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ABSTRACT: Dynamic atomic force microscopy (dAFM) is widely used to characterize polymer viscoelastic
surfaces in the air/vacuum environments; however, the link between the instrument observables (such as
energy dissipation or phase contrast) and the nanoscale physical properties of the polymer surfaces (such as
local viscoelasticity, relaxation, and adhesion) remains poorly understood. To shed light on this topic, we
present a computational method that enables the prediction and interpretation of dAFM observables on
samples with arbitrary surface forces and linear viscoelastic constitutive properties with a first-principles
approach. The approach both accelerates the computational method introduced by Attard and embeds it
within the tapping mode amplitude reduction formula (or, equivalently, frequency modulation frequency
shift/damping formula) to recover the force history and instrument observables as a function of the set point
amplitude or Z distance. The method is validated against other reliable computational codes. The role of
surface forces and polymer relaxation times on the phase lag, energy dissipation, and surface deformation
history is clarified. Experimental data on energy dissipation in tapping mode/amplitude modulation AFM
(TM-AFM/AM-AFM) for different free amplitudes and set point ratios are presented on a three-polymer
blend consisting of well-dispersed phases of polypropylene, polycarbonate, and elastomer. An approach to
experimental validation of the computational results is presented and analyzed.

1. INTRODUCTION

Dynamic atomic force microscopy (dAFM) offers many
advantages and unique capabilities for the nanoscale character-
ization of advanced polymeric materials.1−6 dAFM enables the
high-resolution imaging of polymer samples in air/vacuum/
liquid environments with gentle normal and lateral forces,7 thus
allowing for minimally invasive imaging of these soft samples.
Moreover, dAFM mode imaging always provides additional
channels of observables (phase contrast, energy dissipation,
higher harmonics, bimodal phase, etc.), which can be used to
render nanoscale compositional contrast8,9 to complement
topography images.
However, the dAFM compositional contrast on polymers can

arise from differentmaterial properties (elasticity, viscoelasticity,
relaxation times, hysteretic, van derWaals (vdW) adhesion, etc.)
and depends on the operating conditions (set point ratio, free
amplitude, drive frequency, stiffness, tip radius, and quality
factor).10 Because of the variety of effective parameters that
characterize the physical properties of polymers, the inter-
pretation of the instrument’s observables on polymer samples is
difficult.
To understand the link between dAFM compositional

contrast on polymers and local material properties, a
mathematical model that predicts the interaction between the
dAFM oscillating tip and the viscoelastic sample surface is
required. For example, to interpret contact-mode related AFM
methods such as force modulation or contact resonance,
viscoelastic sample models without surface forces are often

used.11−17 However, such approaches cannot be applied to
dAFM, where the tip intermittently interacts with the
viscoelastic sample surface and requires an accurate and self-
consistent inclusion of both surface forces and surface relaxation
dynamics.
Prior efforts linking dAFM compositional contrast on

polymers to local properties have key limitations. Early works
suggested that dAFM phase contrast under moderate tapping
conditions on polyethylene was merely correlated to polymer
density and elasticity1 rather than viscoelastic properties. More
commonly, in mathematical simulations of dAFM, viscoelas-
ticity is introduced as an ad hoc addition of a Kelvin−Voigt
viscoelasticity model within Hertzian or DMT (Derjaguin,
Muller, and Toporov) contact mechanics theories.11−17
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where the tip−sample interaction force Fts depends on the tip−
sample gap d and tip velocity ḋ through the effective tip−sample
elastic modulus E*, sample viscosity η, and tip radius R. There
are two fundamental problems with this ad hoc model. First,
when the oscillating tip is interacting with the sample (d < 0) and
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it is withdrawing from the sample (ḋ > 0), it is possible that Fts <
0 for sufficiently large ḋ and η. However, the Hertz contact
model should only include repulsive surface forces (Fts ≥ 0), so
this outcome of the model (eq 1) is nonphysical. Put another
way, as the tip withdraws, the deformed sample does not return
to its original condition instantly, but rather it takes time to relax
due to viscoelasticity, allowing the tip to detach from the sample
before d = 0. However, the ad hocmodel cannot account for this
and applies an attractive force forcing the tip to withdraw only as
fast as the sample can relax. This is seen clearly in a force−
indentation history during a single tap that is simulated using
Hertz contact mechanics with an ad hoc Kelvin−Voigt
viscoelasticity model which is generated by VEDA (virtual
environment for dynamic AFM),18 as shown in Figure 1. The

presence of attractive forces during the retraction phase arises
from the ad hoc and incorrect assumption that the contact area
history of the tip during the retraction phase of the oscillation for
a viscoelastic material is not different from that of a purely elastic
material. In contrast, Ting’s model19 modifies the Hertzian
contact model by using the viscoelastic correspondence
principle and correctly predicts the contact area evolution for
tip interaction with a linear viscoelastic solid. However, since
surface forces are ignored in Ting’s model, it cannot predict
surface deformations occurring before tip−sample contact or
spontaneous and nonequilibrium surface instabilities such as
sample snap off and jump to contact with the tip. These
phenomena are especially relevant for dAFMon soft materials or
viscoelastic surfaces with a moderate to large adhesion. In
recognition of the likely role of surface relaxation in dAFM,
recent works20,21 have included surface relaxation within dAFM
simulations and modeled the contact as a bed of linear springs
and viscous dashpots. However, they do not consider contact
mechanics, 3D continuum viscoelasticity, and surface forces in a
self-consistent manner.
In summary, understanding dAFM on polymers needs

