

1 **Dimethylsulfoxonium propionate - a metabolite extending the marine**
2 **organosulfur cycle**

3 **Authors:** Kathleen Thume¹, Björn Gebser¹, Liang Chen², Nils Meyer¹, David J. Kieber^{2*}, Georg
4 Pohnert^{1,3*}

5 **Affiliations:**

6 ¹ Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich Schiller
7 University Jena, Lessingstrasse 8, D-07743 Jena, Germany

8 ²Department of Chemistry, State University of New York, College of Environmental Science and
9 Forestry, Syracuse, New York, 13210 USA

10 ³ Max Planck Institute for Chemical Ecology, Hans-Knöll Str. 8, 07745 Jena, Germany

11 *Correspondence to: Georg.Pohnert@uni-jena.de, djkieber@esf.edu

12

13 **Abstract:** Algae produce massive amounts of dimethylsulfoniopropionate (DMSP) that fuel the
14 organosulfur cycle.^{1,2} On a global scale, several petagrams of this zwitterionic sulfur species are
15 produced annually driving fundamental processes and the marine food web.¹ An important
16 DMSP transformation product is dimethylsulfide that can either be emitted to the atmosphere^{3,4}
17 or oxidized to dimethylsulfoxide (DMSO) and other products.⁵ Herein, we report the discovery
18 of a new, structurally unusual zwitterionic metabolite dimethylsulfoxonium propionate
19 (DMSOP) that is produced by several DMSP-containing microalgae and marine bacteria. Isotope
20 labeling studies demonstrate that DMSOP is produced from DMSP, and is readily transformed to
21 DMSO by marine bacteria. DMSOP was found in nanomolar amounts in field samples and in
22 media from algal cultures, and thus represents a new biogenic source for DMSO in the marine

23 environment. The estimated annual oceanic production of oxidized sulfur from this novel
24 pathway is in the teragram range, similar to the calculated DMS flux to the atmosphere.³ This
25 unprecedented sulfoxonium metabolite is therefore a key metabolite of a novel pathway in the
26 marine sulfur cycle. These findings highlight the importance of a hitherto unknown compound in
27 the marine organosulfur cycle.

28

29 **Main Text:**

30 The marine organosulfur cycle is fueled by small sulfur-containing zwitterionic osmolytes
31 primarily produced by planktonic algae. The main metabolite of this class,
32 dimethylsulfoniopropionate (DMSP), is produced in impressive amounts of 2 Pg (2x10⁹ tons)
33 sulfur annually.¹ Cellular DMSP serves important physiological functions in marine algae
34 including but not limited to an osmolyte, a cryoprotectant and an antioxidant.^{6,7} Enzymatic lysis
35 of DMSP by DMSP lyases in bacteria and algae yields acrylate and dimethylsulfide (DMS).⁸
36 Volatile DMS is the main source of organosulfur to the atmosphere, with an annual flux of ~30
37 Tg sulfur³ it is proposed to affect cloud formation and regulate climate.⁴ Dissolved DMSP
38 arising from exudation, grazing, viral lysis, and cell mortality serves as substrate for marine
39 microbes.^{7,9,10} In surface waters, substantial quantities of dissolved DMSP and DMS can be
40 detected, but often dissolved dimethylsulfoxide (DMSO) concentration exceeds that for these
41 two species.^{5,11} DMSO is mainly produced from bacterial and photochemical DMS oxidation,¹²
42 but algal sources may also be important.¹³ Common pelagic bacteria use monooxygenases to
43 oxidize DMS to DMSO,¹⁴ a process that may serve as an energy source.¹⁵ Here we report on the
44 identification of the novel zwitterionic metabolite, dimethylsulfoxonium propionate (DMSOP)

45 that is widely distributed in phytoplankton and also produced by marine bacteria. This metabolite
46 is the substrate of a novel marine pathway for DMSO production (Fig. 1).

47 Zwitterionic metabolites, such as DMSP, are difficult to quantify directly and much information
48 on their chemistry and ecology is based on indirect methods. We recently developed an
49 analytical method to directly detect zwitterionic metabolites,^{16,17} and observed discrepancies
50 between our analytical data and previous determinations of DMSP and DMSO in plankton
51 samples. We undertook an in-depth survey to determine if additional metabolites could explain
52 this observation, and consistently detected a compound with similar polarity to DMSP in all
53 main classes of microalgae (Fig. 2, Table 1). The high resolution electrospray ionization mass
54 spectrum in positive ionization mode of this metabolite at m/z = 151.0426 was consistent with
55 the formula $C_5H_{11}O_3S$ (calculated m/z = 151.0423), and the isotope peak at m/z = 153.0378
56 (calculated m/z = 153.0380) confirmed the presence of a sulfur atom in the structure. A fragment
57 ion m/z = 79.0210 was detected by tandem mass spectrometry (MS) that was attributed to
58 protonated DMSO and a fragment at m/z = 73.0283 corresponded to protonated acrylic acid (Fig.
59 2, Extended Data Fig. 1). Based on the mass spectral data, the signal was tentatively assigned as
60 the sulfoxonium species DMSOP. To obtain a reference compound, DMSOP was synthesized by
61 $RuCl_3$ /sodium hypochlorite-mediated oxidation of DMSP, and the structure was confirmed by
62 NMR and MS (Fig. 2, Extended Data Fig. 1 and 2). When this authentic standard was added to
63 an algal extract, it co-eluted with the unknown sulfur-containing metabolite unambiguously
64 proving the identity of this highly unusual compound as DMSOP (Fig. 2d). To our knowledge,
65 only one natural product containing the dimethylsulfoxonium moiety, (2-hydroxyethyl)
66 dimethylsulfoxonium chloride, the causative agent for dogger bank itch from the marine
67 bryozoan *Alcyonidium gelatinosum*¹⁸ and the marine sponge *Theonella* aff. *mirabilis*¹⁹ has been

68 reported to date. Therefore, the highly polar zwitterionic DMSOP represents a metabolite of a
69 nearly unexplored structural family.

70 The bloom-forming dinoflagellate *Prorocentrum minimum*, the haptophytes *Prymnesium*
71 *parvum*, *Isochrysis galbana*, and *Emiliania huxleyi*, the diatom *Skeletonema costatum*, and other
72 screened diatoms and dinoflagellates all produce DMSOP (Table 1 and Extended Data Table 1)
73 at micromolar to millimolar cellular concentrations, corresponding to 0.13 and 1.2 % of DMSP
74 in the algae (Table 1). DMSOP production in axenic cultures of *I. galbana* and *P. parvum* (Table
75 1, Extended Data Fig. 3) confirms that phytoplankton are an oceanic source of DMSOP. The
76 metabolite is also released into the medium, and concentrations up to 0.8 ± 0.2 nM were
77 detected in a stationary axenic *P. parvum* culture.

