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Abstract— An unknown input observer provides perfect
asymptotic tracking of the state of a system affected by
unknown inputs. Such an observer exists (possibly requiring a
delay in estimation) if and only if the system satisfies a property
known as strong detectability. In this paper, we consider the
problem of selecting (at design-time) a minimum cost subset
of sensors from a given set in order to make a given system
strongly detectable. We show that this problem is NP-hard even
when the system is stable. Furthermore, we show that it is not
possible to approximate the minimum cost within a factor of
log n in polynomial-time (unless P = NP ). However, we show
that if a given system (with a selected set of sensors) is already
strongly detectable, finding the smallest set of additional sensors
to install in order to obtain a zero-delay observer can be done in
polynomial time. Finally, we consider the problem of attacking
a set of deployed sensors in order to remove the property of
strong detectability. We show that finding the smallest number
of sensors to remove is NP-hard.

I. INTRODUCTION

There is an increasing need to design controllers and
estimators for large-scale systems in a variety of application
domains, including computational biology, system of sys-
tems, intelligent traffic systems, communication networks,
and power grids [1]–[4]. The states of such systems can be
(partially) measured by sensors deployed at various locations.
However, there are many instances in which it would be
difficult or impractical to measure all the states of the system.
This could be due to initial implementation cost or runtime
energy cost of the sensors [5]. Therefore, a key challenge is
to find a subset of sensors with minimum cost to deploy on
the system in order to achieve certain performance objectives.

The problem of determining the minimal cost selection
of sensors has been studied extensively in recent years.
Existing approaches can be broadly separated into dynami-
cally switching (or scheduling) between different sensors at
runtime (e.g., [6]–[9]), and choosing sensors at design time
(e.g., [10]–[17]). For instance, [10] considered the problem
of selecting the smallest number of sensors to make a system
observable, and showed that this problem is NP-hard to
approximate within a factor of log n. In the context of sensor
selection for Kalman filtering, the papers [13], [14] showed
that selecting a set of sensors (within a budget constraint) to
minimize the trace of the steady state mean square estimation
error (MSEE) is NP-hard, and furthermore, the minimum
MSEE cannot be approximated within any constant factor in
polynomial-time (unless P = NP ). Similarly, [15] sought
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to minimize the number of sensors to achieve a certain
estimation error, and to minimize the estimation error with a
given number of sensors. The paper [16] studied minimal
actuator placement for structural controllability, and [17]
took a geometric approach to optimal sensor design.

In this paper, we consider the problem of (design-time)
sensor selection for linear time-invariant systems that are
affected by unknown (and arbitrary) inputs. Such inputs
can be used to represent faults, disturbances, model reduc-
tion errors, or malicious attacks [18]–[20]. For instance, in
large-scale critical infrastructure and industrial plants, cyber-
attacks can be injected at various points in the system, and
the characteristics of those attacks may not be known a
priori; such attacks can thus be modeled as unknown inputs
[19]–[21]. In this case, the system operator’s task is to place
sensors on the system in order to estimate the state despite
the attacks injected by the adversary. As another example,
consider a diffusive process such as a gas spreading over a
given area [22], or temperature dynamics across a Multi-
Processor-System-on-Chip [23]. These diffusive dynamics
are driven by source injections at various locations, whose
characteristics may not be known. In such cases, a limited
number of sensors must be carefully deployed to estimate
the gas concentrations or temperatures at all points in the
space, despite lack of knowledge of the injected quantities.

In order to obtain perfect (asymptotic) estimation of the
state of systems driven by unknown inputs (such as those
described above), one must construct an unknown input
observer which monitors the output of the system (provided
by the deployed sensors) and maintains an estimate of the
state (possibly with some delay) [24]. Such observers also
find applications in fault-detection and robust estimation
[25], [26]. For an unknown input observer to exist, the
system must be strongly detectable (i.e., all invariant zeros
of the system must be stable) [27], [28]. As a necessary
condition for strong detectability is detectability, and it was
shown in [10] that it is NP-hard to determine the minimum
set of sensors to make a system detectable, the problem
that we consider in this paper is trivially NP-hard as well.
However, the fundamental question that motivates this paper
is the following: is the NP-hardness of the sensor selection
problem for strong detectability solely due to the need
to obtain detectability? In other words, do the unknown
inputs contribute to the computational complexity of the
problem?

