8), and supp\{ g0(v)\} \subset ΩaL for
0 < a \ll 1. As a consequence the periodization of the domain is not necessary, since
the analytical result from [28] combined with the conservation algorithm, secures that
the numerical solution will take values very close to zero (i.e., below machine accuracy)
near the boundary \partial ΩL. That means it is enough to choose ΩL such that, at least,
most of the mass and energy of the true Boltzmann solution f will be contained in it
during the simulation time.

One possible strategy for choosing the size of ΩL is as follows: assume, without
loss of generality, a bounded initial datum f0 with compact support and having zero
momentum

\int 
f0 v dv = 0. Then,
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(2.18) f0(v) \leq 
C0m0

(2\pi Θ0)d/2
e - 

r0| v| 2

2Θ0 ,

wherem0 :=
\int 
f0 is the initial mass, Θ0 :=

\int 
f0| v| 2 is the initial temperature, and r0 \in 

(0, 1] and C0 \geq 1 are the stretching and dilating constants. Since the Boltzmann flow
propagates Gaussian weighted Lebesgue norms, refer to [36, 50, 10, 13, 43, 28, 5, 4, 1]
for this and more related theoretical facts on the equation. Thus, there are some
uniform in the time constants r and c depending on the moments of the initial data
as much as the potential rates \lambda and the angular part b of the collision kernel, namely,
r := r(f0, \lambda , b) \in (0, r0] and C := C(f0, \lambda , b) \geq C0 \geq 1 such that

(2.19) f(t, v) \leq Cm0

(2\pi Θ0)d/2
e - 

r| v| 2

2Θ0 =:M(f0, C, r) , t > 0 .

Now, choose a small quantity \delta \ll 1 being the mass proportion of the tails associated
with the Maxwellian M(f0, C, r) from (2.19) that uniformly controls the solution
f(t, v) as in [28]. That is,

\int 

Ωc
L

f(t, v)\langle v\rangle 2dv \leq 
\int 

Ωc
L

M(f0, C, r)\langle v\rangle 2dv \leq \delta 

\int 

ΩL

f0(v)\langle v\rangle 2dv = \delta (m0 +Θ0) .

Therefore, the parameter \delta , for the solution of the Boltzmann equation , thanks to the
L\infty control of the solution in [28], is interpreted as a domain cutoff error tolerance that
remains uniform in time and solely depends on the approximated initial state, say,
0 \leq g0(v) on the chosen ΩL so that the magnitude of \delta (m0+Θ0) is well below machine
accuracy. Clearly, the mass proportion \delta must be small enough for supp(g0) \subset \subset ΩL.
Equivalently, one needs to choose the size of L (or the measure of the computational
domain ΩL), such that

\int 
Ωc

L
M(f0, C, r)\langle v\rangle 2dv
m0 +Θ0

\leq \delta \approx 0 .(2.20)

In order to minimize the computational effort, one should pick the smallest of such
domains, that is ΩL, such that

for a fixed a\ll 1 , supp(f0) \subset ΩaL and(2.21)

that ΩcaL satisfies (2.20) in the sense that the numerical approximated initial datum
vanishes in a neighbourhood of the boundary of ΩL beyond several orders down of
machine accuracy. In addition, under this conditions we invoke the restriction opera-
tors in Sobolev space arguments, such as (2.27) in the subsection below, which allow
us to make rigorous semidiscrete error estimates in Sobolev norms with respect to
the solution f(t, \cdot ) \in \BbbR d of the homogeneous Boltzmann–Cauchy problem (2.1)–(2.5)
under consideration.

Finally, for such an estimate (2.21) to be of practical use one would need to com-
pute the precise value of the constants C and r. As a general matter, these constants
come from available analytical estimates, which, although quantitative, are likely far
from optimal. The result is that the choice (2.21) most of the time overestimates the
size of the simulation domain. It is reasonable then, for practical purposes, to simply
set ro = r = 1 and choose C = Co \geq 1 as the smallest constant satisfying (2.18)
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(which always exists for any compactly supported and bounded f0). That this choice
of parameters is natural, is noted from the fact that

max
\Bigl\{ 
g0 , f\infty :=

m0

(2\pi Θ0)d/2
e - 

| v| 2

2Θ0

\Bigr\} 
\leq M(f0, C, 1)

with equality if and only if f0 is the equilibrium Maxwellian as in (2.10) (in such a
case C = 1).

This propagation property secures a stable numerical simulation of the Boltzmann
equation, provided the numerical preservation of the conservation laws or correspond-
ing collision invariants holds. It also secures, as we will see, the convergence of the
numerical scheme to the analytic solution of the initial value problem and the correct
long time evolution of such a numerical approximation. In this way, the numerical
scheme will converge to the equilibrium Maxwellian as defined in (2.10).

We note that the discussion of this section is fairly independent of the choice
of computational scheme and applies to new approaches such as that recently devel-
oped in [51] for a Galerkin approach to the computation of the space homogeneous
Boltzmann equation for binary interactions.

2.3. Fourier series, projections. In the implementation of a spectral method
the single most important analytical tool is the Fourier transform. Thus, for f \in 
L1(U) with U open in \BbbR d, the Fourier transform is defined by

(2.22) \widehat f(\zeta ) := 1

(
\surd 
2\pi )d

\int 

U

f(v)e - i\zeta \cdot vdv .

The Fourier transform allows us to express the Fourier series in a rather simple and
convenient way. Indeed, fixing a domain of work ΩL := ( - L,L)d for L > 0, recall
that for any f \in L2(ΩL) one can use the Fourier series to express f as

(2.23) f(v) =
1

(2L)d

\sum 

k\in Zd

\widehat f(\zeta k)ei\zeta k\cdot v,

where \zeta k := 2\pi k
L are the spectral modes and \widehat f(\zeta k) is the Fourier transform of f

evaluated in such modes.
The mode projection operator is defined as ΠNL : L2(ΩL) \rightarrow L2(ΩL) as

(2.24)
\bigl( 
ΠNL f

\bigr) 
(v) :=

\left( 
 1

(2L)d

\sum 

| k| \leq N

\widehat f(\zeta k)ei\zeta k\cdot v
\right) 
 ;

in other words, it is the orthogonal projection on the “first Nd” basis elements. Also
observe that for any integer \alpha the derivative operator commutes with the projection
operator in H\alpha 

o (ΩL). Indeed, note the identity for any f \in H\alpha 
o (ΩL),

\partial \alpha 
\bigl( 
ΠNL f

\bigr) 
(v) =

1

(2L)d

\sum 

| k| \leq N
(i\zeta k)

\alpha \widehat f(\zeta k)ei\zeta k\cdot v

=
1

(2L)d

\sum 

| k| \leq N

\widehat \partial \alpha f(\zeta k)ei\zeta k\cdot v =
\bigl( 
ΠNL \partial 

\alpha f
\bigr) 
(v) .

(2.25)

Recall that Parseval’s theorem readily shows
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1.
\bigm\| \bigm\| ΠNL f

\bigm\| \bigm\| 
L2(ΩL)

\leq 
\bigm\| \bigm\| f
\bigm\| \bigm\| 
L2(ΩL)

for any N , and with equality for N = \infty . Also,

2.
\bigm\| \bigm\| (1 - ΠNL )f

\bigm\| \bigm\| 
L2(ΩL)

\searrow 0 as N \rightarrow \infty .

Extension operator for Sobolev regularity propagation. The restriction
of the original problem posed in \BbbR d to an approximation problem posed in a bounded
domain ΩL introduces some technical issues at the boundary generated by the trun-
cation. We deal with this problem by introducing the following scaled cutoff function
defined by

\chi (v) := \chi L(v) = \phi (v/L) with \phi a smooth nonnegative function,

such that supp\{ \phi \} \subset 0.99[ - 1, 1]d with \phi \equiv 1 in 0.95[ - 1, 1]d .
(2.26)

The cutoff function \chi allows for the scheme propagation of higher Sobolev regularity
estimates (it is not necessary for L2-convergence) as it smooths out the boundary
without incurring a meaningful error (provided ΩL was well chosen as previously
discussed in subsection 2.2 ). Using the product rule, it follows that

(2.27) \| \chi g\| H\alpha (ΩL) \leq \| \chi \| \scrC \alpha \| g\| H\alpha (ΩL) \leq C \| g\| H\alpha (ΩL)

for any function g \in H\alpha (ΩL). Note also that the constant C := C\chi , that controls
the operator norm, can be taken independent of L \geq 1. It is important to observe
that the function \chi g vanishes near \partial ΩL, and so it can be considered as a function in
H\alpha (\BbbR d) after using the extension operator who assigns the zero value to any point in
the complement of ΩL, that is, E(\chi g) = 0 in \BbbR d\setminus ΩL. In addition the Sobolev norms
of such an extension coincide with those of the restricted \chi g, which takes values in
a compactly supported set in ΩL that vanishes in a neighborhood of the boundary
\partial ΩL, relative to ΩL. That precisely means

(2.28) \| E(\chi g)\| H\alpha (Rd) = \| \chi g\| H\alpha (ΩL) , g \in H\alpha (ΩL) .

Therefore our choice of the the cutoff function \chi enable us to implement an extension
operator by null values to all space (for a full discussion of extension operators, see
[48]). These properties will be useful when comparing the continuous and semidiscrete
solutions, which lie in different domains. Furthermore, in the case of L2-convergence
one can simply take \chi \equiv 1.

Remark 2.1. A common technique found in the literature to deal with the domain
truncation is periodization of the initial data. Why do we not periodize the initial
data, but rather use the extension method on Sobolev spaces for functions that vanish
in a given bounded domain? The answer is that the approximated data and solution
in our problem are probability densities that rapidly decay at large values of velocities
v. In the particular case of the homogeneous Boltzmann equation approximation for
hard potentials and angular integrable collision cross section, as it is developed in
this theory, the crucial issue is to choose the computational domain large enough,
depending on the initial data as previously discussed. Under this choice, the cutoff
function \chi effectively implements an extension at the cost of a negligible error, as it
will be shown to be of the order O(1/L\lambda k) with k > 0 depending on the number of
moments of the initial data.

Remark 2.2. In this deterministic approach, as much as with Monte Carlo meth-
ods like the Bird scheme [8], the x-space inhomogeneous Hamiltonian transport for
non-linear collisional forms is performed by time operator splitting algorithms. That
means, depending on the problem, the computational v-domain ΩL can be updated
with respect to the characteristic flow associated with underlying Hamiltonian dy-
namics.
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3. Spectral conservation method. We first introduce a formal analytical
viewpoint needed to study the convergence, stability, and error estimates for the
semi-discrete solution associated with the spectral method derived in [30].

After the cutoff domain ΩL has been fixed, we applied the projection operator
(2.24) to both sides of (2.1) to arrive at

(3.1)
\partial ΠNL f

\partial t
(t, v) = ΠNLQ(f, f)(t, v) in (0, T ]\times ΩL .

Then, it is reasonable to expect that for such a domain ΩL and for a sufficiently large
number of modes N the approximation

(3.2) ΠNLQ(f, f) \sim ΠNLQ(ΠNL f,Π
N
L f) in (0, T ]\times ΩL

will be valid.
Next, there are two issues worth noting: (1) for functions supported in ΩL the

gain operator Q+ is supported in Ω\surd 
2L, thus, we will consider it, for simplicity, as

a function in Ω2L , and (2) the operator Q - can be exactly computed with a small
computational effort since it is a multiplication operator with a standard convolution.
As a consequence, one is led to consider the scheme

\partial g

\partial t
(t, v) = ΠN2LQ

+(\chi g, \chi g)(t, v) - Q - (g, \chi g)(t, v)

=: Qu(g, g)(t, v) in (0, T ]\times ΩL ,

g0(v) : = gN0 = ΠNL f0(v), initial data,

(3.3)

and expect that it should be a good approximation to ΠNL f . Here, Qu stands for
the unconserved collision operator. In other words, we define the numerical solution
to be gN := g and expect to show that this finite mode solution will be a good
approximation to the solution of the Boltzmann problem in the cutoff domain, that
is g \approx f in ΩL , provided the number of modes N used is sufficiently large. Classical
spectral accuracy theorems would guarantee such an approximation, yet, fixing the
number of Fourier modes to say N\ast would strip the conservation properties, as Qu
does not preserve the d+2 collision invariants after each time step, and that generates
a source of cumulative error that heavily constrains the meaningful simulation time
of the scheme.

This problem was overcome in [30] with the conservative spectral scheme we are
now analyzing. They introduce a conservation correction by solving a Lagrangian
constrained minimization problem each time step (with O(N) in computational com-
plexity), where the objective function to be minimized is the L2(ΩL)-distance from the
unconseved Qu to the minimizer X\ast =: Qc subject to the constraint of preserving the
d+2 collision invariants. To be more precise, the following problem is computationally
solved in [30].

Minimization elastic problem (E): Consider the Banach space

(3.4) \scrB e =
\biggl\{ 
X \in L2(ΩL) :

\int 

ΩL

X =

\int 

ΩL

Xv =

\int 

ΩL

X| v| 2 = 0

\biggr\} 
,

and the minimization problem

(3.5) X\ast := min
X\in \scrB e

\scrA e(X) := min
X\in \scrB e

\int 

ΩL

\bigl( 
Qu(f, f)(v) - X

\bigr) 2
dv.
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The solution of this problem applied to our semidiscrete framework will be addressed
in the next subsection 3.2. It can be solved by an algorithm, described below in
(3.32)–(3.36), that delivers a unique explicit algorithm discrete vector form

(3.6) Qc(f, f) := X\ast \in Nd ,

associated with any discretization of f on Nd Fourier modes, where the constraint in
(3.4) is given by the linear equation CeQc = ae, where the vector ae = 0 \in Nd+2

for the elastic problem or ae = 0 \in Nd+1 for the inelastic one. The matrix Ce

is explicitly precomputed depending on the quadrature rule used to compute the
integrals associated with the collision invariants.

In the following sections we intend to prove this formalism under reasonable
assumptions. In fact, we study a modification of this problem, namely, the convergence
towards f of the solution g of the problem

\partial g

\partial t
(t, v) = Qc(g, g)(t, v) in (0, T ]\times ΩL ,

g0(v) : = gN0 = ΠNL f0(v), initial data ,
(3.7)

with Qc(f, f) the solution of the Lagrangian constrained problem (3.5), (3.6), and the
initial datum g0 satisfies the following condition

(3.8)

\int 
\{ g0<0\} | g0(t, v)| \langle v\rangle 2dv\int 
\{ g\geq 0\} g0(t, v)\langle v\rangle 2dv

\leq \epsilon and \| g0\| L2(ΩL) <\infty 

for some fixed 0 < \epsilon \leq 1/4, where the operator Qc(g, g) is defined as the L2(ΩL)-
closest function to Qu(g, g) having null mass, momentum, and energy.

We summarize the main results on convergence, error estimates, and asymptotic
behavior in the following theorem, whose rigorous proof is developed in the rest of the
manuscript. As mentioned in the introduction, the following theorem is proved for
the classical elastic model \beta = 1. A rigorous proof for the inelastic model can be done,
at least, for some special regimes such as the viscoelastic particle model [6, 7] with
analog arguments. Additional considerations about self-similar scaling are needed to
obtain sharp long time behavior associated with the model, which will be properly
addressed by the authors in an upcoming manuscript.

