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Abstract— We address the problem of distributed state es-
timation of a linear dynamical process in an attack-prone
environment. A network of sensors, some of which can be
compromised by adversaries, aim to estimate the state of the
process. In this context, we investigate the impact of making
a small subset of the nodes immune to attacks, or “trusted”.
Given a set of trusted nodes, we identify separate necessary and
sufficient conditions for resilient distributed state estimation.
We use such conditions to illustrate how even a small trusted set
can achieve a desired degree of robustness (where the robustness
metric is specific to the problem under consideration) that
could otherwise only be achieved via additional measurement
and communication-link augmentation. We then establish that,
unfortunately, the problem of selecting trusted nodes is NP-
hard. Finally, we develop an attack-resilient, provably-correct
distributed state estimation algorithm that appropriately lever-
ages the presence of the trusted nodes.

I. INTRODUCTION

Consider a linear time-invariant dynamical process

x[k + 1] = Ax[k], (1)

where k ∈ N is the discrete-time index, x[k] ∈ Rn is the
state vector and A ∈ Rn×n is the system matrix. A network
G = (V, E) of N nodes monitor the state of this system. The
i-th node receives a measurement of the state, given by

yi[k] = Cix[k], (2)

where yi[k] ∈ Rri and Ci ∈ Rri×n. We define C ,[
CT

1 · · · CT
N

]T
and y[k] ,

[
yT1 [k] · · · yTN [k]

]T
. As

a basic necessary condition for state estimation, we assume
that the pair (A,C) is detectable. However, for any given
i ∈ V , the pair (A,Ci) may not be detectable. In the classical
distributed state estimation problem [1]–[5], the goal of each
node is to track the state of the system based on its own mea-
surement set, and the information received from its neighbors
in G. The presence of nodes that can act maliciously adds
an extra layer of complexity to this otherwise well-explored
problem. To solve the distributed state estimation problem in
the presence of worst-case adversarial behavior, the authors
in [6] developed an attack-resilient filtering algorithm and
identified sufficient conditions on the system and network
that guaranteed applicability of their approach. The analysis
in [6] indicates the need for a certain degree of redundancy
in both the measurement structure of the nodes, and the
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communication graph, so as to counter the effect of adversar-
ial nodes. As an alternative to the conventional approach of
increasing robustness through redundancy, the authors in [7]
explored the concept of device hardening. Specifically, in the
context of consensus dynamics, the authors established that
even if a relatively small set of carefully chosen nodes, called
trusted nodes, are made immune to attacks, then the overall
network can still exhibit the same structural robustness as
that of a highly connected, dense network.

In light of these recent developments, we seek to un-
derstand the impact of making certain nodes trusted in the
context of collaboratively estimating the state of a dynamical
system. Specifically, we ask the following questions.
• Can introducing trusted nodes into a sparse network al-

leviate the redundancy requirements needed for resilient
distributed state estimation?

• How should one choose a set of trusted nodes that pro-
vide the network with certain redundancy requirements?

In posing the above questions, our main motivation is to
gain insights regarding the design of an attack-resilient,
robust sensor network. The multitude of applications of
such sensor networks, and the growing need for designing
secure networked control systems, justifies the relevance
of the questions asked in this paper. In this context, our
contributions are as follows. First, given a set of trusted
sensor nodes, we identify separate necessary and sufficient
conditions for the problem under consideration, in Sections
III and IV, respectively. For each of the robustness mea-
sures identified in the respective sections (“critical-index”
in Section III and “strong r-robustness” in Section IV),
we demonstrate the utility of making certain nodes trusted.
Roughly speaking, we do so by showing that the absence
of even a single trusted node needs to be compensated by
augmenting the network with several additional measurement
and communication resources. Second, in Section V, we
establish that the problem of finding the smallest set of
trusted nodes to achieve a certain degree of strong-robustness
is NP-hard. Finally, in Section VI, we develop a resilient
distributed state estimation algorithm that leverages the pres-
ence of trusted nodes, and provably guarantees asymptotic
state reconstruction for all non-compromised nodes, if the
conditions identified in Section IV are met.

II. NOTATION, TERMINOLOGY AND PROBLEM SETUP

Notation: A directed graph is denoted by G = (V, E),
where V = {1, · · · , N} is the set of nodes and E ⊆ V × V
represents the edges. An edge from node j to node i, denoted
by (j, i), implies that node j can transmit information to node



i. The neighborhood (or in-neighborhood) of the i-th node
is defined as Ni , {j | (j, i) ∈ E}. A node j is said to
be an out-neighbor of node i if (i, j) ∈ E . By an induced
subgraph of G obtained by removing certain nodes C ⊂ V ,
we refer to the subgraph that has V \ C as its node set,
and contains only those edges of E with both end points in
V \ C. The notation |V| is used to denote the cardinality of
a set V . The set of all eigenvalues (or modes) of a matrix
A is denoted by sp(A) = {λ ∈ C | det(A − λI) = 0},
and the set of all unstable eigenvalues by ΛU (A) = {λ ∈
sp(A) | |λ| ≥ 1}. For a set J = {m1, · · · ,m|J |} ⊆
{1, · · · , N}, and a matrix C =

[
CT

1 · · · CT
N

]T
, we

define CJ ,
[
CT
m1

· · · CT
m|J |

]T
. The identity matrix

of dimension r is denoted Ir, and N+ is used to refer to the
set of all positive integers. The terms ‘communication graph’
and ‘network’ are used interchangeably.

