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Abstract— Given a linear dynamical system affected by noise,
we consider the problem of optimally placing sensors (at
design-time) subject to certain budget constraints to minimize
the trace of the steady-state error covariance of the Kalman
filter. Previous work has shown that this problem is NP-hard
in general. In this paper, we impose additional structure by
considering systems whose dynamics are given by a stochastic
matrix corresponding to an underlying consensus network. In
the case when there is a single input at one of the nodes in
a tree network, we provide an optimal strategy (computed
in polynomial-time) to place the sensors over the network.
However, we show that when the network has multiple inputs,
the optimal sensor placement problem becomes NP-hard.

I. INTRODUCTION

In large-scale control system design, one of the key prob-
lems is to place the sensors or actuators of the system in order
to achieve certain performance criteria (e.g., [1], [2]). In
cases involving linear systems with process or measurement
noise, researchers have studied how to place sensors in order
to minimize certain metrics of the error covariance of the
corresponding Kalman filter (e.g., [3], [4], [5], [6], [7]).
The problem was shown to be NP-hard and inapproximable
within any constant factor [8]. Thus, in this paper, we turn
to systems with special properties to seek polynomial-time
algorithms for the optimal sensor placement problem.

More specifically, we consider a discrete-time linear dy-
namical system whose states represent nodes in an undirected
consensus network, and interact according to the topology
of the network. Each node of the network is possibly
affected by a Gaussian input. This kind of consensus system
with stochastic inputs has received much attention from
researchers recently (e.g., [9], [10], [11], [12]). Given a
consensus system with stochastic inputs, we seek a graph-
theoretic approach to optimally place sensors at the nodes
of the associated graph to optimize the steady-state error
covariance matrix of the corresponding Kalman filter. We
refer to this problem as the Graph-based Kalman Filtering
Sensor Placement (GKFSP) problem. We summarize some
related work as follows.

In papers [6] and [8], the authors considered the same
general problem as we consider here, and showed that this
problem is NP-hard and that there is no constant-factor
polynomial-time approximation algorithm for this problem.
However, neither of them considered systems evolving over
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a network. In contrast, we impose additional structure by
considering the system dynamics matrix to be a stochastic
matrix defined over a network with Gaussian inputs and seek
polynomial-time algorithms for this problem.

In [5] and [7], the authors considered the optimal sensor
placement problem for Kalman filtering over a finite time
interval and provided near-optimal greedy algorithms to op-
timize certain metrics of the error covariance of the Kalman
filter. However, their results cannot be directly applied to
the problem we consider here, since we aim to optimize the
steady-state error covariance of the Kalman filter.

In papers [2], [13] and [14], the authors considered sys-
tems evolving over networks. In [2], the authors considered
generic structural systems [15], and in [13] and [14], the
authors considered consensus systems with (unknown) inputs
and focused on analyzing how the inputs affect the consensus
computation of the network. In this paper, we consider
consensus systems with specific parameters, and consider the
presence of Gaussian inputs, which then motivates the need
for optimal sensor placement for Kalman filtering.

The authors in [9] and [10] considered the leader selection
problem in consensus systems with stochastic inputs. The
problem is to select an optimal subset of nodes whose states
are fixed over time such that the H2 norm of the system
states at steady state is minimized. In contrast, we study the
problem of selecting an optimal subset of nodes at which to
place sensors such that the steady-state error covariance of
the Kalman filter is optimized.

Our contributions are summarized as follows. First, we
consider the case when there is a single stochastic input in
the consensus system corresponding to a tree, and obtain the
steady-state error covariance of the corresponding Kalman
filter by establishing a relationship between the Kalman
filter and a (delayed) unknown input observer of the system.
We then provide an optimal polynomial-time algorithm for
the GKFSP problem. Our second contribution is to show
that when the consensus system has multiple inputs, the
corresponding GKFSP problem becomes NP-hard.

