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Abstract

Proteins experience either pulling or repelling force from the gradient of an external electric field
due to the effect known as dielectrophoresis (DEP). The susceptibility to the field gradient is tradition-
ally calculated from the solution of the electrostatic boundary-value problem, which requires assigning
a dielectric constant to the protein. This assignment is essential since the DEP susceptibility is propor-
tional, in dielectric theories, to the Clausius-Mossotti factor, the sign of which is controlled by whether
the protein dielectric constant is below (repelling) or above (pulling) the dielectric constant of water.
Dielectric constant is not uniquely or even well defined for a particle of molecular size and the Clausius-
Mossotti factor is shown here to be inadequate for describing the dipolar response of the protein and
hydration water. An alternative theory is developed from the standpoint of molecular properties of the
protein solute and water solvent. The effective polarity of the protein molecule enters the theory in
terms of the variance of its molecular dipole moment and its refractive index. Molecular dynamics
(MD) simulations of the protein cytochrome c in solution are performed to calculate the dipolar sus-
ceptibilities entering the theory. We find that tumbling of the protein on the nanosecond time-scale
results in a positive DEP (pulling). The DEP susceptibility for cytochrome c acquired from MD sim-
ulations is 103 − 104 times higher than predicted by the Clausius-Mossotti factor. Nevertheless, this
high DEP susceptibility is fully consistent with empirically confirmed Oncley’s equation connecting
the protein dipole to dielectric increments of protein solutions. For cytochrome c, high DEP suscep-
tibilities calculated from MD are consistent with experimental dielectric data. We provide a general
relation connecting the DEP susceptibility to the dielectric increment of solution.

Introduction
Dielectrophoresis (DEP) is the phenomenon re-
sponsible for a force acting on a particle, often in
solution, from a nonuniform electric field. The
DEP force is a consequence of the dependence of
the free energy of a particle on its position in a non-
uniform external field. If ⟨M⟩E is the combined
average dipolemoment induced in the solute and in
the solute-solvent interface by the (vacuum) field
of external charges E0 (Figure 1), the free energy
of polarizing the solute becomes1,2

FDEP = −1

2
⟨M⟩E · E0 (1)

Here, ⟨. . . ⟩E refers to an ensemble average calcu-
lated in the presence of the external field.
Since weak fields are employed in experiments,

linear response holds and ⟨M⟩E is proportional to
E0. The proportionality coefficient can be identi-
fied with the combined dipolar susceptibility of the
solute and its interface with the liquid. One then
proceeds to define the DEP force as the negative
gradient of the free energy, with the result

FDEP =
3Ω0

8πεs
K∇E2

0
(2)

Here, we have used the notations usually adopted
in the literature,3–5 withΩ0 standing for the volume
of the solute and εs for the dielectric constant (rel-
ative permittivity) of the solvent. Note that if the
field is induced in a plane capacitor with applied
voltage V , it defines the Maxwell field E = V /d
(d is the distance between the plates), with a simple
connection E = E0/εs. Establishing the connec-
tion between E and E0 requires solving the dielec-
tric boundary-value problem for more complex ge-
ometries. Finally,K in eq 2 is the DEP susceptibil-
ity. The parameters in eq 2 are chosen in a such a
way that K produces the Clausius-Mossotti factor
when continuum electrostatics is used to calculate
the induced dipole moment

K =
ε0 − εs

ε0 + 2εs
(3)

Here, ε0 is the dielectric constant assigned to the
solute.
The basic prediction of eq 3 is the distinction be-

tween particles more or less polarizable than the
surrounding solvent. If the particle is less polariz-
able, ε0 < εs, the DEP is negative and the solute
is repelled from the field gradient. In the oppo-
site limit of the solute more polarizable than the
solvent, ε0 > εs, it is attracted to the field gra-
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dient. While this picture is likely to be correct
for sufficiently large solutes, the dielectric constant
ε0 can be reliably defined for macroscopic materi-
als only. Even for solutes of the mesoscopic size
(from tens of nm to µm), the surface polarization
does not necessarily follow the standard assump-
tions of the theory of dielectrics. In addition to
the surface ionic conductivity and polarization, a
common complication,3,6 the surface polarization
caused by the solvent dipoles does not necessar-
ily follow the standard boundary-value problem for
two macroscopic dielectrics in contact.7 How the
surface polarization is modified compared to the
standard predictions for the protein-water interface
and what are the observable consequences of such
changes are still mostly open questions.

_

_

_
_

+
+ +

+

⟨M0⟩E

⟨Mint⟩E

E0

Figure 1: Schematic representation of the solute in the
inhomogeneous external field E0. The overall dipole
induced by the field ⟨M⟩E is a sum of the solute dipole
⟨M0⟩E and the interface dipole ⟨Mint⟩E : ⟨M⟩E =

⟨M0⟩E + ⟨Mint⟩E The pluses and minuses at the di-
viding solute-solvent surface indicate the surface charge
density1 produced by a discontinuity in a polarized di-
electric, which are responsible for ⟨Mint⟩E .