Adversary Model: We consider a subset A ⊂ V of the
nodes in the network to be adversarial. The adversaries pos-
sess complete knowledge of the network topology, the system
dynamics and the algorithm employed by the non-adversarial
nodes. The adversarial nodes can act collaboratively, and can
even transmit differing state estimates to different neighbors
at the same instant of time, based on the Byzantine fault
model [8]. To characterize the threat model in terms of
the number of adversaries in the network, we will use the
following definitions from [9].

Definition 1. (f -total set) A set C ⊂ V is f -total if it contains
at most f nodes in the network, i.e., |C| ≤ f .

Definition 2. (f -local set) A set C ⊂ V is f -local if it
contains at most f nodes in the neighborhood of the other
nodes, i.e., |Ni ∩ C| ≤ f, ∀i ∈ V \ C.

Definition 3. (f -local and f -total adversarial models) A set
A of adversarial nodes is f -locally bounded (resp., f -totally
bounded) if A is an f -local (resp., f -total) set.

We will primarily deal with an f -local Byzantine adver-
sary model so as to account for a large number of adversaries
in the network. The non-adversarial nodes will be referred
to as regular nodes and be represented by the set R = V \A.
Finally, note that the actual number and identities of the
adversarial nodes are not known to the regular nodes; only
the upper bound f (on the total number of adversarial nodes
in the neighborhood) is known.

Trusted Node Model: We assume that a subset T ⊆ V of
nodes cannot be compromised by adversaries, i.e., T ∩A =
∅. Furthermore, we assume that each node is aware of the
identities of its trusted neighbors.

With x̂i[k] representing the estimate of x[k] (the state of
system (1)) maintained by node i, our objective in this paper
will be to study the impact of the trusted nodes in solving
the following problem.

Problem 1. (Resilient Distributed State Estimation Prob-
lem) Given an LTI system (1), a linear measurement model
(2), and a time-invariant directed communication graph
G, design a set of state estimate update and information

exchange rules such that limk→∞ ||x̂i[k] − x[k]|| = 0,
∀i ∈ R, regardless of the actions of any f -locally bounded
set of Byzantine adversaries.

III. NECESSARY CONDITIONS FOR RESILIENT
DISTRIBUTED STATE ESTIMATION WITH TRUSTED NODES

Given a network G with a trusted node set T , the main
objective of this section is to identify conditions that are
necessary for Problem 1 to be solvable via any distributed
algorithm. In the process, we will define an appropriate ro-
bustness metric that blends both system-theoretic and graph-
theoretic requirements. Finally, we will demonstrate how the
defined robustness metric can be significantly improved by
making a small fraction of the nodes trusted. To this end, we
require the following definitions.

Definition 4. (Critical Set) A set of nodes F ⊂ V is said to
be a critical set if the pair (A,CV\F ) is not detectable.

Definition 5. (Minimal Critical Set) A set F ⊂ V is said to
be a minimal critical set if F is a critical set and no subset
of F is a critical set.

Let M = {F1, · · · ,Fm} denote the set of all minimal
critical sets where m = |M|. With each set Fi ∈ M, we
associate a virtual node si as follows. Directed edges are
added from si to each node in Fi and the resulting network
is denoted by G′

i = (V ∪ si, E ∪ Ei), where Ei represents the
set of edges from si to Fi.

Definition 6. (f -local pair and f -total pair cuts with trusted
nodes w.r.t. si) Consider a minimal critical set Fi ∈ M. A
set H ⊂ V is called a cut with trusted nodes w.r.t. si if
H∩T = ∅, and removal of H from G′

i results in an induced
subgraph of G′

i whose node set can be partitioned into two
non-empty sets X and Y with si ∈ X , and no directed paths
from X to Y in the induced subgraph. A cut H with trusted
nodes w.r.t. si is called an f -local pair cut (resp., f -total
pair cut) with trusted nodes w.r.t. si if it can be partitioned
as H = H1 ∪ H2 such that both H1 and H2 are f -local
(resp., f -total) in G.

The following result identifies a fundamental limitation for
f -total (and hence f -local) adversarial models.

Theorem 1. Suppose there exists an f -total pair cut with
trusted nodes w.r.t. si in G′

i for some minimal critical set
Fi ∈M. Then, it is impossible for any algorithm to solve the
variant of Problem 1 corresponding to an f -total Byzantine
adversary model.