A. Notation and terminology

The set of natural numbers, integers, real numbers, rational
numbers, and complex numbers are denoted as N, Z, R,
Q, and C, resp. For a matrix P ∈ Rn×n, denote PT as
its transpose, Pij as the element in the ith row and jth
column of P , ρ(P ) as its spectral radius, and P(i,j) as
a submatrix of P obtained from P by removing the ith
row and jth column of P . The set of n by n positive-
semidefinite matrices is denoted by Sn+. The identity matrix



of dimension n is denoted as In. For a vector f , denote
its ith element as fi, and let supp(f) be its support, where
supp(f) = {i : fi 6= 0}. Denote the Euclidean norm of f by
‖f‖. Define ei to be a column vector where the ith element
is 1 and all the other elements are zero; the dimension of the
vector can be inferred from the context. Denote E[x] as the
expectation of a random variable (vector) x. For a set A, let
|A| be its cardinality. Denote G = (V, E) as an (undirected)
graph with vertex set V and edge set E ⊆ V × V . Each
edge (i, j) ∈ E has an associated weight mij ∈ R>0; take
mij = 0 if (i, j) /∈ E and assume that mij = mji for all
i 6= j. The neighbors of vertex i ∈ V in graph G are given
by the set Ni , {j ∈ V

∣∣(i, j) ∈ E}. The degree of vertex
i is defined as di =

∑
j∈Ni mij , and the maximum degree

of the vertices in the graph is defined as dmax. Denote pij as
the shortest path from vertex i to j in graph G, and denote
lij as its length (also known as the distance between i and
j), obtained after all the edge weights are set to be one.

II. PROBLEM FORMULATION

Consider a graph G = (V, E) with V = {1, . . . , n}. The
(weighted) adjacency matrix for the graph is a matrix M ∈
Rn×n, where Mij = mij for all i, j ∈ V . The degree matrix
is D , diag(d1, . . . , dn). The Laplacian matrix for the graph
is then given by L(G) = D −M .

Definition 1: Given a graph G = (V, E) with the symmet-
ric adjacency matrix M ∈ Rn×n, the matrix A is defined
as A = In − εL(G), where ε ∈ (0, 1/dmax] and L(G) is the
Laplacian matrix for the graph G.

Remark 1: Note that A is a symmetric and (doubly)
stochastic matrix. For any vi, vj ∈ V such that i 6= j, Aij > 0
if and only if (vi, vj) ∈ E ; for all i ∈ V , Aii ≥ 0.

Consider the matrix A as described in Definition 1 and
the set of vertices that have inputs, denoted as I ,
{i0, . . . , iτ−1} ⊆ V , where τ ∈ Z≥1. We consider the
discrete-time linear system

xk+1 = Axk +Bwk, (1)

where xk ∈ Rn is the system state and (xk)i is associated
with vertex i ∈ V , and B ,

[
B0 · · · Bτ−1

]
is the input

matrix, where Bj = eij if there is an input at vertex ij ∈ I
for j = 0, . . . , τ − 1. The system noise wk ∈ Rτ is a zero-
mean white Gaussian noise process with E[wk(wk)T ] = W
for all k ∈ N. The initial state x0 is assumed to be Gaussian
with mean x̄0 and covariance Π0, and is also assumed to be
independent of wk for all k ≥ 0.

Suppose sensors can be placed at vertices of the graph G;
a sensor that is placed at vertex i ∈ V gives a measurement
of the form

(yk)i = Cixk + (vk)i,

where Ci = eTi is the state measurement matrix for sensor i,
and (vk)i ∈ R is a zero-mean white Gaussian noise process.

We further define yk ,
[
(yk)1 · · · (yk)n

]T
, C ,[

CT1 · · · CTn
]T

and vk ,
[
(vk)1 · · · (vk)n

]T
. Thus, the

output provided by all sensors together is given by

yk = Cxk + vk, (2)

where C = In. We denote E[vkv
T
k ] = V and consider

E[vkw
T
j ] = 0, ∀k, j ∈ N. The initial state x0 is also assumed

to be independent of vk for all k ≥ 0.
A sensor placed at vertex i has a cost hi ∈ R≥0; define

the cost vector h ,
[
h1 · · · hn

]T
. The designer has a

budget H ∈ R≥0 that can be spent on placing sensors at the
vertices of G.