We answer this latter question in the affirmative by show-
ing that it is NP-hard to find a minimum cost selection
of sensors to make a given system strongly detectable,



even when the system is stable. In particular, by restricting
our attention to stable systems, we ensure that all sensor
selections cause the system to be detectable, and thereby
eliminate the complexity of choosing sensors to satisfy that
property. Our proof of NP-hardness relies on carefully con-
structed instances of stable LTI systems affected by unknown
inputs, along with sets of available sensors. Additionally, we
show the stronger result that the minimum cost cannot be
approximated within a factor of log n. This inapproximability
result mirrors the corresponding result for minimal sensor
selection for observability provided in [10], but again arises
from the need to handle the unknown inputs (as opposed
to ensuring detectability as in [10]). However, we show
that once a set of sensors is selected to make the system
strongly detectable, the problem of finding the lowest cost set
of additional sensors to obtain a zero-delay unknown input
observer can be solved in polynomial time.

After establishing the above complexity results for the
sensor selection problem, we turn our attention to the
problem of attacking a deployed set of sensors in order to
remove the property of strong detectability from the system.
Specifically, we consider a scenario where an attacker can
remove a given number of deployed sensors in an attempt
to cause the remaining system to not be strongly detectable.
We prove that it is NP-hard for the attacker to find the
minimum number of sensors to remove to achieve this.

Throughout the paper, the set of real numbers and integers
are denoted as R and Z respectively. We denote restrictions
of those sets via subscripts (e.g., R≥0 denotes all nonnegative
real numbers). Matrices are denoted in bold (e.g., A, B, C).
The identity matrix of dimension r × r is denoted Ir and
the zero matrix is denoted as 0 (with subscripts to denote
the dimensions, as needed). The notation A(i, j) indicates
the ith row and jth column of the matrix A. We denote the
transpose of a matrix A by A′. The notation diag() indicates
a diagonal matrix with the values in the parentheses along
the diagonal. A binary indicator vector µ is a vector where
each element is either a 1 or a 0. The complement of an
indicator vector is denoted µc, where each 1 in µ becomes
a 0 and vice versa. All vectors are column vectors, unless
otherwise noted.

II. BACKGROUND

Consider the linear time invariant system:

x[t+ 1] = Ax[t] +Bu[t] (1)
y[t] = Cx[t], (2)

where t ∈ Z≥0 is the discrete-time index, x[t] ∈ Rn is the
state vector, u[t] ∈ Rm is the unknown input vector, y[t] ∈
Rp is the output vector, A ∈ Rn×n is the system dynamics
matrix, B ∈ Rn×m is the input matrix, and C ∈ Rp×n
is the output matrix. We assume without loss of generality
throughout that B has full column rank.

Theorem 1 ( [27], [28]): An unknown input observer
(UIO) exists for system (1)-(2) if and only if

rank

[
A− z0In B

C 0

]
= n+m, ∀z0 ∈ C, |z0| ≥ 1. (3)

Furthermore, if this condition is satisfied, the observer will
estimate the state with a delay of at most n−1 time-steps. A
zero-delay observer exists if and only if condition (3) holds,
and in addition,

rank(CB) = rank(B). (4)

We will refer to condition (3) as the strong detectability
condition, and to (4) as the matching condition. A complex
number z0 reducing the rank of (3) below n+m is said to
be an invariant zero of the system.

III. THE STRONG DETECTABILITY SENSOR SELECTION
PROBLEM (SDSS)

A. Problem Formulation

Consider again system (1), and suppose that there are no
sensors deployed on the system (i.e., the output equation (2)
is not initially given). Instead suppose that we have a set
S = {S1, . . . , Sp} of available sensors and a cost vector
b ∈ Rp≥0 assigning a nonnegative cost to each sensor. In
other words, the ith element of b denotes the cost of sensor
Si, for each 1 ≤ i ≤ p.