Theorem 3.1 (error estimates and convergence to Maxwellian equilibrium). Fix
a nonnegative initial datum f0 \in L1

k \cap L2(\BbbR d) with k \geq k\ast (f0) \geq 2, and let f \geq 0
be the solution of the Boltzmann equation (2.1) with (2.5). Then, there exist a cutoff
domain L0(f0) > 0 and a number of modes N0 := N(L0, f0) > 0 such that

1. semidiscrete existence and uniqueness: Taking g0 = ΠNL f0, the semi-discrete
problem (3.7) has a unique solution g \in \scrC (0, T ;L1

k \cap L2(ΩL)) for any T > 0,
L \geq L0 , N \geq N0;

2. L2
k\prime -error estimates: Taking f0 \in L1

2 \cap L2
k(\BbbR 

d), k\prime \prime \geq 0, k\ast (f0) \leq k\prime \leq k - 1 - 
d+

2\lambda  - k\prime \prime , then

sup
t\geq 0

\| f  - g\| L2
k\prime (ΩL) \leq C(f0)

\bigl( 
\| f0  - g0\| L2

k\prime (ΩL)

+O(L\lambda k
\prime 

/N (d - 1)/2) +O(1/Ld/2+\lambda k
\prime \prime 

)
\bigr) 1

1+\theta , L \geq L0 , N \geq N0;

3. H\alpha 
k\prime -error estimates: For the smooth case, taking f0 \in L1

2 \cap H\alpha 0

k (\BbbR d), k\prime \prime \geq 0,

k\ast (f0) \leq k\prime \leq k  - 1 - \alpha /2 - d+

2\lambda  - k\prime \prime , it follows for any 0 \leq \alpha \leq \alpha 0 that

D
o
w

n
lo

ad
ed

 0
2
/1

6
/1

9
 t

o
 1

2
8
.8

3
.6

3
.2

0
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3548 R. J. ALONSO, I. M. GAMBA, AND S. H. THARKABHUSHANAM

sup
t\geq 0

\| f  - g\| H\alpha 
k\prime (ΩL) \leq C(f0)

\bigl( 
\| f0  - g0\| H\alpha 

k\prime +\alpha /2
(ΩL)

+O(L\lambda (k
\prime +\alpha /2)+\alpha 0/N (d - 1)/2+\alpha 0)

+O(1/Ld/2+\lambda k
\prime \prime 

)
\bigr) 1

1+\theta , L \geq L0 , N \geq N0 .

In all cases k, k\prime \geq k\ast (f0) \geq 2, where k\ast (f0) is a required threshold that
only depends on f0. Also, the constant C(f0) := C(k\prime , \alpha , f0) in items 2
and 3 depends on f0 by means of its initial regularity, and the constant
\theta := \theta (k\prime , \alpha ) > 0;

4. Convergence to the equilibrium Maxwellian: For every \delta > 0 there exists a
simulation time T (\delta ) \sim \nu  - 1 ln

\bigl( 
\| f0\| H\alpha (Rd)/\delta 

\bigr) 
such that for any \alpha \leq \alpha 0

sup
t\geq T (\delta )

\| g  - \scrM 0\| H\alpha (ΩL) \leq \delta , L \geq L0 , N \geq N0 ,

where \nu > 0 is the spectral gap of the linearized Boltzmann operator, and \scrM 0

is the equilibrium Maxwellian (2.10) having the same mass, momentum, and
kinetic energy as the initial datum f0.

The proof of these statements in Theorem 3.1 is made in the next four sections.
Before starting with the details of the proof, we introduce the shorthand notation

(3.9) Or := O(L - r) , r > 0 ,

which will be extensively used throughout the manuscript.

3.1. Conservation method: An extended isoperimetric problem. Throu-
ghout this section we fix f \in L2(ΩL). Due to the truncation of the velocity domain the
unconserved discrete operator Qu \in Nd defined for Nd Fourier modes, as a function
in ΩL, does not preserve mass, momentum, and energy. Such a conservation property
is at the heart of the kinetic theory of the Boltzmann equation, thus, it is desirable for
a numerical solution to possess it. In order to achieve this, we enforce these moment
conservations artificially by imposing them as constraints in an optimization problem.

Hence, we first focus on the general form of solution of the minimization problem
(3.4), (3.5), whose proof is presented next.

Lemma 3.2 (elastic Lagrange estimate). The problem (3.5) has a unique mini-
mizer given by

(3.10) Qc(f, f)(v) := X \star = Qu(f, f)(v) - 
1

2

\Bigl( 
\gamma 1 +

d\sum 

j=1

\gamma j+1vj + \gamma d+2| v| 2
\Bigr) 
,

where \gamma j, for 1 \leq j \leq d + 2, are Lagrange multipliers associated with the elastic
optimization problem. They are given by

\gamma 1 = Od\rho u +Od+2eu ,

\gamma j+1 = Od+2\mu 
j
u , j = 1, 2, \cdot \cdot \cdot , d,

\gamma d+2 = Od+2\rho u +Od+4eu

(3.11)

with Or defined in (3.9) and the parameters \rho u, eu, \mu 
j
u are the numerical moments of

the unconserved numerical collision operator, defined below in (3.15). The minimized
objective function can be estimated by
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\scrA e
\bigl( 
Qc(f, f)(v)

\bigr) 
=
\bigm\| \bigm\| Qu(f, f) - Qc(f, f)(v)

\bigm\| \bigm\| 2
L2(ΩL)

\leq C(d)
\Bigl( 
2\gamma 21L

d +

d\sum 

j=1

\gamma 2j+1L
d+2 + \gamma 2d+2L

d+4
\Bigr) 

\leq C(d)

Ld

\Bigl( 
\rho 2u +

e2u
Ld+1

+

d+1\sum 

j=2

\mu 2
j

\Bigr) 
.

(3.12)

In the particular case of dimension d = 3 the estimate becomes

\bigm\| \bigm\| Qu(f, f) - Qc(f, f)
\bigm\| \bigm\| 2
L2(ΩL)

= 2\gamma 21L
3 + 2

3

4\sum 

j=2

\gamma 2jL
5 + 4\gamma 1\gamma dL

5 + 38
15\gamma 

2
5 L

7 \leq C

L3

\Bigl( 
\rho 2u +

e2u
L4

+

4\sum 

j=2

\mu 2
j

\Bigr) 
.

(3.13)

Proof. From the calculus of variations when the objective function is an integral
equation and the constraints are integrals, the optimization problem can be solved by
forming the Lagrangian functional and finding its critical points. Set

\psi 1(X) : =

\int 

ΩL

X(v)dv ,

\psi j+1(X) : =

\int 

ΩL

vjX(v)dv \forall j = 1, 2, . . . , d,

\psi d+2(X) : =

\int 

ΩL

| v| 2X(v)dv ,

and define

\scrH (X,X \prime ,γ) := \scrA e(X) +

d+2\sum 

i=1

\gamma i\psi i(X) =

\int 

ΩL

h(v,X,X \prime ,γ)dv.

We introduce

h(v,X,X \prime ,γ) :=
\bigl( 
Qu(f, f)(v) - X(v)

\bigr) 2
+ \gamma 1X(v) +

d\sum 

j=1

\gamma j+1vjX(v) + \gamma d+2| v| 2X(v).

In order to find the critical points one needs to compute DX\scrH and D\gamma j\scrH . The
derivatives D\gamma j\scrH just retrieve the constraint integrals. For multiple independent
variables vj and a single dependent function X(v) the Euler–Lagrange equations are

D2h(v,X,X
\prime ,γ) =

d\sum 

j=1

\partial D3h

\partial vj
(v,X,X \prime ,γ) = 0 .

We used the fact that h is independent of X \prime . This gives the following equation for
the conservation correction in terms of the Lagrange multipliers:

2
\bigl( 
X(v) - Qu(f, f)(v)

\bigr) 
+ \gamma 1 +

d\sum 

j=1

\gamma j+1vj + \gamma d+2| v| 2 = 0(3.14)

and, therefore, Qc(f, f)(v) = X \star (v) := Qu(f, f)(v) - 1
2

\Bigl( 
\gamma 1+

\sum d
j=1 \gamma j+1vj+\gamma d+2| v| 2

\Bigr) 
.
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Let g(v, \gamma ) = \gamma 1+
\sum d
j=1 \gamma j+1vj+\gamma d+2| v| 2. Substituting (3.14) into the constraints

\psi j(X
 \star ) = 0 gives

\rho u :=

\int 

ΩL

Qu(f, f)(v)dv =
1

2

\int 

ΩL

g(v, \gamma )dv,

\mu ju :=

\int 

ΩL

vjQu(f, f)(v)dv =
1

2

\int 

ΩL

vjg(v, \gamma )dv, j = 1, 2, \cdot \cdot \cdot , d,(3.15)

eu :=

\int 

ΩL

| v| 2Qu(f, f)(v)dv =
1

2

\int 

ΩL

| v| 2g(v, \gamma )dv .

Identities (3.15) form a system of d+2 linear equations with d+2 unknown variables
that can be uniquely solved. Solving for the critical \gamma j ,

\gamma 1 = Od\rho u +Od+2eu ,

\gamma j+1 = Od\mu 
j
u , j = 1, 2, . . . , d,(3.16)

\gamma d+2 = Od+2\rho u +Od+4eu .

Hence, relation (3.11) holds. Substituting these values of critical Lagrange multipliers
(3.16) into (3.14) gives explicitly the critical Qc(f, f)(v) := X \star (v). Moreover, the
objective function \scrA e(X) can be computed at its minimum as

\scrA e(Qc(f, f)) =
\bigm\| \bigm\| Qu(f, f) - Qc(f, f)

\bigm\| \bigm\| 2
L2(ΩL)

=

\int 

ΩL

\bigl( 
Qu(f, f)(v) - X \star (v)

\bigr) 2
dv

= 1
4

\int 

ΩL

\Bigl( 
\gamma 1 +

d\sum 

j=1

\gamma j+1vj + \gamma d+2| v| 2
\Bigr) 2

dv

\leq d+2
4

\int 

ΩL

\Bigl( 
\gamma 21 +

d\sum 

j=1

(\gamma j+1vj)
2 + \gamma 2d+2| v| 4

\Bigr) 

\leq C(d)
\Bigl( 
2\gamma 21L

d + (

d\sum 

j=1

\gamma 2j+1)L
d+2 + \gamma 2d+2L

d+4
\Bigr) 
,

(3.17)

where C(d) is a universal constant depending on the dimension of the space. Hence,
using the relation (3.16) in the right-hand side of (3.17), yields a bound from above
to the difference of the conserved and unconserved approximating collision operators

\bigm\| \bigm\| Qu(f, f) - Qc(f, f)
\bigm\| \bigm\| 2
L2(ΩL)

\leq C(d)

Ld

\Bigl( 
\rho 2u +

e2u
Ld+1

+

d+1\sum 

j=2

\mu 2
j

\Bigr) 
(3.18)

and, therefore, the Lagrange estimate (3.12) holds. Upon simplification one can obtain
a detailed estimate for the three-dimensional case, given by

\bigm\| \bigm\| Qu(f, f) - Qc(f, f)
\bigm\| \bigm\| 2
L2(ΩL)

= 2\gamma 21L
3 + 2

3 (\gamma 
2
2 + \gamma 23 + \gamma 24)L

5 + 4\gamma 1\gamma 5L
5 + 38

15\gamma 
2
5L

7

\leq C

L3

\Bigl( 
\rho 2u +

e2u
L4

+

4\sum 

j=2

\mu 2
j

\Bigr) 
,

(3.19)

which is precisely (3.13). That this critical point is in fact the unique minimizer
follows from the strict convexity of \scrA e.
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Similarly, as was also proposed in the simulations of [30], one can form the opti-
mization problem for the inelastic case. The only difference is that now only (d+ 1)-
collision invariants are conserved:

Minimization inelastic problem (IE): Minimize in the Banach space

\scrB i =
\biggl\{ 
X \in L2(ΩL) :

\int 

ΩL

X =

\int 

ΩL

Xv = 0

\biggr\} 
,

the functional

(3.20) \scrA i(X) :=

\int 

ΩL

\bigl( 
Qu(f, f)(v) - X

\bigr) 2
dv.

As in the elastic case, we state a rather similar analog to the Lagrange estimate
for the inelastic collision law. The proof of this statement is similar to the case of
elastic interactions, and we leave it to the readers.

Lemma 3.3 (inelastic Lagrange estimate). The problem (3.20) has a unique
minimizer given by

(3.21) Qinec (f, f)(v) := X \star (v) = Qu(f, f)(v) - 
1

2

\Bigl( 
\gamma 1 +

d\sum 

j=1

\gamma j+1vj

\Bigr) 
.

The \gamma j are Lagrange multipliers associated with the inelastic optimization problem
given by

\gamma 1 = Od\rho u ,

\gamma j+1 = Od+2\mu 
j
u , j = 1, 2, . . . , d .

(3.22)

In particular, for the three-dimensional case the minimized objective function is

(3.23) \scrA i(X \star ) =
\bigm\| \bigm\| Qu(f, f) - Qinec (f, f)

\bigm\| \bigm\| 2
L2(ΩL)

= 2\gamma 21L
3 + 2

3

\bigl( 
\gamma 22 + \gamma 23 + \gamma 24

\bigr) 
L5 .

Conservation correction estimate. We develop here a useful estimate between
the unconserved and conserved discrete collisional forms.

Definition. For any fixed f \in L2(ΩL) the conserved operator Qc(f, f) is defined
as the minimizer of problem (E) defined by (3.10) (or problem (IE) in the inelastic
case defined by (3.21)).

Note that the minimized objective function (3.12) in the elastic optimization prob-
lem depends only on the unconserved moments \rho u, \mu u, and eu of Qu(f, f). Since these
quantities are expected to be approximations to zero, then the conserved projection
operator is a perturbation of Qu(f, f) by a second order polynomial in the elastic
case. Similarly, it is a perturbation by a first order polynomial in the inelastic case.

Theorem 3.4 (conservation correction estimate/elastic case). Fix f \in L2(ΩL),
then the accuracy of the conservation minimization problem is proportional to the
spectral accuracy. That is, for any k\prime \geq k \geq 0 it follows that

\bigm\| \bigm\| \bigl( Qc(f, f) - Qu(f, f)
\bigr) 
| v| \lambda k

\bigm\| \bigm\| 
L2(ΩL)

\leq C L\lambda k

(2\lambda k + d)1/2

\bigm\| \bigm\| (1 - ΠN2L)Q
+(\chi f, \chi f)

\bigm\| \bigm\| 
L2(ΩL)

+
1

(2\lambda k + d)1/2
O(d/2+\lambda (k\prime  - k))

\bigl( 
mk\prime +1(f)m0(f) + Zk\prime (f)

\bigr) 
,

(3.24)
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where C is a universal constant and Zk\prime (f) is defined by

(3.25) Zk\prime (f) :=

k\prime  - 1\sum 

j=0

\biggl( 
k\prime 

j

\biggr) 
mj+1(f)mk\prime  - j(f)

depending on the moments up to order k\prime (See also Appendix (A.3)). As before, we
are using the shorthand Or := O(L - r).

Proof. Using Lemma 3.2 for elastic interactions, given a 0 \leq k \in \BbbR , estimate

\bigm\| \bigm\| \bigm\| (Qc(f, f) - Qu(f, f)) | v| \lambda k
\bigm\| \bigm\| \bigm\| 
L2(ΩL)

=
\bigm\| \bigm\| \bigm\| 1
2

\Bigl( 
\gamma 1 +

d\sum 

j=1

\gamma j+1vj + \gamma d+2| v| 2
\Bigr) 
| v| \lambda k

\bigm\| \bigm\| \bigm\| 
L2(ΩL)

\leq C L\lambda k

(2\lambda k + d)1/2

\Bigl( 
| \gamma 1| Ld/2 + | \gamma j | L1+d/2 + | \gamma d+2| L2+d/2

\Bigr) 
.

(3.26)

For any f \in L2(ΩL) the Lagrange multipliers \gamma j , 1 \leq j \leq d+ 2, can be estimated by
observing that

\bigm| \bigm| \bigm| 
\int 

ΩL

Qu(f, f)(v)\psi (v)dv
\bigm| \bigm| \bigm| =
\bigm| \bigm| \bigm| 
\int 

ΩL

\bigl( 
Qu(f, f)(v)

 - Q(\chi f, \chi f)(v)
\bigr) 
\psi (v)dv  - 

\int 

Rd\setminus ΩL

Q(\chi f, \chi f)(v)\psi (v)dv
\bigm| \bigm| \bigm| 

\leq 
\bigm\| \bigm\| (1 - ΠN2L)Q

+(\chi f, \chi f)
\bigm\| \bigm\| 
L2(ΩL)

\| \psi \| L2(ΩL) + I\psi 

(3.27)

for I\psi defined by

(3.28) I\psi :=
\bigm| \bigm| \bigm| 
\int 

Rd\setminus ΩL

Q+(\chi f, \chi f)(v)\psi (v)dv  - 
\int 

Rd\setminus 0.95ΩL

Q - (f(1 - \chi ), f)\psi (v)dv
\bigm| \bigm| \bigm| .