After the sensors are placed, the Kalman filter is then
applied to provide an optimal estimate of the states using
the measurements from the installed sensors in the sense
of minimizing the mean square estimation error (MSEE).
We define a vector µ ∈ {0, 1}n as the indicator vector
indicating the vertices where sensors are placed. Specifically,
µi = 1 if and only if a sensor is placed at vertex i ∈ V .
Denote C(µ) as the measurement matrix of the installed
sensors indicated by µ, i.e., C(µ) ,

[
CTi1 · · · CTip

]T
,

where supp(µ) = {i1, . . . , ip} ⊆ V . Similarly, denote
V (µ) as the measurement noise covariance matrix of the
installed sensors, i.e., V (µ) = E[vk(µ)(vk(µ))T ], where
vk(µ) =

[
(vk)i1 · · · (vk)ip

]T
. Denote yk1:k2 as the

measurements from time step k1 to k2, i.e., yk1:k2 ,
[(yk1)T · · · (yk2)T ]T . Denote the (one-step prediction)
Kalman filter as xk+1/k(µ) = E[xk+1

∣∣y0:k(µ)], where
y0:k(µ) = [(y0(µ))T · · · (yk(µ))T ]T and yi(µ) , C(µ)xi+
vi(µ) for i = 0, . . . , k. Denote x̃k+1(µ) , xk+1/k(µ)−xk+1

as the estimation error. The a priori error covariance matrix
of the Kalman filter at time step k, when the sensors
indicated by µ are placed and installed, is then given by
Σk+1/k(µ) , E[x̃k+1(µ)(x̃k+1(µ))T ]. The limit Σ(µ) ,
limk→∞ Σk+1/k(µ), if it exists, satisfies the discrete alge-
braic Riccati equation (DARE) [17]

Σ(µ) = AΣ(µ)AT +BWBT−

AΣ(µ)C(µ)T
(
C(µ)Σ(µ)C(µ)T + V (µ)

)−1
C(µ)Σ(µ)AT .

(3)

We have the following results from [17].
Lemma 1: Suppose that X , Y1, . . . , Yk are jointly Gaus-

sian random variables. The estimator X̂ = E[X
∣∣Y1, . . . , Yk]

of X given Y1, . . . , Yk is a linear combination of Y1, . . . , Yk
and some constants, denoted as X̂ ∈ L{Y1, . . . , Yk}. Fur-
thermore, it is also the minimum variance estimator that
minimizes E[||X − X̂||2] and E[(X − X̂)(X − X̂)T ].

Lemma 2: For a given indicator vector µ, Σk+1/k(µ) will
converge to an unique finite limit Σ(µ) as k → ∞, if
and only if the pair (A,C(µ)) is detectable and the pair
(A,BW

1
2 ) is stabilizable.

Remark 2: By our assumptions on x0, wk and vk, the
Kalman filter is a linear minimum variance estimator for all
k. Hence, xk+1/k(µ) ∈ L{y0(µ), . . . , yk(µ)} for all k.

When the pair (A,C(µ)) is not detectable, we define the
limit Σ(µ) = +∞. The Graph-based Kalman Filter Sensor
Placement (GKFSP) problem is defined as follows.

Problem 1: (GKFSP) Given a graph G = (V, E), consider
the matrix A ∈ Rn×n as described in Definition 1, a set
I ⊆ V containing the vertices that have Gaussian inputs, a
measurement matrix C = In containing all of the individual



sensor measurement matrices, a system noise covariance
matrix W ∈ S|I|+ , a sensor noise covariance matrix V ∈ Sn+,
a cost vector h ∈ Rn≥0 and a budget H ∈ R≥0, the Graph-
based Kalman Filtering Sensor Placement problem is to find
the sensor placement µ, i.e., the indicator vector µ of the
vertices where sensors are placed, that solves

min
µ∈{0,1}n

trace(Σ(µ))

s.t. hTµ ≤ H

where Σ(µ) is given by Eq. (3) if the pair (A,C(µ)) is
detectable, and Σ(µ) = +∞, otherwise.

III. GKFSP: SINGLE INPUT CASE

In this section, we provide a strategy for the GKFSP
problem when there is a single vertex i0 ∈ V that has a
Gaussian input, i.e., I = {i0} ⊆ V , and the graph is a tree.

Given a tree T = (V, E) with V = {1, . . . , n}, denote the
vertex that has the input as I = {i0} ⊆ V , i.e., B = ei0 . The
system dynamics can be written as Eq. (1), where wk ∈ R
is a zero-mean white Gaussian noise process with variance
denoted as w2, ∀k ≥ 0. We will use the following result
from [14].

Lemma 3: Given a connected graph G = (V, E), consider
the matrix A as described in Definition 1 and a discrete-time
linear system as defined in Eq. (1) and Eq. (2). Then, the pair
(A,Bw) is stabilizable, and the pair (A,C(µ)) is detectable
for all sensor placements µ ∈ {0, 1}n such that µ 6= 0.