Each sensor Si ∈ S provides a scalar measurement of the
state given by

yi[t] = Cix[t], (5)

for a row vector Ci. Let C =
[
C′1 C′2 · · · C′p

]′
. Given

an indicator vector µ ∈ {0, 1}p, we denote C(µ) to be the
submatrix of C consisting of the rows corresponding to the
sensors indicated by µ.

We consider the following problem.
Problem 1 (Strong Detectability Sensor Selection (SDSS)):

Suppose we are given the system matrix A ∈ Rn×n, the
input matrix B ∈ Rn×m, a set of p available sensors
S whose measurements are given by the rows of matrix
C ∈ Rp×n, and a cost vector b ∈ Rp≥0. The Strong
Detectability Sensor Selection Problem (SDSS) is to solve

min
µ∈{0,1}p

b′µ

s.t. rank

[
A− z0In B
C(µ) 0

]
= n+m, ∀z0 ∈ C, |z0| ≥ 1.

B. Complexity of SDSS

We start by showing the SDSS problem is NP-hard by
providing a reduction from Set Cover, stated below.

Problem 2 (Set Cover): Consider a tuple (U ,H, k), where
U is a finite set of r elements, H is a collection of sets
{H1, H2, . . . ,Hq} such that Hi ⊂ U for all i ∈ {1, 2, . . . , q},
and k is a nonnegative integer.

Question: Do at most k sets from H exist whose union
is equal to U?

Set Cover is NP-hard [29]. We will now provide a reduc-
tion from Set Cover to SDSS, prove certain useful properties
of the created instance of SDSS, and consequently prove that
SDSS is NP-hard.



1) Polynomial-Time Reduction from Set Cover to SDSS:
Given an instance of Set Cover (with r elements in the set
U , and a collection H containing q subsets of U ), we will
create an instance of SDSS as follows. Define the matrices

A =

[
0r×r A1

0r×r 0r×r

]
, A1 = diag(1, 2, . . . , r),

B =

[
Ir
−Ir

]
.

(6)

Next, we define a q× r matrix S to encode the set H. Each
column of S corresponds to an element in U , and each row
encodes one of the sets Hi in the collection H. Specifically,
element (i, j) of S is equal to 1 if set Hi ∈ H contains the
element j ∈ U , and zero otherwise.

Now we define the set of sensors for SDSS. Specifically,
we create p = r + q sensors to choose from. Each sensor
i’s measurement matrix Ci consists of a single row; the
collection of the measurement matrices for all sensors is
given by

C =

[
Ir 0
0 S

]
. (7)

Each sensor’s cost is defined by an element of the column
vector b. In this instance, we set the first r elements of b to
‘0’, and the remaining elements to ‘1’.

2) Properties of the Created Instance: Consider the set of
available sensors in the created instance, given by the rows
of the matrix C in (7). Since the first r sensors all have zero
cost (as specified in b), they can always be included in any
sensor selection without increasing the total cost. Thus, the
indicator vector µ for the sensor selection will be assumed
to have a ‘1’ in each of its first r elements. The matrix C(µ)
containing the rows of all sensors selected by µ is given by

C(µ) =

[
Ir 0
0 S(µ)

]
, (8)

where S(µ) is the matrix containing those rows of S that are
included in the sensor selection µ.

Lemma 1: Consider a sensor selection µ and the corre-
sponding tuple (A,B,C(µ)), where A and B are given by
(6) and C(µ) is given by (8). All invariant zeros of this tuple
(if they exist) are unstable.

Proof: Suppose z0 is an invariant zero of the tuple
(A,B,C(µ)), i.e., there exists a nonzero vector

[
X′0 U′0

]′
such that [

A− z0I2r B
C(µ) 0

] [
X0

U0

]
=

[
0
0

]
. (9)

By substituting the expressions for A,B and C(µ)
from (6) and (8) into equation (9) and partitioning X0 as[
X1
′ X2

′]′ , where X1 and X2 each have r elements, the
expression (9) becomes

−z0Ir A1 Ir
0 −z0Ir −Ir
Ir 0 0
0 S(µ) 0


X1

X2

U0

 =


0
0
0
0

 . (10)

The above expression shows that X1 = 0 and U0 = −z0X2.
The first block row in (10) then leads to:

A1X2 = z0X2. (11)

This implies that either X2 is the zero vector, or that z0
and X2 are an eigenvalue and corresponding eigenvector of
A1. The former case is impossible, since then U0 would
also be zero in (10), contradicting the fact that all three of
X1, X2 and U0 cannot be zero. Thus, z0 and X2 must be
an eigenvalue and eigenvector of A1 respectively. Since all
eigenvalues of A1 in (6) are unstable, the claim follows.