78 Since marine heterotrophic bacteria biosynthesize DMSP,²⁰ we investigated the possibility that
79 DMSOP might also be a bacterial metabolite. Indeed, the DMSP producer *Pelagibaca*
80 *bermudensis* contained DMSOP (0.32 ± 0.049 pmol μg^{-1} protein, $n = 3$, ca. 0.1 % of DMSP).
81 Thus, as with DMSP, the oxidized sulfoxonium zwitterion has both a eukaryotic and bacterial
82 origin. This underscores its likely universal distribution in oceanic surface waters. Consistent
83 with this supposition, DMSOP was detected at multiple coastal sites in the NE Pacific, NW
84 Atlantic, Arctic and Mediterranean Sea with an average concentration of 0.14 ± 0.18 nM. At all
85 sampled stations, DMSOP was above the 0.01 nM limit of detection (Extended Data Table 2).
86 On average DMSOP accounted for 0.22% of DMSP in field samples. This value is consistent
87 with but at the lower end of that observed in culture (vide supra). Based on these findings and
88 compared to the annual DMSP production equivalent to 2 Pg sulfur year⁻¹, the corresponding
89 estimated DMSOP sulfur flux is in the teragram range.¹ This sulfur flux through DMSOP is in
90 the same order of magnitude as the total DMS flux to the atmosphere (Fig. 1).³

91 We synthesized isotopically labeled DMSOP and DMSP to study the biosynthesis and
92 catabolism of DMSOP in *P. bermudensis* (Fig. 2b). When $^{13}\text{C}_2$ -DMSP (labeled methyl groups at
93 the sulfur) was added to batch cultures of *P. bermudensis*, high resolution MS analysis revealed
94 the formation of $^{13}\text{C}_2$ -DMSOP, with incorporation rates of $3.7 \pm 0.6\%$ after 18 h (Fig. 3,
95 Extended Data Table 3). Abiotic $^{13}\text{C}_2$ -DMSP oxidation to $^{13}\text{C}_2$ -DMSOP was not observed in the
96 medium controls. Likewise, no singly labeled ^{13}C -DMSOP ($m/z = 152.0457$) was detected above
97 the intensity of the naturally occurring isotope peak, ruling out an initial DMSP demethylation,
98 subsequent oxidation to the sulfoxide and re-methylation (Extended Data Table 3). This makes
99 the enzymatic oxidation of the positively charged sulfur in DMSP by a hitherto unknown enzyme
100 likely. The direct oxidation of DMSP to DMSOP is also consistent with previous suggestions
101 that DMSP is involved in antioxidant processes either as a consequence of the constitutively high
102 cellular DMSP concentrations in marine algae²¹ or the up-regulation of cellular DMSP during
103 oxidative stress.⁶ Cellular DMSOP concentrations increased nearly 300% in batch cultures of *I.*
104 *galbana* during the late exponential phase/stationary phase corresponding to increased oxidative
105 stress indicated by a decrease in the photosynthetic efficiency, Fv/Fm (Extended Data Fig. 3).
106 DMSP cellular concentrations changed very little during the growth of *I. galbana*. Due to the
107 constitutively high DMSP concentration this finding is consistent with the supposition that
108 DMSP is a de facto antioxidant,²¹ resulting in increased oxidative production of DMSOP from
109 DMSP with increasing oxidative stress.

110 DMSOP is stable in 0.2 μm -filtered seawater at room temperature over several weeks (Extended
111 Data Fig. 4). However, microbial transformations might contribute to its degradation in the
112 ocean. Marine bacterioplankton, such as *Alcaligenes faecalis*, degrade DMSP by demethylation
113 to methylmercaptopropionate²² or by lyase-mediated cleavage to DMS and acrylate.^{9,23} We

114 tested the capability of common marine bacteria to degrade DMSOP in a similar pathway. After
115 addition of $^{13}\text{C}_2$ -labeled DMSOP to an *A. faecalis* culture, DMSO with a >99% degree of $^{13}\text{C}_2$ -
116 labeling was detected after 24 h, indicating that DMSOP was the exclusive source for DMSO
117 production in this bacterium (Extended Data Fig. 5). Quantification of DMSO after reduction to
118 DMS indicated that all tested bacteria (*Sulfitobacter* sp., *Ruegeria pomeroyi*, *Alcaligenes*
119 *faecalis*, and *Halomonas* sp.) produced DMSO from DMSOP with different efficacies (Fig. 3,
120 Extended Data Fig. 5).²¹ By analogy to DMSP lyase-mediated cleavage, abstraction of the
121 DMSOP alpha proton, followed by release of DMSO and acrylate is a plausible mechanism,^{24,25}
122 supported by the observed DMSO release upon base treatment of DMSOP that occurs similarly
123 to base-mediated DMS release from DMSP (Extended Data Fig. 4). *A. faecalis*, a bacterium with
124 the well-identified DMSP-lyase DddY and a mutant where this enzyme was knocked out^{24,26}
125 both showed similar DMSO production, suggesting that this DMSP lyase was not involved in
126 DMSOP transformation (Extended Data Fig. 5). It has to be verified if other reported DMSP
127 lyases or in fact a specific DMSOP lyase catalyze the transformation.

128 Our results demonstrate that a hitherto unrecognized ubiquitous zwitterionic metabolite,
129 DMSOP, contributes to the marine DMSO pool and may partly account for DMSO in marine
130 algae.¹³ In light of our findings, a functional role of DMSP as an oxygen acceptor is likely and
131 could explain numerous observations of DMSP regulation under oxidative stress. Algal and
132 bacterial DMSOP biosynthesis and its bacterial degradation to DMSO represent a new pathway
133 for DMSO production extending our current paradigm of the marine sulfur cycle beyond the
134 established biotic/photochemical pathways via DMS oxidation.

135 **References:**

136 1 Ksionzek, K. B. *et al.* Dissolved organic sulfur in the ocean: Biogeochemistry of a
137 petagram inventory. *Science* **354**, 456-459, (2016).

138 2 Sievert, S. M., Kiene, R. P. & Schulz-Vogt, H. N. The sulfur cycle. *Oceanography* **20**,
139 117-123 (2007).

140 3 Lana, A. *et al.* An updated climatology of surface dimethylsulfide concentrations and
141 emission fluxes in the global ocean. *Global Biogeochem. Cy.* **25**, GB1004, (2011).

142 4 Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Oceanic phytoplankton,
143 atmospheric sulfur, cloud albedo and climate. *Nature* **326**, 655-661, (1987).

144 5 Lee, P. A. & de Mora, S. J. A review of dimethylsulfoxide in aquatic environments.
145 *Atmos. Ocean* **37**, 439-456 (1999).

146 6 Sunda, W., Kieber, D. J., Kiene, R. P. & Huntsman, S. An antioxidant function for
147 DMSP and DMS in marine algae. *Nature* **418**, 317-320, (2002).

148 7 Kiene, R. P., Linn, L. J. & Bruton, J. A. New and important roles for DMSP in marine
149 microbial communities. *J. Sea Res.* **43**, 209-224, (2000).

150 8 Alcolombri, U. *et al.* Identification of the algal dimethyl sulfide-releasing enzyme: A
151 missing link in the marine sulfur cycle. *Science* **348**, 1466-1469, (2015).

152 9 Todd, J. D. *et al.* Structural and regulatory genes required to make the gas dimethyl
153 sulfide in bacteria. *Science* **315**, 666-669, (2007).

154 10 Yoch, D. C. Dimethylsulfoniopropionate: Its sources, role in the marine food web, and
155 biological degradation to dimethylsulfide. *Appl. Environ. Microb.* **68**, 5804-5815, (2002).

156 11 Asher, E. C., Dacey, J. W. H., Stukel, M., Long, M. C. & Tortell, P. D. Processes driving
157 seasonal variability in DMS, DMSP, and DMSO concentrations and turnover in coastal
158 Antarctic waters. *Limnol. Oceanogr.* **62**, 104-124, (2017).

159 12 Hatton, A. D., Shenoy, D. M., Hart, M. C., Mogg, A. & Green, D. H. Metabolism of
160 DMSP, DMS and DMSO by the cultivable bacterial community associated with the
161 DMSP-producing dinoflagellate *Scrippsiella trochoidea*. *Biogeochemistry* **110**, 131-146,
162 (2012).

163 13 Lee, P. A. & de Mora, S. J. Intracellular dimethylsulfoxide (DMSO) in unicellular marine
164 algae: Speculations on its origin and possible biological role. *J. Phycol.* **35**, 8-18, (1999).

165 14 Lidbury, I. *et al.* A mechanism for bacterial transformation of dimethylsulfide to
166 dimethylsulfoxide: a missing link in the marine organic sulfur cycle. *Environm.*
167 *Microbiol.* **18**, 2754-2766, (2016).

168 15 Boden, R., Murrell, J. C. & Schafer, H. Dimethylsulfide is an energy source for the
169 heterotrophic marine bacterium *Sagittula stellata*. *FEMS Microbiol. Lett.* **322**, 188-193,
170 (2011).