Hence, we know from Lemma 2 and Lemma 3 that if
there is a single vertex in the graph that has an input, then
Σk+1/k(µ) converges to the finite limit Σ(µ) as k →∞, for
all µ ∈ {0, 1}n with µ 6= 0.

We then state the main result of this section.
Theorem 1: Given a tree T = (V, E), consider the matrix

A as described in Definition 1 and denote the vertex that has
the Gaussian input as I = {i0} ⊆ V . Consider a discrete-
time linear system as defined in Eq. (1) and Eq. (2) with V =
0n×n. Then for all sensor placements µ ∈ {0, 1}n with µ 6=
0, denote α = minq∈supp(µ) li0q to be the shortest distance
from vertex i0 to a sensor indicated by µ. The steady state
error covariance matrix Σ(µ) of the Kalman filter satisfies

Σ(µ) = w2
α∑
j=0

AjBBTAj .

Before we prove Theorem 1, we first give some pre-
liminary discussions and results. Consider the system as
described in Theorem 1. The response of this system over
β + 1 time steps (β ∈ Z≥0) is given by

yk:k+β = Θβxk +Mβwk:k+β ,

where Θβ =

[
Θβ−1
CAβ

]
with Θ0 = C, and Mβ =[

0 0
Θβ−1B Mβ−1

]
with M0 = 0, The system it is said to

have an unknown input state observer with delay β if given
the measurements y0:k+β , the observer produces an estimate

x̂k of the state xk that converges to xk as k →∞, regardless
of the value of the input. Once a state observer with delay β
is constructed, one can obtain an input observer with delay
β + 1 [18]. We have the following results from [19].

Lemma 4: Consider a discrete-time linear system as de-
fined in Eq. (1) and Eq. (2) with B = ei0 and V = 0n×n.
The system has an unknown input state observer with delay
β if and only if

(a) rank
[
zI −A B
C 0

]
= n+ 1, ∀z ∈ C, |z| ≥ 1;

(b) rank[Mβ+1]−rank[Mβ ] = 1.

Remark 3: The estimation error ek , x̂k − xk of the
unknown input state observer as described in [19] satisfies
ek = Eke0, where E is a stable matrix determined by the
system parameters. The initial condition of the observer is
x̂0, which does not affect the asymptotic behavior of the
observer. Thus, we set x̂0 = 0. Taking the limit as k →∞,
we have limk→∞ ek = 0. Moreover, denoting the state of
the input observer as ŵk and e′k , ŵk − wk, we have
e′k = eTi0(E −A)Eke0 and limk→∞ e′k = 0.

We now analyze the conditions in Lemma 4 for the
systems that we consider here.

Definition 2: An induced subgraph of G = (V, E) with
vertex set V ′ ⊆ V is the subgraph of G on V ′ containing all
edges between those vertices in G. The induced subgraph is
denoted as G[V ′].

Definition 3: Given a connected graph G = (V, E), a cut
vertex i ∈ V is a vertex such that the induced subgraph
G[V \ {i}] is not connected.

Lemma 5: Given a tree T = (V, E) and the input vertex
set I = {i0} ⊆ V , consider the matrix A as described in
Definition 1 and a discrete-time linear system as defined in
Eq. (1) and Eq. (2) with V = 0n×n. The rank condition

rank
[
zI −A B
C(µ) 0

]
= n+ 1, ∀z ∈ C, |z| ≥ 1 (4)

holds for all sensor placements µ ∈ {0, 1}n with µ 6= 0.
Proof: We first prove that condition (4) holds for all µ

with |supp(µ)| = 1, i.e., condition (4) holds when C(µ) =
eTj , ∀j ∈ V . We will do it by an induction on li0j , i.e., the
length of the shortest path between the input vertex i0 and
the output vertex j in T .

First, consider the base case li0j = 0, i.e., the sensor is

placed at the input vertex i0. We have rank
[
zI −A eTi0
ei0 0

]
=

rank(zI−A(i0,i0))+2, where A(i0,i0), obtained by removing
the i0th row and i0th column from A, is a substochastic
matrix [16] and is known to be Schur stable [14]. Hence,
rank(zI −A(i0.i0)) = n− 1, ∀z ∈ C, |z| ≥ 1, which implies
condition (4) holds when C(µ) = eTi0 .

