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Abstract

We present a formalism for the calculation of interfacial dielectric constant of hydration shells of proteins from
configurations produced by atomistic numerical simulations. The theoretical approach is applied to classical molecular
dynamics simulations of hydrated cytochrome c protein in the range of temperatures from 280 to 330 K. The interfacial
dielectric constant was found to be equal to 2–4 depending on temperature. This dielectric constant reflects constraints
imposed by the protein on the hydration waters and their low ability to polarize in response to an external field.
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1. Introduction

Dielectric properties of hydrated proteins have been a
subject of extensive studies for several decades, both ex-
perimentally [1, 2, 3, 4, 5] and computationally [6, 7, 8].
A part of the difficulty of the problem is a large num-
ber of relaxation processes and a wide range of relax-
ation times and corresponding dipolar responses. On
slow time-scales of tens of nanoseconds, tumbling of
a typically large (100-400 D [9]) protein dipole con-
tributes to an increment of the dielectric constant of so-
lution relative to bulk water. At shorter time-scales, one
observes weak intermediate processes, often related to
cross-correlations between the protein and water dipoles
[6, 3]. This is followed by relaxation of bulk water at its
corresponding Debye peak [10].

A completely separate set of issues related to the
protein dielectric response appears when considering
phenomena strongly affected by electrostatics of the
protein and its environment. Those include most en-
zymatic reactions [11], shifts of pKa values of pro-
tein residues due to local electrostatic fields [12], spec-
tral solvatochromism [13] and Stokes-shift dynamics
[14, 15]. These problems require the knowledge of the
average electrostatic potentials and fields inside the pro-
tein to determine the corresponding shifts of average
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energies recorded experimentally. Variances of electro-
static properties are also needed [7, 11, 16], in particular
for describing protein electron transfer [7, 16], but those
are accessible mostly from numerical atomistic simula-
tions. All these problems, as well as issues related to
protein-protein interactions and ionic effects on protein
stability [17], call for the understanding of the structure
[18] and dynamics [19] of water surrounding proteins.

The present report is focused on the analysis of the
dipolar susceptibility of water in contact with the pro-
tein. Our goal is to establish and test a robust protocol
for calculating such a susceptibility from atomistic sim-
ulations. A number of theoretical formalisms have been
developed in the recent literature to address the ques-
tion of the local polarization profile of water in contact
with electrified substrates [20, 21, 22, 23, 24, 25, 26, 27]
and proteins [8]. Most previous studies have focused
on the local polarization of water dipoles in the in-
terface, which, due to the layered structure of inter-
facial water [28, 29], exhibits large-amplitude oscilla-
tions [30]. Such a nonuniform distribution of polariza-
tion density prohibits defining a single corse-grained pa-
rameter quantifying the polarizability of the hydration
shell. However, gauging polarizability of the interface
is a pressing need, as has been recently demonstrated
by measurements of the dielectric response of thin lay-
ers of water in contact with the graphite substrate [31].
The dielectric constant of interfacial water was reported

Preprint submitted to Chem. Phys. Lett. October 15, 2018



to be ≈ 2 when restricted to the layer ≈ 1 nm thick
[31]. Very similar values (≈ 3 − 9 depending on the so-
lute size) were reported [32] from molecular dynamics
(MD) simulations of model spherical nonpolar solutes
in TIP3P [33] water.

The definition of the interface susceptibility used here
and in previous simulations [32] is distinct from the
models of the local dipolar response [21, 22, 25, 26]. We
instead apply a coarse-graining protocol [34] to produce
the surface polarity entering the electrostatic boundary-
value problem and replacing the bulk dielectric constant
used in standard formulations [35]. The dipolar suscep-
tibility of the interface discussed below incorporates, in
a coarse-grained fashion, the propensity of the inter-
face to polarize when exposed to the field of external
charges. Our application of this formalism to simula-
tions of cytochrome c (cytC) protein has indeed pro-
duced a very low interfacial dielectric constant, ≈ 2− 4,
consistent with previous model simulations [34] and re-
cent measurements [31].