For objects of molecular size, ε0 is not well de-
fined from the theoretical standpoint8,9 and in most
cases cannot be measured experimentally.10 There
is a clear need for a theory based on molecular
properties of the solute. Developing such a the-
ory for proteins in solution is the goal of this study.
Most importantly, we show that eq 3 does not de-
scribe the DEP of proteins. Even for positive DEP,
the highest value of K, achieved at ε0 → ∞, is
K = 1. In contrast, our present simulations con-
firm an early result11 thatK far exceeds this num-

ber, reaching K ≃ 104 in simulations of proteins
in water in the absence of electrolyte. Proteins in
aqueous solutions should thus show amuch greater
DEP than predicted by eq 3 solely on the ground of
dielectric theories.
The possibility of measuring DEP for molecu-

lar objects of the size of a soluble protein has been
demonstrated in recent years by a number of stud-
ies12–14 (see refs 15–17 for recent reviews). How-
ever, the magnitude of the DEP susceptibility for
proteins has not been measured. Stronger DEP ef-
fect then predicted by eqs 2 and 3 was observed
in ref 12, but the origin of this enhancement has
remained unknown. Even the sign of the DEP ef-
fect for proteins has not been clearly established:
both negative13 and positive18 signs of DEP sus-
ceptibilities have been reported. Here we address
these issues to clarify the value of the DEP effect
that should be expected for proteins in aqueous so-
lutions.
Proteins typically possess a relatively large den-

sity of surface charge19 required for their solubil-
ity. The negative and positive charges mostly com-
pensate each other20 to produce a typically neg-
ative overall charge of the protein at physiologi-
cal conditions (cytochrome c studied here is, how-
ever, positively charged). The non-spherical shape
of the molecule and incomplete compensation be-
tween the charges result in an overall large dipole
moment of the protein of several hundreds of de-
bye units when calculated relative to its center of
mass.20–26 For instance, the dipole moment of cy-
tochrome c considered here is in the range M0 ≃
250 − 400 D depending on protein’s net charge.27
Fluctuations of orientations of this large dipolemo-
ment are related to protein’s tumbling occurring on
the typical time-scale of∼ 10−20 ns.28 Since these
times are much shorter than the observation times
of the DEP, these librations of a relatively large
molecular dipole moment lead to a large effective
polarity of the protein molecule.
The polarity of a polar material is gauged in theo-

ries of dielectrics by the dipolar parameter29,30 y =
(4π/9)βm2ρ, where m is the molecular dipole, ρ
is the number density of the dipoles, and β =
(kBT )

−1 is the inverse temperature. For a single

3

Page 3 of 17

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



protein molecule this parameter becomes31

y0 =
4π

9
βΩ−1

0
⟨(δM0)

2⟩ (4)

where the deviation of the protein dipole moment
from its average (usually zero) value, δM0 = M0−
⟨M0⟩, is taken to determine the variance. If this pa-
rameter is considered as a gauge of polarity, a typi-
cal globular protein has y0 ≃ 10−60, significantly
exceeding y ≃ 6 for bulk water. Based on these
estimates, suggesting that a typical protein should
be more polarizable than surrounding water, one
would expect a positive DEP for proteins in solu-
tions, in agreement with more detailed calculations
presented below. Low dielectric constants typi-
cally reported for protein powders might be mis-
leading for the DEP calculations since proteins do
not fully develop their surface ionization configu-
rations at those conditions9,32 and, potentiallymore
importantly, tumbling of the protein dipole is sup-
pressed in the powder samples.33
The outline of the paper is as follows. We first

start with a general theory of molecular DEP, fol-
lowed by the results of molecular dynamics (MD)
simulations and by discussion of the results. We
then connect the DEP experiment to dielectric
spectroscopy of the protein solutions. More specif-
ically we show that the DEP susceptibility K(ω),
measured at the frequency ω, is related to the di-
electric increment of the solution over bulk solvent
by a simple equation

K(ω) =
∆ε(ω)

η0

2εs(ω)
2 + 1

9εs(ω)
(5)

Here, η0 is the volume fraction of protein
molecules in solution and ∆ε(ω) is the increment
of the frequency-dependent dielectric function of
solution over that of the solvent, εs(ω). The DEP
susceptibility and the dielectric function refer to
the same frequency ω of the applied field of ex-
ternal charges E0(ω). The ratio ∆ε(ω)/(3η0) thus
establishes the linear slope of the dielectric incre-
ment with the volume fraction of the solutes.5,34
Equation 5 is very significant from the practical

standpoint as the potential source of calibration of
DEP susceptibilities. It provides an independent
access to the DEP susceptibility of proteins from
dielectric spectroscopy of solutions. A significant

practical appeal of this connection is that dielectric
measurements give an integrated account of both
the dipolar and electrolyte components of the re-
sponse (at sufficiently high frequencies), which is
currently challenging to calculate from numerical
simulations8 (see below).