Since

\| 1 \| L2(ΩL) \sim Ld/2 ,

\| vj \| L2(ΩL) \sim Ld/2+1 for j = 1, 2, 3, ..., d ,(3.29)

\| | v| 2\| L2(ΩL) \sim Ld/2+2 ,

then, for \psi = 1, vj , | v| 2 with j = 1, 2, . . . d, the corresponding estimate (3.27) combined
with (3.29) yields the following estimates to the unconserved moments defined in
(3.15):

| \rho u| \leq CLd/2
\bigm\| \bigm\| (1 - ΠN2L)Q

+(\chi f, \chi f)
\bigm\| \bigm\| 
L2(ΩL)

+ I1 ,

| \mu ju| \leq CLd/2+1
\bigm\| \bigm\| (1 - ΠN2L)Q

+(\chi f, \chi f)
\bigm\| \bigm\| 
L2(ΩL)

+ Ivj , j = 1, 2, 3, . . . d ,(3.30)

| eu| \leq CLd/2+2
\bigm\| \bigm\| (1 - ΠN2L)Q

+(\chi f, \chi f)
\bigm\| \bigm\| 
L2B(ΩL)

+ I| v| 2 .

Therefore, using (3.30) in (3.16), Lagrange multipliers are estimated by

| \gamma 1| = Od/2
\bigm\| \bigm\| (1 - ΠN2L)Q

+(\chi f, \chi f)
\bigm\| \bigm\| 
L2(ΩL)

+OdI1 +Od+2I| v| 2 ,

| \gamma j | = Od/2+1

\bigm\| \bigm\| (1 - ΠN2L)Q
+(\chi f, \chi f)

\bigm\| \bigm\| 
L2(ΩL)

+Od+2Ivj , j = 1, 2, 3, . . . d ,(3.31)

| \gamma d+2| = Od/2+2

\bigm\| \bigm\| (1 - ΠN2L)Q
+(\chi f, \chi f)

\bigm\| \bigm\| 
L2(ΩL)

+Od+2I1 +Od+4I| v| 2 .
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Finally, the Lagrangian critical parameters from (3.26) are estimated by (3.31) to
yield

\bigm\| \bigm\| \bigl( Qc(f, f) - Qu(f, f)
\bigr) 
| v| \lambda k

\bigm\| \bigm\| 
L2(ΩL)

=
C

(2\lambda k + d)1/2

\Bigl( 
L\lambda k
\bigm\| \bigm\| (1 - ΠN2L)Q

+(\chi f, \chi f)
\bigm\| \bigm\| 2
L2(ΩL)

+Od/2 - \lambda k I1 +Od/2+1 - \lambda k Ivj

+Od/2+2 - \lambda k I| v| 2
\Bigr) 
.

In order to estimate the second term in the above inequality, the terms I\psi defined
in (3.28) are estimated combining classical moment estimates for binary collisional
integrals for elastic interactions with hard potentials as shown in Theorem A.2 in the
appendix. In particular, for any k\prime \geq 0 and \lambda \in [0, 2]

max
\bigl\{ 
I1, L

 - 1Ivj , L
 - 2I| v| 2

\bigr\} 
\leq CL - \lambda k\prime \bigl( mk\prime +1(\chi f) m0(\chi f) + Zk\prime (\chi f)

\bigr) 

\leq CL - \lambda k\prime \bigl( mk\prime +1(f) m0(f) + Zk\prime (f)
\bigr) 
.

Therefore, a simple calculation shows

Od/2 - \lambda kI1+Od/2+1 - \lambda kIvj +Od/2+2 - \lambda kI| v| 2 = Od/2+\lambda (k\prime  - k)
\bigl( 
mk\prime +1(f)m0(f)+Zk\prime (f)

\bigr) 
,

and so inequality (3.26) holds.
This estimate also follows for the inelastic collisions case. Their computations

follow in a similar fashion using Lemma 3.3, the Lagrange multipliers (3.22), and the
first two inequalities in (3.30).

3.2. Semidiscrete conservation method: Lagrange multiplier method.

In this subsection we consider the discrete version of the conservation scheme. For
such a discrete formulation, the conservation routine is implemented as a Lagrange
multiplier method where the conservation properties of the discrete distribution are
set as constraints. Let M = Nd, the total number of Fourier modes. For elastic
collisions, \rho = 0, m = (m1, . . . ,md) = (0, . . . , 0) and e = 0 are conserved, whereas
for inelastic collisions, \rho = 0 and m = (m1, . . . ,md) = (0, . . . , 0) are conserved. Let
\omega j > 0 be the integration weights for 1 \leq j \leq M and define

(3.32) Qu =
\Bigl( 
Qu,1 Qu,2 \cdot \cdot \cdot Qu,M

\Bigr) T

as the distribution vector at the computed time step, and

(3.33) Qc =
\Bigl( 
Qc,1 Qc,2 \cdot \cdot \cdot Qc,M

\Bigr) T

as the corrected distribution vector with the required moments conserved. For the
elastic case, let

(3.34) Ce
(d+2)\times M

=

\left( 
     

\omega j
v1 \omega j
\cdot \cdot \cdot 
vd \omega j
| vj | 2 \omega j

\right) 
     
, 1 \leq j \leq M ,
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be the integration matrix, where the wj , j = 1 . . .M , are fixed set of quadrature
points, and

(3.35) ae
(d+2)\times 1

=
\Bigl( 

d
dt\rho 

d
dtm1 \cdot \cdot \cdot d

dtmd
d
dte

\Bigr) T

be the vector of conserved quantities. With this notation in mind, the semidiscrete
conservation method corresponding to (3.4), (3.5) is written as the constrained opti-
mization problem

find the vector Qc \in \BbbR M , such that it is the unique solution of

\scrA 
\bigl( 
Qc

\bigr) 
=
\Bigl\{ 
min \| Qu  - Qc\| 22 : CeQc = ae with Ce \in \BbbR d+2\times M , Qu \in \BbbR M , ae \in \BbbR d+2

\Bigr\} 
.

(3.36)

In order to solve the constrained minimization problem \scrA 
\bigl( 
Qc

\bigr) 
, we employ the

Lagrange multiplier method proposed by two of the authors [30] in 2009. The proposed
algorithm works as follows.

Let γ \in \BbbR d+2 be the Lagrange multiplier vector. Then the scalar objective
function to be optimized is given by

(3.37) L
\bigl( 
Qc,γ

\bigr) 
=

M\sum 

j=1

\bigm| \bigm| Qu,j  - Qc,j
\bigm| \bigm| 2 + γT (CeQc  - ae) ,

where Ce is given by the integration matrix that computes the number of collision
invariants associated with the conservation problem (i.e., d+ 2 for the elastic case or
d+ 1 for the inelastic one). This matrix is independent of the solution and the time
parameter. Hence, it can be precomputed and used for different initial data and time
steps.

Equation (3.37) can be solved explicitly for the corrected distribution value and
the resulting equation of correction be implemented numerically in the code. Indeed,
taking the derivative of L

\bigl( 
Qc,γ

\bigr) 
with respect to Qc,j , for 1 \leq j \leq M and \gamma i, for

1 \leq i \leq d+ 2

(3.38)
\partial L

\partial Qc,j
= 0 , j = 1, . . . ,M \Rightarrow Qc = Qu +

1

2
(Ce)Tγ .

Moreover,

\partial L

\partial \gamma i
= , i = 1, . . . , d+ 2 \Rightarrow CeQc = ae

retrieves the constraints. Solving for γ,

(3.39) Ce(Ce)Tγ = 2(ae  - CeQu) .

NowCe(Ce)T is symmetric and, becauseCe is an integration matrix, it is also positive
definite. As a consequence, the inverse of Ce(Ce)T exists and one can compute the
value of γ simply by

γ = 2(Ce(Ce)T ) - 1(ae  - CeQu) .
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Substituting γ into (3.38) and recalling that ae = 0,

Qc = Qu + (Ce)T
\bigl( 
Ce(Ce)T

\bigr)  - 1
(ae  - CeQu)

=
\Bigl[ 
\BbbI  - (Ce)T

\bigl( 
Ce(Ce)T

\bigr)  - 1
Ce
\Bigr] 
Qu

=: ΛN (Ce)Qu ,(3.40)

where \BbbI = N\times N is identity matrix. In the following, we call this conservation routine
Conserve. Thus,

(3.41) Conserve(Qu) = Qc = ΛN (Ce) Qu .

Define Dt to be any time discretization operator of arbitrary order. Then, the discrete
problem that we solve reads

(3.42) Dtf = ΛN (Ce)Qu .

Thus, multiplying (3.42) by Ce it follows the conservation of observables

(3.43) Dt

\bigl( 
Cef
\bigr) 
= CeDtf = CeΛN (Ce)Qu = 0 ,

where we used the commutation CeDt = DtC
e valid since Ce is independent of time;

see [30] for additional comments.

4. A priori estimates, propagation of moments, and L2
k-norm. In this

section we prove L1
k and L2

k estimates for the approximation solutions \{ gN\} of the
problem (3.7) in the elastic case. For this purpose, we use several well-known results
that require different integrability properties for the angular kernel b. Thus, we will
work with a bounded b to avoid as many technicalities as possible and remarking that
a generalization for b \in L1(\BbbS d - 1) can be made at the cost of technical work [1, 5, 43].
For technical reasons this assumption helps since estimates for the gain part of the
collision operator become bilinear, that is, the role of the inputs can be interchanged
without essentially altering the constants in the estimates. We also restrict ourselves
to the case of variable hard potentials and hard spheres \lambda \in (0, 1] and remark that
the theory for Maxwell molecules \lambda = 0 needs a different approach.

Recall that we have imposed conservation of mass, momentum, and energy by
building the operator Qc(g, g) with a constrained minimization procedure. Thus,

\int 

ΩL

g(t, v)\psi (v)dv =

\int 

ΩL

g0(v)\psi (v)dv

for any collision invariant \psi (v) = \{ 1, v, | v| 2\} . However, due to velocity-mode trunca-
tion, the approximating solution g in general may be negative in some small portions
of the domain. This is one of the important technical difficulties that we have to
overcome.

Before starting with the calculations recall the smoothing property of the gain
collision operator Q+ given in [17, Theorem 2.1],

(4.1) \| Q+(f, f)\| Ḣ(d - 1)/2(Rd) \leq C\| b\| L2(Sd - 1)\| f\| 2L2
1+\lambda  - 1 (R

d) ,

where C is a universal constant only depending on the space dimension d.
Therefore, recalling that supp(Q+(\chi g, \chi g)) \subset Ω2L and using Parseval’s theorem,

it follows that (for a > 0)

D
o
w

n
lo

ad
ed

 0
2
/1

6
/1

9
 t

o
 1

2
8
.8

3
.6

3
.2

0
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3556 R. J. ALONSO, I. M. GAMBA, AND S. H. THARKABHUSHANAM

\bigm\| \bigm\| (1 - ΠN2L)Q
+(\chi g, \chi g)

\bigm\| \bigm\| 2
L2(Ω2L)

=
\sum 

| k| \geq N

\bigm| \bigm| \widehat Q+(\chi g, \chi g)(\xi k)
\bigm| \bigm| 2

=
\sum 

| k| \geq N

1

| \xi k| 2a
\bigm| \bigm| \widehat ( - ∆)a/2Q+(\chi g, \chi g)(\xi k)

\bigm| \bigm| 2

\lesssim 
1

N2a

\sum 

| k| \geq N

\bigm| \bigm| \widehat ( - ∆)a/2Q+(\chi g, \chi g)(\xi k)
\bigm| \bigm| 2

\leq 1

N2a

\bigm\| \bigm\| ( - ∆)a/2Q+(\chi g, \chi g)
\bigm\| \bigm\| 
L2(Ω2L)

.

As a conclusion of the previous two facts, choosing a = d - 1
2 , we obtain an important

estimate used in the following arguments:

(4.2)
\bigm\| \bigm\| (1 - ΠN2L)Q

+(\chi g, \chi g)
\bigm\| \bigm\| 
L2(Ω2L)

\leq C

N
d - 1
2

\| \chi g\| 2L2
1+\lambda  - 1 (ΩL) ,

since \chi g vanishes outside a compactly supported set in ΩL, so we make use of the
extension norm identity (2.28) that asserts \| \chi g\| L1+\lambda  - 1 (Ω2L) = \| \chi g\| L1+\lambda  - 1 (ΩL) .

4.1. Differential estimates for moments of the scheme. In the analysis of
the following two sections, we assume that a semidiscrete solution g \in \scrC 

\bigl( 
0, T ;L2(ΩL)

\bigr) 

for problem (3.7) where initial condition g0 \in L2(ΩL) exists satisfying condition (3.8).
We denote T\epsilon \geq 0 any time that the smallness relation for the negative mass and
energy of g(t, v) and its boundedness in L2 holds:

(4.3) sup
t\in [0,T\epsilon ]

\Biggl( 
\epsilon (t) :=

\int 
\{ g<0\} | g(t, v)| \langle v\rangle 2dv\int 
\{ g\geq 0\} g(t, v)\langle v\rangle 2dv

\Biggr) 
\leq \epsilon , sup

t\in [0,T\epsilon ]

\| g(t, \cdot )\| L2(ΩL) <\infty 

for some fixed \epsilon > 0 sufficiently small to be specified below in (4.9). Observe that
the conservation scheme and this assumption imply that semidiscrete moments up to
order 2 are controlled by the initial datum. Indeed, for k = \{ 0, 2\} 

\int 

ΩL

| g| | v| k =

\int 

ΩL

g| v| k  - 2

\int 

ΩL

g - | v| k =

\int 

ΩL

g0| v| k  - 2

\int 

ΩL

g - | v| k

\leq 
\int 

ΩL

g0| v| k + 2\epsilon 

\int 

ΩL

g+| v| k \leq 
\int 

ΩL

g0| v| k + 2\epsilon 

\int 

ΩL

| g| | v| k.

Indeed, choosing \epsilon \leq 1/4 one obtains

(4.4)

\int 

ΩL

| g(t, v)| | v| kdv \leq 2

\int 

ΩL

g0| v| kdv for t \in [0, T\epsilon ] , k = 1, 2.

Remark. Conditions (3.8) and (4.3) are a sort of stability condition for the semi-
discrete scheme.

Next, we start getting estimates for the discrete conserved form (3.7). Indeed,
taking the right-hand side from (3.3) combined with those of (3.1), (3.2), the discrete
equation (3.7) for the numerical scheme can be written in (0, T\varepsilon ]\times ΩL as

dg

dt
= Qc(g, g) = Qc(g, g) - Qu(g, g) +Q(\chi g, \chi g)

 - (1 - ΠN2L)Q
+(\chi g, \chi g) - Q - ((1 - \chi )g, \chi g) ,

(4.5)

as the second term in this equation is actually null.

D
o
w

n
lo

ad
ed

 0
2
/1

6
/1

9
 t

o
 1

2
8
.8

3
.6

3
.2

0
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONSERVATIVE SPECTRAL BOLTZMANN SCHEME ANALYSIS 3557

In the next lemma we prepare estimates to obtain an ordinary differential inequal-
ity that will yield uniform estimates to the numerical moments of the semidiscrete
solutions corresponding to the initial value problem (3.7).

Lemma 4.1. Let g be the solution of the numerical scheme satisfying (4.3) and
set k \geq k0 \geq 2. Then,

d

dt
mk(g) \leq Ck

\bigl( 
m0(g0) +mk(g)

\bigr) 
 - 
\mu \lambda 

2
m0(g0)

4
mk+1(g) + C

L\lambda k+d/2

N
d - 1
2

\| g\| 2L2
1+\lambda  - 1 (ΩL)

(4.6)

for any g0(v) satisfying the energy ratio condition (3.8). In addition, \mu \lambda 
2
, k0 are

constants given by (4.8) and (4.12), respectively, defined in the proof of this lemma.