2. Formalism

The electrostatic problem considered here is illus-
trated in Figure 1. We view a protein in solution as a
repulsive core of complex shape, which expels the polar
solvent (water) from its volume. The electric charges
within the protein create the vacuum field E0, which de-
pends on the overall distribution of molecular charge.
The microscopic, instantaneous electric field in water
outside the protein is E. It is the sum of the field E0 of
protein charges (considered as external or free charges
in electrostatics [35]) and the field of the bound charges
located at the atoms of the solvent. These bound charges
have the charge density ρb = −∇ · P, which is a scalar
field equal to the divergence of the vector field P of the
polarization density in the solvent [36]. The vector field
P(r) thus represent the density of dipole moments of wa-
ter at point r in the interface or in the bulk.

We now set up the projection n̂ normal to the divid-
ing surface S at each point of the surface rS and directed
outward from the solvent (Figure 1). According to the
Coulomb law, the difference of normal projections of
the electric fields at the interface, the vacuum E0n and
the ensemble-averaged 〈En〉, is equal to the sum of den-
sities of bound, σb, and free, σ0, charges at the dividing
surface [35]

E0n − 〈En〉 = 4π [σ0 + σb] . (1)

Here, the surface density of the bound charge is given
by the normal projection of the polarization density field
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Figure 1: Schematics of electrostatic calculations performed for the
hydration shell of cytochrome c. The dividing surface (solid line S )
defines the normal unit vector n̂(rS ) specific to the point rS at the
dividing surface and directed outward from water. The electric field of
protein charges inside the protein is E0; the combined field of protein
charges and of the bound charges of water is the instantaneous electric
field E inside the hydration shell. The vector field P is the density of
water dipoles. The shell of thickness s around the protein is defined to
calculate the dipole moment Mn(s) in Eq. (4) by projecting each water
dipole m j on the local surface normal n̂ j. The heme of the protein is
rendered orange.

taken at the dividing surface S

σb = 〈Pn〉 = 〈n̂ · P〉. (2)

In this equation, Pn = Pn(rS ) = n̂(rS ) · P(rS ) is an in-
stantaneous polarization density at the position of the
dividing surface rS projected on the normal direction
n̂(rS ) at the same point of the dividing surface (Figure
1). In contrast, 〈Pn〉 = 〈Pn(rS )〉 is the normal projection
of the polarization density averaged over all configura-
tions of the protein-water system.

The normal projection of the polarization field is the
only parameter of the interfacial electrostatics that en-
ters the boundary-value problem solving for the electro-
static potentialΦ of the protein-water system. The elec-
trostatic potential inside the protein satisfies the Laplace
equation, ∆Φ = −4πρ0, with the density of free charges
ρ0. Generally, 〈Pn〉 is the difference of dipolar field pro-
jections inside and outside of the protein, but we will
assume that water has a significantly higher density of
dipoles and is the only source of dipolar polarization
in the interface. Therefore, 〈Pn〉 is assigned to water
dipoles only.

According to the perturbation theory, the ensemble-
averaged polarization created by the protein charges can
be calculated from the binary correlation between the
instantaneous normal polarization δPn = Pn−〈Pn〉 at the
dividing surface and the potential energy of interaction
δUC = UC − 〈UC〉 of the liquid with the atomic charges
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of the protein [32, 34]

〈Pn〉 = −β〈δPnδU
C〉. (3)

Equation (3) in principle allows one to calculate the
interfacial polarization from ensemble averages pro-
duced by numerical simulations. We, however, want to
formulate the problem in terms of linear susceptibilities
and will use a number of coarse graining approxima-
tions to arrive at a sufficiently general and robust defini-
tion of the dipolar susceptibility of the hydration shell.