171 16 Gebser, B. & Pohnert, G. Synchronized regulation of different zwitterionic metabolites in
172 the osmoadaption of phytoplankton. *Mar. Drugs* **11**, 2168-2182, (2013).

173 17 Spielmeyer, A. & Pohnert, G. Direct quantification of dimethylsulfoniopropionate
174 (DMSP) with hydrophilic interaction liquid chromatography/mass spectrometry. *J.*
175 *Chrom. B*, **878**, 3238-3242, (2010).

176 18 Carle, J. S. & Christophersen, C. Dogger bank itch. 4. An eczema-causing sulfoxonium
177 ion from the marine animal, *Alcyonium gelatinosum* Bryozoa. *Toxicon* **20**, 307-310,
178 (1982).

179 19 Warabi, K. *et al.* Dogger Bank Itch revisited: isolation of (2-hydroxyethyl)
180 dimethylsulfoxonium chloride as a cytotoxic constituent from the marine sponge
181 *Theonella* aff. *mirabilis*. *Comp. Biochem. Physiol. B* **128**, 27-30, (2001).

182 20 Curson, A. R. J. *et al.* Dimethylsulfoniopropionate biosynthesis in marine bacteria and
183 identification of the key gene in this process. *Nature Microbiol.* **2**, 17009 (2017).

184 21 Kinsey, J. D., Kieber, D. J. & Neale, P. J. Effects of iron limitation and UV radiation on
185 *Phaeocystis antarctica* growth and dimethylsulfoniopropionate, dimethylsulfoxide and
186 acrylate concentrations. *Environm. Chem.* **13**, 195-211, (2016).

187 22 Howard, E. C. *et al.* Bacterial taxa that limit sulfur flux from the ocean. *Science* **314**, 649-
188 652, (2006).

189 23 Curson, A. R. J., Todd, J. D., Sullivan, M. J. & Johnston, A. W. B. Catabolism of
190 dimethylsulphoniopropionate: microorganisms, enzymes and genes. *Nature Rev.*
191 *Microbiol.* **9**, 849-859, (2011).

192 24 Anseude, J. H., Pellechia, P. J. & Yoch, D. C. Metabolism of acrylate to beta-
193 hydroxypropionate and its role in dimethylsulfoniopropionate lyase induction by a salt
194 marsh sediment bacterium, *Alcaligenes faecalis* M3A. *Appl. Environ. Microb.* **65**, 5075-
195 5081 (1999).

196 25 Kirkwood, M., Le Brun, N. E., Todd, J. D. & Johnston, A. W. B. The DddP gene of
197 *Roseovarius nubinhibens* encodes a novel lyase that cleaves dimethylsulfoniopropionate
198 into acrylate plus dimethyl sulfide. *Microbiology* **156**, 1900-1906, (2010).

199 26 Curson, A. R. J., Sullivan, M. J., Todd, J. D. & Johnston, A. W. B. DddY, a periplasmic
200 dimethylsulfoniopropionate lyase found in taxonomically diverse species of
201 Proteobacteria. *ISME J.* **5**, 1191-1200, (2011).

202

203 **Acknowledgments:** We are grateful to Andrew Curson for the provision of the *A. faecalis*
204 mutant. Thanks are also extended to R. Kiene and A. Rellinger, M. Galí, M. Vila, L. Viure and
205 E. Berdalet for collection of field samples and chlorophyll *a* analyses during field campaigns in
206 the NE Pacific, Arctic and Mediterranean Sea, respectively. We acknowledge the funding by the
207 German Research Foundation (CRC1127 ChemBioSys, GP, NM), the Max Planck Society
208 (IMPRS BGC) and the National Science Foundation (OCE-1756907, DK). This study was co-
209 financed by the State of Thuringia / Thüringer Aufbaubank (2015 FGI 0021) with means of the
210 EU in the framework of the EFRE program.

211

212 **Author Contributions:** G.P., K.T., B.G. and D.K. designed the research. B.G. identified
213 DMSOP signals, performed the synthesis and the initial screening of the metabolite. K.T.
214 performed DMSOP quantification, experiments on the biosynthesis and transformation in algae
215 and bacteria. N.M. did experiments on DMSOP production and transformation in algae and
216 performed several analytical measurements. The *I. galbana* growth experiment and DMSO
217 quantification was performed by L.C.. D.K. was responsible for field sampling and sample work-
218 up. K.T. and N.M. performed the statistical evaluation of the data. G.P. and D.K. were the
219 principal investigators for their respective research teams. K.T. and G.P. wrote the main drafts of

220 the manuscript. All authors discussed the results and provided feedback and revisions to the
221 manuscript.

222

223 **Competing financial interests:** None

224

225 **Author Information:** Reprints and permissions information is available at
226 www.nature.com/reprints. The authors declare no competing financial interest. Correspondence
227 and requests for materials should be addressed to G.P. (Georg.Pohnert@uni-jena.de) or D.K.
228 (djkieber@esf.edu).

229

230 **Figure legends:**

231

232 **Figure 1: Simplified, revised marine sulfur cycle.** Dimethylsulfoxonium propionate (DMSOP)
233 and the transformations labeled with red arrows extend the established marine sulfur cycle.
234 DMSOP is produced in eukaryotic microalgae (green) as well as in bacteria (blue). Bacteria
235 metabolize this compound and thereby contribute to the marine DMSO pool. The established
236 DMSP-based part of the sulfur cycle is indicated with grey arrows. DMSP is formed by marine
237 algae and bacteria. It is then cleaved by algal and bacterial DMSP lyases to DMS and acrylate
238 (not shown). The subsequent biological and photochemical oxidation of DMS to DMSO, sulfate
239 and other products can occur within algae, bacteria, in the seawater, and the atmosphere.

240

241

242 **Figure 2: Detection and structural elucidation of DMSOP.** **a**, Chromatographic profile of
243 zwitterionic metabolites from a *Prorocentrum minimum* culture, separated using UHPLC with
244 detection by electrospray mass spectrometry (ESI MS). The total ion current is shown in grey.
245 The metabolites glycine betaine (GBT, cyan), dimethylsulfonioacetate (DMSA, orange), DMSP
246 (black) and gonyol (blue) were assigned according to Gebser et al.¹⁶ The ion trace of
247 dimethylsulfoxonium propionate (DMSOP, red) is shown in a 10-fold magnification. **b**,
248 Synthesis of authentic (labeled) DMSOP. **c**, Tandem mass spectrum of DMSOP with
249 characteristic fragments. **c**, UHPLC profile monitoring $m/z = 151$ of an extract of *Prymnesium*
250 *parvum* (solid line) and the same extract treated with synthetic DMSOP in roughly equal
251 amounts (dashed line), the experiment was repeated three times with varying concentrations of
252 synthetic DMSOP to confirm co-elution.

253

254

255 **Figure 3: Biosynthesis and catabolism of DMSOP.** Panel **a** shows the high resolution mass
256 spectrum of DMSOP obtained from *P. bermudensis* incubated for 24h with $^{13}\text{C}_2$ -labeled DMSP
257 (Fig. 2). The peak labelled in red represents $^{13}\text{C}_2$ -labeled DMSOP, the natural DMSOP isotopes
258 are shown in black (see also Extended Data Table 3). Panels **b** and **c** illustrate the DMSO release
259 (mean \pm s.d.) of the bacteria *Sulfitobacter* sp. and *R. pomeroyi* incubated with 1 μM DMSOP. P
260 values directly over bars indicate significant difference from $t = 10$ min of the same treatment, P
261 values over braces indicate significant difference between treatment and the control without
262 DMSOP addition (n=4 independent biological replicates for 24 h, n=3 for 10 min and 5 h, for
263 statistical details see Methods).