Proof. We fix k > 0 and L > 0 and keep in mind that g0 has support in ΩL and,
thus, possesses moments of any order. Multiply (4.5) by sgn(g)| v| \lambda k and integrate
in ΩL

d

dt

\int 

ΩL

\bigm| \bigm| g(v)
\bigm| \bigm| | v| \lambda kdv

=

\int 

ΩL

Q(\chi g, \chi g)(v) sgn(g)(v) | v| \lambda kdv  - 
\int 

ΩL

Q - ((1 - \chi )g, \chi g)(v) sgn(g)(v) | v| \lambda kdv

+

\int 

ΩL

\bigl( 
Qc(g, g)(v) - Qu(g, g)(v)

\bigr) 
sgn(g) | v| \lambda kdv

 - 
\int 

ΩL

(1 - ΠN2L)Q
+(\chi g, \chi g)(v) sgn(g) | v| \lambda k

\leq 
\int 

ΩL

Q+(| \chi g| , | \chi g| )(v)| v| \lambda kdv  - 
\int 

ΩL

Q - (g, \chi g)(v)sgn(\chi g)(v)| v| \lambda kdv

+
\bigm\| \bigm\| \bigl( Qc(g, g) - Qu(g, g)

\bigr) 
| v| \lambda k

\bigm\| \bigm\| 
L1(ΩL)

+
\bigm\| \bigm\| (1 - ΠN2L)Q

+(\chi g, \chi g)| v| \lambda k
\bigm\| \bigm\| 
L1(ΩL)

.

We estimate each term starting with the loss collision operator. Use g = | g|  - 2g - 

to conclude that

\int 

ΩL

Q - (g, \chi g)(v)sgn(g)(v)| v| \lambda kdv \geq 
\int 

ΩL

| g(v)| | v| \lambda k
\int 

Rd

| \chi g(v\ast )| | v  - v\ast | \lambda dv\ast dv

 - Cd,\lambda \epsilon \| g0\| L1
2\lambda  - 1 (ΩL)

\bigl( 
mk+1(g) +mk(g)

\bigr) 
,

where \epsilon is the bound from the energy quotient from (4.3). Whence,

\int 

ΩL

Q+(| \chi g| , | \chi g| )(v)| v| \lambda kdv  - 
\int 

ΩL

Q - (g, \chi g)(v)sgn(g)(v)| v| \lambda kdv

\leq 
\int 

ΩL

Q(| \chi g| , | \chi g| )(v)| v| \lambda kdv

 - 
\int 

ΩL

Q((1 - \chi )| g| , | \chi g| )(v)| v| \lambda kdv + Cd,\lambda \epsilon \| g0\| L1
2\lambda  - 1 (ΩL)

\bigl( 
mk+1(g) +mk(g)

\bigr) 
.

(4.7)
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Using the conservative property of the scheme it follows from the discussion in
[13, 6] that

\int 

ΩL

Q(| \chi g| , | \chi g| )(v)| v| \lambda kdv \leq 
\int 

Rd

Q(| \chi g| , | \chi g| )(v)| v| \lambda kdv \leq Zk(g)

 - \mu km0(g0)mk+1(\chi g),
2
\lambda < k \in \BbbZ ,

where Zk(g) depends on the moments of g of order less than or equal to k and \mu k \nearrow 1
as k \rightarrow \infty being a universal parameter given by

(4.8) \mu k := 1 - 1

2k

\int 

Sd - 1

(1 + û \cdot \sigma )k b(û \cdot \sigma ) d\sigma \in (0, 1) .

We refer to [13, Lemma 3] for details and proof. Choose

(4.9) \epsilon \leq min
\Bigl\{ 

1
4 , \mu \lambda 

2

m0(g0)
2Cd,\lambda \| g0\| L1

2\lambda  - 1
(ΩL)

\Bigr\} 

in (4.7) to conclude that

d

dt
mk(g) \leq Zk(g) - 

1

2
\mu \lambda 

2
m0(g0)mk+1(g)

+
\bigm\| \bigm\| (Qc(g, g) - Qu(g, g))| v| \lambda k

\bigm\| \bigm\| 
L1(ΩL)

+
\bigm\| \bigm\| (1 - ΠN2L)Q

+(\chi g, \chi g)| v| \lambda k
\bigm\| \bigm\| 
L1(ΩL)

.

(4.10)

Using the Cauchy–Schwarz inequality and (3.24) from Theorem 3.4, it follows, for any
k\prime \geq k \geq 0, that

\bigm\| \bigm\| (Qc(g, g) - Qu(g, g))| v| \lambda k
\bigm\| \bigm\| 
L1(ΩL)

\leq Ld/2
\bigm\| \bigm\| (Qc(g, g) - Qu(g, g))| v| \lambda k

\bigm\| \bigm\| 
L2(ΩL)

\leq C L\lambda k+d/2

(2\lambda k + d)1/2

\bigm\| \bigm\| (1 - ΠN2L)Q
+(\chi g, \chi g)

\bigm\| \bigm\| 
L2(ΩL)

+
O(L - \lambda (k\prime  - k))

(2\lambda k + d)1/2
\bigl( 
mk\prime +1(g) m0(g0) + Zk\prime (g)

\bigr) 
.

Therefore, after choosing k\prime = k > 2, one concludes that

d

dt
mk(g) \leq 2Zk(g) - 

\Biggl( 
1

2
\mu \lambda 

2
m0(g0) - 

C

(2\lambda k + d)1/2

\Biggr) 
mk+1(g)(4.11)

+ CL\lambda k+d/2
\bigm\| \bigm\| (1 - ΠN2L)Q

+(\chi g, \chi g)
\bigm\| \bigm\| 
L2(ΩL)

\leq Ck
\bigl( 
m0(g0) +mk(g)

\bigr) 
 - 1

4
\mu \lambda 

2
m0(g0)mk+1(g)

+ CL\lambda k+d/2
\bigm\| \bigm\| (1 - ΠN2L)Q

+(\chi g, \chi g)
\bigm\| \bigm\| 
L2(ΩL)

,

where C is a constant independent of k and \lambda .

In the last inequality we used the classical fact that Zk \leq Ck
\bigl( 
m0(g) + mk(g)

\bigr) 

for some large constant Ck depending only on k. We also chose k sufficiently large to
make the largest moment an absorption term,

(4.12) k \geq k0 :=
1

2\lambda 

\biggl( 
C

\mu \lambda 
2
m0(g0)

\biggr) 2

 - d

2\lambda 
\geq 2.

D
o
w

n
lo

ad
ed

 0
2
/1

6
/1

9
 t

o
 1

2
8
.8

3
.6

3
.2

0
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

CONSERVATIVE SPECTRAL BOLTZMANN SCHEME ANALYSIS 3559

Finally, we use estimate (4.2) in (4.11) to obtain the semidiscrete moment ordinary
differential inequality (4.6).

Lemma 4.2 (lower bound estimate). Let h(v) be a function satisfying (4.3) for
\epsilon < 1/2. Assume also that

\int 
Rd h(w)w dw = 0 and that

(4.13) m\mu :=

\int 

Rd

| h(w)| | w| 2+\mu dw <\infty , \mu > 0.

Then,

(4.14)
\bigl( 
h \ast | u| \lambda 

\bigr) 
(v) \geq C(h) \langle v\rangle \lambda 

max
\bigl\{ 
1,m

(2 - \lambda )/\mu 
\mu 

\bigr\} 

with C(h) > 0 depending only on the mass and energy of h.

Proof. Notice that in the ball B(0, r) one has for any R > 0 and \mu > 0,
\int 

| v - w| \leq R
h(w)| v  - w| 2dw=

\int 

Rd

h(w)| v  - w| 2dw  - 
\int 

| v - w| \geq R
h(w)| v  - w| 2dw

\geq C(h) \langle v\rangle 2  - 1

R\mu 

\int 

| v - w| \geq R
| h(w)| | v  - w| 2+\mu dw .

(4.15)

For the last inequality we expanded the square in the integral of the right side and
used the fact that the momentum of g is zero. We use in the right side integral of
(4.15) the inequality | v  - w| \leq \langle v\rangle \langle w\rangle and the fact that m\mu <\infty to obtain
\int 

| v - w| \leq R
h(w)| v  - w| 2dw \geq C(h)\langle v\rangle 2  - m\mu 

R\mu 
\langle v\rangle 2+\mu \geq C(h)

2
\langle v\rangle 2 \forall v \in B(0, r) ,

provided

(4.16) R :=
\bigl( 
2m\mu /C(h)

\bigr) 1/\mu 
r.

Therefore, using the control (4.3)
\int 

Rd

h(w)| v  - w| \lambda dw =

\int 

Rd

| h(w)| | v  - w| \lambda dw  - 2

\int 

\{ h<0\} 
| h(w)| | v  - w| \lambda dw

\geq (1 - 2\epsilon )

\int 

Rd

| h(w)| | v  - w| \lambda dw \geq (1 - 2\epsilon )

\int 

| v - w| \leq R
| h(w)| | v  - w| \lambda dw

\geq 1 - 2\epsilon 

R2 - \lambda 

\int 

| v - w| \leq R
| h(w)| | v  - w| 2dw \geq 1 - 2\epsilon 

2R2 - \lambda C(h)\langle v\rangle 
2 ,

valid for any v \in B(0, r) and provided \epsilon < 1
2 . Moreover, for any \lambda \in (0, 1]

\int 

Rd

h(w)| v  - w| \lambda dw \geq (1 - 2\epsilon )

\int 

Rd

| h(w)| | v  - w| \lambda dw

\geq (1 - 2\epsilon )\| h\| L1
2\lambda  - 1

\bigl( 
| v| \lambda  - 2

\bigr) 
.

As a consequence,

\int 

Rd

h(w, t)| v  - w| \lambda dw\geq (1 - 2\epsilon )

\biggl( 
C(h)

2R2 - \lambda 1B(0,r) + \| h\| L1
2\lambda  - 1

\bigl( 
| v| \lambda  - 2

\bigr) 
1B(0,r)c

\biggr) 
.

(4.17)

Inequality (4.14) follows from (4.17) choosing r = 31/\lambda in definition (4.16) of R.
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4.2. Time differential estimates for the L2

k
-norm of the conservative

semidiscrete scheme. The lower bound on the collision operator given in Lemma
4.2 will allow us to control the L2

k-norms of g. Multiplying (4.5) by g\langle v\rangle 2\lambda k and
integrating on ΩL one has

1

2

d

dt
\| g\| 2L2

k(ΩL) =

\int 

ΩL

\langle v\rangle 2\lambda kg Q+(\chi g, \chi g)dv  - 
\int 

ΩL

\langle v\rangle 2\lambda kg Q - (g, \chi g)dv

+

\int 

ΩL

\langle v\rangle 2\lambda kg
\bigl( 
Qc(g, g) - Qu(g, g)

\bigr) 
dv  - 

\int 

ΩL

\langle v\rangle 2\lambda kg
\bigl( 
1 - ΠN2L

\bigr) 
Q+(\chi g, \chi g)dv

\leq 
\int 

ΩL

\langle v\rangle 2\lambda kg Q+(\chi g, \chi g)dv  - 
\int 

ΩL

\langle v\rangle 2\lambda kg Q - (g, \chi g)dv

+

\biggl( \bigm\| \bigm\| (Qc(g, g) - Qu(g, g))| v| \lambda k
\bigm\| \bigm\| 
L2(ΩL)

+
\bigm\| \bigm\| (1 - ΠN2L)Q

+(\chi g, \chi g) | v| \lambda k
\bigm\| \bigm\| 
L2(ΩL)

\biggr) 
\| g\| L2

k(ΩL) .

Using smoothing properties of the gain collision operator (see Theorem A.6 in the
appendix or refer to [43, 5]), the lower bound control (4.14), and noticing that C(g) =
C(g0) due to the conservation routine, it follows that

\int 

ΩL

\langle v\rangle 2\lambda kg Q+(\chi g, \chi g)dv  - 
\int 

ΩL

\langle v\rangle 2\lambda kg Q - (g, \chi g)dv

\leq 
\biggl( 
max

\bigl\{ 
1,m

(2 - \lambda )/\mu 
\mu 

\bigr\} 

C(g0)

\biggr) \theta 1
\| g\| \theta 2

L1
k(ΩL)

\| g\| 1+1/d

L2
k(ΩL)

 - C(g0)

\biggl( 
1

max
\bigl\{ 
1,m

(2 - \lambda )/\mu 
\mu 

\bigr\}  - C

L2 - \lambda 

\biggr) 
\| g\| 2L2

k+1/2
(ΩL)

with constant C(g0) depending only on mass and energy, m\mu defined in (4.13), and
some universal \theta 1 > 1, \theta 2 > 1. Meanwhile, again using estimates from Theorem 3.4,
the rest of the terms can be controlled by
\bigm\| \bigm\| (Qc(g, g) - Qu(g, g))| v| \lambda k

\bigm\| \bigm\| 
L2(ΩL)

+
\bigm\| \bigm\| (1 - ΠN2L)Q

+(\chi g, \chi g) | v| \lambda k
\bigm\| \bigm\| 
L2(ΩL)

\leq L\lambda k
\bigm\| \bigm\| (1 - ΠN2L)Q

+(\chi g, \chi g)
\bigm\| \bigm\| 
L2(ΩL)

+Od/2
\bigl( 
mk+1(g)m0(g) + Zk(g)

\bigr) 

with Or defined in (3.9). Therefore, we conclude, provided L \geq 2max
\bigl\{ 
1,m

1/\mu 
\mu 

\bigr\} 
, that

d

dt
\| g\| L2

k(ΩL) \leq 
\biggl( 
max

\bigl\{ 
1,m

(2 - \lambda )/\mu 
\mu 

\bigr\} 

C(g0)

\biggr) \theta 1
\| g\| \theta 2

L1
k(ΩL)

\| g\| 1/d
L2

k(ΩL)

 - C(g0)

max
\bigl\{ 
1,m

(2 - \lambda )/\mu 
\mu 

\bigr\} \| g\| L2
k+1/2

(ΩL)

+ L\lambda k
\bigm\| \bigm\| (1 - ΠN2L)Q

+(\chi g, \chi g)
\bigm\| \bigm\| 
L2(ΩL)

+Od/2
\bigl( 
mk+1(g)m0(g)+Zk(g)

\bigr) 
.

(4.18)

Plugging (4.2) into (4.18) proves the first part of the following lemma.

Lemma 4.3. Fix k \geq 0 and \mu > 0 and assume g is a solution of the numerical
scheme satisfying (4.3) for a small proportion \epsilon \leq \epsilon (g0) and cutoff domain L \geq 
2max

\bigl\{ 
1,m

1/\mu 
\mu 

\bigr\} 
. Then, the following differential inequality holds:D
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d

dt
\| g\| L2

k(ΩL) \leq 
\biggl( 
max

\bigl\{ 
1,m

(2 - \lambda )/\mu 
\mu 

\bigr\} 

C(g0)

\biggr) \theta 1
\| g\| \theta 2

L1
k(ΩL)

\| g\| 1/d
L2

k(ΩL)
(4.19)

 - C(g0)

max
\bigl\{ 
1,m

(2 - \lambda )/\mu 
\mu 

\bigr\} \| g\| L2
k+1/2

(ΩL)

+ C
L\lambda k

N
d - 1
2

\| g\| 2L2
1+\lambda  - 1 (ΩL) +Od/2

\Bigl( 
mk+1(g)m0(g) + Zk(g)

\Bigr) 

for some universal \theta 1, \theta 2 > 1 and Or defined in (3.9). Moreover, the negative part of
g satisfies

d

dt
\| g - \| L2(ΩL)\leq C\| g0\| L1

2(ΩL)\| g - \| L2(ΩL)+
C

N
d - 1
2

\| g\| 2L2
1+\lambda  - 1 (ΩL)(4.20)

+Od/2+\lambda (k - 1)mk(g)m0(g0) .