computational approaches in which the relevant physics of the
interactions are taken into account in a self-consistent manner.
Attard and co-workers22−26 introduced a completely different
approach for including the relevant physics of the contact

between a tip and an adhesive viscoelastic surface within the
Boussinesq solution27 of a tip−sample contact problem. The
approach is akin to a boundary element method in that the
sample surface is discretized with a mesh and the surface
deformation and pressure are computed at each mesh point in
time explicitly. Attard’s approach does away with ad hoc
assumptions of prior models discussed before and computes the
surface deformation field self-consistently using 3D linear
elasticity/viscoelasticity and arbitrary surface forces. However,
since the algorithm is based on an iterative loop, it is
computationally expensive. Moreover, the approach requires
precise knowledge of the tip motion, which is not known a priori
in dAFM, but rather depends on the material properties and
operating conditions.
In this work, we both accelerate the computational method

introduced by Attard and embed it within the tapping mode
amplitude reduction formula (or, equivalently, frequency
modulation frequency shift/damping formula) to recover the
instrument observables (phase contrast/energy dissipation) and
force and surface deformation history as a function of the set
point amplitude orZ distance over adhesive viscoelastic surfaces.
The algorithm allows for the self-consistent inclusion of
resonant microcantilever dynamics, surface forces, and linear
three-dimensional material viscoelasticity within dAFM simu-
lations. The approach is validated by comparison with the results
of Attard22 as well as with VEDA simulations using Ting’s
model.19 The approach is then used to study the effects of
polymer relaxationmodes and surface forces on interaction force
and surface deformation history and TM-AFM/AM-AFM
observables such as energy dissipation and phase. Experimental
data acquired using TM-AFM/AM-AFM on energy dissipation
on a blend of polypropylene, polycarbonate, and elastomer are
described. An approach to for the experimental validation of
computational results is presented and analyzed.

2. RESULTS AND DISCUSSION

2.1. Theory of the Proposed Approach. In AM-AFM
(commonly known as TM-AFM), a microcantilever with a sharp
tip is excited near its fundamental frequency, and the
microcantilever’s vibration while interacting with the surface
of the sample is monitored via a beam bounce technique. Here
we review some key concepts from the analytical theory of AM-
AFM upon which the proposed approach is based, recognizing
that the proposed approach can be easily adapted for frequency
modulation AFM (FM-AFM).
For steady-state AM-AFM oscillations in air/vacuum, the tip

settles in a well-defined motion,29 which is dominated by the
fundamental harmonic of tip motion: q(t) = A sin(ωt − ϕ),
where q(t) is the tip deflection, A is the amplitude of the
oscillation, and ϕ is the phase lag relative to the excitation force.
Higher harmonics also occur, but they are about 2 orders of
magnitude smaller than the fundamental in air or vacuum
applications.30,31 If we assume that the higher harmonics of tip
displacement are negligible compared to the primary harmonic,
the unperturbed distance of the tip above the sample surface isZ,
which is adjusted by the Z piezo, the tip−sample gap is d(t) = Z
+ q(t), and ḋ is the tip velocity. A schematic of an oscillating tip
interacting with a sample is illustrated in Figure 2. During the
interaction time, the tip experiences local surface forces, both
conservative and nonconservative. The oscillation amplitude A
of the resonant probe decreases once the Z piezo approaches,
and the microcantilever begins to interact with the sample

Figure 1. F−d history during a single tapping cycle predicted by the
AMAC tool in VEDA28 using the Hertz model including Kelvin−Voigt
viscoelasticity in an ad hoc manner. The computation uses these
parameters: free amplitude: 60 nm; natural and driving frequency: 75
kHz; Q = 150; approach velocity: 200 nm/s; tip radius: 10 nm. The
viscoelastic properties used are E = 1 GPa and η = 100 Pa·s. Note that
the retraction phase features a region of attractive forces shaded in
green which is an artifact of the underlying model assumptions.
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surface. Under these conditions, the virial Vts(A,Z) and energy
dissipation Ets(A,Z) can be calculated as follows:

V
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where Fts is the tip−sample interaction force and T is the time
period of the oscillation. Furthermore, Aratio = A/Afree, known as
the amplitude set point ratio (dimensionless), is the ratio of the
resonant amplitude A during interaction and the free amplitude
(Afree) far from the sample. Aratio is related to Ets(A,Z) and
Vts(A,Z) using the amplitude reduction formula, which is
derived by rearranging the virial and energy dissipation
equations32−34 of AM-AFM. Specifically
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where Vts (eV/cycle) is the virial, Ets (eV/cycle) is the energy
dissipation, k (N/m) is the equivalent microcantilever stiffness
of the driven eigenmode,35 and Q is the quality factor of the
microcantilever. Equation 4 highlights the implicit relationship
between amplitude reduction and tip−sample interactions. In
particular, the amplitude A appears both on the left-hand side
and on the right-hand side (through the Ets and Vts terms) of eq
4.
We propose an algorithm for using eq 4 to find the Z-distance

for each desired/observed Aratio and thus predict the AM-AFM
observables and surface deformation and force history as a
function of Aratio. As illustrated in Figure 3, Acurrent