One has to first recognize that the dividing surface
between water and protein is not uniquely defined and
〈Pn〉 will show oscillations reflecting water’s interfacial
structure and depending on where the dividing surface
has been chosen. The approach suggested in the past
[34, 32] was to average these interfacial oscillations by
calculating the total dipole moment Ms(s) of the shell
with the thickness s measured from the van der Waals
surface of the protein

Mn(s) =
∑

r j∈shell

m j · n̂ j. (4)

Here, m j are individual dipole moments of water
molecules with coordinates of the oxygen atoms r j (Fig-
ure 1). The water molecules with at least one of their
atoms within the distance s from the closest protein
atom were chosen to reside within the hydration shell
of thickness s (Figure 1). Each dipole moment m j was
projected on the local normal n̂ j calculated by locating
a protein atom closest to the water molecule and using
this direction as the normal to the surface.

Since the polarization density is the volume deriva-
tive of the dipole moment [35], one can coarse-grain the
normal polarization projection at the dividing surface by
taking the derivative with respect to the thickness s of
the statistical correlation involving the total dipole mo-
ment of the shell

〈P̄n〉 = −βA
−1 d

ds

〈

δMn(s)δUC
〉

. (5)

Here, A is the surface area of the dividing surface.
Further, in Eq. (5), we have done an additional step
compared to the protocol adopted earlier [34, 32],
where spherical geometries for the solutes were used.
Since the geometry of the protein is non-spherical, the
ensemble-averaged polarization 〈Pn〉 given by Eq. (3)
depends on the position rS at the dividing surface.
Therefore, earlier protocols [34, 32] are not applicable
here and additional coarse-graining is required. This is
achieved with the coarse-grained 〈P̄n〉, which is the av-
erage of the normal polarization projection over both the

interfacial oscillations, i.e., over different choices of the
dividing surface, and over inhomogeneities at the pro-
tein surface, i.e., over different points rS for each choice
of the dividing surface.

The next step aims at formulating the problem in
terms of interfacial susceptibilities. Since susceptibil-
ity of the interface should be related to the protein
charge producing the electric E0, we replace UC with
the product of the solvent electrostatic potential φs with
the total charge of the protein Q: UC = Qφs, where
φs =

∑

i(qi/Q)φsi and the sum runs over all atomic
charges qi of the protein multiplied with the electrostatic
potentials φsi at their corresponding locations. Here, the
entire set of φsi needs to be evaluated at each protein-
water configuration. We eliminate this computational
difficulty by assigning Q and φs to the center of mass of
the protein (the center of charge can be chosen instead,
but usually produces very close results). Therefore, φs

is the instantaneous, fluctuating electrostatic potential of
water at the center of mass of the protein.

This approximation leads to a robust definition of
the interface susceptibility as the ratio of 〈P̄n〉 and the
surface-averaged normal-projected electric field of the
protein charges 〈Ē0n〉

χ0n =
〈P̄n〉

〈Ē0n〉
. (6)

The surface-averaged 〈Ē0n〉 is given, through the Gauss
theorem [35], by the following relation

〈Ē0n〉 = A−1
∮

A

(E0 · n̂) dA = −
4πQ

A
. (7)

Combining these equations in Eq. (5), one obtains

χ0n = dχ(s)/ds, (8)

where
4πχ(s) = β 〈δMn(s)δφs〉 . (9)

The interface susceptibility χ0n carries the “0” sub-
script to stress that it is defined as a linear response to
the field of the protein (free) charges 〈Ē0n〉. In con-
trast, the dielectric dipolar susceptibility is typically de-
fined as the response to the ensemble-averaged Maxwell
field 〈Ēn〉, which includes the field of the bound charges
[35]. The susceptibility χint relating 〈P̄n〉 to 〈Ēn〉 as
〈P̄n〉 = χint〈Ēn〉 allows us to define the interface dielec-
tric constant

ǫint − 1 = 4πχint. (10)

One gets from Eq. (1)

〈Ē0n〉 − 〈Ēn〉 = 4π
[

(Qsurf/A) + 〈P̄n〉
]

, (11)
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Figure 2: 4πχ(s) (Eq. (9)) vs the thickness s of protein’s hydration
shell at different temperatures listed in the plot. The dashed lines are
linear fits used to determine slopes in Eq. (8).

where Qsurf is the total surface charge of the protein. By
substituting Eqs. (6) and (7) in this boundary condition,
one obtains by rearranging terms

ǫint − 1 =
4πχ0n

1 + (Qsurf/Q) − 4πχ0n

. (12)

Equation (12) is the main result of our formalism. Be-
low, we will apply this protocol to configurations of the
water-protein system produced by atomistic molecular
dynamics (MD) simulations.