Proof. For the part related to the negative mass, note that, writing g = g+ + g - ,
it follows that

Q+(g, g) g 1\{ g\leq 0\} =
\bigl( 
Q+(g+, g+) +Q+(g+, g - ) +Q+(g - , g+) +Q+(g - , g - )

\bigr) 
g 1\{ g\leq 0\} 

\leq 
\bigl( 
Q+(g+, g - ) +Q+(g - , g+)

\bigr) 
g 1\{ g\leq 0\} .(4.21)

Thus, using Young’s inequality [3, 2, 43] one concludes that

\int 

ΩL

Q+(g, g) g 1\{ g\leq 0\} dv \leq 
\int 

ΩL

\bigl( 
Q+(g+, g - ) +Q+(g - , g+)

\bigr) 
g 1\{ g\leq 0\} dv

\leq C \| b\| \infty \| g+\| L1
1(ΩL)\| g - \| 2L2(ΩL) \leq C \| g0\| L1

2\lambda  - 1 (ΩL) \| g - \| 2L2(ΩL) .

In this last inequality it was important the bilinear estimates for Q+ be valid for
b \in L\infty . Recall, additionally, that Lemma 4.2 implies

\int 

ΩL

Q - (g, g) g 1\{ g\leq 0\} dv \geq C(g0)

max
\bigl\{ 
1,m

(2 - \lambda )/\mu 
\mu 

\bigr\} \| g - \| 2L2
1/2

(ΩL) \geq 0.

As a consequence, multiplying (4.5) by g - , integrating in ΩL, and invoking Theorem
3.4 with k\prime = k  - 1 and k = 0 , one concludes that

d

dt
\| g - \| L2(ΩL) \leq C\| g0\| L1

2\lambda  - 1 (ΩL)\| g - \| L2(ΩL)

+ C
\bigm\| \bigm\| (1 - ΠN2L)Q

+(\chi g, \chi g)
\bigm\| \bigm\| 
L2(ΩL)

+Od/2+\lambda (k - 1)mk(g)m0(g0) .

The proof follows after plugging (4.2) into this estimate.

4.3. Uniform propagation of moments and L2

k
-norms. Now we are ready

to prove uniform propagation of the scheme provided the requirement on the negative
mass (4.3) is met for 0 < \epsilon \leq \epsilon (g0). Since Lemmas 4.1 and 4.3 hold for the aforemen-
tioned conditions on \epsilon (g0), one has the following two estimates on the k-moment and
the L2-norm:

d

dt
mk(g) \leq Ck

\bigl( 
m0(g0) +mk(g)

\bigr) 
 - 1

4
\mu \lambda 

2
m0(g0)mk+1(g)

+ C
L\lambda k+d/2

N
d - 1
2

\| g\| 2L2
1+\lambda  - 1 (ΩL) , k \geq k0 ,
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d

dt
\| g\| L2(ΩL) \leq 

\biggl( 
max

\bigl\{ 
1,m

(2 - \lambda )/\mu 
\mu 

\bigr\} 

C(g0)

\biggr) \theta 1
\| g\| \theta 2L1(ΩL)\| g\| 

1/d
L2(ΩL)

 - C(g0)

max
\bigl\{ 
1,m

(2 - \lambda )/\mu 
\mu 

\bigr\} \| g\| L2
1/2

(ΩL)

+
C

N
d - 1
2

\| g\| 2L2
1+\lambda  - 1 (ΩL) +Od/2\| g0\| 2L1

2(ΩL) .

Note that using Young’s inequality,

\biggl( 
max

\bigl\{ 
1,m

(2 - \lambda )/\mu 
\mu 

\bigr\} 

C(g0)

\biggr) \theta 1
\| g\| \theta 2L1(ΩL)\| g\| 

1/d
L2(ΩL)

\leq C1(g0) + C2(g0)m
\theta 1(1+d

\prime /d)(2 - \lambda )/\mu 
\mu +

C(g0)

2max
\bigl\{ 
1,m

(2 - \lambda )/\mu 
\mu 

\bigr\} \| g\| L2(ΩL) .

Now, choose \mu = \lambda k  - 2, so that m\mu = mk(g), and then take k \geq k0 such that
\theta 1(1 + d\prime /d)(2 - \lambda )/\mu \leq 1. Then, adding previous two differential equations, one has

d

dt

\bigl( 
mk(g) + \| g\| L2(ΩL)

\bigr) 

\leq 
\biggl( 
Ck(g0) - c(g0)m

1+1/k
k (g) - C(g0)

max
\bigl\{ 
1,m

(2 - \lambda )/\mu 
k

\bigr\} \| g\| L2(ΩL)

\biggr) 

+
C L\lambda (k+2)+d/2+2

N
d - 1
2

\| g\| 2L2(ΩL) ;

thus, defining X(t) := mk(g)+\| g\| L2(ΩL) and performing some algebra it follows that

(4.22)
dX

dt
\leq max

\bigl\{ 
1,m

(2 - \lambda )/\mu 
k

\bigr\} \biggl( 
Ck(g0) - c(g0)X +

C L\lambda (k+2)+d/2+2

N
d - 1
2

X2+(2 - \lambda )/\mu 
\biggr) 
.

With this estimate we are in position to prove the following proposition.

Proposition 4.4. Fix k \geq k\ast and assume g is a solution of the numerical scheme

satisfying (4.3) for 0 < \epsilon \leq \epsilon (g0) with cutoff domain L \geq 2 max\{ 1,m1/(\lambda k - 2)
k \} . Then,

there exists a threshold \eta (g0) > 0 depending only on g0 such that if

L\lambda (k+2)+d/2+2N ( - d+1)/2 \leq \eta (g0),

then

sup
t\geq 0

mk(g) \leq max
\bigl\{ 
Ck(g0),mk(g0), \| g0\| L2(ΩL)

\bigr\} 
=: ck1(g0) , and

sup
t\geq 0

\| g\| L2
k\prime (ΩL) \leq max

\bigl\{ 
Ck\prime (g0),mk\prime +1(g0), \| g0\| L2

k\prime (ΩL)

\bigr\} 
=: ck

\prime 

2 (g0)

\forall 0 \leq k\prime \leq k  - 1 .

Here k\ast \geq k0 is such that \theta 1(1 + d\prime /d)(2  - \lambda )/(\lambda k\ast  - 2) \leq 1 and Ck(g0) a constant
depending on mass and energy of g0 and k.

Proof. Consider the polynomial p(x) = Ck(g0)  - c(g0)x + C \eta x2+(2 - \lambda )/\mu . Note
that for sufficiently small \eta , depending only on k \geq k\ast \geq 2 and the mass and energy of
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g0, this polynomial has two positive roots r1 and r2. As \eta vanishes, r1 \searrow Ck(g0)/c(g0)
and r2 \nearrow \infty . Thus, choose 0 < \eta sufficiently small such that

mk(g0) + \| g0\| L2(ΩL) < r2 ,

then, the differential inequality (4.22) written as

dX

dt
\leq max

\bigl\{ 
1,m

(2 - \lambda )/\mu 
k

\bigr\} 
p(X)

for L\lambda (k+2)+d/2+2

N(d - 1)/2 \leq \eta implies that

sup
t\geq 0

X(t) \leq max
\bigl\{ 
Ck(g0), X(0)

\bigr\} 
.

This proves the first inequality of the statement and the propagation of \| g\| L2(ΩL).
Provided the latter, we use Lemma 4.3 to conclude the second statement.

5. Existence and regularity of the scheme.

5.1. Existence. Now we are ready, thanks to the estimates of the previous
section, to produce a proof of existence and uniqueness of the numerical scheme. We
assume that f0 \in L2(\BbbR d) is supported in ΩL, where the choice of the cutoff domain
ΩL was discussed in section 2.2, and that g0 = ΠNL f0 satisfies

(5.1) \| g - 0 \| L2(ΩL) \approx 0

for N \geq N0(g0) sufficiently large. Observe also that defining the metric space \scrX \subset 
\scrC (0, T ;L2(ΩL)) as

\scrX : =
\bigl\{ 
f \in \scrC (0, T ;L2(ΩL)) : sup

t\in [0,T ]

\| f(t)\| L2(ΩL) \leq 2c02(g0) , sup
t\in [0,T ]

mk(f) \leq 2ck1(g0)
\bigr\} 
,

and the operator \scrT : \scrX \rightarrow \scrC (0, T ;L2(ΩL)) as \scrT (f)(t) = g0 +

\int t

0

Qc(f)(s)ds ,

where k \geq k\ast \geq 2 and c
k
1 , c

0
2 are those from Proposition 4.4, one has the estimates for

some a, bk > 0,

sup
t\in [0,T ]

\| \scrT (f) - \scrT (f̃ )\| L2(ΩL) \leq C(ck1 , c
0
2)L

a T sup
t\in [0,T ]

\| f  - f̃ \| L2(ΩL) ,

sup
t\in [0,T ]

mk

\bigl( 
\scrT (f)

\bigr) 
\leq mk(g0) + C(ck1 , c

0
2)L

bk T , f , f̃ \in \scrX .

As a consequence, choosing TL := 1/La+bk for L \geq L0(g0) sufficiently large, it follows
that \scrT is a contraction with \scrT (\scrX ) \subset \scrX . Using the Banach fix point theorem, the
scheme has a unique solution in [0, TL].

Theorem 5.1. Set g0 = ΠNf0 \in L1
k\cap L2(ΩL) with k \geq k\ast \geq 2. For any time T >

0 and domain cutoff L \geq L0(T, g0) > 0 there exists a number of modes N0(T, L, g0) >
0 such that the Problem (3.7) has a unique solution g \in \scrC (0, T ;L2(ΩL)) for any
N \geq N0 satisfying the estimates

sup
t\in [0,T ]

\| g\| L2(ΩL) \leq c0k(g0), sup
t\in [0,T ]

mk(g) \leq c
k
1(g0) ,
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and negative mass estimate

\| g - (t)\| L2(ΩL) \leq C(ck1 , c
0
2) e

C\| g0\| L1
2/\lambda 

(ΩL)
t

\times 
\Bigl( 
\| g - 0 \| L2(ΩL) +O

\bigl( 
L2(1+\lambda )/N (d - 1)/2

\bigr) 

+ \| g0\| L1
2(ΩL)O

\bigl( 
1/Ld/2+\lambda (k - 1)

\bigr) \Bigr) 
.

Furthermore, the sequence \{ g = gN\} formed with initial condition g0 converges strongly
in \scrC (0, T ;L2(ΩL)) to ḡ, the solution of problem
(5.2)

\partial ḡ

\partial t
= Q+(\chi ḡ, \chi ḡ) - Q - (ḡ, \chi ḡ) - 1

2

\Bigl( 
\gamma 1 +

d\sum 

j=1

\gamma j+1vj + \gamma d+2| v| 2
\Bigr) 
, (t, v) \in [0, T ]\times ΩL ,

with initial condition g0 = f0. Above, the coefficients \gamma are given in Lemma 3.2 with
parameters (3.11)–(3.15) evaluated at Q+(\chi ḡ, \chi ḡ) - Q - (ḡ, \chi ḡ).

Proof. We start with T > 0 given, L > 2max\{ 1, (2 c1k(g0))1/\lambda k - 2\} , and N > 0
such that L\lambda (k+2)+d/2+2N ( - d+1)/2 \leq \eta (g0). We discussed that there exists a unique
solution g \in \scrX in the interval I1 := [0, 1/La+bk ]. Note that the negative mass of such
a solution increases continuously in time. Indeed, multiplying the scheme (4.5) by g - ,
it readily follows that
(5.3)
d

dt
\| g - \| L2(ΩL)\leq C(ck1 , c02)La\rightarrow \| g - (t1)\| L2(ΩL)\leq \| g - (t0)| L2(ΩL) + C(ck1 , c

0
2)L

a(t1  - t0) .

Since g - (0) \approx 0, it means that the requirement on the negative mass of Proposition
4.4 is satisfied in some interval [0, t\ast ] \subset I1,

(5.4) 0 < \epsilon (t) \leq \epsilon (g0) , t \in [0, t\ast ] .

Moreover, L > 0 and N > 0 were chosen to satisfy the requirements as well, therefore,
estimate (4.20) holds in [0, t\ast ]. Recalling the notation Or, as defined in (3.9) and
integrating estimate (5.3), it follows that

\| g - (t)\| L2(ΩL) \leq e
C\| g0\| L1

2/\lambda 
(ΩL)

t\Bigl( 
\| g - 0 \| L2(ΩL) +

4

N (d - 1)/2
(c02(g0))

2

+Od/2+\lambda (k - 1) c
1
k(g0)m0(g0)

\Bigr) 

=: \varepsilon (t, L,N) \leq \varepsilon (T, L,N) .

Now, note that

\int 

\{ g<0\} 
| g(t, v)| \langle v\rangle 2dv \leq Ld/2+2\| g - (t)\| L2(ΩL) \leq Ld/2+2\varepsilon (t, L,N) ;

as a consequence, we can increase L and N , if necessary, so that

\epsilon (t) :=

\int 
\{ g<0\} | g(t, v)| \langle v\rangle 2dv\int 
\{ g\geq 0\} g(t, v)\langle v\rangle 2dv

=

\int 
\{ g<0\} | g(t, v)| \langle v\rangle 2dv\int 

ΩL
g(t, v)\langle v\rangle 2dv  - 

\int 
\{ g<0\} | g(t, v)| \langle v\rangle 2dv

\leq Ld/2+2\varepsilon (T, L,N)\int 
ΩL

g0(t, v)\langle v\rangle 2dv  - Ld/2+2\varepsilon (T, L,N)
< \epsilon (g0) .
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Observe that we used the fact that the scheme conserves mass and energy and assumed
that k > 1 + 2/\lambda , so that Ld/2+2\varepsilon (T, L,N) vanishes as both, L and then N are
chosen sufficiently large. Therefore, for this choice of parameters L \geq L0(T, g0) and
N \geq N0(T, L, g0), a continuation argument shows that the negative mass condition
(5.4) holds, in fact, on the whole interval I1. Thus, the a priori estimates of Proposition
4.4 hold in I1 so that

(5.5) \| g(t)\| L2(ΩL) \leq c0k(g0), mk(g(t)) \leq c
k
1(g0) \forall t \in I1 .

Estimate (5.5) shows that the set \scrX /2 is a stable set for the dynamics, thus, it allows
us to uniquely extend the solution, by repeating the argument made for I1 to the
intervals Ii := [(i  - 1)/La+bk , i/La+bk ] with i = 1, 2, . . ., until [0, T ] \subset \cup Ii. This
proves global existence and uniqueness of the scheme.

Now, in the limit N \rightarrow \infty one has that the sequence \{ g := gN\} \subset \scrX . Since

\bigm\| \bigm\| Qc(f, f)(t) - Qc(f̃ , f̃)(t)
\bigm\| \bigm\| 
L2(ΩL)

\leq C(ck1 , c
0
2)L

a\| f(t) - f̃(t) \| L2(ΩL) \forall f , f̃ \in \scrX ,

it follows from

g(t) = g0 +

\int t

0

Qc(g, g)(s)ds

that for any N,M \geq N0 and t \in [0, T ]

\| gN (t) - gM (t)\| L2(ΩL) \leq \| gN0  - gM0 \| L2(ΩL)

+ C(ck1 , c
0
2)L

a

\int t

0

\| gN (s) - gM (s) \| L2(ΩL)ds .

Thus, using Gronwall’s lemma,

\| gN (t) - gM (t)\| L2(ΩL) \leq \| gN0  - gM0 \| L2(ΩL)e
C(ck1 ,c

0
2)L

aT \rightarrow 0 as N,M \rightarrow \infty .

Thus, \{ gN\} is Cauchy and converges strongly to ḡ, the solution of the problem (5.2)
with initial condition f0 = limN\rightarrow \infty ΠNL f0.