General theory
We first consider a general particle of arbitrary
shape and volume Ω0 dissolved in a polar liquid
with the dielectric constant εs (Figure 1). This par-
ticle is placed in a spatially nonuniform electric
field E0(r) created by external charges. The field
changes on the length-scale significantly exceed-
ing the size of the molecule and can be considered
as locally constant. We therefore drop the spatial
dependence and put E0(r) = E0. The external
field aligns the dipole moment of the solute, thus
creating an average dipole moment along the field

⟨M0⟩E = χ0Ω0E0 (6)

where χ0 is the dipolar susceptibility of the solute.
The polarization of the solute dipole is not the

only effect of the external electric field. Since the
solute-solvent interface does not coincide with the
equipotential surface of the external field, an inho-
mogeneous polarization of the interface is induced
by the field in addition to aligning the solute dipole.
The origin of this polarization is easiest to under-
stand in the case of zero solute dipole, i.e., for a
void in a polar liquid. In the case of the void, the
surface charges in the polarized dielectric next to
the dividing surface lead to an effective dipole mo-
ment of the interface opposite in the direction to the
external electric field. This is illustrated in Figure
2.
The electrostatic field of external charges is not

sufficiently strong to permanently orient dipoles of
the liquid. However, when molecular dipoles, in
the course of thermal motion, cross the interfacial
dividing (dielectric) surface, their dipole moments
are more often oriented along the external field,
which is the only field of charges present in the
problem. This dynamic stationary condition is rep-
resented by an effective static surface charge with
the negative an positive lobes (Figure 2). For a
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spherical void, the solution of the standard dielec-
tric boundary-value problem leads to the following
interface dipole1,2

Mint = − 3Ω0

2εs + 1
P (7)

where P is the uniform polarization density in-
duced in the bulk dielectric by the uniform external
field.1

E0

+ ++

−

−

− P

Mint

Figure 2: Schematic representation of the interfacial
polarization of a void placed in the locally homoge-
neous external field E0. The arrows indicate dipoles
of the solvent arriving in the interface with preferential
orientation dictated by the external field. The interface
dipoleMint is formed by the surface charge density rep-
resenting the alignment of the interfacial dipoles.1 The
uniform polarization density of the dielectric induced
by the external field is P .

The physical meaning of this result is straight-
forward, and it helps to understand possible pit-
falls of extending this line of thought to more com-
plex situations. The dipole moment Mint in eq 7
describes the reduction of the sample polarization
by introducing voids into it. For an ideal solution
of N0 voids, polarization of the bulk liquid is re-
duced by the term N0Mint. The induction of the
surface charge in the interface (Figure 2) is respon-
sible for the difference between the electrostatic
result in eq 7 and the naive assumption assigning
the reduction of the dipole moment to the volume
eliminated from the polarized dielectric −N0Ω0P.
This naive approach, disregarding the non-additive
surface polarization in the interface, leads to repre-
senting the absorption coefficient of a solution by
a volume-weighted sum of component absorption
coefficients.35,36 This deficiency was corrected in
refs 37 and38.
When the dipole moment Mint is used in eq 1

along with the assumption that P is created by
polarizing a dielectric slab in the plane capacitor,

P = (εs − 1)/(4πεs)E0, one arrives at eq 3 with
ε0 = 1 corresponding to a non-polarizable void.
This is the case of a negative DEP when the dipole
moment induced in the interface is opposite to the
external field and leads to the repulsion of the so-
lute from the field gradient. A more general case
of a void filled with the dielectric is obtained by
noting that the dielectric boundary-value problem
is sensitive only to the ratio of two dielectric con-
stants at the interface εs/ε0. Therefore, the void
problem is equivalent to the case of an arbitrary
dielectric constant assigned to the spherical solute
when εs/ε0 is used for the solvent. Equation 3 then
follows from eq 7.
Before we proceed to a more general case of

the solute carrying its dipole moment and then to
a realistic hydrated protein, it is useful to point
out potential pitfalls of the physical picture illus-
trated in Figure 2. The assignment of the interfa-
cial surface charge to dipoles arriving to the inter-
face with preferential orientations determined by
the external field can be strongly modified by the
interfacial structure of the solvent. For instance,
adopting Figure 2, let’s imagine that the orienta-
tion of the dipole pointing outward from the void
is strongly disfavored by the structure of the inter-
face, but dipoles pointing toward the void are fa-
vored instead. In such interfaces, the positive lobe
of the surface will form, but the negative lobe will
be strongly suppressed. The interface will then
behave as a monopole and the solute can display
mobility even in a uniform external field.39 One
also has to keep in mind that surface charges of the
solute (ionized residues of the protein) will create
their own orienting fields and thus impose orien-
tational structure of the interfacial water. The sur-
face charge density assigned to the dividing sur-
face will then reflect the distribution of the solute
charge close to the interface.
When the nonuniform distribution of the molec-

ular charge of the solute is approximated by a point
dipole moment, the total dipole moment induced
by the external field becomes a sum of the solute’s
permanent dipole preferentially aligned along the
field and the dipole of the polarized interface (Fig-
ure 1)

⟨M⟩E = ⟨M0⟩E + ⟨Mint⟩E (8)

Here, in contrast to the case of a void, we have
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added angular brackets to the interface dipole to
stress that it is now determined by the combined ef-
fect of the external field and the field of the solute.
Given that the latter fluctuates due to thermal mo-
tion, only the average value of the interface dipole
is considered. Further, one can define the suscep-
tibility of the interface in analogy with eq 6 as fol-
lows

⟨Mint⟩E = χintΩ0E0 (9)