264

265 **Methods:**266 **Synthesis of dimethylsulfoxonium propionate (DMSOP)**

267 The synthesis of DMSOP was based on Forrester *et al.*²⁷ and Ayres and Hossain²⁸. To a stirred
268 solution of 100 mg 3-dimethylsulfoniopropionate (DMSP) (synthesized according to
269 Chambers²⁹) in 0.5 mL deionized water were added 0.24 mL of an aqueous 0.24 M RuCl_3
270 hydrate solution (Roth, Karlsruhe, Germany) at room temperature. A 12% sodium hypochlorite
271 solution (12% Cl, Roth, Karlsruhe, Germany) was added at room temperature to the dark
272 solution dropwise until the color changed to a yellowish green. When the solution turned brown
273 after stirring few minutes more sodium hypochlorite was added. The pH was adjusted to 5-6 with
274 a 1M HCl solution (37%, Roth, Karlsruhe, Germany) during the reaction. When the solution did
275 not embrown further, the water was removed in a rotary evaporator and the resulting white solid

276 was dissolved at room temperature in a minimum amount of MeOH. Diethylether (Et₂O) was
277 added dropwise until a precipitate formed. After the precipitate settled within 30 min and
278 additional Et₂O was added. This procedure was repeated until no further precipitate formed. The
279 precipitate was filtered off and dried on the filter. Due to salt residues in the product, elemental
280 analysis (EA), based on sulfur content in the final product relative to theoretical sulfur content of
281 pure DMSOP, was used to determine the degree of purity.

282 ¹H-NMR (600 MHz, D₂O) δ ppm: 3.21 (2H, t, *J* = 6.88 Hz, H(C2)), 3.89 (6H, s, H(C4)), 4.33
283 (2H, t, *J* = 6.88 Hz, H(C3)); ¹³C-NMR (200 MHz, D₂O) δ ppm: 25.49 (C2), 38.68 (C4),
284 48.48(C3), 172.78(C1); Numbering of carbons and HMBC correlations are shown in Extended
285 Data Fig. 2. ESI-MS (positive) *m/z* 151.56 [M + H]⁺; ESI-MS-MS (parent ion *m/z* 151, collision
286 energy 15 eV): *m/z* 151.56 [M + H]⁺, 79.30 [M - C₃H₅O₂ + H]⁺, 73.29 [C₃H₄O₂ + H]⁺; EA:
287 calculated C 32.2%, H 5.9%, S 17.2%, Cl 19.0%; found C 25.5%, H 4.7%, S 13.4%, Cl 26.7%;
288 degree of purity 77.8%.

289 Synthesis of ¹³C₂-DMSOP was done as described using ¹³C₂-DMSP as starting material. This
290 was synthesized using ¹³C₂-DMS according to²⁹.

291

292 **Cultivation of Phytoplankton**

293 Cultures were obtained from the Provasoli-Guillard National Center for Marine Algae and
294 Microbiota, East Boothbay, Maine, USA (CCMP strains), the Roscoff Culture Collection,
295 Roscoff, France (RCC strains), the UTEX Algae Express, Austin, Texax (UTX strains) , and the
296 Culture Collection of Algae and Protozoa, Oban, Scotland (SCCAP strains). Axenic *Isochrysis*
297 *galbana* (CCMP 1323) batch cultures were grown in a modified Guillard f/2 medium without
298 silica in 2.8 L Fernbach flasks. The modified f/2-Si medium consisted of 1 L of autoclaved 0.2

299 μm filtered Sargasso Sea water (salinity 34.9 ppt) enriched with 160 μM NaNO_3 , 10 μM
300 NaH_2PO_4 , 1.0 μM Fe, 11.7 μM EDTA, 39.9 nM Cu, 26.0 nM Mo, 76.5 nM Zn, 42.0 nM Co, 910
301 nM Mn, 296 nM Vitamin B₁, 2.05 nM Biotin, and 0.369 nM Vitamin B₁₂.

302 *I. galbana* cultures were grown under batch conditions with cool white fluorescent lighting (92.7
303 $\mu\text{mol photon m}^{-2} \text{ s}^{-1}$ between 400 and 700 nm) with a 14:10 h day:night cycle in an incubator
304 (model I-36 LLVL, Percival Scientific, Perry, Iowa). The temperature was maintained at $23.0 \pm$
305 0.1 °C. Daily sampling started at 10:00 local time. Axenicity was periodically determined by
306 DAPI staining followed by epifluorescence microscopy counting.²¹

307 For DMSOP screening, *Skeletonema costatum* RCC75, *Isochrysis galbana*, *Chaetoceros*
308 *compressum* CCMP168, *Chaetoceros didymus* CH5, *Entomoneis paludosa*, *Nitzschia* cf.
309 *pellucida* DCG0303, *Navicula* sp. I15, *Phaeodactylum tricornutum* CCMP2561, SCCAP K-128
310 and UTX646, axenic *Prymnesium parvum* CCAP 946/6, *Stephanopyxis turris*, *Thalassiosira*
311 *pseudonana* CCMP1335, *Thalassiosira rotula* RCC841, RCC776 and CCMP1018, *Thalassiosira*
312 *weissflogii* RCC76 and *Rhodomonas* sp. were cultivated in an artificial seawater medium.³⁰
313 *Phaeocystis pouchetii* AJ01, *Amphidinium carterae* SCCAP K-0406 and *Prorocentrum minimum*
314 were cultivated in a f/2 medium.³¹ No silicate was added to the medium used to cultivate
315 *Prorocentrum minimum*. *Coscinodiscus wailesii* CCMP2513, *Lingulodinium polyedrum*
316 CCAP1221/2 and *Symbiodinium microadriaticum* CCMP2464 were cultivated in L1 medium;³²
317 no silicate was added to the *S. microadriaticum* L1 medium. The medium for *Emiliania huxleyi*
318 was prepared according to Spielmeyer *et al.*³³ Cultivation was done from stock cultures by a 20-
319 fold dilution of a cell suspension in tissue culture flasks. Cultures were grown in a 14:10
320 light:dark cycle with light provided by osram biolux lamps ($40 \mu\text{mol m}^{-2} \text{ s}^{-1}$ between 400 and
321 700 nm) at 12 °C, except for *Phaeocystis pouchetii* which was cultivated at 5 °C. Cultures were

322 grown to the exponential phase and then divided into four aliquots of equal volume. These
323 aliquots were 20-fold diluted with fresh medium and cultivated again to the exponential phase
324 before being used for quantitative analysis as described below.

325 For all cultures except for *I. galbana*, cell counts were determined in a Fuchs-Rosenthal
326 hemocytometer using a Leica DM2000 (Heerbrugg, Switzerland) upright microscope with phase
327 contrast. Cell volumes for *P. minimum* and *E. huxlexi* were obtained from reference¹⁶ whereas
328 other cell volumes were calculated according to³⁴. Cell counts and cell volumes for *I. galbana*
329 cultures were determined by adding 200 μ L of an unfiltered sample to 10 mL of 0.2 μ m-filtered
330 electrolyte diluent (1% sodium chloride in 50 mM phosphate buffer, pH 7.4). Samples were
331 analyzed with a Beckman-Coulter Z2 Particle Counter and Size Analyzer (Pasadena, CA, USA)
332 fitted with a 100- μ m aperture.

333 The photosynthetic efficiency of photosystem II (Fv/Fm) was determined during the *I. galbana*
334 growth experiment using a Water-PAM pulse-amplitude modulated (PAM) fluorometer (Walz,
335 Effeltrich, Germany). To determine Fv/Fm , triplicate 3 mL aliquots of unfiltered culture samples
336 were dark adapted at room temperature for 30 min. The fluorometer was blanked with 0.2- μ m
337 filtered Sargasso seawater. After 30 min, a saturating pulse (\sim 3230 μ mol $m^{-2} s^{-1}$, 0.6 s) was
338 applied to each culture sample for a total of six to eight measurements. Sample dilutions were
339 performed as needed with 0.2- μ m filtered Sargasso seawater. Gain settings were 2–3 for PM-
340 gain and 1 for out-gain, except for early in the growth curve when the PM-gain was set at 6 and
341 out-gain was set at 5.