3. Results

The calculations of ǫint were done based on MD tra-
jectories produced for cytC protein (horse heart, PDB
1GIW). Classical, fully atomistic MD simulations at
different temperatures were done as described else-
where [37, 38, 39]. The simulation box contained
one protein molecule solvated by 33231 TIP3P water
molecules. NVT simulations with the trajectory length
of 250 ns were carried out at each temperature after
cooling/heating and equilibration from the equilibrated
configuration at 300 K. Particle mesh Ewald was used
to handle the long-range electrostatics, with the cutoff
distance of 12.0 Å. The time step of 2.0 fs was used for
all simulations.

The electrostatic potential produced by all water
molecules in the simulation box was calculated at the
nitrogen atom closest to protein’s center of mass (NB in
the heme, PDB 1GIW). This nitrogen atom turns out to
be very close to the iron of the heme. The calculations
presented here therefore produce the dipolar suscepti-
bility of the protein-water interface required to calculate
the average electrostatic potential of water at the heme
by solving the dielectric boundary-value problem.

Figure 2 shows 4πχ(s) calculated from Eq. (9) based
on simulations of oxidized cytC (Q = 9) at different
temperatures. The dashed lines indicate the linear inter-
polations used to determine the slope of χ(s) in Eq. (8).
Despite some anticipated oscillations for narrow shells,
reflecting water’s interfacial structure, the adopted for-
malism offers a robust approach to calculate a coarse-
grained dipolar susceptibility.

The calculations of Mn(s) were truncated at s ≈ 11
Å sufficient to produce the linear slope required for
χ0s in Eq. (8). The cross-correlations between the pro-
tein electrostatic field and water’s dipoles can extend to
larger distances of 20-40 Å into the bulk [40, 41]. Our
truncation is therefore within the range of these long-
range cross-correlations, which we do not consider here
since our goal is limited to defining the dipolar suscepti-
bility characterizing the interface of water with the pro-
tein.

The slopes obtained in Figure 2 are used in Eq. (12)
to calculate ǫint at different temperatures (Figure 3).
This calculation requires defining the surface charge
Qsurf. Somewhat different results are obtained depend-
ing on the adopted protocol. Simple counting of the sur-
face residues through VMD [42] leads to Qsurf = 11.
An alternative definition of the surface charge weigh-
ing each charge qi of a water-exposed residue with its
water-exposed area A

exp
i

relative to the total area of the
residue Ai (algorithm provided by Chimera [43]) leads
to Qsurf =

∑

i qi(A
exp
i
/Ai) = 9.7. Both numbers are used

to calculate ǫint in Figure 3 through Eq. (12), and they
yield slightly different results. We stress that ǫint cal-
culated here includes only the nuclear polarization ac-
counted for by the non-polarizable TIP3P model. An
additional interface susceptibility equal, as an estimate,
to ǫ∞ − 1 should be added to ǫint to incorporate the elec-
tronic and atomic polarization. Here, ǫ∞ is the high-
frequency dielectric constant of water [44], mostly re-
lated to electronic and atomic polarizabilities of the in-
dividual molecules. The effect of electronic polarizabil-
ity in the interface might be more complex than this
crude estimate since the effective dipole moment of wa-
ter is expected to be lower in the interface compared to
the bulk [45].