Lemma 2: The tuple (A,B,C(µ)) has no invariant zeros
if and only if all columns of S(µ) are nonzero.

Proof: Suppose all columns of S(µ) are nonzero, and
assume by way of contradiction that there exists an invariant
zero z0. Thus, there exists a nonzero vector

[
X′1 X′2 U′0

]′
satisfying (10). Furthermore, from the proof of Lemma 1, we
know that X2 is an eigenvector of A1. Since each eigenvec-
tor of A1 has exactly one nonzero element (by design, from
(6)), the quantity S(µ)X2 will be a scaled version of a col-
umn of S(µ). However, if all columns of S(µ) are nonzero,
then this contradicts the last row of (9) and thus there cannot
be any invariant zeros of the tuple (A,B,C(µ)).

Conversely, suppose there is a column of S(µ) that is
zero. Select X2 to be the indicator vector with a ‘1’ in the
position corresponding to that column, and zeros everywhere
else. Set z0 to be the eigenvalue of A1 corresponding to the
eigenvector X2, X1 = 0, and U0 = −z0X2. We see that this
choice of z0, X1, X2, and U0 satisfy (9). Thus, the tuple
(A,B,C(µ)) will have an unstable invariant zero.

3) NP-hardness of SDSS: Using the reduction from Set
Cover given by the system (6), the set of sensors (7) and cost
vector b, along with the properties of such instances given
above, we obtain the following result.

Theorem 2: Given an instance of Set Cover and the asso-
ciated instance of SDSS (given by (6), (7) and the cost vector
b), there exists a sensor selection of cost k that makes the
system strongly detectable if and only if a set cover of size
k or less exists. Thus, SDSS is NP-hard.

Proof: Suppose there exists a set cover of size k or
less. Let µ be the sensor selection vector that selects the
first r sensors from (7) and the k sensors from the bottom
q rows of b to correspond to the elements in the set cover
instance. By the definition of the costs in b, this selection
has total cost k. Since each row of S encodes a different
subset in the given instance of Set Cover, we see that S(µ)
will have no empty columns. From Lemma 2, if there are no
empty columns in S(µ) the tuple (A,B,C(µ)) will have no
invariant zeros, and thus will be strongly detectable.

Now suppose that there is no set cover of size k. Then,
for any sensor selection µ of cost k or less, there will be at
least one column of S(µ) that is zero. From Lemmas 1 and
2, we see that the tuple (A,B,C(µ)) will have an unstable
invariant zero, and thus will not be strongly detectable.

Thus, we see that given any instance of Set Cover, we can
create an instance of SDSS in polynomial-time, and solve the



Set Cover instance by solving the sensor selection instance.
Since Set Cover is NP-hard, SDSS is as well.

When dealing with NP-hard problems, it is of interest
to find polynomial-time approximation algorithms which
provide solutions that are within a certain factor of the
optimal. The following result provides a bound on the ability
to approximate the minimum sensor cost in polynomial time.

Corollary 1: For all ε > 0, SDSS cannot be approximated
within a factor of (1 − ε) log n where n is the number of
states, unless P = NP .

Proof: By contradiction, suppose there is some ε > 0
and an approximation algorithm for SDSS that always finds a
set of sensors within a factor of (1−ε) log n of the minimum
cost. By running this algorithm on the constructed instance
of SDSS given by (6), (7) and b, we would obtain a set of
sensors that provide strong detectability with a cost B that
is within a factor (1− ε) log n of the optimal cost. However
the optimal cost is precisely equal to the smallest size of
a set cover (by construction), and since the set of sensors
yielded by the algorithm must be a set cover (by Lemma 2),
we see that the algorithm would yield an approximation to
Set Cover as well. Since Set Cover cannot be approximated
within a factor of (1 − ε) log n of the optimal solution for
any ε > 0 (unless P = NP ) [30], the result follows.