342

343 **Cultivation of Bacteria**

344 *Halomonas* sp. HTNK-1, *Alcaligenes faecalis* M3A and the *dddY* knockout mutant of
345 *Alcaligenes faecalis* M3A (obtained from A. Curson, University of East Anglia, UK²⁰) were
346 grown in M9 minimal medium (Sigma-Aldrich, Deisenhofen, Germany). *Ruegeria pomeroyi*
347 DSS-3 and *Sulfitobacter* sp. EE-36 were grown in a marine basal medium. The cultures were
348 grown under gentle shaking at 28 °C with addition of 10 mM sodium succinate as the carbon
349 source. For the incubation experiment, experimental cultures were prepared in four replicates for
350 each sampling point from the stock culture by a 20-fold dilution of an aliquot of cell suspension
351 in tissue culture (TC) flasks and grown to exponential phase. *Pelagibaca bermudensis* DSM
352 15984 (Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany)
353 was cultivated in Marine Broth medium (Carl Roth GmbH, Karlsruhe, Germany) and grown
354 under gentle shaking at 28 °C.

355

356 **Field samples**

357 Unfiltered seawater samples were collected from the near surface in Niskin bottles attached to a
358 CTD rosette. For each sample, triplicate 15 mL subsamples were collected directly from the
359 Niskin bottle into three precleaned and baked (550 °C, 8 h) 20 mL glass scintillation vials, each
360 with a green thermoset screwcap containing a Teflon-faced silicone insert. Samples were
361 collected on three oceanographic cruises: the NW Atlantic on the R/V Endeavor, the NE Pacific
362 aboard the R/V Oceanus, and in the Arctic aboard the Canadian research icebreaker CCGS
363 Amundsen. The Mediterranean Sea samples were collected into 250 mL precleaned polyethylene
364 bottles (pre-rinsed with 5% HCl followed by high purity laboratory water) just below the sea
365 surface; one samples was collected offshore just beyond the breaking waves and one sample was

366 collected nearshore in the wave breaking zone. A map of the sampling locations is shown in
367 Extended Data Table 2.

368 Each sample vial was microwaved to boiling (ca. 12 s) with the cap loose. Once the sample
369 cooled to room temperature, it was bubbled with ultra-high purity He (99.9995 %) for 10 min to
370 quantitatively remove DMS (verified by testing for residual DMS by re-sparging the same
371 sample), and then 150 μ L of Ultrex concentrated HCl (Baker) was added to each sample to
372 preserve DMSP and DMSOP in their protonated forms followed by storage in the dark at room
373 temperature until analysis.

374 For chlorophyll *a* samples, from 5 to 50 mL of unfiltered seawater was filtered with a low
375 vacuum (ca. 130 mbar) through a pre-baked (550 °C, 8 h) GF/C filter (Whatman), and the folded
376 filter placed into a 10 mL borosilicate test tube that was stored at -20 °C until analysis. Unless
377 otherwise noted, triplicate samples were filtered. Chlorophyll *a* samples were analyzed by adding
378 5 mL of 90% acetone (10% water) to each test tube. Samples were vortexed and then allowed to
379 incubate overnight at -20 °C. The chlorophyll fluorescence was then measured with a TD-700
380 fluorometer.³⁵

381

382 **Extraction and sample preparation for phytoplankton cellular DMSOP**

383 For all cultures except *I. galbana*, to screen for the presence of particulate DMSOP, algal
384 cultures were filtered under reduced pressure (GF/C grade microfiber filter; GE healthcare;
385 Munich) at 400 mbar. Particulate DMSOP in *I. galbana* samples were collected by small volume
386 gravity filtration³⁶ The filters were immediately transferred to 4 mL glass vials containing
387 1 mL of methanol and vortexed. Extracts were stored at -20 °C. To prepare a sample for liquid
388 chromatography / mass spectrometry (LC/MS) analysis, 50 μ L of the extract was diluted with

389 100 μ L of a mixture of acetonitrile and water (9:1 *v/v*). For ultra performance liquid
390 chromatography / mass spectrometry (UPLC/MS) analysis, 10 μ L of an aqueous solution of the
391 internal standard D₆-dimethylsulfonioacetate (D₆-DMSA) was added to the extract prior to
392 injection. The D₆-DMSA was synthesized according to Howard and Russel³⁷ and Gebser and
393 Pohnert.¹⁶ After centrifugation (5 min, 4,500 rcf) the supernatant was submitted to LC/MS
394 analysis.

395

396 **Extraction and sample preparation for dissolved DMSOP**

397 To quantify dissolved DMSOP, a dense *P. parvum* culture was divided into four aliquots of
398 equal volume and 20-fold diluted with fresh medium. On day 1, 5, 7 and 11, 1 mL of culture was
399 centrifuged in an Eppendorf tube for 5 min at 100 rcf. The supernatant was transferred to a 1.5
400 mL glass vial and 5 μ L was directly submitted to Ultra high pressure liquid chromatography/high
401 resolution mass spectrometry (UHPLC/HRMS) for analysis.

402

403 **Extraction and sample preparation for bacterial DMSOP**

404 Aliquots of the bacterial cultures (100 μ L) were centrifuged for 5 min at 16,100 rcf, and the
405 supernatant was removed by pipetting. The pellets were taken up in 100 μ L of a mixture of
406 acetonitrile and water (9:1 *v/v*) and samples were frozen at -20°C and stored overnight. After
407 thawing the samples, cells were disrupted by sonication using ten pulses in a Bandelin sonoplus
408 ultrasound homogenizer (Bandelin, Berlin, Germany). The samples were again centrifuged for 5
409 min at 16,100 rcf and 5 μ L of the supernatant was directly submitted to UHPLC/HRMS for
410 analysis.

411

412 **Extraction and sample preparation for field samples**

413 For determination of DMSOP in field samples, 3 mL of the respective sample was freeze dried
414 and re-dissolved in 500 μ L acetonitrile. Due to the high salt content of the sample a precipitate
415 remained that settled. The supernatant was transferred to a 1.5 mL glass vial and the samples
416 were dried in a gentle nitrogen stream at 30 °C and resolved in 300 μ L of a mixture of
417 acetonitrile and water (9:1 v/v). After centrifugation (5 min, 4,500 rcf), the supernatant was
418 stored at -80 °C until UPLC/MS measurement.

419

420 **UPLC/MS analysis**

421 Analytical separation and quantification of DMSOP in the algal extracts for results shown in Fig.
422 2, Table 1 and Extended Data Table 1 were performed using an Acquity UPLC (Waters, Milford,
423 MA, USA) equipped with a SeQuant ZIC®-HILIC column (5 μ m, 2.1 \times 150 mm, SeQuant,
424 Umeå, Sweden). Quantification followed a previously reported protocol with modifications as
425 follows:³⁸ The eluent consisted of high purity water with 2% acetonitrile and 0.1% formic acid
426 (solvent A) and 90% acetonitrile with 10% 5 mmol L⁻¹ aqueous ammonium acetate (solvent B).
427 The flow rate was set to 0.60 mL min⁻¹. A linear gradient was used for separation with 100%
428 solvent B (1 min), 20% B (6.5 min), 100% B (7.1 min), 100% B (10 min). The column was kept
429 at 25 °C. A Q-ToF micro mass spectrometer (Waters Micromass, Manchester, England) with
430 electrospray ionization in positive mode was used as the mass analyzer. The sample cone was set
431 to 18 V, the extraction cone to 1 V, the sheath gas was operated at 20 L h⁻¹ and the desolvation
432 gas at 450 L h⁻¹. MS/MS for fragmentation of DMSOP was accomplished with a collision energy
433 of 15 eV. Calibration curve: area [DMSOP] = 123 * c [DMSOP in μ M] with r = 0.9983, LOD =
434 0.05 μ M LOQ = 0.1 μ M. Data analyses were done using the software MassLynx 4.1.