ratio is the desired/
observed amplitude ratio, Anew

ratio is the computed amplitude ratio,
tol is the tolerance band, dZ (nm) is a small decrement in Z, and
ΔZ is the initial guess for the Z piezo increment. The value for
dZ is updated at each iteration to facilitate a faster convergence.
In the proposed approach, the procedure starts with an initially
guessed Z-distance value, which is adjusted (increased/
decreased) such that the Aratio obtained by computing Ets and
Vts using Attard’s method and inserting into the right-hand side
of eq 3 matches the desired Aratio on the left-hand side of eq 3,
within tol, the defined tolerance. When the difference between
the computed and desired Aratio falls within tol, all observables
like Z, energy dissipation, virial, indentation, amplitude, tip−
sample force history, sample deformation history are recorded
for the specific Aratio. Additionally, the phase lag ϕ can be
calculated for each desired Aratio as follows:

Figure 2. Schematic of an oscillating tip with tip−sample dissipative
and conservative forces. d (nm) is the tip−sample gap, and Z (nm) is
the distance between the unperturbed microcantilever tip and the
sample. The average of interaction force history during approach and
retraction is the conservative part of interaction since it depends on the
instantaneous tip−sample gap d and contributes to the virial, while the
difference of the approach and retraction force history during a cycle is
the nonconservative part of the interaction and contributes to the
energy dissipation.

Figure 3. Proposed algorithm for predicting instrument observables by embedding Attard’s model into the AM-AFM amplitude reduction formula.
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After meeting the tolerance criteria for a given Aratio, the
algorithm goes to the next Aratio in the range. The Aratio range
considered in the flowchart (Figure 3) is between and Amin

ratio with
ΔAratio steps. The advantage of the above algorithm is that it
allows for the computation of the amplitude/phase/energy
dissipation as a function of Aratio without time-domain
simulations of nonlinear governing equations of AFM micro-
cantilever dynamics as in VEDA.28

The described algorithm (Figure 3) thus only needs the fast
computation of Ets and Vts using Attard’s model22−26 for tip
oscillation amplitudes A and Z distances for which it is called to
execute. The underlying principle of Attard’s model is
highlighted in Figure 4, where an axisymmetric rigid tip is

shown in close proximity to the sample surface. The radial
coordinate rmeasures the radial distance along the undeformed
surface from the projected location of the center of the tip.
h0(r,t) is the gap between the tip and the undeformed surface.
Specifically, when called by the proposed algorithm (Figure 3),
with a specific A, Z, and ω value, h0(r,t) takes the following
explicit time-dependent form:

h r t Z A t
r

R
( , ) ( sin( ))

2
0

2

ω= + +
(6)

Furthermore, u(r,t) is the vertical displacement (deformation)
of the sample, h(r,t) = h0(r,t) − u(r,t) is the gap profile between
the tip and the deformed surface, and the illustrated nodes
(Figure 4) show the spatial discretization on the surface of the
sample. The spatial discretization is referred to by i/j indices.
The Lennard-Jones pressure accounts for the surface force
between the tip and the sample:
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where H is the Hamaker constant and z0 is the equilibrium
distance. Alternative surface forcemodels can also be included in

the approach. The viscoelasticity of the sample is incorporated
by the creep compliance of a standard linear solid (three
element) viscoelastic model;36 however, the approach can in
principle include any linear viscoelastic constitutive relation:
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where Es(t) and E(t) are the time-dependent Young modulus
and reduced elastic modulus of the sample as defined in eq 9,
respectively, E0 and E∞ are short- and long-time reduced
Young’s modulus of the sample (E0 > E∞), and τ is the relaxation
time for the creep compliance function. The rate of the change of
the sample surface deformation and its deformation is correlated
by23
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where u̇ and ṗ are time derivatives of sample deformation and
the pressure, respectively. The long time static deformation
(u∞) and k(r,s) are given by
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where K is the complete elliptical integral of the first kind.
Equations 10 and 11 can be spatially discretized by trapezoidal
integration as follows:
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whereΔrj = rj− rj−1 andN is the number of radial nodes. As can
be seen, u̇ appears explicitly and implicitly (through ṗ(h)) on
both sides of eq 13. To solve this equation, Attard23,24 used a
slow iterative approach in which a value of u̇ is guessed at each
time step and refined iteratively until the left and right-hand
sides of eq 13 are within a defined tolerance.
It is important to emphasize that Attard’s model represents

the exact solution to the field equations of 3D elasticity and
through the correspondence principle allows for any linear
viscoelastic constitutive relationship to be included. Interested
readers are referred to Attard’s papers for a complete theory of
the employed model.22−25

In contrast to Attard’s algorithm for solving these equations,
we propose to take all the explicit u̇ terms in eq 13 to the left side
as follows:

Figure 4. Attard’s viscoelastic model assumes an axisymmetric rigid tip
interacting with a flat polymer surface. To model the viscoelasticity of
the sample, creep compliance of a standard three-element viscoelastic
model is utilized eq 836 in conjunction with arbitrary surface force
models. (a) and (b) show the undeformed and deformed sample,
respectively.
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where δij is the Kronecker delta. Equation 15 is thus a large set of
nonlinear coupled ordinary differential equations with explicit
time-dependent forcing through the h0(rj,t) term. This is solved
by discretizing time and evaluating the left-hand side of eq 14 at
each time step and using the deformation velocities at the nodes
to step forward to the new position of the deformed surface. The

code is implemented in both FORTRAN for future deployment
in VEDA and inMATLAB. In both codes, the time is discretized
per uniform increments/decrements of the tip−sample gap (d),
and the surface is spatially discretized into nodes with equal
radial increments. The selection of the appropriate number of
temporal/radial discretization points is made through numerical
studies to ensure that the solution is converged, and the
predictions are independent of the number of discretization
points. This allows for the explicit computation of u(ri,t) and
consequently h(ri,t) and thus p(h(ri,t)). With this computation
in place, it is easy to determine the tip−sample interaction force
history as follows:

F t r p h r t r( ) 2 ( ( , ))k

j

N

j k jts

1

∑π= Δ
= (19)

Once the tip−sample force history is calculated during an
oscillation cycle for a specific Z and A value, the result can be
plugged into eqs 3 and 4 to compute Ets(Z,A) and Vts(Z,A),
which are needed to determine the Z value required to achieve a
certain A and ϕ. Once this is computed as described in Figure 3,
all the relevant dAFM observables such as sample deformation/

Figure 5. Attard’s viscoelastic model results,22 Ting’s analytical viscoelastic model28 and the code developed in the present work are compared with a
prescribed triangular motion time profile of a rigid spherical tip. The triangular drive velocities are (a) ±5 μm/s, (b) ±2 μm/s, and (c) ±1 μm/s. The
tip radius is 10 μm, and the other material parameters used are identical to the ones used by Attard to facilitate comparison.22

Figure 6. A comparison between the dynamic approach curves results predicted by using the present algorithm (Figure 3) and the ones from the
AMAC tool which includes explicit microcantilever dynamics for elastomer (upper row) and polycarbonate (lower row). The blue circles are from the
proposed algorithm, and the red solid lines are the VEDA-AMAC tool’s outputs. The used material property data for these simulations are listed in
Table 1. The equivalent microcantilever properties are K = 28 N/m and Q = 542, and the oscillation period is 3 × 10−6 s.
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relaxation history per cycle, energy dissipation, force history,
virial, phase lag, and so on can be determined at the desiredAratio.
2.2. Verification. By directly solving the set of ODE’s in the

time domain rather than an iterative solver as in Attard’s original
work, the present approach is nearly an order of magnitude faster
than the original computational approach presented by Attard.22

We present here the computational verification and validation of
the proposed approach.
To verify the accelerated computational approach presented,

we compare the predicted F−d histories for a prescribed
triangular tip motion with the ones in Attard’s original work
(Figure 5).22 These results are also compared with simulations
performed using identical parameters but using Ting’s
viscoelastic model of contact mechanics without surface forces,
which is calculated by using the VEDA set of tools.28 The
number of temporal discretization points is 104, the simulations
are performed for an effective tip radius of 10 μm, and 600 radial
nodes are used within a radius of 500 nm of the surface to ensure
convergence of the solution. The characteristic relaxation time
for the creep function is 1ms, the short-time Young’s modulus of
the sample (E0) is 10 GPa, and the long-time Young’s modulus
of the sample (E∞) is 1 GPa. For Attard’s viscoelastic model, the
Hamaker constantH is 10−19 J and the equilibrium position z0 is
0.5 nm. A triangular oscillation with amplitude 20 nm with three
different tip velocities is prescribed into the model, and h0
oscillates between 10 and −10 nm. The predictions of the
developed code predict excellently the ones presented by
Attard22 and are in close agreement with Ting’s model
prediction during the approach phase but not during the

retraction phase. This result is consistent with the lack of surface
forces in Ting’s model.
Next, we validated the proposed algorithm (Figure 6) for

computing the dynamic approach curves when using Attard’s
model for tip−sample interactions. AMAC (Amplitude
Modulated Approach Curves) is an already validated tool on
VEDA, which includes full microcantilever dynamics and makes
reliable predictions for tapping mode AFM.28 This tool can
accurately use Ting’s model (but not Attard’s) as the tip−sample
interaction model, which we choose for the validation of this
algorithm. Therefore, the comparison between the instrument
observables predicted by computing force−distance histories
and embedding them within the AM-AFM amplitude reduction
formula (Figure 3) and the ones computed directly from the
AMAC tool help us to ensure the validity of the proposed
algorithm. As illustrated in Figure 6, the A, ϕ, Vts, and Ets graphs
show an excellent match for both elastomer and polycarbonate
material properties. Because polycarbonate is stiffer than the
elastomer, the energy dissipation and virial values for the
elastomer are greater than the ones of polycarbonate. The
parameter values used for the polymers in these simulations are
listed in Table 1.

2.3. Computational Results.To visualize the physics of the
tip−sample interaction during a single cycle, a simulation is
performed for a prescribed sinusoidal tip motion interacting
with an elastomer sample (Figure 7). The elastomer sample is
represented by a standard linear viscoelastic solid (three
element) model with the data provided in Table 1. The
complete set of parameters used for this simulation is provided
in the caption of the figure. The number of temporal

Table 1. Parameter Values Used for the Simulations in Verification and Computational Results Sections