C. Complexity of Satisfying the Matching Condition

As the SDSS problem is NP-hard (as shown in Theo-
rem 2), it is also NP-hard to find a minimum cost selection
of sensors in order to construct a UIO (by Theorem 1).
However, suppose that we consider a system that already has
a set of sensors deployed which make the system strongly
detectable, but that the matching condition (4) is not satisfied
(so that a zero-delay UIO cannot be created). Suppose that
we wish to deploy additional sensors (from a given set) of
lowest cost in order to obtain a zero-delay UIO. This requires
that the total set of deployed sensors satisfy the matching
condition (4). In this section, we show that when each sensor
provides a scalar measurement of the state (i.e., Ci in (5)
is a row vector), a minimum cost set of sensors to satisfy
the matching condition can be found in polynomial time. We
will use the following result.

Lemma 3 ( [31]): Consider a set V = {v1, v2, . . . , vp}
consisting of p vectors, and a weight wi ∈ R≥0 for each
vector vi ∈ V . The problem of finding the lowest cost
maximal linearly independent subset1 of vectors can be
solved in polynomial time via a greedy algorithm.

We will start by considering the general problem of
selecting a subset of sensors of lowest cost in order to satisfy
only the matching condition (i.e., without considering the
strong detectability condition).

Theorem 3: Consider a set of sensors S =
{S1, S2, . . . , Sp}, where each sensor provides a scalar
measurement of the form (5). Let the vector b ∈ Rp≥0
contain the cost of each sensor. Let C be the matrix

1A maximal linearly independent subset of vectors is a linearly indepen-
dent subset of V such that no additional vectors from V can be added to
the subset without violating linear independence.

consisting of all of the individual sensor matrices. Then, the
sensor selection vector µ ∈ {0, 1}p of lowest cost satisfying
the matching condition rank(C(µ)B) = rank(B) (if such
a selection exists) can be found in polynomial time via a
greedy algorithm.

Proof: Define the matrix J = CB, where the ith row
of J is given by CiB. Thus, define the cost of the ith row
of J to be bi, i.e., the cost of the corresponding sensor Si.

For any sensor selection vector µ, define J(µ) = C(µ)B,
which implies rank(J(µ)) = rank(C(µ)B). Thus, finding a
set of rows of C of minimum cost such that rank(C(µ)B) =
rank(B) (if it exists) is equivalent to finding a maximal
linearly independent set of rows of J of lowest cost. By
Lemma 3 this can be done in polynomial-time via a greedy
algorithm. Thus, the lowest cost set of sensors to satisfy the
matching condition can be found in polynomial time.

Algorithm 1 is an example of a greedy algorithm that
takes matrices B and C, along with a cost for each row
of C, and returns a lowest cost sensor selection µ satisfying
rank(C(µ)B) = rank(B) (if such a selection exists).

Algorithm 1 Greedy Selection for Matching Condition
Notation:µ∪{i} indicates setting the ith element of µ to 1.
Input: Sensor matrix C ∈ Rp×n, input matrix B ∈ Rn×m,
and a vector b ∈ Rp≥0 indicating the cost of each row of C.
Output: A sensor selection vector µ ∈ {0, 1}p that mini-
mizes b′µ while ensuring rank(C(µ)B) = rank(B).

1: Sort the rows of C to be in nondecreasing order by cost.
2: Initialize µ to the zero vector and i = 1
3: while rank(C(µ)B) < rank(B) do
4: if rank(C(µ ∪ {i})B) > rank(C(µ)B) then
5: µ = µ ∪ {i}
6: end if
7: i = i+ 1
8: end while
9: return µ

Note that the sensor costs are allowed to be arbitrary
nonnegative values in the above result. Thus, this captures
(as a special case) the scenario where we already have
a set of sensors installed on the system (e.g., to provide
strong detectability), and we only need to select an additional
set of sensors in order to satisfy the matching condition.
Specifically, by setting the cost of all sensors that are already
installed to be zero, the algorithm is guaranteed to select
from the installed set of sensors first (as it checks the
sensors in nondecreasing order of cost), and then to select
the lowest cost subset of additional sensors to install. This
is encapsulated in the following corollary.