435

436 **UHPLC/HRMS analysis**

437 All other LC/MS results were obtained on a Dionex Ultimate 3000 system (Thermo Scientific™,
438 Germering, Germany) coupled to an Exactive™ Plus Orbitrap mass spectrometer (Thermo
439 Scientific™, Bremen, Germany). Electrospray ionization was performed in positive mode
440 ionization with the following parameters: capillary temperature 380 °C, spray voltage 3000 V,
441 sheath gas flow 60 arbitrary units and aux gas flow 20 arbitrary units. The LC separation column
442 and the solvent gradient were identical to that described in the previous section on UPLC/MS
443 analysis; the injection volume was 5 μ L.

444 Calibration curves for DMSP and DMSOP were recorded in triplicate using synthetic standards
445 prepared as described above and in reference²⁹. For DMSOP, the LOD was 0.01 nM, the LOQ
446 0.1 nM and the linear range between 0.1 and 1000 nM. Calibration curve: area [DMSOP] =
447 418370 * c [DMSOP in nM] with $r = 0.9998$. For DMSP, the calibration curve was: area
448 [DMSP] = 470540 * c [DMSP in nM] with $r = 0.9999$. MS/MS for fragmentation of DMSOP
449 was accomplished with a normalized collision energy of 35. Data analyses were done using the
450 software Thermo Xcalibur version 3.0.63.

451

452 **DMSO quantification using purge and trap GC/FPD**

453 Analyses of samples to quantify DMSO were done according to²¹. Briefly, 3 mL of unfiltered
454 culture samples were pipetted into 4 mL glass vials (see method section **DMSOP**
455 **Transformation** for details) and stored frozen until analysis. For analysis, samples were first
456 tested to see if they contained DMS. Since no DMS was detected in the samples, they were not
457 bubbled with UHP He to remove the DMS prior to analysis. The total DMSO in unfiltered

458 culture samples or medium controls was measured after reduction to DMS by TiCl_3 .²¹ For each
459 sample, a 1 mL aliquot was amended with 200 μL TiCl_3 reagent (20% w/v in 2 M HCl, EMD
460 Chemicals) in a 14 mL serum vial that was crimp sealed with a Teflon-lined butyl rubber stopper
461 and an aluminum crimp cap. The DMSO samples were reacted for 1 h at 55 °C, then cooled to
462 room temperature for analysis.

463 Reacted vials containing DMS were sparged with UHP He for 3 min to transfer the DMS from
464 the vials onto liquid-nitrogen cooled Teflon wool using a custom-made cryogenic purge-and-trap
465 system. Hot water (ca. 90 °C) was used to desorb the DMS from the Teflon wool and inject the
466 sample into Shimadzu GC-14A gas chromatograph equipped with a Chromosil 330 column (2.4
467 m Long \times 3.2 mm i.d., Supelco Inc.). The sulfur was detected with a sulfur-selective flame
468 photometric detector. The column temperature was set isothermally at 60 °C. Both the injection
469 port and detector temperature were set at 225 °C. Authentic DMSP and DMSO standards were
470 prepared in the same manner as the samples. The LOD of the method is 0.2 pmol S for a 1 mL
471 aqueous sparged sample, with a signal-to-noise ratio of two.

472

473 **Confirmation of DMSOP in the algal extract**

474 A *Prymnesium parvum* methanolic extract from a stationary growth-phase culture was used to
475 determine if the signal of the unknown metabolite in the extract co-eluted with an authentic
476 DMSOP standard that was added to the extract prior to injection into the UPLC. As a control,
477 50 μL of the extract with no DMSOP standard was diluted with 100 μL of a mixture of
478 acetonitrile and water (9:1, v/v). After centrifugation (5 min, 4,500 rcf), the supernatant was
479 injected into the UPLC. In a separate analysis, an aliquot of this *P. parvum* extract was amended
480 with 10 μL of a 10 μM DMSOP standard solution, and then prepared for analysis in the same

481 way as the control. Comparison of the peaks of mass trace $m/z = 151$ for the two injections
482 showed an increased area at a retention time of $t_R = 4.2$ min corresponding to the DMSOP-
483 amended extract.

484

485 **DMSP transformation**

486 *P. bermudensis* cultures (6.5 mL, OD = 1.97 ± 0.05 , protein content = $99 \pm 1.3 \mu\text{g mL}^{-1}$, n = 3)
487 were concentrated by centrifugation to 1 mL before addition of 10 μL of $^{13}\text{C}_2$ -DMSP (10 mM in
488 H_2O). Samples were maintained under shaking at 28 °C for 18 h. Aliquots (100 μL) of the
489 cultures were centrifuged and the pellet was treated as previously described for DMSOP
490 quantification.

491

492 **DMSOP transformation**

493 Prior to incubation, aliquots of the bacterial cultures (10-15 mL) were washed three times by
494 centrifugation (15 min, 4,500 rcf) and subsequently resuspended in 10 mL of a succinate-free
495 medium to remove excess of organic carbon. For incubation experiments, all bacterial cultures
496 were diluted with succinate-free medium to an optical density of OD = 0.10-0.12. Culture
497 samples (3 mL each) were transferred into 4 mL screw cap vials with PTFE/silicone septa, each
498 vial containing a glass-coated stirrer. After addition of either an aqueous DMSOP solution (0.65
499 mM) with a final concentration of 1 μM or the same amount of water (controls), the vials were
500 sealed, vortexed and placed on a shaker at 28 °C. Samples and controls were prepared for each
501 culture in four replicates. Samples were taken directly after substrate addition (10 min), and after
502 5 and 24 h. The vials were frozen at -20 °C until DMSO quantification. As controls, MBM and

503 M9 medium with added DMSOP at a final concentration of 1 μ M were prepared in four
504 replicates. Incubation conditions and sampling times were done as described above.

505

506 **GC/HRMS measurement of $^{13}\text{C}_2$ -DMSO**

507 To determine if DMSOP was a DMSO precursor, we developed a method for the determination
508 of DMSO using solid phase microextraction in combination with gas chromatography/HRMS.
509 DMSO was extracted as described above for DMSOP transformation in 4 mL glass vials sealed
510 with PTFE septa. Extraction was achieved with a solid phase microextraction (SPME) fiber
511 (100 μ m PDMS, Supelco, Deisenhofen, Germany). Prior to extraction, the SPME fiber was
512 conditioned for 15 min at 250 °C. To apply the fiber to the sample vial, a hole was pierced in the
513 septum and the needle of the SPME holder was inserted into the vial. By immersion of the fiber
514 into the constantly stirred solution the analyte was allowed to adsorb onto the fiber for 15 min at
515 room temperature. Subsequently, the fiber was inserted into the injection port of the GC. DMSO
516 was desorbed into the PTV injector at 300 °C for 5 min in a gas chromatograph (TRACE™
517 1310, Thermo Scientific) that was fitted with a 60 m x 0.25 mm 1 μ m film ZB-1MS capillary
518 column (Phenomenex, USA) and a hybrid quadrupole-orbitrap mass spectrometer (Q Exactive,
519 Thermo Scientific). Ultrahigh purity helium was used as carrier gas at a flow of 1.2 mL min⁻¹.
520 The oven temperature was held for 1 min at 40 °C and subsequently increased to 150 °C (15 °C
521 min⁻¹) and again held for 3.5 min. The transfer line and ion source were both set to 300 °C. Mass
522 measurements were performed in EI-positive mode. A mass range from 45 to 200 *m/z* was
523 recorded. The ionization energy was 70 eV and scan time 0.25 s. Data analyses were performed
524 with the Thermo Xcalibur software version 3.0.63.