Then, we assume that condition (4) holds when
C(µ) = eTj for li0j = 1, . . . , γ. Considering
li0j = γ + 1, we can assume without loss of
generality that the output vertex j = 1, otherwise we
can simply relabel the vertices. We then have that



rank
[
zI −A ei0
eT1 0

]
= rank

[
a1 0

zI −A(1,1) ei0−1

]
+ 1,

where a1 =
[
A12 A13 · · · A1n

]
∈ R1×(n−1). Note that

A(1,1) ∈ R(n−1)×(n−1) is the matrix associated with the
induced subgraph T [V \ {1}] as described in Definition 1.
Since the graph T is a tree, every vertex in T that is not a
leaf is a cut vertex. Firstly, if vertex 1 is a leaf vertex, we
can assume without loss of generality that its only neighbor
in T is vertex 2, which implies a1 =

[
A12 0 · · · 0

]
.

Moreover, since the length of the shortest path between
i0 and 1 is γ + 1 in T , and 1 and 2 are connected via
edge (1, 2) in T , we obtain that the length of the shortest
path between i0 and 2 is γ in T [V \ {1}]. Then, by the

induction hypothesis, we have rank
[

a1 0
zI −A(1,1) ei0−1

]
=

rank
[
zI −A(1,1) ei0−1

eT1 0

]
= n, ∀z ∈ C, |z| ≥ 1. Hence,

we have that condition Eq. (4) holds when C(µ) = eTj ,
where j is a leaf with li0j = γ + 1. Secondly, if vertex 1 is
not a leaf, we have that T [V \ {1}] is not connected and
has several connected components, denoted as T ′1 , . . . , T ′r ,
where r ∈ Z≥2. Note that T ′1 , . . . , T ′r are induced subgraphs
of T . Hence, the matrix A(1,1) is a block diagonal matrix of
the form A(1,1) = blkdiag(A′1, · · · , A′r), where A′1, . . . , A

′
r

are associated with T ′1 , . . . , T ′r , respectively. Again, using
the fact that T is a tree, there exists a single vertex in
T ′i that is connected to vertex 1 via an edge in T for
i = 1, . . . , r. It then follows that A′1, . . . , A

′
r are all

substochastic matrices, and thus are stable. Furthermore,
we assume without loss of generality that the input vertex
i0 is in T ′1 and denote i1 + 1 as the vertex in T ′1 that
is connected to 1 via edge (1, i1 + 1) in T . Hence,
the i1th element of a1 is the only nonzero element of
a1 from A12 to A1(n1+1), where n1 is the dimension

of A′1. We then have rank
[

a1 0
zI −A(1,1) ei0−1

]
=

rank

 a′1 a′′1 0
zI −A′1 0 ei0−1

0 zI −A′′ 0

, where A′′ =

blkdiag(A′2, · · · , A′r) is a stable matrix and a1 =
[
a′1 a′′1

]
with the i1th element of a′1 to be the only nonzero
element of a′1. Again, since A′1 and A′′ are substochastic

matrices, we have rank
[

a1 0
zI −A(1,1) ei0−1

]
=

rank
[
zI −A′1 ei0−1

eTi1 0

]
+ n − 1 − n1, ∀z ∈ C, |z| ≥ 1.

Observe that the matrix
[
zI −A′1 ei0−1

eTi1 0

]
can be viewed as

the matrix pencil when the graph is given by T ′1 with input
vertex i0 (corresponding to ei0−1) and output vertex i1 + 1
(corresponding to eTi1 ). Since the length of the shortest path
between 1 and i0 is γ+1 in T and i1+1 is connected with 1
in T , it follows that the length of the shortest path between
i0 and i1 + 1 in T ′1 is γ. By the induction hypothesis,

we have that rank =

[
zI −A′1 ei0−1

eTi1 0

]
= n1 + 1,

∀z ∈ C, |z| ≥ 1. Hence, we have shown that condition (4)

holds when C(µ) = eTj , where vertex j is not a leaf with
li0j = γ + 1, completing the induction step.

This proves that condition (4) holds when C(µ) = eTj ,
∀j ∈ V . Since adding more rows to a matrix will not decrease
its rank, it follows directly that condition (4) is satisfied for
all µ ∈ {0, 1}n with µ 6= 0.