In contrast to the dielectric constant of bulk di-
electrics [44] and to definitions of the protein dielectric
constant based of fluctuations of the protein dipole mo-
ment [7], the interface dielectric constant ǫint is not a
direct gauge of the fluctuations of the dipole moment
of water in the interface. The fluctuations of the dipole
moment of hydration shells of nonpolar solutes [23, 24]
are often enhanced compared to the bulk, following the
local density profile in the interface [24]. In contrast,
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Figure 3: ǫint (Eq. (10)) vs T for oxidized cytochrome c with the to-
tal charge Q equal to 9. The calculations are done with the surface
charge Qsurf equal to 9.7 (diamonds) and 11 (circles). The dashed
lines connect the points to guide the eye.

fluctuations of the overall dipole of the protein hydra-
tion shell are reduced [8] compared to the bulk. The nor-
mal projection of the shell dipole on the surface normal,
represented by ǫint, is further reduced compared to fluc-
tuation of the overall shell dipole, leading to low values
of ǫint reported here. Both effects reflect the frustrated,
domain-like [46] arrangement of water in contact with
charged and polar residues at the surface of the protein.

Low interface dielectric constant observed in our sim-
ulations does not represent the dielectric constant of the
bulk. In solid materials, and in dielectric models rep-
resenting solid dielectrics [35], the surface polarization
〈Pn〉 is linked to the bulk dielectric constant. This is
because a solid dielectric maintains bulk stress, which
propagates to the surface in the form of surface polar-
ization and the corresponding surface charge density.
This picture goes back to Maxwell who viewed a solid
dielectric as two oppositely-charged liquids which can
be shifted relative to each other through the bulk stress
caused by an external electric field [47]. The ability to
maintain bulk stress is central to this argument allowing
propagation of a bulk property to the interface. Liquids
do not maintain bulk stress, and the surface polariza-
tion represents only a thin interfacial layer of molecu-
lar scale [30, 34, 31]. The interface susceptibility cal-
culated here is a property of this thin interfacial layer,
which does not apply to the bulk. In contrast, the bulk
dielectric response develops from mutual orientational
correlations of dipoles in the liquid [44] represented by
chains of dipolar correlations with long-ranged, ∝ r−3,
distance decay [48]. The bulk dielectric constant, as
a measure of dielectric screening and liquid polarity,
arises from accumulation of these correlations over dis-
tances larger than molecular scale. Interface prevents
accumulation of dielectric screening: geometric and en-

ergetic constrains in the interface frustrate the dipoles
and break their long-range correlations, effectively lead-
ing to a reduced interface susceptibility.

4. Conclusions

Water in the hydration shell of a protein is highly per-
turbed from the bulk through the combination of local
electrostatic fields of ionized surface residues, hydrogen
bonds to the protein, and mutual frustration of dipoles
in the geometrically constrained interfacial layer. De-
spite high degree of the dynamic and static disorder
of the protein hydration shell [8, 49], the dipolar re-
sponse in the direction normal to the dividing surface
is strongly restricted. The result is a very low effec-
tive dielectric constant of the hydration layer (Figure 3).
This effective dielectric constant enters the electrostatic
boundary-value problem and thus determines the aver-
age electrostatic potential inside the protein.

The precise physical origin of the low susceptibil-
ity of the interface is not easy to establish. Electric
fields are strong at the protein surface, but much weaker
fields, ≈ 7 × 105 V/cm, were applied in experiments
[31] with thinnest water layers available for measure-
ments and yielding ǫint ≈ 2. Simulations indicate that a
low interface dielectric constant remains essentially un-
changed between ionic and neutral solutes [32]. This
simulation evidence, combined with experimental ob-
servations [31], allows us to suggest that the main cause
of the weak dipolar response is through geometrical
constraints preventing large-amplitude reorientations of
the interfacial dipoles in and out of the normal direction.

The dipolar response of the interface is very dif-
ferent from the bulk and that should lead to a num-
ber of observable consequences linked to the interfa-
cial polarization being qualitatively and quantitatively
different from the predictions of the standard dielec-
tric boundary-value problem [35]. Absorption of ra-
diation by protein solutions does not follow the recipe
of Maxwell’s electrostatics and instead can be formu-
lated in terms of the Lorentz virtual cavity [41]. Along
similar lines, the force experienced by a protein in a
nonuniform electric field (dielectrophoresis) turns out
to be three-four orders of magnitude higher [50] than
what follows from the typically used Clausius-Mossotti
factor. How all these effects combine to allow specific
orientations of the protein under the influence of strong
electric fields in the intracellular environment remains
an open question.
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