The solute susceptibility χ0 in eq 6 follows di-
rectly from the static limit of the linear response
approximation40 as

χ0 =
β

3Ω0

⟨δM0 · δM⟩ (10)

Here, the angular brackets without the subscript
denote an ensemble average in the absence of an
external electric field. Further, in eq 10, M =
M0 +Ms is the instantaneous total dipole moment
of the sample, including the dipole moment of the
solute, M0, and the dipole moment of the solvent,
Ms.
The solute dipolar susceptibility χ0 can be con-

trasted with the self susceptibility

χ00 =
β

3Ω0

⟨(δM0)
2⟩ (11)

which does not incorporate the cross correlation28

between the solute and solvent dipole moments,
⟨δM0 · δMs⟩. The ratio between the total and self
susceptibilities determines the cavity field suscep-
tibility equal to the ratio of the field Ec inside the
solute void (cavity field41) to the field of external
charges11

χc =
χ0

χ00

=
Ec

E0

(12)

There exist two analytical results for the suscep-
tibility χc established in the theory of dielectrics,
the Maxwell (or Onsager42) cavity field and the
Lorentz virtual cavity field.30 The former consid-
ers the physical void inside the dielectric placed
in a uniform electric field. The polarization of the
interface creates the interface dipole given by eq
7 and the corresponding screening of the external
field inside the cavity

χM
c =

3

2εs + 1
(13)

In the case of the virtual Lorentz cavity, no phys-
ical polarization of the interface is considered and
the surface charge density is identically zero (no
“+” and “−” in the interface in Figure 2). The re-
sult for the cavity field susceptibility is

χL
c =

εs + 2

3εs
(14)

There is no screening of the external field in the
Lorentz cavity (superscript “L”) and only a reduc-
tion of the external field by a factor of three occurs
in the limit of a highly polar solvent, εs * 1.
The importance of the difference between

⟨(δM0)
2⟩ in eq 11 and ⟨δM0 · δM⟩ in eq 10

can be illustrated by the example of a spheri-
cal region with the volume Ω0 arbitrarily chosen
from bulk liquid. The longitudinal response to
the external field defines uniform polarization43

P = (εs − 1)/(4πεs)E0, which is also the po-
larization of the liquid in the slab geometry of
the dielectric experiment. The polarization of the
spherical regionwithin the liquid also follows from
the perturbation theory44

εs − 1

4πεs
E0 =

β

3Ω0

⟨δM0 · δM⟩E0 (15)

By substituting the Maxwell χM
c in this equation to

connect ⟨δM0 · δM⟩ to ⟨(δM0)
2⟩ (eqs 10, 11, and

12), one arrives at the Kirkwood-Onsager equa-
tion30,43,45

(εs − 1)(2εs + 1)

9εs
=

4πβ

9Ω0

⟨(δM0)
2⟩ (16)

The derivation of the dielectric constant of a liq-
uid by Onsager shrinks the volume Ω0 to a sin-
gle molecule,42 thus missing the Kirkwood corre-
lation factor.30 In contrast, cross-correlations be-
tween the dipoles on the microscopic scale lead
to the microscopic form for the cavity field sus-
ceptibility. Further, the textbook derivation of the
Kirkwood-Onsager equation for a spherical vol-
ume (eq 16) requires this specific shape in order
to replace cross-correlations between the dipoles
inside and outside the sphere with the known solu-
tion for the cavity field.
Wewill not assume any specific form for the cav-

ity field susceptibility and instead will use eq 12
with the input from MD simulations. The knowl-
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edge of χc, in turn, gives access to the interface
dipole moment ⟨Mint⟩E and to the interface suscep-
tibility χint in eq 9. It is proportional to the devia-
tion of χc from its Lorentz limit11

4π

3
χint =

3

2(εs − 1)

[

χc − χL
c

]

(17)

When the cavity susceptibility is close to the
Lorentz limit, no interfacial polarization is created
and the interface dipole ⟨Mint⟩E tends to zero. It is
nearly impossible to predict a priori what kind of
interfacial polarization will be created at the highly
heterogeneous protein-water interface. This prob-
lem is approached here by atomistic MD simula-
tions described below. Before we turn to the MD
results, we first present the final expression for the
DEP susceptibility.
By combining eqs 1, 2, and 8 with the defini-

tions of the corresponding dipolar susceptibilities,
one can arrive at the following expression11 for the
DEP susceptibility K in eq 2

K =
εs + 2

3
yp

+
[

χc − χL
c

]

(

εsyp +
3εs

2(εs − 1)

) (18)

Here,
yp = ye + y0 (19)

is the effective polarity38,46 of the protein as mea-
sured by the combination of the variance of its
dipole moment

y0 = (4π/3)χ00 (20)

and the polarity parameter ye quantifying the den-
sity of induced dipoles in the protein molecule.
This parameter is usually determined by connect-
ing it to the refractive index of the protein np

through the Clausius-Mossotti equation

n2

p − 1

n2
p + 2

=
1

ηp
ye (21)

Here, ηp is the packing fraction of the protein
molecules in the powder used to measure the re-
fractive index. The common approximation is
ηp ≃ 1, as was also used in Onsager’s theory of di-
electrics when accounting for the effects of molec-

ular polarizability.42
The Maxwell and Lorentz results follow from

from eq 18 and the specific forms for the cavity
susceptibility in eqs 13 and 14. In the former case,
one obtains