Corollary 2: Consider a linear system of the form (1).
Suppose we are given a set of p sensors S , where each sensor
in the set provides a scalar measurement of the form (5).
Let C be the matrix whose rows contain the measurement
matrices of the sensors, and let b ∈ Rp≥0 indicate the cost
of each sensor. Suppose that some subset of the sensors
in S is already installed on the system. Then, the lowest



cost set of additional sensors to install so that the set of
all installed sensors satisfies the matching condition can be
found in polynomial time.

IV. THE STRONG DETECTABILITY SENSOR ATTACK
PROBLEM (SDSA)

Having characterized the complexity of the sensor selec-
tion problem, we now turn our attention to the problem of
attacking a set of deployed sensors in order to remove the
property of strong detectability. We formulate this problem
next, and then characterize its complexity.

A. Problem Formulation
Consider again system (1), and suppose that there are

sensors deployed on the system (i.e., the output equation (2)
is initially given) such that the system is strongly detectable.
Instead of adding sensors to the system suppose one (i.e., an
attacker) desires to remove sensors. The cost vector v ∈ Rp≥0
assigns a nonnegative removal cost for each sensor. In other
words, the ith element of v denotes the cost of removing the
ith row from the matrix C for each 1 ≤ i ≤ p.

As before, given an indicator vector µ ∈ {0, 1}p, we
denote C(µ) to be the submatrix of C consisting of the rows
corresponding to the sensors indicated by µ. Furthermore, the
indicator vector µc ∈ {0, 1}p is the complement of µ (i.e. a
‘1’ in µ is denoted as a ‘0’ in µc and vice versa).

We consider the following problem.
Problem 3 (Strong Detectability Sensor Attack (SDSA)):

Suppose we are given the system matrix A ∈ Rn×n, the
input matrix B ∈ Rn×m, the output matrix C ∈ Rp×n, and
a cost vector v ∈ Rp≥0. The Strong Detectability Sensor
Attack Problem (SDSA) is to solve

min
µ∈{0,1}p

v′µ

s.t. ∃ |z0| ≥ 1 with rank

[
A− z0In B
C(µc) 0

]
< n+m.

B. Complexity of SDSA
In this section, we will show that the SDSA problem is

NP-hard. To do so, we will provide a reduction from the
MAX FLS= problem, stated below.

Problem 4 (MAX FLS=): Consider a set of d homoge-
neous equations with f variables denoted by matrix T ∈
Rd×f , and a nonnegative integer k.
Question: Is there a nonzero vector x ∈ Rf such that at
least k equalities in the equation Tx = 0 are satisfied?

The MAX FLS= problem is NP-hard [32]. We reduce
MAX FLS= to SDSA, state a useful property of the created
instance of SDSA, and finally prove that that the SDSA is
NP-hard.

1) Polynomial-Time Reduction from MAX FLS= to SDSA:
Given an instance of the MAX FLS= problem (with d
equations and f variables denoted by matrix T), we will
create an instance of SDSA as follows. Define the matrices

A = 0f×f , B = If , and C = T. (12)

The cost vector v will consist of d elements, all equal to ‘1’.

2) Properties of the Created Instance:
Lemma 4: Given system (1)-(2) with A, B and C defined

in (12), consider a sensor selection vector ν ∈ {0, 1}d. The
tuple (A,B,C(ν)) has at least one unstable invariant zero
if and only if C(ν) is not full column rank.

Proof: Consider a sensor indicator vector ν ∈ {0, 1}d
with associated matrix C(ν). The tuple (A,B,C(ν)) will
have an unstable invariant zero if and only if there is a
complex number z0 with |z0| ≥ 1, and a nonzero vector[
X′0 U′0

]′
satisfying[

A− z0If B
C(ν) 0

] [
X0

U0

]
=

[
0
0

]
. (13)

Substituting (12) into (13) we obtain

z0X0 = U0 (14)
C(ν)X0 = 0. (15)

If C(ν) is not full column rank, there will exist a X0 vector
in the null space of C(ν), thereby satisfying (15). This X0

vector can be paired with any unstable z0 value to form the
vector U0 in (14).