Remark 4: Our results here complement the results in
[14], where the authors considered the case where the output
vertices can also measure the states of their neighbors.
Under this assumption, sufficient conditions were provided
for condition (4) to hold. However, these sufficient conditions
are strong constraints on the locations of the input and output
vertices in the graph, i.e., they must be neighbors. We show
here that for the single input case, at least one output vertex
(without further constraints) is sufficient for condition (4) to
hold when the graph is a tree.

We next analyze condition (b) of Lemma 4. Note that it
was shown in [20] that condition (a) in Lemma 4 is sufficient
for condition (b) to hold for some β, where β was shown to
satisfy β ≤ n in [21]. We will find the minimum value of β
such that condition (b) is satisfied.

Lemma 6: Suppose we are given a connected graph G =
(V, E) and the input vertex I = {i0} ⊆ V . Consider the
matrix A as described in Definition 1 and a discrete-time
linear system as defined in Eq. (1) and Eq. (2) with V =
0n×n. For all sensor placements µ ∈ {0, 1}n with µ 6= 0,
denote α = minq∈supp(µ) li0q . Then α is the minimum value
of β, denoted as βm, that satisfies the rank condition

rank[Mβ+1]− rank[Mβ ] = 1.

Proof: Based on the definition of the matrix A, it is
easy to prove by induction the facts that (Al)ij = 0 for all
l < lij , where l ∈ Z≥1, and (Alij )ij > 0. Hence, we have
C(µ)AβB = 0 for all β ≤ α − 1 and C(µ)AβB 6= 0 when
β = α. We then know from the form of Mβ that βm = α.

Remark 5: We know from the above discussions that for
the systems that we consider here and a sensor placement
µ ∈ {0, 1}n with µ 6= 0 and α = minq∈supp(µ) li0q , there
exists an (unknown input) state observer with delay α and
an input observer with delay α+ 1.

We are now in place to prove Theorem 1.

Proof of Theorem 1:

Consider any sensor placement µ ∈ {0, 1}n with µ 6= 0.
For any k ≥ α+ 1, we can rewrite xk+1 in the form

xk+1 = Aα+2xk−α−1 +
α+1∑
j=0

AjBwk−j .

Moreover, we have

xk+1/k(µ) = E[Aα+2xk−α−1
∣∣y0:k(µ)]

+ E[Aα+1Bwk−α−1
∣∣y0:k(µ)] + E[

α∑
j=0

AjBwk−j
∣∣y0:k(µ)].

(5)



Consider the first term on the right hand side of Eq. (5).
Denote xk−α−1/k(µ) , E[xk−α−1

∣∣y0:k(µ)]. Since xk−α−1
and y0:k(µ) are jointly Gaussian, we know from Lemma
1 that xk−α−1/k(µ) ∈ L{y0, . . . , yk} for all k. Moreover,
we know from Lemma 4 that given the measurements
y0:k(µ), there exists a state observer with delay α (thus,
there also exists a state observer with delay α + 1) as
described in Remark 3 such that ek−α−1 = Ek−α−1e0,
where ek−α−1 = x̂k−α−1 − xk−α−1 and x̂k−α−1 is an
estimate of xk−α−1 given by the observer. We then have
ek−α−1e

T
k−α−1 = Ek−α−1e0e

T
0 (ET )k−α−1, which holds

everywhere on the sample space of the random variable
ek−α−1. Taking the expectation on both sides of the equation,
we obtain E[ek−α−1e

T
k−α−1] = Ek−α−1Π0(ET )k−α−1,

where Π0 is the covariance of the initial condition x0.
Since E is stable, we have limk→∞ E[ek−α−1e

T
k−α−1] = 0.

Moreover, we know from Remark 2 that xk−α−1/k(µ) is the
minimum variance estimator of xk−α−1 for all k. Hence,
we have limk→∞ E[x̃k−α−1(µ)(x̃k−α−1(µ))T ] = 0, where
x̃k−α−1(µ) , xk−α−1/k(µ) − xk−α−1. Then, consider the
second term on the right hand side of Eq. (5). Using similar
arguments as above, we have limk→∞ E[(w̃k−α−1(µ))2] =
0, where w̃k−α−1(µ) , wk−α−1/k(µ) − wk−α−1 and
wk−α−1/k(µ) , E[wk−α−1

∣∣y0:k(µ)]. Finally, consider the
third term on the right hand side of Eq. (5). Since x0 is
assumed to be independent of wk for all k ≥ 0, yj(µ) is
also independent of wi for j ≤ i [22]. We then have

E[
α∑
j=0

AjBwk−j
∣∣y0:k(µ)] = E[

α∑
j=0

AjBwk−j
∣∣yk−α+1:k(µ)].