KM =
3εs

2εs + 1
yp −

εs − 1

2εs + 1
(22)

This equation allows both positive, KM > 0, and
negative, KM < 0, DEP depending on the values
of the solvent dielectric constant and the solute po-
larity parameter yp. In contrast, the Lorentz limit
allows only a positive DEP with

KL =
εs + 2

3
yp (23)

Note that KM in eq 22 returns to eq 3 with ε0 = 1
when yp → 0.
The opposite limit of yp * 1 is more relevant for

proteins in solution. We find from the simulations
of cytochrome c that yp ≃ 40 − 70 at T > 300
K. Given that the static dielectric constant of water
εs ≃ 78 is also very high, one can simplify eq 18
to

K = εsχcyp (24)

We find below that neither Maxwell nor Lorentz
limits describe the low-frequency DEP. However,
dipolar susceptibilities considered here enter other
observables as well. For instance, absorption of
radiation is based on essentially the same dipolar
susceptibilities as the DEP. The Lorentz limit for
the cavity field (eq 14) was found to describe the
absorption of THz radiation by protein solutions.38
Equation 24 is also fully consistent with eq 3

when the standard rules for the electrostatics of in-
terfaces apply. We consider here an ideal gas of
non-interacting solutes allowing an exact relation
between yp and the effective dielectric constant of
such an ensemble of dipoles. Since solute dipoles
are immersed in the dielectric medium with the di-
electric constant εs, all results for the ideal gas of
dipoles can be used upon replacing ε0 with ε0/εs
(only the ratio of the dielectric constants enter the
dielectric boundary-value problem2). One there-
fore obtains29 3yp = ε0/εs − 1. Similarly, eq
13 for the Maxwell reaction field becomes χc =
3/(2εs+ ε0). Combining these two results in eq 24
leads to eq 3.
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Our MD simulations discussed below produce
values of K significantly higher than the upper
boundK ≡ 1 suggested by eq 3. The reason for the
discrepancy, as pointed out above, is that the statis-
tics of arrival of dipoles to the interface (dividing
surface) is dictated by the local structure and is dif-
ferent from the rules established for two macro-
scopic dielectrics in contact. In other words, the
Maxwell boundary-value problem does not apply
to the the interfacial polarization induced by the ex-
ternal field in the protein-water interface. Specifi-
cally for the present problem, the cavity field sus-
ceptibility χc deviates strongly from the prediction
of Maxwell’s electrostatics.11,41

Molecular dynamics simulations
Here we calculate the cavity susceptibility χc and
the solute polarity parameter y0 from MD simu-
lations of cytochrome c heme protein in TIP3P
water. The simulation protocol was described in
more detail elsewhere.47,48 Briefly, we used the
NMR solution structure of horse heart cytochrome
c (PDB 1GIW) as the starting configuration for
classical NVT simulations carried out with NAMD
software suite.49 The trajectory length of≥ 250 ns
was produced for each temperature using the cu-
bic simulation box (100Å×100Å×100Å) contain-
ing one protein and 33231 TIP3P water molecules.
An additional simulation with the added neutraliz-
ing NaCl electrolyte (0.3 mM ionic concentration)
was 310 ns long. Particle mesh Ewald (12 Å cut-
off) was applied to handle the long-range electro-
statics. The time step of 2.0 fs was used in all sim-
ulations.
The simulation results reported here are obtained

without electrolyte in the simulation box. The
overall charge of the simulation box is non-zero
and is equal to the charge of oxidized cytochrome
c (Q = +9). This uncompensated charge does not
affect the calculation of self- and cross-correlations
between fluctuations of water, δMs, and protein,
δM0, dipole moments. Including electrolyte in
simulations of the dielectric response is a diffi-
cult technical problem since the dipole moment
of the electrolyte gains discontinuous unphysical
changes when ions cross the boundaries of the sim-
ulation box in simulation protocols involving pe-

riodic boundary conditions.50 Methods adopted to
study dielectric response of electrolytes include the
unfolding of ionic trajectories into periodic images
of the central simulation box8 and/or using ionic
currents, instead of ionic dipole moments, to con-
struct time-dependent response functions.51,52 Re-
liability of both approaches has not been tested
for the calculation of cross-correlations between
the protein dipole and the dipole of the ionic elec-
trolyte, which enters χ0 in eq 10 when the ionic
component is added to water. We were not able
to converge such correlations in our simulations
involving charge-compensating electrolyte in the
simulation box and for now leave the subject of
the effect of ions on the cavity field susceptibility
to future studies. We nevertheless calculated the
dipolar susceptibilities χ0 and χ00 from the sim-
ulation involving the neutralizing electrolyte and
obtained the cavity susceptibility χc (eq 12) about
25% lower in magnitude than χc with no elec-
trolyte in the simulation cell (Table 1 footnote).
This calculation, however, does not include the
self- and cross-correlations involving the dipole
moment of the ions.
Dynamics produced by MD are used to extend