5.2. Uniform Hk Sobolev regularity propagation. In this section we work
with functions in H\alpha 0(ΩL) and take multi-index \alpha with | \alpha | \leq \alpha 0. Recall that
derivatives commute with the projection operator ΠN2L (see (2.25)), for functions in
H\alpha 0

0 (Ω2L). Therefore, distributing the derivatives in the arguments of the operator
and using the estimates (2.27), (2.28), and (4.2), yields

\bigm\| \bigm\| \partial \alpha (1 - ΠN2L)Q
+(\chi g, \chi g)

\bigm\| \bigm\| 
L2(2ΩL)

=
\bigm\| \bigm\| (1 - ΠN2L)\partial 

\alpha Q+(\chi g, \chi g)
\bigm\| \bigm\| 
L2(2ΩL)

\leq C L2(1+\lambda )

N (d - 1)/2
\| g\| 2H\alpha (ΩL) ,

(5.6)

where, we recall, that the constant C := C\chi can be taken independent of L \geq 1.
Next, in order to prove propagation of regularity let us fix k \geq k\ast \geq 2 and

0 \leq k\prime \leq k - 1 - \alpha 0(1+\lambda ), and use an induction argument on the derivative order | \alpha | .
The initial step of the induction follows thanks to the propagation of L2

k\prime -norms in

Proposition 4.4. For the case | \alpha | \geq 1, assume the propagation of the H
| \alpha |  - 1
k\prime +(1+\lambda )-norms

and differentiate (4.5) w.r.t. velocity. We arrive at
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\partial (\partial \alpha g)

\partial t
= \partial \alpha Q+(\chi g, \chi g) - \partial \alpha Q - (g, \chi g)

+ \partial \alpha 
\bigl( 
Qc(g, g) - Qu(g, g)

\bigr) 
 - \partial \alpha 

\bigl( 
1 - ΠN2L

\bigr) 
Q+(\chi g, \chi g) .

Multiply by \partial \alpha g\langle v\rangle 2\lambda k\prime and integrate in the velocity domain ΩL to obtain

1
2

d

dt
\| \partial \alpha g\| 2L2

k\prime (ΩL) \leq 
\int 

ΩL

\bigl( 
\partial \alpha Q+(\chi g, \chi g) - \partial \alpha Q - (g, \chi g)

\bigr) 
\partial \alpha g\langle v\rangle 2\lambda k\prime 

+ \| \partial \alpha g\| L2
k\prime (ΩL)

\bigm\| \bigm\| \partial \alpha 
\bigl( 
Qc(g, g) - Qu(g, g)

\bigr) \bigm\| \bigm\| 
L2

k\prime (ΩL)

+ \| \partial \alpha g\| L2
k\prime (ΩL)

\bigm\| \bigm\| \partial \alpha (1 - ΠN2L)Q
+(\chi g, \chi g)

\bigm\| \bigm\| 
L2

k\prime (ΩL)
=: I1 + I2 + I3 .

(5.7)

Recall from Lemma 3.2 that the term Qc(g, g) - Qu(g, g) is a second order polynomial,
therefore, its derivatives are at most a second order polynomial, thus Theorem 3.4
implies

I2 \leq \| \partial \alpha g\| L2
k\prime (ΩL)

\Bigl( 
L\lambda k

\prime \bigm\| \bigm\| (1 - ΠN2L)Q
+(\chi g, \chi g)

\bigm\| \bigm\| 
L2(ΩL)

+Od/2
\bigl( 
mk\prime +1(g)m0(g) + Zk\prime 

\bigr) \Bigr) 
.

(5.8)

Additionally, the term I3 is controlled using (5.6),

(5.9) I3 \leq L\lambda k
\prime +2(1+\lambda )

N (d - 1)/2
\| \partial \alpha g\| L2

k\prime (ΩL)\| g\| 2H\alpha (ΩL) .

The term I1 defined in (5.7) can be controlled implementing the estimate introduced
in [17] and used for the control of Hk\prime -norms in [43, Theorem 3.5]:

I1 \leq C1 \| \partial \alpha g\| L2
k\prime (ΩL) \| g\| 2H| \alpha |  - 1

k\prime +(1+1/\lambda )
(ΩL)

 - C(g0) \| \partial \alpha g\| 2L2
k\prime +1/2

(ΩL)

\leq C2 \| \partial \alpha g\| L2
k\prime (ΩL)  - C(g0) \| \partial \alpha g\| 2L2

k\prime +1/2
(ΩL) ,

where C1\| g\| 2H| \alpha |  - 1

k\prime +(1+1/\lambda )
(ΩL)

\leq C2 by induction.

(5.10)

We obtain from inequalities (5.7), (5.8), (5.9), (5.10), and (5.6),

d

dt
\| \partial \alpha g\| L2

k\prime (ΩL) \leq C2  - 
C(g0)

2
\| \partial \alpha g\| L2

k\prime +1/2
(ΩL) +

L\lambda k
\prime +2(1+\lambda )

N (d - 1)/2
\| g\| 2H\alpha (ΩL).

The same inequality is valid for \alpha = 0, therefore, it is concluded that

dX

dt
\leq C2  - 

C(g0)

2
X +

L\lambda k
\prime +2(1+\lambda )

N (d - 1)/2
X2,

where X(t) := \| g\| H\alpha 
k\prime (ΩL). From here, after taking N \geq N0(L, g0) sufficiently large,

it follows that

X(t) \leq max
\bigl\{ 
X(0), 4C1/C2

\bigr\} 
, t \in [0, T ] .

Note that in each step of the induction one needs to add (1 + 1/\lambda ) moments, so that
\| g\| 

H
| \alpha |  - 1

k\prime +(1+1/\lambda )

is finite. Having this in mind, let us state the result we just proved.

Proposition 5.2. Fix T > 0, \alpha \geq 0, k \geq k\ast \geq 2, and 0 \leq k\prime \leq k - 1 - \alpha (1+1/\lambda )
and assume g0 \in H\alpha 

k\prime +\alpha (1+1/\lambda )(ΩL). Then, for any lateral size L \geq L0(T, g0) there

exists N0(T, L, g0) > 0 such that

sup
t\in [0,T ]

\| g\| H\alpha 
k\prime (ΩL) \leq max

\bigl\{ 
\| g0\| H\alpha 

k\prime +\alpha | (1+1/\lambda )
(ΩL), Ck\prime (g0)

\bigr\} 
, N \geq N0 .
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6. L2

k
and Hα

k
error estimates. We are now in position to write the error

estimates for the spectral conservation scheme. We start with errors in the L2
k\prime -norm

and, then, extend it to Sobolev norms. Again, we start fixing for T > 0, the cutoff
domain L \geq L0(T, g0) and N \geq N0(T, L, g0) sufficiently large so that g exists in the
interval [0, T ]. Here k \geq k\ast \geq 2 and 0 \leq k\prime \leq k  - 1 in order to meet the assumptions
of Proposition 4.4. From the identity

Q(g, g) = Q(\chi g, \chi g)

+
\bigl( 
Q((1 - \chi )g, g) +Q(g, (1 - \chi )g) +Q((1 - \chi )g, (1 - \chi )g)

\bigr) 

=: Q(\chi g, \chi g) + E0(g, g) ,

(6.1)

and the definition of Qu, one finds that

Qu(g, g) = Q(g, g) - 
\bigl( 
E0(g, g) +Q - ((1 - \chi )g, \chi g)

\bigr) 

=: Q(g, g) - E(g, g) .
(6.2)

Now, observe that subtracting the Boltzmann equation (2.1) and its conserved pro-
jection approximation (3.7) in ΩL one obtains

\partial t(f  - g) = Q(f, f) - Qc(g, g) =
\bigl( 
Q(f, f) - Qu(g, g)

\bigr) 
+
\bigl( 
Qu(g, g) - Qc(g, g)

\bigr) 

=
\bigl( 
Q(f, f) - Q(g, g)

\bigr) 
+
\bigl( 
Qu(g, g) - Qc(g, g)

\bigr) 
+ E(g, g) .

(6.3)

Multiplying this equation by (f  - g)\langle v\rangle 2\lambda k\prime and integrating in ΩL,

1
2

d

dt
\| f  - g\| 2L2

k\prime (ΩL) =

\int 

ΩL

\langle v\rangle 2\lambda k\prime (f  - g)
\bigl( 
Q(f, f) - Q(g, g)

\bigr) \bigr) 
dv

+

\int 

ΩL

\langle v\rangle 2\lambda k\prime (f  - g)
\bigl( 
Qu(g, g) - Qc(g, g)

\bigr) 
dv

+

\int 

ΩL

\langle v\rangle 2\lambda k\prime (f  - g)E(g, g) dv

=: I1 + I2 + I3 .

The error term I3, from the error term E(g, g) in (6.2), is simply controlled as

I3 \leq \| g\| L1
k\prime +1

(Rd)\| (1 - \chi )g\| L2
k\prime +1

(Rd)\| f  - g\| L2
k\prime (ΩL) \leq Od/2+\lambda k\prime \prime \| f  - g\| L2

k\prime (ΩL),

(6.4)

where the last inequality holds provided the L2
k\prime +1+d/2\lambda +k\prime \prime uniformly propagate.

Moreover, using Theorem 3.4 it follows that

\bigm\| \bigm\| Qu(g, g) - Qc(g, g)
\bigm\| \bigm\| 
L2

k\prime (ΩL)
\leq C5 L

\lambda k\prime 
\bigm\| \bigm\| (1 - ΠN2L)Q

+(\chi g, \chi g)
\bigm\| \bigm\| 
L2(ΩL)

+Od/2+\lambda k\prime \prime mk\prime +1+k\prime \prime (g)m0(g0) .

Therefore, using the Cauchy–Schwarz inequality and the (4.2) inequality one controls
the term I2 as

I2 \leq \| f - g\| L2
k\prime (ΩL)

\biggl( 
C5 L

\lambda k\prime 

N (d - 1)/2
\| g\| 2L2

1+1/\lambda 
(ΩL) +Od/2+\lambda k\prime \prime mk\prime +1+k\prime \prime (g)m0(g0)

\biggr) 

= \| f  - g\| L2
k\prime (ΩL)

\biggl( 
O
\bigl( 
L\lambda k

\prime 

/N (d - 1)/2
\bigr) 
+Od/2+\lambda k\prime \prime 

\biggr) 
.
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The term I1 is more involved. However, it is classical from the Boltzmann theory
that the Dirichlet form of the linearized collision operator with polynomial weights is
essentially nonpositive in the sense that

I1 = 1
2

\int 

Rd

 - 
\int 

Rd\setminus ΩL

\langle v\rangle 2\lambda k\prime (f  - g)
\bigl( 
Q(f + g, f  - g) +Q(f  - g, f + g)

\bigr) 
dv

\leq Ck\prime \| f  - g\| 2L2
k\prime (R

d) +
\bigl( c1
k\prime 

+ 2\| g0\| L1
2\lambda  - 1

\epsilon  - c2
\bigr) 
\| f  - g\| 2L2

k\prime +1/2
(Rd)

+Od/2+\lambda k\prime \prime \| f + g\| L1
k\prime (R

d)\| f  - g\| L2
k\prime (R

d)\| f  - g\| L2
k\prime +1+d/2+k\prime \prime (R

d)

\leq Ck\prime \| f  - g\| 2L2
k\prime (ΩL) +Od/2+\lambda k\prime \prime 

\bigl( 
\| f  - g\| L2

k\prime (ΩL) +Od/2+\lambda k\prime \prime 
\bigr) 
.

(6.6)

The \epsilon -term, with 0 < \epsilon < \epsilon (g0), is added in the absorption (second) term to account
for the fact that there may be a set where f + g is negative. This is not a problem
since this set is small, \{ f + g < 0\} \subset \{ g < 0\} . Here, Ck\prime is a constant that depends
on the moments L1

k\prime +2 and ci := ci(f0, g0) depends only on the initial mass and
some moment 2+/\lambda ; see, for instance, [20, Proposition 2.1]. In the last inequality, we
are taking k\prime and L sufficiently large so that c1/k

\prime + Ck/L
\lambda + 2\| g0\| L1

2/\lambda 
\epsilon  - c2 \leq 0,

which is achieved for any \epsilon in the aforementioned range. This estimate holds, of
course, provided the L2

k\prime +1+d/2\lambda +k\prime \prime -norms propagate uniformly on [0, T ]. Defining

X(t) := \| f(t) - g(t)\| 2
L2

k\prime (ΩL)
and combining the estimates (6.6), (6.5), and (6.4),

1
2

dX

dt
(t) \leq Ck\prime X(t) +

\Bigl( 
O
\bigl( 
L\lambda k

\prime 

/N (d - 1)/2
\bigr) 
+Od/2+\lambda k\prime \prime 

\Bigr) \surd 
X +Od+2\lambda k\prime \prime .

Thus, Gronwall’s lemma implies

(6.7) sup
t\in [0,T ]

\| f - g\| 2L2
k\prime (ΩL) \leq eCk\prime T

\bigl( 
\| f0 - g0\| 2L2

k\prime (ΩL)+O
\bigl( 
L2\lambda k\prime /N (d - 1)

\bigr) 
+Od+2\lambda k\prime \prime 

\bigr) 
.

This proves the following theorem.

Theorem 6.1 (L2
k-error estimate). Fix k \geq k\ast \geq 2, k\prime \prime \geq 0, and k(f0) < k\prime \leq 

k  - 1  - d+

2\lambda  - k\prime \prime with 0 \leq f0 \in L1
2 \cap L2

k(\BbbR 
d) an initial datum and f the solution of

the Boltzmann equation (2.1). For any T > 0 and cutoff domain L(T, f0) \geq L0 there
exists N0(T, L, f0) such that

sup
t\in [0,T ]

\| f  - g\| L2
k\prime (ΩL) \leq eCk\prime T

\bigl( 
\| f0  - g0\| L2

k\prime (ΩL) +O
\bigl( 
L\lambda k

\prime 

/N (d - 1)/2
\bigr) 
+Od/2+\lambda k\prime \prime 

\bigr) 
,

N \geq N0 .

The factor Od/2+\lambda k\prime \prime is defined by (3.9). The constants depend on Ck\prime := Ck\prime 
\bigl( 
\| f0\| L2

k\prime 

\bigr) 
.

In particular, the strong limit ḡ of the sequence \{ gN\} in \scrC (0, T ;L2
k(ΩL)) satisfies the

same estimate.

We study next the improvement in the rate of convergence with respect to the
number of modes N of the approximating solutions towards the Boltzmann solution
provided that the initial configuration is smooth and has at least initial mass and
energy bounded.

Theorem 6.2 (H\alpha -error estimates). Fix k \geq k\ast \geq 2, k\prime \prime \geq 0, \alpha 0 \geq \alpha \geq 0, and

k(f0) \leq k\prime \leq k - 1 - \alpha /2 - d+

2\lambda  - k\prime \prime and let 0 \leq f0 \in L1
2 \cap H\alpha 

k (\BbbR 
d) be an initial datum
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and f be the solution of the Boltzmann equation (2.1). Fix T > 0 and cutoff domain
L \geq L0(T, f0). Then, there exists N0(T, L, f0) such that

sup
t\in [0,T ]

\| f  - g\| H\alpha 
k\prime (ΩL) \leq e\alpha Ck\prime T

\bigl( 
\| f0  - g0\| H\alpha 

k\prime +\alpha /2
(ΩL)

+O
\bigl( 
L\lambda (k

\prime +\alpha /2)+\alpha 0/N (d - 1)/2+\alpha 0
\bigr) 
+Od/2+\lambda k\prime \prime 

\bigr) 
, N \geq N0 .

(6.8)

with the factor Od/2+\lambda k\prime \prime defined as in (3.9).

Proof. Fix \alpha 0 \geq 0, k \geq k\ast \geq 2, k\prime \prime \geq 0, and k(f0) \leq k\prime \leq k - 1 - \alpha 0/2 - d+1
2\lambda  - k\prime \prime .