(6)

Note that we can rewrite yk in the form

yk(µ) = C(µ)Aαxk−α +

α∑
j=1

C(µ)Aj−1Bwk−j ,

where C(µ)Aj−1B = 0, ∀j ∈ {1, . . . , α}. Hence, yk(µ) is
independent of wj , ∀j ∈ {k−α, . . . , k}. Similarly, yk−1(µ)
is independent of wj , ∀j ∈ {k−α−1, . . . , k−1}. Proceeding
in this way, we obtain the following

E[
α∑
j=0

AjBwk−j
∣∣yk−α+1:k(µ)] = E[

α∑
j=0

AjBwk−j ] = 0.

(7)
Combining the results above, we have

x̃k+1(µ) = Aα+2x̃k−α−1(µ) +Aα+1Bw̃k−α−1(µ)

+
α∑
j=0

AjBwk−j .

Moreover, we have x̃k−α−1(µ) ∈ L{xk−α−1, y0:k} and
w̃k−α−1(µ) ∈ L{wk−α−1, y0:k}, ∀k. We then know from
the discussion above that x̃k−α−1/k(µ) and w̃k−α−1(µ) are
both independent of wj , ∀j ∈ {k−α, . . . , k}, ∀k. Denoting

Σ , Σk+1/k(µ) = E[x̃k+1(µ)(x̃k+1(µ))T ], we have

Σ = Aα+2Σk−α−1A
α+2 +Aα+1Bσk−α−1B

TAα+1

+Aα+2Σ′k−α−1B
TAα+1 +Aα+1BΣ′Tk−α−1A

α+2

+ w2
α∑
j=0

AjBBTAj

where Σk−α−1 , E[x̃k−α−1(µ)(x̃k−α−1(µ))T ],
σk−α−1 , E[(w̃k−α−1(µ))2] and Σ′k−α−1 ,
E[x̃k−α−1(µ)(w̃k−α−1(µ))]. Note that we
have shown that limk→∞ Σk−α−1 = 0 and
limk→∞ σk−α−1 = 0. Considering Σ′k−α−1 element-
wise, we have (E[(x̃k−α−1(µ))iw̃k−α−1(µ)])2 ≤
E[(x̃k−α−1(µ))2i ]E[(w̃k−α−1(µ))2], ∀i, by the Cauchy-
Schwarz inequality. Since limk→∞ E[(x̃k−α−1(µ))2i ] = 0,
∀i, and limk→∞ E[(w̃k−α−1(µ))2] = 0, we have
limk→∞ E[(x̃k−α−1(µ))iwk−α−1(µ)] = 0, ∀i. Combining
the results above, we obtain

Σ(µ) = lim
k→∞

Σk+1/k(µ) = w2
α∑
j=0

AjBBTAj . (8)

This completes the proof of Theorem 1.
Remark 6: Note that the result in Eq. (8) can be verified

by directly plugging it into the DARE as defined in Eq. (3).
However, our analysis here sheds light on the relationship
between the delayed unknown input observer observer and
the Kalman filter, providing an alternative way to calculate
the steady-state error covariance of the Kalman filter.

Remark 7: Note that from Eq. (8), given the matrices A
and B, the value of the error covariance matrix only depends
on α, i.e., the shortest distance from the sensors to the
input. Hence, it is enough to consider sensor placements
µ ∈ {0, 1}n such that |supp(µ)| = 1, i.e., it is enough to
place a single sensor at a single vertex in order to minimize
the steady-state MSEE.

Corollary 1: Given a tree T = (V, E), consider the matrix
A as described in Definition 1 and the set of input vertex as
I = {i0} ⊆ V . Consider a discrete-time linear system as
defined in Eq. (1) and Eq. (2) with V = 0n×n. For any
two sensor placements µ, µ′ ∈ {0, 1}n and µ, µ′ 6= 0 with
supp(µ) = {j}, supp(µ′) = {j′}, the following results hold.

(a) For all r ∈ V , (Σ(µ))rr ≥ (Σ(µ′))rr if and only if
li0j ≥ li0j′ .

(b) For all r ∈ V such that lir > li0j , (Σ(µ))rr = 0.

Proof: (a). Since AjBBTAj is a nonnegative matrix
for j ∈ Z≥0, the result follows directly from Eq. (8).