τ (s) E0 (GPa) E∞ (GPa) H (J) z0 (nm) A0 (nm)

elastomer 5.47 × 10−8 0.143 0.029 7.99 × 10−20 0.6 60

polycarbonate 6.56 × 10−8 2.960 2.08 8.82 × 10−20 0.3 20

Figure 7. Interaction between a rigid axisymmetric tip and the elastomer sample surface is computed using the approach of the present work. The
viscoelasticity of the elastomer is modeled by using a standard linear solid (SLS) model with the data provided in Table 1. The tip travels through a
sinusoidal wave with 100 kHz frequency andZ = 45 nm. The oscillation amplitude is 50 nm and tip radius = 100 nm. In (a) the F−d and the F−ḋ history
(inset) are graphed. In (b), the deformation history during a sequence of time instants labeled 1−12 is graphed. The full video is provided as the
Supporting Information.
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discretization points is 105, the simulations are performed for an
effective tip radius of 100 nm, and 100 radial nodes are used
inside a radius of 50 nm on the surface to ensure convergence of
the solution. Figure 7 shows the force history during one cycle as
a function of d and ḋ (inset). These force histories clearly show
the dependence of hysteresis and adhesion on both d and ḋ. The
series of tip−sample geometries corresponding to 12 instants
during the force history (Figure 7b) is captured from the output
video of the code, which is provided as the Supporting
Information. During the tip approach, the material’s surface
slightly deforms upward from its initial flat state, then snaps on
to the tip, and then deforms downward with the tip movement.
However, it gradually peels away from the tip during the
retraction process, until a final detachment occurs. After the
detachment, the surface continues to relax until it returns to the
initial state. These surface instabilities are in line with
predictions by Attard’s model.37,38 The cycle then repeats at
every tap, unless the sample has not fully relaxed prior to a
subsequent tap. This latter condition has not been explored in
the present work where we assume the sample eventually fully
relaxes prior to a subsequent tap. It is worth mentioning that the
phenomena that are captured by the model and demonstrated in
this figure are not fully accounted for by any of the classical
models such as Hertz, JKR (Johnson, Kendall, and Roberts),
DMT, or Ting’s model.
To study the effect of diverse relaxation modes of polymers36

on AM-AFM observables, a set of the relaxation times τ ranging
between 2.9 × 10−6 and 2.8 × 10−9 s is used in the developed

code as prescribed in Figure 3, and their effect on the outputs of
the model such as Vts, Ets, Fts, and indentation depth vs Aratio is
investigated. The relaxation time τ determines how fast the
instantaneous Young’s modulus of the sample changes from E0

to E∞. All the other parameters except τ are identical for all the
simulations.
As illustrated in Figure 8, energy dissipation values are

significantly affected by τ. Ets reaches its maximal values at
specific relaxation times. Figure 8a also demonstrates an
additional key result. The Aratio at which maximum energy
dissipation occurs39 is highly dependent on τ. However, as
depicted in Figure 8b, contrarily, the Vts does not vary
substantially when τ is changed.
It is instructive to examine in Figure 9a the F−d histories

acquired as a part of the simulations presented in Figure 8 for a
fixed as the τ is changed in the stated range above. In Figure 9a,
the force loops show minimal hysteresis when τ is small
compared with the contact time and reach amaximum hysteresis
when for an intermediate value of τ, and the hysteresis vanishes
when τ is very large. To be more quantitative, we estimate the
contact (interaction) time in each F−d history in Figure 9a from
the time Aratio = 0.5 spent in the repulsive interaction regime.
Then we plot the corresponding indentation, Ets, and Vts as a
function of τ nondimensionalized by the contact time in Figure
9b, all at Aratio = 0.5. Figure 9b illustrates that the indentation
depth increases with decreasing τ. For τ ≪ contact time, the
material has enough time to completely relax during the
interaction time, and therefore the modulus behaves more like

Figure 8. (a) Energy dissipation (Ets) and (b) virial (Vts) vs set point ratio (A
ratio) for a set of relaxation time (τ) values: 1:2.9 μs, 2:1.1 μs, 3:0.40 μs,

4:0.15 μs, 5:54.7 ns, 6:20.3 ns, 7:7.6 ns, and 8:2.8 ns. The Lennard-Jones parameters for all simulations areH = 8× 10−20 J, and Z0 = 0.6 nm; additional
material properties are provided in Table 1 for the elastomer. The oscillation period is 3 × 106 s, the equivalent microcantilever properties are K = 28
N/m and Q = 542, and the tip radius is 15 nm. The vertical lines marked by Roman numerals are discussed in Figure 10.

Figure 9. F−d histories and indentation depth predictions at Aratio = 0.5 for a range of relaxation times (τ) are demonstrated. The τ values and other
simulation parameters are identical to the ones in Figure 8b. The indentation depth, Ets, andVts corresponding to the F−d histories in (a) are graphed as
a function of τ nondimensionalized by the tip−sample interaction time. Note that each of the cycles 1−8 in (a) has a different interaction time.
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E∞ during both approach and retraction leading to a larger
indentation and small hysteresis leading to low-energy
dissipation Ets. Likewise, when τ ≫ contact time, the material
responds with a stiff E0 leading to a less indentation and small
hysteresis leading to low-energy dissipation Ets. Figure 9b shows
that Ets is maximized when τ/contact time ∼0.01−0.1. Put
another way, Ets is maximized when the ratio of creep

(retardation) time (
E

E

0 τ=
∞

) to contact time ∼0.05−0.5. Thus,

if a polymer surface were to have many relaxation modes, those
whose relaxation and creep times are≈0.01−0.1 and≈0.05−0.5
of the contact time, respectively, are likely to contribute most to
the energy dissipation. In this sense, the energy dissipated in
AM-AFM on a viscoelastic sample may be considered as a
“narrow band filter” for capturing the effect of a narrow range of
polymer relaxation times.
Figure 10 illustrates Vts and Ets vs τ for four selected set point

ratios: 0.3, 0.5, 0.7, and 0.9. These are extracted from the same

Figure 10. (a) Energy dissipation (Ets) vs relaxation time (τ) and (b) virial (Vts) vs τ for a series of A
ratio = 0.3, 0.5, 0.7, and 0.9 that are specified in

Figure 8 by vertical dashed lines labeled I, II, III, and IV, respectively. All of the simulation parameters are identical to the ones in Figure 8.