Now, we perform similar computations to those of the error estimates for L2
k\prime , though,

avoiding to resort to the values of g near \partial ΩL. Thus, we write, for Qu and Qc defined
in (3.3) and (3.7), respectively,

Q(f, f) - Qc(g, g) = Q(\chi f, \chi f) - Q(\chi g, \chi g) - Q - ((1 - \chi )(f  - g), \chi g)

+
\bigl( 
Qu(g, g) - Qc(g, g)

\bigr) 
+ Ẽ(f, f) .

(6.9)

Here Ẽ(f, f) := E0(f, f) + Q - ((1  - \chi )f, \chi g). Thus, fixing any multi-index \alpha with
| \alpha | \leq \alpha 0, we apply the operator \partial \alpha to (6.9), multiply it by \partial \alpha (f  - g)\langle v\rangle 2\lambda k\prime , and
integrate in ΩL to obtain

1
2

d

dt
\| \partial \alpha (f  - g)\| 2L2

k\prime (ΩL) = I\alpha 1 + I\alpha 2 + I\alpha 3 ,

where,

I\alpha 1 :=

\int 

ΩL

\langle v\rangle 2\lambda k\prime \partial \alpha (f - g)
\bigl( 
\partial \alpha Q(\chi f, \chi f) - \partial \alpha Q(\chi g, \chi g) - \partial \alpha Q - ((1 - \chi )(f - g), \chi g)

\bigr) 
dv ,

I\alpha 2 :=

\int 

ΩL

\langle v\rangle 2\lambda k\prime \partial \alpha (f  - g) \partial \alpha 
\bigl( 
Qu(g, g) - Qc(g, g)

\bigr) 
dv ,

I\alpha 3 :=

\int 

ΩL

\langle v\rangle 2\lambda k\prime \partial \alpha (f  - g) \partial \alpha Ẽ(f, f)(v)dv .

Regarding the term I\alpha 2 , we directly use Theorem 3.4 to have
\bigm\| \bigm\| \partial \alpha 
\bigl( 
Qu(g,g) - Qc(g, g)

\bigr) \bigm\| \bigm\| 
L2

k\prime (ΩL)
\lesssim 
\bigm\| \bigm\| Qu(g, g) - Qc(g, g)

\bigm\| \bigm\| 
L2

k\prime (ΩL)

\leq C5 L
\lambda k\prime 
\bigm\| \bigm\| (1 - ΠN2L)Q

+(\chi g, \chi g)
\bigm\| \bigm\| 
L2(ΩL)

+Od/2+\lambda k\prime \prime mk\prime +1+k\prime \prime (g)m0(g0) .

Therefore, using the Cauchy–Schwarz inequality, inequality (4.2), and Lemma A.1
implies

I\alpha 2 \leq \| \partial \alpha (f  - g)\| L2
k\prime (ΩL)

\biggl( 
C5 L

\lambda k\prime +\alpha 0

N (d - 1)/2+\alpha 0
\| g\| 2

H
\alpha 0
1+1/\lambda 

(ΩL)
+Od/2+\lambda k\prime \prime mk\prime +1+k\prime \prime (g)m0(g0)

\biggr) 

= \| \partial \alpha (f  - g)\| L2
k\prime (ΩL)

\biggl( 
O
\bigl( 
L\lambda k

\prime +\alpha 0/N (d - 1)/2+\alpha 0
\bigr) 
+Od/2+\lambda k\prime \prime 

\biggr) 
.

The term I\alpha 3 , containing the error term Ẽ(f, f), is simply controlled as

I\alpha 3 \leq C\alpha 
\sum 

\alpha \prime +\beta \prime =\alpha 

\Bigl( 
\| \partial \alpha \prime 

(\chi g)\| L1
k\prime +1

(Rd) + \| \partial \alpha \prime 

f\| L1
k\prime +1

(Rd)

\Bigr) 

\times \| \partial \beta \prime 

((1 - \chi )f)\| L2
k\prime +1

(Rd)\| \partial \alpha (f  - g)\| L2
k\prime (ΩL)

\leq C\alpha \| (1 - \chi )f\| H\alpha 
k\prime +1

(Rd)\| \partial \alpha (f  - g)\| L2
k\prime (ΩL) \leq Od/2+\lambda k\prime \prime \| \partial \alpha (f  - g)\| L2

k\prime (ΩL) ,
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where the last inequality holds provided theH\alpha 
k\prime +1+d/2\lambda +k\prime \prime -norm of f uniformly prop-

agates. Finally, for the term I\alpha 1 one checks that

\partial \alpha 
\bigl( 
Q(\chi f, \chi f) - Q(\chi g, \chi g)

\bigr) 
= 1

2\partial 
\alpha 
\bigl( 
Q(\chi (f  - g), \chi (f + g)) +Q(\chi (f + g), \chi (f  - g))

\bigr) 

= 1
2

\bigl( 
Q
\bigl( 
\partial \alpha (\chi (f  - g)), \chi (f + g)

\bigr) 
+Q

\bigl( 
\chi (f + g), \partial \alpha (\chi (f  - g))

\bigr) \bigr) 
+

\sum 

\alpha \prime +\beta \prime <\alpha 

Γ\alpha \alpha \prime ,\beta \prime ,

where

Γ\alpha \alpha \prime ,\beta \prime :=
C\alpha 

\alpha \prime ,\beta \prime 

2

\bigl( 
Q
\bigl( 
\partial \alpha 

\prime 

(\chi (f  - g)), \partial \beta 
\prime 

\chi (f + g)
\bigr) 
+Q

\bigl( 
\partial \beta 

\prime 

\chi (f + g), \partial \alpha 
\prime 

(\chi (f  - g))
\bigr) \bigr) 
.

Observe that

\bigm\| \bigm\| Γ\alpha \alpha \prime ,\beta \prime 

\bigm\| \bigm\| 
L2

k\prime  - 1/2
(ΩL)

\leq C \| \partial \alpha \prime 

\chi (f  - g)\| L2
k\prime +1/2

(Rd)\| \partial \beta 
\prime 

\chi (f + g)\| L1
k\prime +1/2

(Rd)

\leq C \| \partial \alpha \prime 

\chi (f  - g)\| L2
k\prime +1/2

(Rd) = C \| \partial \alpha \prime 

(f  - g)\| L2
k\prime +1/2

(ΩL) +Od/2+\lambda k\prime \prime ,

provided the H\alpha 
k\prime +1+d/2\lambda +k\prime \prime -norms are propagated. Therefore,

\int 

ΩL

\langle v\rangle 2\lambda k\prime \partial \alpha (f  - g)
\sum 

\alpha \prime +\beta \prime <\alpha 

Γ\alpha \alpha \prime ,\beta \prime dv

\leq \| \partial \alpha (f  - g)\| L2
k\prime +1/2

(ΩL)

\bigl( 
C\alpha 

\sum 

| \alpha \prime | <| \alpha | 
\| \partial \alpha \prime 

\chi (f  - g)\| L2
k\prime +1/2

(ΩL) +Od/2+\lambda k\prime \prime 
\bigr) 
.

Now, the leading order term in I\alpha 1 is the Dirichlet form of the linearized Boltzmann
operator with \partial \alpha \chi (f - g). Thus, similarly to what was done in the L2

k\prime error estimate,
it follows that

I\alpha 1 \leq Ck\prime \| \partial \alpha (f  - g)\| 2L2
k\prime (R

d)

+
\bigl( c1
k\prime 

+ \epsilon  - c2
\bigr) 
\| \partial \alpha (f  - g)\| 2L2

k\prime +1/2
(Rd) +Od/2+k\prime \prime \| \partial \alpha (f  - g)\| L2

k\prime (R
d)

+ C\alpha 
\sum 

| \alpha \prime | <| \alpha | 
\| \partial \alpha \prime 

\chi (f  - g)\| 2L2
k\prime +1/2

(ΩL) +Od+2k\prime \prime \leq Ck\| f  - g\| 2L2
k\prime (ΩL)

+Od/2+\lambda k\prime \prime 
\bigl( 
\| \partial \alpha (f  - g)\| L2

k\prime (ΩL) +Od/2+\lambda k\prime \prime 
\bigr) 

+ C\alpha 
\sum 

| \alpha \prime | <| \alpha | 
\| \partial \alpha \prime 

(f  - g)\| 2L2
k\prime +1/2

(ΩL) +Od+2\lambda k\prime \prime .

Accordingly, this holds provided the H\alpha 
k\prime +1/2+d/2\lambda +k\prime \prime -norms propagate uniformly on

[0, T ]. Also to obtain this estimate we have used the term with \partial \alpha Q - ((1 - \chi )(f - g), \chi g)
to complete the L2

k\prime +1/2- absorbing norm in the whole \BbbR d. As a consequence, defining

X\alpha (t) := \| \partial \alpha (f(t) - g(t))\| 2
L2

k\prime (ΩL)
and combining the estimates for I\alpha 1 , I

\alpha 
2 , and I

\alpha 
3

1
2

dX\alpha 

dt
(t) \leq CkX

\alpha (t) +O
\bigl( 
L\lambda k

\prime +\alpha 0/N (d - 1)/2+\alpha 0
\bigr) \surd 
X\alpha +Od/2+\lambda k\prime \prime 

+ C\alpha 
\sum 

| \alpha \prime | <| \alpha | 
\| \partial \alpha \prime 

(f  - g)\| 2L2
k\prime +1/2

(ΩL) .D
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Thus, Gronwall’s lemma implies

X\alpha (t) \leq e2CkT
\Bigl( 
X\alpha (0) +O

\bigl( 
L2\lambda k\prime +2\alpha 0/Nd - 1+2\alpha 0

\bigr) 

+Od+2\lambda k\prime \prime + C\alpha 
\sum 

| \alpha \prime | <| \alpha | 
sup
t\in [0,T ]

\| \partial \alpha \prime 

(f  - g)(t)\| 2L2
k\prime +1/2

(ΩL)

\Bigr) 
.

Estimate (6.8) follows by iteration of this formula on the multi-index order | \alpha | =
1, 2, . . . , \alpha 0, using Theorem 6.1 as the starting point.

7. Long time behavior. In this final section we address the long time behavior
for the semidiscrete problem given by the conservative spectral scheme approximating
the space homogeneous elastic Boltzmann equation for hard potentials with integrable
angular cross section.

Thus, we start by setting g = \scrM 0+h, where h := g - \scrM 0 is the perturbation from
the global Maxwellian equilibrium defined in (2.10). Note that under this linearization

Qc(g, g) = Qc(\scrM 0,\scrM 0) +Qc(\scrM 0, h) +Qc(h,\scrM 0) +Qc(h, h) .

Introduce then the linear operators

\scrL c(h) : = Qc(\scrM 0, h) +Qc(h,\scrM 0) ,

\scrL (\chi h) : = Q(\scrM 0, \chi h) +Q(\chi h,\scrM 0) .

The reader recognizes the latter \scrL as the linearized Boltzmann operator. With the
estimations we have performed in the previous section, it is clear that

\| \chi Qc(\scrM 0,\scrM 0)\| H\alpha 
k (Rd) \leq O

\bigl( 
L\lambda k/N

d - 1
2

\bigr) 
+O

\bigl( 
1/L\lambda k

\bigr) 
,

\| \chi \scrL c(h) - \scrL (\chi h)\| H\alpha 
k (Rd) \leq O

\bigl( 
L\lambda k/N

d - 1
2

\bigr) 
+O

\bigl( 
1/L\lambda k

\bigr) 
,

\| \chi Qc(h, h) - Q(\chi h, \chi h)\| H\alpha 
k (Rd) \leq O

\bigl( 
L\lambda k/N

d - 1
2

\bigr) 
+O

\bigl( 
1/L\lambda k

\bigr) 
.

For the last two estimates we need h, thus g, having \alpha derivatives and 2k-moments in
ΩL. This, of course, is guaranteed by the results of section 5 as long as the negative
mass in g is small, \epsilon \leq \epsilon (g0). As a consequence,

(7.1)
d

dt
\chi h = \scrL (\chi h) +Q(\chi h, \chi h) +\scrR (h) ,

where the remainder is of size \| \scrR (h)\| H\alpha 
k (Rd) \leq O

\bigl( 
L\lambda k/N

d - 1
2

\bigr) 
+ O

\bigl( 
1/L\lambda k

\bigr) 
. Now,

classical estimates on the Boltzmann operator and interpolation shows that

\| Q(\chi h, \chi h)\| H\alpha 
k (Rd) \leq Ck\| \chi h\| 3/2H\alpha 

k (Rd)
,

where the constant Ck depends on k\prime -moments and the H\alpha 
k\prime -norm of h for some k\prime \geq 

k + 2\lambda + d. Furthermore, the linearized Boltzmann operation has spectral gap, say
\nu > 0, in H\alpha 

k . See, for example, reference [21, 41]. Thus, we can integrate (7.1) to
obtain that

\chi h(t) = \chi h0 +

\int t

0

e\scrL (t - s)Q(\chi h, \chi h)(s)ds+

\int t

0

e\scrL (t - s)\scrR (h)(s)ds .
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Since, the remainder \scrR (h) may not have zero mass, momentum, and energy, we apply
the operator 1  - \pi , where \pi is the standard projection on the Boltzmann null space
in H\alpha 

k (\BbbR 
d) \subset L1

2/\lambda (\BbbR 
d), which is given by

\pi h =
\sum 

\phi \in \{ 1,v1,\cdot \cdot \cdot ,vd,| v| 2\} 

\int 

Rd

h(v)\phi (v)dv \phi (v)\scrM (v) , \scrM is the normalized Maxwellian.

Using the fact that the semigroup and \pi commutes, one has

(1 - \pi )\chi h(t) = (1 - \pi )\chi h0 +

\int t

0

e\scrL (t - s)Q(\chi h, \chi h)(s)ds+

\int t

0

e\scrL (t - s)(1 - \pi )\scrR (h)(s)ds ,

where we used that (1 - \pi )Q(\cdot , \cdot ) = Q(\cdot , \cdot ). Thus, applying the H\alpha 
k -norm we conclude

that

\| (1 - \pi )\chi h(t)\| H\alpha 
k (Rd) \leq \| (1 - \pi )\chi h0\| H\alpha 

k (Rd) +
1

\nu 

\Bigl( 
O
\bigl( 
L\lambda k/N

d - 1
2

\bigr) 
+O

\bigl( 
1/L\lambda k

\bigr) \Bigr) 

+ Ck

\int t

0

e - \nu (t - s)\| \chi h(s)\| 3/2
H\alpha 

k (Rd)
ds .

(7.2)

Now, the conservation routine grants that \pi h(t) = 0 for any t \geq 0. Then,

\| \pi \chi h\| H\alpha 
k (Rd) = \| \pi (1 - \chi )h\| H\alpha 

k (Rd) \leq Ck,\alpha \| (1 - \chi )h\| L1
k(R

d) = O
\bigl( 
1/L\lambda k

\bigr) 
.

As a consequence,
(7.3)
\| (1 - \pi )\chi h(t)\| H\alpha 

k (Rd) = \| \chi h(t)\| H\alpha 
k (Rd) +O

\bigl( 
1/L\lambda k

\bigr) 
= \| h(t)\| H\alpha 

k (ΩL) +O
\bigl( 
1/L\lambda k

\bigr) 
.

Thus, estimates (7.2), (7.3), and (2.27) leads to the control

\| h(t)\| H\alpha 
k (ΩL) \leq \| h0\| H\alpha 

k (ΩL) +
1

\nu 

\Bigl( 
O
\bigl( 
L\lambda k/N

d - 1
2

\bigr) 
+O

\bigl( 
1/L\lambda k

\bigr) \Bigr) 

+ Ck

\int t

0

e - \nu (t - s)\| h(s)\| 3/2H\alpha 
k (ΩL)ds =: Y (t) .

(7.4)

Observing that

Y \prime (t) = Ck \| h(t)\| 3/2H\alpha 
k (ΩL)  - \nu Ck

\int t

0

e - \nu (t - s)\| h(s)\| 3/2H\alpha 
k (ΩL)ds ,

one concludes, using (7.4), that

(7.5) Y \prime (t) + \nu Y (t) \leq CkY
3/2(t) + \nu \| h0\| H\alpha 

k (ΩL) +O
\bigl( 
L\lambda k/N

d - 1
2

\bigr) 
+O

\bigl( 
1/L\lambda k

\bigr) 
.