the static calculations presented above to the fre-
quency domain. The extensions to dynamics are
usually produced in dielectric theories by replac-
ing the static dielectric constants ε0 and εs with
the complex-valued frequency dependent func-
tions ε0(ω) and εs(ω). In terms of applying this
procedure to DEP, on has to take the real part of
K(ω) in eq 3.
In principle, both the solvent and the solute

should possess their own dielectric dispersions re-
lated to Debye relaxation of the corresponding
molecular dipoles.53 However, the Debye peak of
water at ∼ 18 GHz54 is far above the usual fre-
quency range of DEP measurements. For pro-
teins in solution, rotational relaxation of the pro-
tein dipole is caused by tumbling of the protein
on the time-scale of ≈ 10 − 20 ns for a globular
protein.28 Since this time-scale can potentially en-
ter the frequency window of the DEP experiment,
we explicitly consider here the protein dynamics
and the dynamics of the dipole moment of water
coupled to the protein. This is typically not done
in analyzing the DEP data where only the ionic
conductivity is used to produce the frequency de-
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pendent dielectric constant.4 In our present simu-
lations, we consider proteins in water without the
presence of electrolyte. The goal here is to analyze
the polar response ofwater and to calculate the cav-
ity susceptibility of the protein-water interface not
complicated by the effects of the ionic atmosphere.
Since there is a connection between the DEP sus-
ceptibility and dielectric increment of the protein
solution (eq 5) our results with the absence of elec-
trolyte can be contrasted with experimental dielec-
tric measurements where electrolyte is a part of the
dielectric response. The effect of the ionic strength
on the dielectric increment can be explored experi-
mentally and extrapolated to the limit of zero ionic
strength in order to connect with zero-electrolyte
results discussed here.
Calculations in the frequency domain require

dipole-dipole time correlation functions follow-
ing standard recipes of the linear response the-
ory.40,52 Specifically, we calculate the frequency-
dependent susceptibilities χ0(ω) and χ00(ω),
which are one-sided Laplace-Fourier transforms
of the corresponding time-depended susceptibil-
ity functions.40 The results are similar for both
functions and we list here only χ0(ω)

χ̃0(ω) = χ0

[

1 + iωφ̃0(ω)
]

(25)

Here, the tildes are used to distinguish the Fourier-
Laplace transform from the full Fourier transform
and χ0 is the static susceptibility given by eq 10.
Further, the function φ̃0(ω) is obtained from the
normalized time correlation function

φ0(t) = [⟨δM0 · δM⟩]−1⟨δM0(t) · δM(0)⟩ (26)

calculated from simulations. A similar procedure
is used to produce χ̃00(ω), which is based on the
normalized time correlation function of the protein
dipole (Figure 3)

φ00(t) = [⟨(δM0)
2⟩]−1⟨δM0(t) · δM0(0)⟩ (27)

The use of eq 25 and a corresponding equation for
χ̃00(ω) leads to the cavity susceptibility

χc(ω) = χ̃0(ω)/χ̃00(ω) (28)

The complex-valued frequency-dependent DEP
susceptibility K(ω) therefore follows directly

Figure 3: Time correlation functions φ0(t) (solid
lines) and φ00(t) (dashed lines) calculated from
MD of cytochrome c at the temperatures indicated
in the plot. The dashed lines are indistinguishable
from the solid lines on the scale of the plot.

from eq 18 upon replacing χc with its frequency-
dependent analog and using the frequency depen-
dent dielectric function εs(ω) for water.54 In addi-
tion, yp becomes a function of frequency as well,

yp(ω) = ye + (4π/3)χ̃00(ω) (29)

The effective polarity of the solute is thus reduced
to the electronic polarizability given by ye in the
limit when the relaxation time of the solute dipole
far exceeds the period of oscillations of the external
field.
The main results of the simulations are collected

in Table 1. We list in the table the ensemble av-
eraged dipole moment magnitude of the oxidized
cytochrome c, which is in the range of the values
from ≃ 235 D to ≃ 260 D27 reported for charge
+9 cytochrome c experimentally. We also list the
cavity field susceptibilities χc calculated fromMD
simulations and from Lorentz and Maxwell mod-
els. As we mentioned above, the combination of a
large value of χc with a large y0 in eq 24 leads to a
very high DEP susceptibilityK ≃ 103 − 104.
The frequency dependence of the susceptibili-

ties comes from the decay of the correlation func-
tions φ0(t) and φ00(t) (eqs 26 and 27), which both
are found to be essentially single-exponential with
nearly equal relaxation times τR ≃ 11−13 ns aris-
ing from tumbling of cytochrome c in solution (Ta-
ble 1 and Figure 3). The overall frequency depen-
dence of Re[K(ω)] therefore shows the standard
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Table 1: Results of MD simulations for oxidized cytochrome c in TIP3P water.

T , K ⟨M0⟩, D y0
a χc χL

c χM
c K τR, ns

310 238 67 1.62b 0.34 0.02 8010 12.8
320 233 57 1.51 0.34 0.02 6033 11.7
340 216 39 1.52 0.34 0.02 4288 11.2

adetermined from eqs 11 and 20 with the volume of cytochrome c protein Ω0 = 27438 Å3. bcavity susceptibility
χc = 1.24 was calculated from dipolar susceptibilities from 310 ns MD simulation involving neutralizing

electrolyte (0.3 mM ionic concentration). This calculation does not include the dipole moment of the electrolyte.