Figure 11. Energy dissipation (Ets) vs set point ratio (Aratio) for (a) different Hamaker (H) constant values and (b) different values of equilibrium
position (z0). For (a) z0 = 0.6 nm, and for (b) H = 8 × 10−20 J. The material properties are the ones recorded in Table 1 for the elastomer.

Figure 12. (a) Topography image, (b) phase lag image, and (c) extracted energy dissipation on a three-phase blend polymer sample with Aratio = 0.7
andAfree = 35.9 nm. (d) and (e) show histograms of the extracted energy dissipation and phase lag values acquired over the selected rectangular areas of
the PC, PP, and elastomermarked in (b) with corresponding colors. The vertical bold lines shown for each histogram in (d) and (e) represent themean
value for each polymer. The scale bar is shown in (a) represents 1 μm.
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set of simulations as in Figure 8 and are shown by vertical dashed
lines marked by Roman numerals. The results show that while
Ets varies more significantly than Vts with τ, Ets is maximized and
Vts is minimized when the creep time is≈0.05−0.5 of the contact
time.
The surface pressure parameters (H, z0) that define the

resultant surface adhesion, are also expected to play a role in the
observed energy dissipation and hysteresis. To assess the
sensitivity of Ets vs A

ratio to these parameters, a range ofH values
between 2 × 10−19 and 10 × 10−19 J and a range of z0 values
between 0.5 and 0.8 nm are used in themodel. For smaller values
of z0 chosen in this range, surface instabilities are observed with
increased hysteresis. However, those simulations are also
associated with computational instabilities. The range of z0
chosen in these simulations is both comparable to prior
computational results and appropriate for small roughness
polymer surfaces.40 As shown in Figure 11, within the range of
chosen surface pressure parameters, Ets increases as H is
increased or as z0 is decreased. This result is in line with the
expectation that energy dissipation should increase with an
increase in surface forces.
2.4. Experiments. To demonstrate how the proposed

computational approach relates to experimental data acquired
on polymers, a set of experiments using tapping mode (TM) or
AM-AFM at 326.1 kHz and quasi-static (QS) at 1 Hz are
conducted on the surface of a three-component polymer blend
sample. The sample consists of a glassy polymer, polycarbonate;
a semicrystalline polymer, polypropylene; and a polyolefin-
based elastomer. The full description of the employed
instruments and sample preparation is provided in the
Experimental Methods section. Typical sample data are shown
in Figure 12 that are acquired over a rectangular region with the
TM microcantilever with Afree = 35.9 nm and Aratio = 0.7. The
resulting topography image (Figure 12a) shows areas of smooth
PC are interspersed with areas of PP with more surface
roughness. Smaller areas of elastomer are found embedded in
and surrounded by PC and PP domains. The acquired phase
data are converted to phase lag ϕ and adjusted so that when
drive frequency equals the microcantilever’s natural frequency
far from the sample then ϕ = 90°. For these operating
conditions, the AFMmostly operates in the net repulsive regime
(ϕ < 90°, throughout the scan region) as seen in Figure 12b. The
Ets values (eV per tap) are extracted from the phase lag images by
using the relation32,33

E Z A
kAA

Q
A( , ) (sin( ) )ts

0 ratioπ
ϕ= −

(20)

and mapped to the scan region as shown in Figure 12c.
Histograms of Ets and ϕ acquired over rectangular regions of the
PP, PC, and elastomer phases are shown respectively in Figures
12d and 12e.
The experimental validation of our computational approach is

challenging due to uncertainties associated with the model
parameters. For example, viscoelastic bulk properties can be
measured using dynamic mechanical analysis (DMA). However,
their correlation with viscoelastic surface properties measured
using AFM methods remains an active topic of research.
Specifically, with moderate to large net indentation, the contact
resonance (CR) method based AFM studies have reported local
elasticity values consistent with bulk DMA.41,42 However, in
AM-AFM in which gentler forces are used, indentations are
much smaller, and the local properties may be more influenced
by surface effects.43−49 Moreover, the sample under consid-
eration features significant interphase effects due to the mixture
of small volumes of the three phases. Even if the AFM measures
properties far from interphase regions on the sample surface,
there can be subsurface interphases that influence surface AFM
measurements. Last, but not the least, the surface force
parameters z0 and H are very hard to estimate experimentally.
While H can be approximated using theory, there is no clearly
accepted method to approximate z0 for the specific sample.
We chose to adopt the following strategy for estimating

parameters for subsequent experimental validation:

1. We estimate the Hamaker constants between native Si
oxide on the tip surface and the specific polymer using
Lifshitz theory.40 z0 is chosen within the range of prior
works40 and is made as small as possible to enable stable
computation.