On the other hand, if C(ν) is full column rank, then the
only solution to (15) is X0 = 0, and thus, from (14), U0 =
0. In this case, the matrix pencil in (13) has no nontrivial
nullspace for any z0, and thus has no invariant zeros.

Therefore, the tuple (A,B,C(ν)) has an unstable invari-
ant zero if and only if C(ν) is not full column rank.

3) NP-hardness of SDSA: Using the reduction from MAX
FLS= given by the system (12), and cost vector v consisting
of all 1’s, along with the property of such instances given
above, we obtain the following result.

Theorem 4: Given an instance of MAX FLS= (with a d×
f matrix T and integer k) and the associated instance of
SDSA (given by (12)), it is possible to remove d − k or
fewer sensors from C to make the resulting system no longer
strongly detectable if and only if the answer to the instance
of MAX FLS= is “yes”. Thus, SDSA is NP-hard.

Proof: Suppose the answer to the instance of MAX
FLS= is “yes” (i.e., there is a nonzero vector x satisfying
at least k of the equalities in the equation Tx = 0). Let µc

be the indicator vector that selects the k satisfied equations
from Tx = 0. Consequently since C = T in the created
instance of SDSA (given by (12)), there must exist some
nonzero vector x such that C(µc)x = 0. Thus x is in the
null space of C(µc) and C(µc) is not full rank. By Lemma 4,
the tuple (A,B,C(µc)) is not strongly detectable if C(µc)
is not full rank. Thus, the conjugate µ of µc represents the
sensors that once removed cause the system to lose strong
detectability. Since at most d − k sensors must be removed
and each sensor has a cost of ‘1’, there is a solution to the
created SDSA instance that has cost at most d− k.

Now suppose that the answer to MAX FLS= is “no”
(i.e., there are fewer than k equalities in Tx = 0 that
can be simultaneously satisfied). Therefore there must be
more than d − k sensors that must be removed for C to
lose rank. Therefore, by only removing d − k sensors the



system will remain strongly detectable. Thus, we see that
given any instance of the MAX FLS= problem, we can create
an instance of SDSA in polynomial-time, and solve the MAX
FLS= instance by solving the sensor attack instance. Since
MAX FLS= is NP-hard, SDSA is NP-hard.

Additionally this result indicates that it is NP-hard to
minimally break the matching condition (4). This condition is
satisfied if rank(C(µc)B) = rank(B). In the instance where
B is full rank the only way for condition (4) to hold is for
the C(µc) matrix to be full column rank as well. Therefore,
once again, the task is to remove the minimal amount of
sensors from C such that it loses full column rank. Thus, as
a positive result, it is NP-hard for an attacker to optimally
select sensors to remove to break the matching condition (in
contrast to the problem of selecting sensors to satisfy the
matching condition, as shown in Corollary 2).

V. SUMMARY

In this paper, we showed that it is NP-hard to select a set of
sensors of minimum cost in order to make a system strongly
detectable. Our proof shows that this result holds even for
stable systems, and thus the computational complexity arises
from the effects of the unknown inputs in the system, as
opposed to the need to ensure system detectability. We also
showed that it is not possible to approximate the minimum
cost within a factor that is logarithmic in the size of the
problem. However, we showed that if a set of sensors has
already been chosen to make a system strongly detectable,
finding an additional set of sensors of minimum cost in order
to obtain zero-delay estimation can be done in polynomial
time. Finally, we considered the problem of attacking a given
strongly detectable system by removing a set of sensors to
remove the strong detectability property. We showed that this
problem is also NP-hard.

There are a variety of avenues for future research, includ-
ing determining instances of the sensor selection and attack
problems where optimal (or near-optimal) solutions can be
found in polynomial time.
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[3] A. Chakrabortty and M. D. Ilić, Control and optimization methods for
electric smart grids. Springer, 2011, vol. 3.

[4] G. Bumiller, L. Lampe, and H. Hrasnica, “Power line communica-
tion networks for large-scale control and automation systems,” IEEE
Communications Magazine, vol. 48, no. 4, 2010.