Debye-type drop at frequencies ωτR ≃ 1 in the fre-
quency range of ∼ 100 MHz (Figure 4). We also
note that in contrast to the static values of χ0 and
χ00, which are noticeably different in their magni-
tudes, the dynamics of φ0(t) and φ00(t) are nearly
indistinguishable (Figure 3). This observation im-
plies that the protein is the slowest part of the en-
tire system and water follows adiabatically its ro-
tational tumbling.

Figure 4: Re[K(ω)] for cytochrome c at the tem-
peratures indicated in the plot.

In addition to a large value of the DEP suscepti-
bility, far exceeding the standard estimates, our re-
sults show a significant dependence of the DEP ef-
fect on temperature. This result is not shared by the
continuum estimates. A strong temperature depen-
dence arises from the factor yp(T ) in eq 24, which
obviously scales as T−1 per eqs 11, 19, and 20.
However, this is not the only source of change. The
dipole variance ⟨(δM0)

2⟩ itself shows a substantial
decrease with increasing T , as was also found ex-
perimentally,55,56 thus enhancing the overall drop
of χ00 and yp (eqs 19 and 20) with increasing tem-
perature (Table 1).

Dielectric spectroscopy of solu-
tions
Equation 24 suggests that DEP gives access only to
the product yp(ω)χc(ω). The same two functions
in fact enter the increment ∆ε(ω) of the dielec-
tric function of a low-concentration (ideal) solution
compared to the dielectric constant of the solvent.
For ideal solutions, the dielectric increment is a lin-
ear function of the volume fraction η0 occupied by
the solutes. In order to derive the equation for the
solution dielectric constant, we first direct the ex-
ternal field perpendicular to the slab of dielectric in
a plane capacitor of the dielectric experiment (z-
axis). The dielectric constant of the mixture (so-
lution) εmix occupying the volume V with N0 so-
lutes can be directly found by applying the first-
order perturbation theory to polarization along the
z-axis30

εmix − 1

4πεmix
E0 =

εs − 1

4πεs
E0 +

β⟨δM2

0z⟩N0

V
χcE0

(30)
Since we want to express the dielectric constant in
terms of a spherically-symmetric dipole moment
variance ⟨(δM0)

2⟩, we then direct the external field
along the plane of the dielectric slab. There is no
field discontinuity in this geometry1 and the exter-
nal field E0 is equal to the Maxwell field E. One
obtains

εmix − 1

4π
E =

εs − 1

4π
E +

β⟨δM2

0x⟩N0

V
χcE (31)

where the x-axis is chosen in the plane of the di-
electric slab.
We next combine eqs 30 and 31 to form the vari-

ance of the solute dipole ⟨(δM0)
2⟩ = ⟨δM2

0z⟩ +
2⟨δM2

0x⟩. Expanding the result in the small param-
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eter ∆ε/εs / 1 (∆ε = εmix − εs), one gets

∆ε(ω) ≃ 9η0y0(ω)χc(ω)εs(ω)
2
[

2εs(ω)
2 + 1

]

−1

≃ (9/2)η0y0(ω)χc(ω)

(32)

where the volume fraction is η0 = Ω0N0/V and
y0(ω) * ye at low frequencies was adopted. The
DEP susceptibilityK(ω) in eq 5 follows from this
equation and eq 24.
The parameter δ = ∆ε/c, where c is the pro-

tein concentration inmg/cm3 is often reported from
dielectric measurements.5,20,26,57,58 One can pro-
duce an estimate of the dipole moment of the pro-
tein from the parameter δ assuming a rigid protein
dipole M0, which is not affected by elastic shape
fluctuations: ⟨(δM0)

2⟩ = M2

0
. From eq 32 at

ω → 0 one gets

M0 =

√

mkBT

2πχcNA

δ (33)

where the molar mass of the protein m is in kilo-
daltons and NA is the Avogadro number. By sub-
stituting the constants, this equation can be written
at T = 300 K in units of debyes

M0 = 105D
√

mδ/χc (34)

Equation 33 is nearly identical to the widely used
Oncley formula,21

MO
0
=

√

9m

4πbNA

kBT δ (35)

where b, in Oncley’s formulation, is the parameter
responsible for the cavity field correction. This as-
signment is fully consistent with our formulation,
which requires b = (9/2)χc. Oncley further notes
that b depends on the model used to describe the
cavity field and accepts an empirical value b ≃ 5.8
based on applying his equation to amino acids with
known dipole moments.5,21 With this parameter
adopted in eq 35, Oncley’s equation becomes

MO
0
=

√

m

2.58πNA

kBT δ (36)

Whether the same empirical calibration applies
equally well to proteins has never been established.