This estimate tell us that if

(7.6) Ck
\sqrt{} 
Y0 = Ck

\sqrt{} 
\| h0\| H\alpha 

k (ΩL) +
1

\nu 

\Bigl( 
O
\bigl( 
L\lambda k/N

d - 1
2

\bigr) 
+O

\bigl( 
1/L\lambda k

\bigr) \Bigr) 
\ll \nu ,

then

(7.7) \| h(t)\| H\alpha 
k (ΩL) \leq Y (t) \lesssim \| h0\| H\alpha 

k (ΩL)+
1

\nu 

\Bigl( 
O
\bigl( 
L\lambda k/N

d - 1
2

\bigr) 
+O
\bigl( 
1/L\lambda k

\bigr) \Bigr) 
, t > 0 .

This proves the following local stability estimate for the conservative semidiscrete
solution.
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Proposition 7.1 (local stability for the semidiscrete scheme). Fix \alpha 0 \geq 0 and
let g0 \in H\alpha 0

2k (ΩL) with k \geq k\ast > 1+ d
2\lambda , an initial datum for the semidiscrete problem.

Assume that \| g0  - \scrM 0\| H\alpha 
k (ΩL) \leq \delta /2 for 0 < \delta \ll min\{ \nu , \epsilon (g0)\} . Then, there exist

a lateral size L0(g0, \nu ) > 0 and a number of modes N0(g0, L0, \nu ) such that for any
\alpha \leq \alpha 0

sup
t\geq 0

\| g  - \scrM 0\| H\alpha 
k (ΩL) \leq \delta , L \geq L0 , N \geq N0 ,

where \scrM 0 is the Maxwellian having the same mass, momentum, and energy as the
initial configuration g0.

Proof. The result follows from the aforementioned discussion noticing that (7.7)
is valid provided L is taken first sufficiently large and then N := N(L), in a way that
(7.6) is satisfied. Since the constant Ck depends on propagations of moments and
the norm H\alpha 0

k , the validity of (7.7) holds provided the negative mass of g is small.
However, this is clear since

\| g - \| L2
k(ΩL) \leq \| (g  - \scrM 0)1\{ g\leq 0\} \| L2

k(ΩL) \leq \delta \ll \epsilon (g0) .

As a corollary of the error estimates and the local stability of the scheme, exponential
relaxation to the Maxwellian equilibrium follows in Lebesgue and Sobolev norms.
Indeed, using the classical asymptotic Boltzmann theory [21, 41] for variable hard
potentials,

\| f  - \scrM 0\| H\alpha 
k (Rd) \leq Ck \| f0\| H\alpha 

k (Rd) e
 - \nu t ,

where \nu > 0 is the spectral gap of the linearized Boltzmann equation. Thus, for any
\delta > 0 we can choose

(7.8) T (\delta ) := ln

\biggl( 
4Ck \| f0\| H\alpha 

k (Rd)

\delta 

\biggr) 1/\nu 

, so that sup
t\geq T (\delta )/2

\| f - \scrM 0\| H\alpha 
k (Rd) \leq \delta /4 .

Theorem 7.2 (convergence to the Maxwellian equilibrium). Fix \alpha 0 \geq 0 and let
f0 \in H\alpha 0

2k (\BbbR 
d) with k \geq k\ast > 1 + d

2\lambda , an initial datum. Then, for every 0 < \delta \ll 
min\{ \nu , \epsilon (g0)\} there exist a lateral size L0(f0) > 0 and a number of modes N0(L, f0)
such that for any \alpha \leq \alpha 0

sup
t\geq T (\delta )/2

\| g  - \scrM 0\| H\alpha 
k (ΩL) \leq \delta , L \geq L0 , N \geq N0 ,

where \scrM 0 is the Maxwellian having the same mass, momentum, and energy as the
initial configuration f0.

Proof. Letting T = T (\delta ) in Theorem 6.1 for the case \alpha 0 = 0 or Theorem 6.2 for
the case \alpha 0 > 0, one concludes that there exist a lateral size L0(T (\delta ), f0) and number
of modes N0(T (\delta ), L, f0) such that

(7.9) sup
t\in [0,T ]

\| f  - g\| H\alpha 
k (ΩL) \leq \delta /4 , L \geq L0 , N \geq N0 .

Using the triangle inequality with (7.8) and (7.9) one has that

sup
t\in [T (\delta )/2,T (\delta )]

\| g  - \scrM 0\| H\alpha 
k (ΩL) \leq \delta /2 , L \geq L0 , N \geq N0 .

The result follows after invoking the local stability result of Proposition 7.1.
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Remark 7.3. Since the relaxation of the Boltzmann solution f(t, v) is exponen-
tially fast for variable hard potentials, the simulation times are relatively short as
noticed in the previous proof. This makes conservative schemes very stable even
when using relatively small working domains and number of modes.

Completion of proof of Theorem 3.1. We just need to discuss the time
uniform nature of the constants appearing in the error estimates. We first observe
that the conservative spectral scheme follows the nonlinear dynamics of the Boltzmann
equation in the time range [0, T (\delta )/2]. Next, for t \geq T (\delta )/2, the dynamics is relaxed
around the thermal equilibrium, so that, it is controlled by the linear evolution. Hence,

\| f  - g\| H\alpha 
k (ΩL) = \| f  - \scrM 0\| H\alpha 

k (ΩL) + \| g  - \scrM 0\| H\alpha 
k (ΩL) \leq 2\delta for t \geq T (\delta )/2 .

As a consequence, in the long run, f - g is estimated by the minimum between estimate
(6.8) evaluated at T (\delta )/2 and 2\delta . As a consequence, we conclude

sup
t\geq 0

\| f  - g\| H\alpha 
k (ΩL) \leq e\alpha CkT (\delta )

\Bigl( 
\| f0  - g0\| H\alpha 

k+\alpha /2
(ΩL) +O

\bigl( 
L\lambda (k+\alpha /2)+\alpha 0/N (d - 1)/2+\alpha 0

\bigr) 

+Od/2+\lambda k

\Bigr) 
,

for L\geq L0(T (\delta ), f0), N\geq N0(T (\delta ), L0, f0), and the term Od/2+\lambda k
\bigr) 
as defined in (3.9).

Recalling (7.8), note that

e\alpha CkT (\delta ) \sim 
\biggl( 
4Ck\| f0\| H\alpha 

k (ΩL)

\delta 

\biggr) \alpha Ck/\nu 

.

The proof of Theorem 3.1 is concluded after minimizing in \delta > 0, which gives \theta =
\alpha Ck/\nu in items 2 and 3.

8. Conclusion. We have studied the global existence and error estimates for the
homogeneous Boltzmann spectral method imposing conservation of mass, momentum,
and energy by Lagrange constrained optimization. The methods and estimates pre-
sented in the document show that imposing conservation of these quantities stabilizes
the long time behavior of the discrete problem because it enforces the collisional in-
variants. In some sense, this in turn enforces the numerical approximation of the
linearized collisional operator to have the same null space as the true linearized colli-
sion operator, which is the one in charge of the long time dynamics. In particular, the
work domain and the number of modes can be chosen such that the discrete solution
approximates with any desired accuracy the stationary state of the original Boltz-
mann problem in the long run. Although spurious tail behavior is experienced when
the optimization is imposed due to the addition of a quadratic polynomial corrector,
the natural property of creation of moments remains in the semidiscrete problem.
This allows one to minimize such spurious behavior by appropriate choice of simula-
tion parameters. We point out here that other correctors, such as Gaussian, might be
more suitable in this respect. Furthermore, conservation of mass and energy limits
the negative mass produced by the numerical scheme which is essential for long time
accurate simulations.

Appendix A.

A.1. Shannon sampling theorem. The following result is an extension of the
standard approximation estimate for regular functions by Fourier series expansions,
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Shannon sampling theorem, to the H\alpha (ΩL) space. We include here the result for
completeness of the reading.

Lemma A.1 (Fourier approximation estimate). Let g \in H\alpha (ΩL), then

(A.1) \| (1 - ΠNL )g\| L2(ΩL) \leq 
1

(
\surd 
2\pi )d

\biggl( 
L

2\pi N

\biggr) \alpha 
\| g\| H\alpha (ΩL) .

Proof. Parseval’s relation gives

\| (1 - ΠNL )g\| L2(ΩL) =

\sqrt{} \sum 

k>N

| \widehat g(\zeta k)| 2 .

Furthermore, properties of the Fourier transform imply

| \widehat g(\zeta k)| =
1

(
\surd 
2\pi )d

\bigm| \bigm| \widehat D\alpha g(\zeta k)
\bigm| \bigm| 

\prod d
j=1 | (\zeta 

j
k)
\alpha j | 

.

Therefore,

\sum 

k>N

| \widehat gN (\zeta k)| 2 =
1

(2\pi )d

\sum 

k>N

\bigm| \bigm| \widehat D\alpha g(\zeta k)
\bigm| \bigm| 2

\prod d
j=1 | (\zeta 

j
k)
\alpha j | 2

\leq 1

(2\pi )d

\sum 
k>N

\bigm| \bigm| \widehat D\alpha g(\zeta k)
\bigm| \bigm| 2

\prod d
j=1 | (\zeta 

j
N )\alpha j | 2

.

Observe that the sum in the last inequality equals the L2-norm square of D\alpha g  - 
ΠND\alpha g; therefore,

\sum 

k>N

| \widehat gN (\zeta k)| 2 \leq 1

(2\pi )d

\bigm\| \bigm\| D\alpha g  - ΠND\alpha g
\bigm\| \bigm\| 2
L2(ΩL)\prod d

j=1 | (\zeta 
j
N )\alpha j | 2

\leq 1

(2\pi )d

\| D\alpha g\| 2L2(ΩL)\prod d
j=1 | (\zeta 

j
N )\alpha j | 2

.

Conclude by recalling the definition of \zeta N = 2\pi N
L .

A.2. Estimate on the decay of the collision operator.

Theorem A.2. The following estimate holds for any k \geq 0 and \lambda \in [0, 2]:
\bigm| \bigm| \bigm| \bigm| 
\int 

Rd\setminus ΩL

Q(f, f)(v) dv

\bigm| \bigm| \bigm| \bigm| \leq Ok
\bigl( 
mk+1(f)m0(f) + Zk(f)

\bigr) 
.

The term Zk(f) is defined below in (A.3) and only depends on moments up to order
k. In particular one has

(A.2) Zk(f) \leq 2km1(f)mk(f).

Proof. For the negative part,
\bigm| \bigm| \bigm| \bigm| 
\int 

Rd\setminus ΩL

Q - (f, f)(v)dv

\bigm| \bigm| \bigm| \bigm| \leq L - \lambda k
\int 

\{ | v| \geq L\} 
Q - (| f | , | f | )(v)| v| \lambda kdv

\leq L - \lambda k\bigl( mk+1m0 +mkm0

\bigr) 
.

For the positive part,
\bigm| \bigm| \bigm| \bigm| 
\int 

Rd\setminus ΩL

Q+(f, f)(v)dv

\bigm| \bigm| \bigm| \bigm| \leq L - \lambda k
\int 

\{ | v| \geq L\} 
Q+(| f | , | f | )(v)| v| \lambda kdv

= L - \lambda k
\int 

R2d

| f(v)| | f(v\ast )| | u| \lambda 
\int 

Sd - 1

| v\prime | \lambda kb(û \cdot \sigma )d\sigma dv\ast dv.
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Note,
\int 

Sd - 1

| v\prime | \lambda kb(û \cdot \sigma )d\sigma \leq \| b\| L1(Sd - 1)

\bigl( 
| v| 2 + | v\ast | 2

\bigr) \lambda k/2

\leq \| b\| L1(Sd - 1)

k\sum 

j=0

\biggl( 
k
j

\biggr) 
| v| \lambda j | v\ast | \lambda (k - j) .

Use the inequality | u| \lambda \leq | v| \lambda + | v\ast | \lambda with the previous expressions to obtain
\bigm| \bigm| \bigm| \bigm| 
\int 

Rd\setminus ΩL

Q+(f, f)(v)dv

\bigm| \bigm| \bigm| \bigm| \leq 2\| b\| L1(Sd - 1)L
 - \lambda k\bigl( mk+1(f)m0(f) + Zk(f)

\bigr) 
,

where

(A.3) Zk(f) :=

k - 1\sum 

j=0

\biggl( 
k
j

\biggr) 
mj+1(f)mk - j(f).

Furthermore, note that interpolation implies, for 0 \leq j \leq k  - 1,

mj+1(f) \leq m1(f)
k - 1 - j
k - 1 mk(f)

j
k - 1 , mk - j(f) \leq m1(f)

j
k - 1 mk(f)

k - 1 - j
k - 1 .

Therefore,

mj+1(f)mk - j(f) \leq m1(f)mk(f) , 0 \leq j \leq k  - 1 .

This implies that

Zk(f) \leq m1(f)mk(f)

k - 1\sum 

j=0

\biggl( 
k
j

\biggr) 
\leq 2km1(f)mk(f) .

A.3. L2-theory of the collision operator. The following theorems follow
from the arguments in [27, 2, 3]

Theorem A.3 (collision integral estimate for elastic/ inelastic collisions). For
f, g \in L1

k+1(\BbbR 
d) \cap L2

k+1(\BbbR 
d) one has the estimate

(A.4) \| Q(f, g)\| L2
k(R

d) \leq C
\bigl( 
\| f\| L2

k+1(R
d)\| g\| L1

k+1(R
d) + \| f\| L1

k+1(R
d)\| g\| L2

k+1(R
d)

\bigr) 
,

where the dependence of the constant is C := C(d, \| b\| 1).
Theorem A.3 and the Leibniz formula

(A.5) \partial \alpha Q(f, g) =
\sum 

| j| \leq | \alpha | 

\biggl( 
\alpha 

j

\biggr) 
Q(\partial \alpha  - jf, \partial jg) for multi-indexes j , \alpha ,

prove the following theorem; see [27, section 4] for additional discussion.

Theorem A.4 (Sobolev bound estimate). Let \mu > 1 + d
2\lambda . For f, g \in H\alpha 

k+\mu (\BbbR 
d),

the collision operator satisfies
(A.6)

\| Q(f, g)\| 2H\alpha 
k (Rd) \leq C

\sum 

j\leq \alpha 

\biggl( 
\alpha 

j

\biggr) \Bigl( 
\| f\| 2

H\alpha  - j
k+1 (Rd)

\| g\| 2
Hj

k+\mu (R
d)

+ \| f\| 2
H\alpha  - j

k+\mu (Rd)
\| g\| 2

Hj
k+1(R

d)

\Bigr) 
,

where the dependence of the constant is C := C(d, \alpha , \| b\| 1).
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Corollary A.5. Let \mu > d
2 + \lambda . For f \in H\alpha 

k+\mu (\BbbR 
d) the collision operator satis-

fies the estimate

(A.7) \| Q(f, f)\| H\alpha 
k (Rd) \leq C\| f\| 2H\alpha 

k+\mu (R
d) .

The dependence of the constant is given by C := C(d, \mu , \| b\| 1).
In this last section of the appendix we discuss briefly the gain of integrability in

the gain collision operator; see [5] for a more detailed discussion.

Theorem A.6. The collision operator satisfies the estimate for any \epsilon > 0 and
k \geq 0:

\| Q+
\lambda (g, f)\| L2

k(R
d) \leq C\| b\| \infty \| g\| L1

k(ΩL)

\bigl( 
\epsilon r

\prime 

r\prime \| f\| L2
k(R

d) +
1
r\epsilon r \| f\| 

1 - \theta 
L1

k(ΩL)
\| f\| \theta L2

k(R
d)

\bigr) 
,

where \theta = 1
d , r =

d - 2
\lambda , and Cn is a constant depending only on the dimension.
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