525

526 **DMSOP base lability**

527 2.5 μ L of a 0.5 M NaOH solution was added to 1 mL of an aqueous DMSOP solution in water
528 (500 μ M). A DMSOP solution without addition of NaOH served as a control. Samples were
529 prepared in triplicate. To determine DMSO, samples (50 μ L) were taken immediately after the
530 addition of NaOH (0 min), and after a reaction time of 2.5, 5.3 and 23 h at room temperature.
531 DMSO was detected by UHPLC/HRMS using a Rezex ROA-Organic Acid (8%) column (8 μ m,
532 4.6 \times 150 mm, Phenomenex, USA). Separations were carried out isocratically at 90% 0.0025 M
533 trifluoroacetic acid (solvent A) and 10% acetonitrile (solvent B) for 12 min. The flow rate was
534 set to 0.40 mL/min. DMSOP was quantified as described above.

535

536 **Statistical analysis**

537 Data is given as mean \pm s.d., the number of replicates n is listed. For comparison of two groups
538 an unpaired two-tailed t-test was used. As prerequisites normal distribution (Shapiro-Wilk) and
539 equal variance were tested. If at least one of those prerequisites was not met ($P \geq 0.05$) a Mann-
540 Whitney Rank Sum Test was performed. For comparison of multiple time points a One Way
541 ANOVA was utilized. If prerequisites were not met a Kruskal-Wallis One Way ANOVA on
542 Ranks was performed. If samples were drawn repeatedly from the same vessel a One Way
543 Repeated Measurement ANOVA was used. All ANOVA were followed by a Tukey post hoc test
544 for multiple pairwise comparisons if there was a significant difference in the dataset. All
545 statistical analyses were performed with a 95% confidence interval using Sigma-Plot version
546 11.0. $P > 0.05$ is considered not significantly different. For results in Fig. 3b no equal variance
547 was observed within the treatment “control” and Kruskal-Wallis One Way ANOVA on Ranks
548 with Tukey post hoc test for different time points was conducted. Within the treatment

549 “+DMSOP” a One Way ANOVA with Tukey post hoc test for different time points was
550 conducted. Within time points (10 min and 24 h) unpaired two-tailed t-tests between “control”
551 and “+DMSOP” were performed. Within time point (5 h) a normal distribution was not observed
552 and therefore a Mann-Whitney Rank Sum Test was conducted to compare between control and
553 treatment. For results in Fig. 3c a One Way ANOVA with Tukey post hoc test for different time
554 points was conducted within the treatment “control” and within the treatment “+DMSOP”.
555 Within time points (10 min and 5 h) unpaired two-tailed t-test between “control” and
556 “+DMSOP” were conducted. For the 24h time point no equal variance was given and a Mann-
557 Whitney Rank Sum Test was performed. The loss of a medium control sample during transport
558 led to the exclusion of one replicate of the treatment “+DMSOP” ($t = 10$ min) from the analysis
559 in Fig. 3b and c. A contaminated medium control sample led to exclusion of a replicate of the
560 treatment “+DMSOP” ($t = 5$ h) from the analysis in Fig 3b and c.

561

562 **Data availability:** The datasets generated and analyzed during the current study are available
563 from the corresponding authors on reasonable request.

564

565 27 Forrester, J., Jones, R. V. H., Preston, P. N. & Simpson, E. S. C. Generation of
566 trimethylsulfonium cation from dimethyl sulfoxide and dimethyl sulfate: implications for
567 the synthesis of epoxides from aldehydes and ketones. *J. Chem. Soc. Perkin Trans. 1*,
568 2289-2291, (1995).

569 28 Ayres, D. C. & Hossain, A. M. M. Oxidation of aromatic substrates. Part II. The action of
570 ruthenium tetraoxide on some derivatives of napthalene and its monoaza-analogues. *J.*
571 *Chem. Soc. Perkin Trans. 1*, 707-710, (1975).

572 29 Chambers, S. T., Kunin, C. M., Miller, D. & Hamada, A. Dimethylthetin can substitute
573 for glycine betaine as an osmoprotectant molecule for *Escherichia coli*. *J. Bacteriol.* **169**,
574 4845-4847, (1987).

575 30 Maier, I. & Calenberg, M. Effect of extracellular Ca^{2+} and Ca^{2+} -antagonists on the
576 movement and chemoorientation of male gametes of *Ectocarpus siliculosus*
577 (Phaeophyceae) *Bot. Acta* **107**, 451-460 (1994).

578 31 Guillard, R. R. & Ryther, J. H. Studies of marine planktonic diatoms. I. *Cyclotella nana*
579 (Hustedt) and *Detonula conservacea* (Cleve). *Can. J. Microbiol.* **8**, 229-239 (1962).

580 32 Guillard, R. R. L. & Hargraves, P. E. *Stichochrysis immobilis* is a diatom, not a
581 chrysophyte. *Phycologia* **32**, 234-236, (1993).

582 33 Spielmeyer, A., Gebser, B. & Pohnert, G. Investigations of the uptake of
583 dimethylsulfoniopropionate by phytoplankton. *ChemBioChem* **12**, 2276-2279, (2011).

584 34 Verity, P. G. *et al.* Relationships between cell-volume and the carbon and nitrogen
585 content of marine photosynthetic nanoplankton. *Limnol Oceanogr* **37**, 1434-1446, (1992).

586 35 Welschmeyer, N. A. Fluorimetric analysis of chlorophyll a in the presence of chlorophyll
587 b and pheopigments. *Limnol. Oceanogr.* **39**, 1985-1992, (1994).

588 36 Kiene, R. P. & Slezak, D. Low dissolved DMSP concentrations in seawater revealed by
589 small-volume gravity filtration and dialysis sampling. *Limnol. Oceanogr. Methods* **4**, 80-
590 95 (2006).

591 37 Howard, A. G. & Russell, D. W. Borohydride-coupled HPLC-FPD instrumentation and
592 its use in the determination of dimethylsulfonium compounds. *Anal. Chem.* **69**, 2882-
593 2887, (1997).

594 38 Spielmeyer, A., Gebser, B. & Pohnert, G. Dimethylsulfide sources from microalgae:
595 Improvement and application of a derivatization-based method for the determination of
596 dimethylsulfoniopropionate and other zwitterionic osmolytes in phytoplankton.
597 *Mar. Chem.* **124**, 48-56, (2011).

598

599

600

601

602 **Extended Data**

603

604 **Extended Data Figure 1: DMSOP mass spectra.** The HR MS/MS spectra of natural occurring
605 DMSOP and the authentic standard (normalized collision energy of 35) are shown. **a**, DMSOP
606 standard, molecular ion m/z 151.0421, fragments $[C_2H_7O_2S]^{+}$ m/z 79.0210 and $[C_3H_5O_2]^{+}$ m/z
607 73.0283. **b**, Isotopic pattern of the molecular ion m/z 151.0421 with the calculated formula
608 $C_5H_{11}O_3S$ and isotopic fine structure of $[M+1]$ and $[M+2]$. **c**, DMSOP from a *P. parvum* extract
609 with added $^{13}C_2$ -DMSOP. **d**, $^{13}C_2$ -DMSOP, molecular ion m/z 153.0485, fragments $[^{13}C_2H_7O_2S]^{+}$
610 m/z 81.0277 and $[C_3H_5O_2]^{+}$ m/z 73.0282.

611

612 **Extended Data Figure 2: Structure of DMSOP.** Arrows show the heteronuclear multiple bond
613 coherence (HMBC) correlations. Numbers indicate carbon atom positions.

614

615 **Extended Data Figure 3: *I. galbana* growth and cellular DMSOP.** Growth (**a**) and
616 photosynthetic efficiency (**b**) of *I. galbana* cultures. Cellular DMSP and DMSOP content are
617 given in **c**. Data represent mean values of $n=3$ independent cultures \pm s.d.. P values are from One
618 Way Repeated Measurement ANOVA with Tukey post hoc test. A significant difference in
619 cellular DMSOP concentration compared to day 3 is detected from day 7 onward.