However, Oncley’s result converges to our formu-
lation when adopting 2χc ≃ 2.58. This empiri-
cal outcome is in fact reasonably consistent with
the MD results listed in Table 1. Our simulations
therefore provide computational underpinning for
the empirical Oncley formula.
Empirical evidence suggests that Oncley’s equa-

tion often yields reasonable estimates of the protein
dipole based on δ parameters from dielectric mea-
surements.26,59 As an example, South and Grant57
report δ ≃ 0.15 (cm3/mg) for solutions of horse
myoglobin at ambient conditions. From this num-
ber, eq 36 gives M0 ≃ 154 D. Likewise, apply-
ing δ ≃ 0.52 (cm3/mg) for cytochrome c59 and χc

from Table 1, one obtains from eq 33 M0 ≃ 210
D, not too far from direct calculations of the dipole
moment listed in Table 1. This consistency with
the dielectric data strongly supports the high val-
ues of the DEP susceptibility listed in Table 1 and
points to the failure of the Clausius-Mossotti factor
in eq 3.
If theMaxwell approximation for the cavity field

susceptibility is applied, one has χc = χM
c ≃

3/(2εs) and

MM
0

=

√

εsm

3πNA

kBT δ (37)

It is clear that the direct application of the Maxwell
cavity field should lead to significantly higher es-
timates for the protein dipole moment, MM

0
≃

M0

√
εs.

There are a number of complications which do
not allow to access the accuracy of the Oncley for-
mula, potentially leading to discrepancies between
the results reported for the same protein. For in-
stance, 122 D56 and 208 D34 have been recently
reported for lysozyme from very similar analyzing
protocols. It is not clear if different cavity suscep-
tibilities apply in each case or the reported values
have been affected by strong dipolar correlations
between proteins in solution.25 Potentially impor-
tant are effects of the electrolyte on the cavity sus-
ceptibility χc, which have not been analyzed in this
study. One might anticipate that electrolyte will
reduce the value of χc due to screening of the sur-
face charge. The results reported in Table 1 likely
represent the upper bound for χc. Nevertheless,
the agreement between the dipole moments of cy-
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tochrome c extracted from the dielectric increment
(eq 33) and from atomic charges suggests that the
effect of electrolyte on χc is of minor importance.

Discussion
Dielectric response of a liquid in contact with
a nanometer-scale interface or in the nanometer-
scale confinement is significantly different from
the dielectric response of the bulk.60–66 Recent
measurements of the dielectric constant of water
placed in nanometer channels and in surface con-
tact with graphite67 have shown that the dielectric
constant might be as low as ≈ 2.1 within the layer
of water ≈ 7 Å thick. The explanation of these
obseravtions that water dipoles are nearly immo-
bile in the first two hydration layers contradicts to
simulations. A more plausible explanation is that
the dielectric response in the interface is highly
anisotropic,7,62,68 with a very low dipolar suscep-
tibility along the normal to the surface. The water
dipoles in contact with hydrophobic substrates tend
to orient their dipoles parallel to the dividing sur-
face.69 The dielectric response and corresponding
fluctuations of the dipole in that parallel directions
are actually large.7,65,68 However, it is the direction
normal to the dividing surface that only matters for
the dielectric response,7,70 and the corresponding
dielectric susceptibility is low, in agreement with
experiment.67
A low dipolar susceptibility of the hydration

shell dipoles leads to observable consequences
consistent with the Lorentz construction for the
cavity field inside a void or a nonpolar solute
placed in a polarized dielectric41,71 The basic phys-
ical meaning of the Lorenz construction is that
the surface charge at the dividing surface (Figure
2) tends to zero, in contrast to the Maxwell di-
electric boundary-value problem (eq 7). What is
the basic picture of the surface dipolar polariza-
tion and the corresponding dipolar susceptibility at
the protein-water interface is still mostly unknown.
Absorption of radiation at THz frequencies35 is
also consistent with the Lorentz picture37,38 of es-
sentially no susceptibility in the direction normal
to the surface (and no surface charge, Figure 2).
The orientations of water dipoles in the interface
are highly disordered, leading to nearly zero net

projection on the normal direction at the dividing
surface.72 However, susceptibilities at lower fre-
quencies have not been reported experimentally.
This study is a step toward filling this gap by pro-
ducing experimentally testable predictions by us-
ing numerical MD simulations.
The present study confirms the earlier result11

that the cavity field susceptibility, calculated as
the ratio of the full (eq 10) and self (eq 11) cor-
relation functions of the protein dipole, is substan-
tially higher than both the Lorentz and Maxwell
predictions, although closer to the Lorentz limit.
This cavity susceptibility represents correlations
of fluctuations of molecular charges of the pro-
tein with molecular dipoles of the hydration shell.
A high χc practically means that no substantial
screening of protein charges is produced by the hy-
dration shell. In addition to the hydration shell,
electrolyte is expected to follow the protein mo-
tions and screen the protein fluctuations. The ex-
tent of this screening, potentially leading to a re-
duction of χc, has not been evaluated in this study.
However, the values of χc from simulations com-
bined with experimental dielectric increments59
yield dipole moments consistent with direct calcu-
lations. This outcome makes us believe that the
effect of electrolyte on the cavity field susceptibil-
ity is of minor importance. The large values of the
DEP susceptibility, K ≈ (4 − 8) × 103, reported
here are consistent with the dielectric data. We
conclude that the Clausius-Mossotti factor (eq 3),
predicting much smaller DEP susceptibility K <

1, is inadequate for describing the protein DEP.
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