2. We use the QS force curves acquired on each of the three
phases to estimate the long-time scale elastic modulus E∞

using Hertz contact mechanics. This is a reasonable
approach since the QS curves are performed at extremely
slow rates (1 Hz), and the quantification of uncertainties
in measuring surface elastic modulus using standard
force−distance curves is well understood.50

3. We then estimate E0 and τ by fitting these numbers to
match various features of the Ets vsA

ratio curve acquired on
the three polymer phases withAfree = 35.9 nm. Specifically,
for each of the polymer domains:

a. τ is adjusted until the Aratio at which maximum energy
dissipation occurs in simulations results matches within
10% the one found in experiment. This is based on a key
theoretical prediction that the Aratio at which the
maximum Ets energy dissipation occurs is mostly affected

Figure 13. Maximum EtS and Aratio at which the maximum EtS occurs plotted as a function of the relaxation time (τ) and E0/E∞ ratio for PP. The
employed material properties are listed in Table 2, Afree = 18 nm, K = 28 N/m, and other parameters are identical to the ones described in the
Experiments section.
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Table 2. Material Property Estimations/Extracted from the Set of Experiments with A
free = 35.9 nm and Used for Subsequent

Validation with a Another Set of Experiments with A
free = 18 nm on the Three-Polymer Blend Sample

τ (s) E0 (GPa) E∞ (GPa) H (J) z0 (nm)

elastomer 1.05 × 10−8 2.5 0.115 8 × 10−20 0.26

polypropylene 2.18 × 10−8 9.01 1.64 7.6 × 10−20 0.19

polycarbonate 4.5 × 10−9 110 3.7 8.8 × 10−20 0.19

Figure 14.Comparison between theory and experiment for the three phases following calibration of τ and E0 to best match the amount Ets and theA
ratio

at which it occurs in the experimental data acquired with Afree = 35.9 nm. A cubic polynomial is fitted to theory and experimental data to facilitate
identification of the maximum Ets location and magnitude. To help to clarify the regime of the oscillation, the 90° phase lag is marked by a green
horizontal dashed line.

Figure 15. Comparison of computational predictions and experimental results for Afree = 18 nm on the three polymer phases. The material property
data used for the computation (Table 2) are based on quasi-static force curves, theoretical estimates, and with τ and E0 calibrated from similar data
acquired for Afree = 35.9 nm (Figure 14). The observed discrepancy between simulation and experimental results is less than 11%, 11%, and 22% for
elastomer, PP, and PC, respectively.
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by τ (Figure 13b) and to a much lesser extent by E0/E∞.
As an initial starting guess τ is chosen to be 1% of the
cantilever oscillation period.

b. E0 value is increased from E∞ so that themaximum energy
dissipation (Ets) of the model matches within 10% of the
peak value of the fitted curve.

c. τ is again tuned to ensure that theAratio at whichmaximum
energy dissipation occurs in simulations remains within
10% the one in experiment.

The estimated values for the material properties using this
approach are provided in Table 2. The resulting computational
and experimental Ets vs A

ratio are compared in Figure 14. As can
be seen, the computational results using material properties
estimated with the experimental data set atAfree = 35.9 nmmatch
the experimental results within 5% across a wide range of Aratio.
These estimated material properties are in line with the results
provided by others.51,52

Using the material properties estimated using the calibration
data (Table 2), we validate the computational approach by
comparing predictions with experimental data for Afree = 18.0
nm. As illustrated in Figure 15, the predicted and measured Ets
are within 10% over a wide range of Aratio for both PP and
elastomer. The good match obtained on the elastomer is
particularly interesting since for Afree = 18.0 nm most of the
approach curve is in the attractive regime of oscillation.
However, the computational approach underpredicts actual

energy dissipation by over 20% for PC. In contrast with the other
polymer phases in the blend, PC is hydrophilic, so that under the
ambient conditions of the experiment water bridges may form
leading to capillary forces and significant additional energy
dissipation that are unaccounted for in the present ap-
proach.53−55 To estimate the influence of capillary forces on
the total observed energy dissipation, a set of peak force tapping
experiments were conducted under ambient and dry nitrogen
flushed conditions. Based on the observed results, the hysteresis
of a single force cycle at ambient condition is about 8%, 7%, and
50% higher for PP, elastomer, and PC, respectively, under
ambient conditions compared to under dry nitrogen. Thus,
capillary forces are likely to contribute more to AM-AFM under
ambient conditions on PC than on PP or elastomer and might
have resulted into unrealistic predictions for PC.
Finally, it is worth mentioning that there is a potential

bistability between attractive and repulsive regimes of oscillation
in AM-AFM.10,56,57 Under the free oscillation amplitudes
considered in these simulations, the tip either remained
exclusively in the attractive (for example, on the elastomer in
Figure 15) or repulsive regime of oscillation in the range of set
point amplitudes considered. If there is an initial attractive
regime, the algorithm tracks that solution until that solution
bifurcates and the algorithm jumps to the repulsive regime as the
set point is decreased.