620

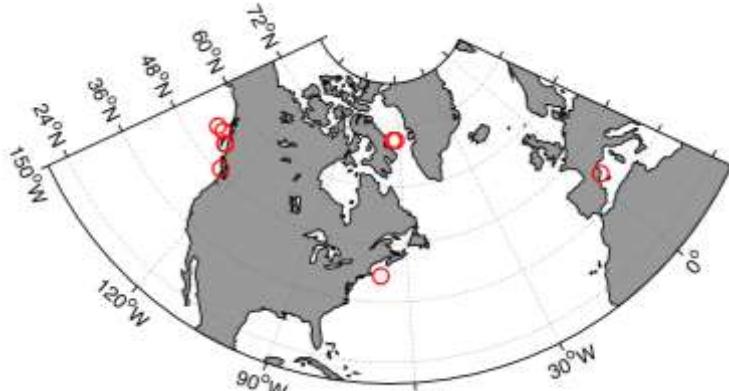
621 **Extended Data Figure 4: DMSOP is stable in seawater but base labile.** DMSOP is stable
622 over a period of 72 days in seawater (**a** left). It degrades at room temperature under basic pH (pH

623 = 11, monitored over 23 h, **a** right). DMSO is released during this base treatment (integration of
624 $m/z = 79$ in GC/MS, **b**). Mean values are given and error bars denote the s.d. for the independent
625 analysis of n=3 separate cultures. P values are from One Way Repeated Measurement ANOVA
626 with Tukey post hoc test compared to t = 0 h.

627 **Extended Data Figure 5: DMSO release from DMSOP by bacteria.** DMSOP (1 μ M) is
628 degraded by *A. faecalis*, a *dddY* knock out mutant of *A. faecalis* (**a**) and by *Halomonas* sp. (**b**).
629 Data represent mean values of n=4 independent cultures \pm s.d.. P values result from unpaired
630 two-tailed t-tests. In separate experiments (**c**) it was demonstrated that DMSOP is the exclusive
631 source for DMSO production in *A. faecalis*. Release of labeled DMSO from $^{13}\text{C}_2$ -DMSOP was
632 monitored by HR-GC/MS. The mass spectrum shows an average over the DMSO peak extracted
633 from an *A. faecalis* culture that was incubated for 23 h with DMSOP. Integration of the ion
634 traces 80.0200 ($^{13}\text{C}_2$ -DMSO) and 78.0134 (DMSO) in three independent replicates revealed a
635 degree of labeling of $99.3 \pm 0.25\%$.

636 **Extended Data Table 1: Occurrence of DMSOP in different algal species.** (+) DMSOP above
 637 the limit of detection of 0.08 µM (UPLC/MS analysis), (-) DMSOP below the limit of detection.
 638 The ratio of peak area (DMSOP)/peak area (DMSP) was > 0.01% in all samples labeled with (+).
 639 Cultures without strain denomination are from our culture stock in the laboratory of the Institute
 640 of Inorganic and Analytical Chemistry Jena (strains available upon request).

Class	Species	Strain	DMSOP
haptophyte	<i>Isochrysis galbana</i>		+
	<i>Prymnesium parvum</i> (axenic)		+
	<i>Prymnesium parvum</i>	CCAP946/6	+
	<i>Phaeocystis pouchetii</i>	AJ01	-
diatom	<i>Chaetoceros compressum</i>	CCMP168	-
	<i>Chaetoceros didymus</i>	CH5	-
	<i>Coscinodiscus wailesii</i>	CCMP2513	+
	<i>Entomoneis paludosa</i>		+
	<i>Eucampia zodiacus</i>		+
	<i>Nitzschia cf. pellucida</i>	DCG0303	-
	<i>Navicula</i> sp.	I15	-
		CCMP2561	
	<i>Phaeodactylum tricornutum</i>	SCCAP K-128	-
		UTX646	
	<i>Skeletonema costatum</i>	RCC75	+
	<i>Stephanopyxis turris</i>		-
	<i>Thalassiosira pseudonana</i>	CCMP1335	-
		RCC841	
	<i>Thalassiosira rotula</i>	RCC776	-
		CCMP1018	
	<i>Thalassiosira weissflogii</i>	RCC76	-
coccolithophore	<i>Emiliania huxleyi</i>	RCC1217	
		RCC1731	+
cryptophyceae	<i>Rhodomonas</i> sp.		-
dinoflagellate	<i>Amphidinium carterae</i>	SCCAP K-0406	-
	<i>Lingulodinium polyedrum</i>	CCAP1121/2	-
	<i>Prorocentrum minimum</i>		+
	<i>Symbiodinium microadriaticum</i>	CCMP2464	+


641

642

643 **Extended Table 2. Map of sampling sites and DMSP_{total} and**
 644 **DMSOP_{total} concentrations in seawater.** The error is the standard
 645 deviation (n=3 independent samples). When no s.d. is reported n = 1.

646

647 * Limit of quantification of 0.1 nM, limit of detection = 0.01 nM
 648 (UHPLC/HRMS analysis)

Location	Date (2016)	Latitude (°N)	Longitude (°W)	Depth (m)	Temp. (°C)	Sal. (ppt)	Chl a ($\mu\text{g L}^{-1}$)	DMSP _t (nM)	DMSOP _t * (nM)
NW Atlantic	Sept 21	41.40	67.47	5	18.5	32.5	3.14 ± 0.02	16.7 ± 1.4	$0.057 \pm 0.048^{\dagger}$
Arctic	July 9	69.50	61.58	10	-0.7	32.8	0.47	44.8 ± 2.4	0.197 ± 0.257
	July 10	69.50	63.23	12	-1.3	32.3	0.24	37.8 ± 2.4	0.057 ± 0.043
NE Pacific	July 14	54.04	137.16	5	13.6	32.1	0.63 ± 0.01	49.3 ± 6.9	0.061 ± 0.037
	July 15	54.30	134.68	5	14.9	31.8	0.55 ± 0.01	34.1 ± 1.6	0.036 ± 0.003
	July 19	52.90	130.62	5	13.1	31.5	6.09 ± 0.12	83.1 ± 7.9	0.151 ± 0.015
	July 19	52.96	130.73	5	14.2	31.5	1.80 ± 0.01	49.7 ± 3.0	0.190 ± 0.081
	July 22	48.75	125.42	5	14.9	31.0	16.5 ± 0.57	122.0 ± 15.5	0.079 ± 0.021
Mediterranean Sea	July 18	41.55	2.49 [‡]	surface	24.5	37.4	1.21	24.8 ± 4.5	0.073 ± 0.050
Sea	July 18	41.55	2.49 [‡]	surface	24.5	37.4	1.04	60.5 ± 6.3	0.045 ± 0.037

649

650 [†] n = 2. Range reported.

651 [‡] °E

652

653

654 **Extended Data Table 3. Incorporation rates of $^{13}\text{C}_2$ -DMSP into DMSOP in *P. bermudensis***

655

Peak area $^{13}\text{C}_2\text{-DMSOP}$ <i>m/z</i> 153.0496	Peak area $^{13}\text{C}_1\text{-DMSOP}^*$ <i>m/z</i> 152.0455	Peak area DMSOP <i>m/z</i> 151.0423	Degree of labeling [%] $^{13}\text{C}_2\text{-DMSOP}$ in relation to DMSOP †
3,140,000 \pm 640,000	4,310,000 \pm 180,000	84,700,000 \pm 4,080,000	3,68 \pm 0,59

656 * The area corresponds to ca 5.1% of the unlabeled isotopologue, which is in accordance with the natural ^{13}C -content of a compound
 657 with five carbon atoms (5.5 %). † Values exceed the calculated degree of labeling of the natural isotopologue of 0.26 % and confirm
 658 that externally added labeled DMSP was transformed to DMSOP. Data represent mean values of $n=3$ independent experiments \pm s.d..

659