[5] T. H. Summers, F. L. Cortesi, and J. Lygeros, “On submodularity and
controllability in complex dynamical networks,” IEEE Transactions
on Control of Network Systems, vol. 3, no. 1, pp. 91–101, 2016.

[6] V. Gupta, T. H. Chung, B. Hassibi, and R. M. Murray, “On a stochastic
sensor selection algorithm with applications in sensor scheduling and
sensor coverage,” Automatica, vol. 42, no. 2, pp. 251–260, 2006.

[7] S. T. Jawaid and S. L. Smith, “Submodularity and greedy algorithms in
sensor scheduling for linear dynamical systems,” Automatica, vol. 61,
pp. 282–288, 2015.

[8] M. P. Vitus, W. Zhang, A. Abate, J. Hu, and C. J. Tomlin, “On efficient
sensor scheduling for linear dynamical systems,” Automatica, vol. 48,
no. 10, pp. 2482–2493, 2012.

[9] H. Rowaihy, S. Eswaran, M. Johnson, D. Verma, A. Bar-Noy,
T. Brown, and T. La Porta, “A survey of sensor selection schemes
in wireless sensor networks,” in Unattended Ground, Sea, and Air
Sensor Technologies and Applications IX, vol. 6562. International
Society for Optics and Photonics, 2007, p. 65621A.

[10] A. Olshevsky, “Minimal controllability problems,” IEEE Transactions
on Control of Network Systems, vol. 1, no. 3, pp. 249–258, 2014.

[11] M. Van De Wal and B. De Jager, “A review of methods for input/output
selection,” Automatica, vol. 37, no. 4, pp. 487–510, 2001.

[12] X. Liu, B. M. Chen, and Z. Lin, “On the problem of general struc-
tural assignments of linear systems through sensor/actuator selection,”
Automatica, vol. 39, no. 2, pp. 233–241, 2003.

[13] H. Zhang, R. Ayoub, and S. Sundaram, “Sensor selection for Kalman
filtering of linear dynamical systems: Complexity, limitations and
greedy algorithms,” Automatica, vol. 78, pp. 202–210, 2017.

[14] L. Ye, S. Roy, and S. Sundaram, “On the complexity and approxima-
bility of optimal sensor selection for Kalman filtering,” in American
Control Conference, 2018, pp. 5049–5054.

[15] V. Tzoumas, A. Jadbabaie, and G. J. Pappas, “Sensor placement
for optimal Kalman filtering: Fundamental limits, submodularity, and
algorithms,” in American Control Conference (ACC), 2016. IEEE,
2016, pp. 191–196.

[16] S. Pequito, G. Ramos, S. Kar, A. P. Aguiar, and J. Ramos, “The robust
minimal controllability problem,” Automatica, vol. 82, pp. 261–268,
2017.

[17] M.-A. Belabbas, “Geometric methods for optimal sensor design,” in
Proc. R. Soc. A, vol. 472, no. 2185. The Royal Society, 2016, p.
20150312.

[18] R. J. Patton and J. Chen, “Robust model-based fault diagnosis for
dynamic systems,” 1999.

[19] S. Sundaram and C. N. Hadjicostis, “Distributed function calculation
via linear iterative strategies in the presence of malicious agents,” IEEE
Trans on Automatic Control, vol. 56, no. 7, pp. 1495–1508, 2011.

[20] F. Pasqualetti, F. Dörfler, and F. Bullo, “Attack detection and identi-
fication in cyber-physical systems,” IEEE Transactions on Automatic
Control, vol. 58, no. 11, pp. 2715–2729, 2013.

[21] A. Teixeira, K. C. Sou, H. Sandberg, and K. H. Johansson, “Secure
control systems: A quantitative risk management approach,” IEEE
Control Systems, vol. 35, no. 1, pp. 24–45, 2015.

[22] S. Roy and R. Dhal, “Situational awareness for dynamical network
processes using incidental measurements,” IEEE Journal of Selected
Topics in Signal Processing, vol. 9, no. 2, pp. 304–316, 2015.

[23] S. Sharifi, D. Krishnaswamy, and T. Š. Rosing, “Prometheus: A
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