3. CONCLUSIONS

Understanding dAFM on polymers needs computational
approaches in which the relevant physics of the interactions
are taken into account in a self-consistent manner. By
accelerating Attard’s model computations and embedding it
within dAFM amplitude reduction formulas it is possible to
efficiently compute key dAFM observables such as surface
deformation history, indentations, energy dissipation, phase,
and so on as a function of the amplitude ratio. This allows the
inclusion of arbitrary surface forces and linear 3D viscoelasticity

in a self-consistent manner in such simulations, representing a
significant advance in computational AFM on polymers. This
method alleviates the issues with the artifacts arising from the
use of ad hoc viscoelastic contact mechanics models. The code
and algorithm have been validated against prior results and other
reliable codes. Experimental data on energy dissipation in TM-
AFM/AM-AFM for different free amplitudes and amplitude
ratios are presented on a three-polymer blend consisting of well-
dispersed phases of polypropylene, polycarbonate, and
elastomer. An approach to experimental validation of computa-
tional results is presented using TM-AFM data on a blend of
PP−elastomer−PC. The computational and experimental
approaches presented in this work clarify the role of surface
forces and polymer relaxation times on the phase lag, energy
dissipation, and surface deformation history. Such approaches
are expected to aid ongoing efforts to interpret dAFM
observables on polymers in terms of quantitative physical
properties.

4. EXPERIMENTAL METHODS

Instrument. All TM/AMAFM and QS measurements were made
on a Bruker MultiMode 8 AFMwith a Nanoscope V controller running
v8.15 Nanoscope software. For the TM measurements, a Bruker TESP
silicon microcantilever was used with a quality factor, spring constant,
and fundamental frequency of 542, 28.0 N/m, and 326.1 kHz,
respectively. These values were measured using thermal tuning of the
undriven microcantilever. TM-AFM/AM-AFM experiments are
performed on a 10 × 5 μm2 rectangular region with 512 points/line
resolution level and a scan rate of 0.5 Hz using two different free
amplitudes (18.0 and 35.9 nm) and nine different amplitude ratios (0.9,
0.8, ..., 0.1). For the TM imaging, the phase was zeroed when the
microcantilever was within 100 nm of the surface for each amplitude
ratio measurement. QS force curves are acquired over the same sample
at 200 points (5 rows × 40 columns evenly spaced) on the same region
using a Bruker TESP silicon typemicrocantilever whose spring constant
was 21.2N/m. By use of a blind reconstructionmethod, the tip radius of
the QS microcantilever was estimated to be 14.2 nm and tip radius of
TM microcantilever was determined to be 14.0 nm.

Sample Preparation. The sample consists of a glassy polymer,
polycarbonate (Calibre 302-6, Trinseo); a semicrystalline polymer,
polypropylene (Inspire 404, Braskem); and a polyolefin-based
elastomer (Engage 8003, The Dow Chemical Company). The sample
was fabricated using injection-compression molding providing 2 in. × 2
in.× 1/8 in. plaques. Pieces of the plaque were removed via a punch and
mounted into vice holders. Trapezoid faces were cryo-milled in the
plaques pieces at −120 °C and then polished in a cryo-microtome at
−120 °C to produce block faces for AFM investigation.
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Herrero, J.; de Pablo, P. J.; Raman, A. Origins of phase contrast in the
atomic force microscope in liquids. Proc. Natl. Acad. Sci. U. S. A. 2009,
106 (33), 13655−13660.
(16) James, P.; Antognozzi, M.; Tamayo, J.; McMaster, T.; Newton, J.;
Miles, M. Interpretation of contrast in tapping mode AFM and shear
force microscopy. A study of nafion. Langmuir 2001, 17 (2), 349−360.

(17) Cheng, D.; Yang, G.; Xi, Z. Nonlinear systems possessing linear
symmetry. International Journal of Robust and Nonlinear Control 2007,
17 (1), 51−81.
(18) Melcher, J.; Hu, S.; Raman, A. Invited Article: VEDA: A web-
based virtual environment for dynamic atomic force microscopy. Rev.
Sci. Instrum. 2008, 79 (6), 061301.
(19) Ting, T. The contact stresses between a rigid indenter and a
viscoelastic half-space. J. Appl. Mech. 1966, 33 (4), 845−854.
(20) Haviland, D. B.; van Eysden, C. A.; Forchheimer, D.; Platz, D.;
Kassa, H. G.; Lecler̀e, P. Probing viscoelastic response of soft material
surfaces at the nanoscale. Soft Matter 2016, 12 (2), 619−624.
(21) Solares, S. D. A simple and efficient quasi 3-dimensional
viscoelastic model and software for simulation of tapping-mode atomic
force microscopy. Beilstein J. Nanotechnol. 2015, 6 (1), 2233−2241.
(22) Attard, P. Measurement and interpretation of elastic and
viscoelastic properties with the atomic force microscope. J. Phys.:
Condens. Matter 2007, 19 (47), 473201.
(23) Attard, P. Interaction and deformation of viscoelastic particles. 2.
Adhesive particles. Langmuir 2001, 17 (14), 4322−4328.
(24) Attard, P. Interaction and deformation of viscoelastic particles:
Nonadhesive particles. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat.
Interdiscip. Top. 2001, 63 (6), 061604.
(25) Attard, P. Interaction and deformation of elastic bodies: origin of
adhesion hysteresis. J. Phys. Chem. B 2000, 104 (45), 10635−10641.
(26) Attard, P.; Parker, J. L. Deformation and adhesion of elastic
bodies in contact. Phys. Rev. A: At., Mol., Opt. Phys. 1992, 46 (12), 7959.
(27) Boussinesq, J. Application des potentiels a ̀ l’et́ude de l’eq́uilibre et du
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