(b). For all r ∈ V such that lri0 > α, we know
that (Aj)ri0 = 0 for all j = 0, 1, . . . , α, which implies
(AjBBTAj)rr = 0 for all j = 0, 1, . . . , α. Hence, we have
(Σ(µ))rr = 0.

Using the results above, the optimal solution to the GKFSP
problem as defined in Problem 1, when the graph is a
tree with I = {i0} ⊆ V , is to put a sensor at a vertex
j ∈ V that is as close as possible to i0 with respect
to the distance li0j in the tree T , while satisfying the



budget constraint. Thus, polynomial-time algorithms such as
breadth-first-search (BFS) can be used [23].

IV. GKFSP: MULTI-INPUT CASE

In this section, we analyze the case for GKFSP when
there are multiple vertices in the graph that have Gaussian
inputs. Denote the set of vertices that have inputs as I =
{i0, . . . , iτ−1} ⊆ V , where τ ∈ Z≥2.

Theorem 2: The GKFSP problem is NP-hard when the
system has multiple inputs.

Proof: We prove by giving a reduction from the
knapsack problem [24] to GKFSP when there are multiple
inputs in the graph. Consider an arbitrary instance of the
knapsack problem to be the number of items q, the set of
values {γi}, the set of weights {κi}, the weight budget κ̄,
and an indicator vector ν ∈ {0, 1}q such that item i is
chosen if and only if νi = 1, where {γi}, {κi} and κ̄
are positive integers. We construct an instance of GKFSP
with multiple inputs as follows. The graph G = (V, E)
is set to consist of q vertex-disjoint paths, all of which
are of length 2. Denote G = (P1, . . . ,Pq), where the
vertex set of Pi is denoted as Vi = {pi1, pi2, pi3} for i =
1, . . . , q. The matrix A ∈ R3q×3q associated to G is then
as described in Definition 1 with ε = 1

2dmax
, denoted as

A = blkdiag(A1, . . . , Aq), where Ai is the matrix associated
to Pi. The measurement matrix is C = I3q . The input vertex
set is I = {p11, p21, . . . , p

q
1}. The system noise covariance

matrix is set as WI = diag(w1, . . . , wq) with wi = γi
(A4
i )11

.
The measurement noise covariance matrix is V = 03q×3q .
The sensor placement budget H = κ̄. The cost vector
h = [hT1 · · · hTq ]T , where hi = [κ̄ + 1 κi 0]T is the cost
vector for putting sensors at vertices of Pi. Hence, a sensor
will always be placed at pi3 for all i. Note that since A, C, W
and V are all (block) diagonal, we have the steady-state error
covariance matrix of the Kalman filter, if it exists, satisfies
Σ(µ) = blkdiag(Σ1(µ1) . . . ,Σq(µq)), where µi is the sensor
placement vector w.r.t. Pi in G and Σi(µi) is the associated
error covariance matrix. Since each Pi is a tree, the results
in the previous section can be applied here. Specifically, we
have trace(Σi(µi)

∣∣
µi=[0 0 1]T

)− trace(Σi(µi)
∣∣
µi=[0 1 1]T

) =

wie
T
1 A

4
i e1 = γi for all i. Consider a sensor placement µ̃

with supp(µ̃) ⊆ V such that {pj12 , . . . , p
jσ
2 } ∈ supp(µ̃), i.e.,

the middle points of paths Pj1 , . . . ,Pjσ are chosen to place
sensors. Then, by our construction of the GKFSP instance as
above, µ̃ is optimal if and only if the indicator vector ν with
supp(ν) = {j1, . . . , jσ} is optimal for the knapsack instance.
Since the knapsack problem is NP-hard, the GKFSP problem
is NP-hard when the system has multiple inputs.

V. CONCLUSIONS

In this paper, we studied the GKFSP problem for a
class of linear dynamical systems defined over consensus
networks with stochastic inputs. We showed that there exist
polynomial-time algorithms for this problem when there
is a single stochastic input in a tree network. We further
showed that the GKFSP problem becomes NP-hard when
the system has multiple inputs. Our analysis sheds light on

the relationship between the Kalman filter and the (delayed)
unknown input observer and provides an explicit solution to
the DARE associated with the error covariance matrix of the
Kalman filter. Future work on extending the results to more
general network topologies and providing approximation
algorithms for the multi-input case are of interest.
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