Proof. The proof proceeds via contradiction. Suppose there
exists an f -total pair cut H = H1 ∪ H2 with trusted nodes
w.r.t. si for some minimal critical set Fi ∈ M. Based on
the definition of H, it is easy to verify that the pair (A,CY)
is not detectable since Y contains no elements of Fi. Thus,
there exists an initial condition x[0] = η that causes the
measurement set yY [k] corresponding to Y to be identically
zero for all time, while the state x[k] remains bounded away
from zero. The idea of the proof is to appropriately construct
an attack such that the nodes in Y cannot distinguish between



the zero initial condition, and the initial condition η. This can
be achieved by noting that each of the sets H1 and H2 are
f -total and can act as valid adversarial sets since H∩T = ∅.
The specific details of such an attack are similar to those in
[10, Theorem 1], and are hence omitted here.

The above result yields the following corollary, providing
an upper-bound on the total number of adversaries that can
be tolerated in a given network with trusted nodes.

Corollary 1. Let κT denote the smallest positive integer such
that there exists a κT -total pair cut with trusted nodes w.r.t.
si, for some Fi ∈M. Then, the total number of adversaries
f must satisfy f < κT for Problem 1 to have a solution.

Unlike the traditional notion of graph-connectivity, the
parameter κT defined in the above corollary depends on both
the measurement structure of the nodes and the topology of
the communication graph. For the problem under considera-
tion, κT can be viewed as a measure of robustness of a given
system and network against a Byzantine adversary model.
We henceforth refer to κT as the critical-index with trusted
nodes of a given system and network. In what follows, we
demonstrate that a network with no trusted nodes needs to
be augmented with several additional measurement resources
and communication links so as to achieve a critical-index
equivalent to that of a network with a small number of trusted
nodes. To illustrate this equivalence in a simple manner, we
consider a scalar unstable system x[k + 1] = λx[k], and an
associated communication graph G with a trusted node set
T . Based on this system and network model, we construct
another model without trusted nodes as follows.
• Connectivity Augmentation: The new communication

graph, denoted Ḡ = (V, Ē) has the same node set as
G, but an augmented edge set Ē . Specifically, given any
pair of non-adjacent nodes i, j ∈ G, if there exists a
trusted node that is an out-neighbor of i and an in-
neighbor of j, or if there exists a directed path from i
to j consisting entirely of trusted nodes, then we add
an edge (i, j) between such nodes in Ḡ.

• Measurement Augmentation: Let τ be a trusted node
in G with non-zero measurements, i.e., Cτ 6= 0. Let i
be an out-neighbor of τ such that Ci = 0. Then, node
i in Ḡ is allocated the same measurements as node τ ,
i.e., Ci = Cτ in Ḡ.

We have the following result.

Proposition 1. Consider a scalar unstable system x[k+1] =
λx[k], a measurement model of the form (2), and a network
G with a trusted node set T . Let κT denote the critical-index
with trusted nodes of this system and network. Let κ indicate
the critical-index of the system and network Ḡ obtained
from G via connectivity augmentation and measurement
augmentation. Then, κ = κT .

Proof. Let the set of nodes in G (resp., Ḡ) that have non-zero
measurements of the state be denoted by F (resp., F̄ ). It is
easy to see that for the scalar system under consideration, F
and F̄ represent the only minimal critical sets in G and Ḡ,

respectively. To proceed, we construct the graph G′ (resp.,
Ḡ′) from G (resp., Ḡ) by associating a virtual node s (resp.,
s̄) with the minimal critical set F (resp., F̄ ) and adding
directed edges from s (resp., s̄) to F (resp., F̄ ). We now
consider two separate cases.

Case 1: We first consider the case when all trusted nodes
in G have no measurements, i.e., CT = 0. For this case, we
will establish that connectivity augmentation alone suffices
to achieve the equivalence stated in the proposition. To see
this, first observe that F̄ = F . It is easy to verify that a
kT -total pair cut with trusted nodes w.r.t. s in G′ is also a
kT -total pair cut w.r.t. s̄ in Ḡ′. Thus, κ ≤ κT . Conversely, if
there exists a (κT − 1)-total pair cut w.r.t. s̄ in Ḡ′, then one
can construct a (κT − 1)-total pair cut with trusted nodes
w.r.t. s in G′. Thus, κT ≤ κ. We conclude that κ = κT .

Case 2: Consider the case when there exists at least
one trusted node τ ∈ G with non-zero measurements. In
this case, the only minimal critical set in Ḡ is given by
F̄ = {F} ∪ {

⋃
τ∈F∩T N+

τ }, where N+
τ represents the

out-neighborhood of the trusted node τ . The last statement
follows directly from the measurement augmentation step.
Suppose there exists a kT -total pair cut H with trusted nodes
w.r.t. s in G′. Let this cut generate the sets X and Y as defined
in Definition 6. We observe that Y cannot contain an out-
neighbor of any trusted node belonging to F . Based on this
observation, it is clear that H acts as a kT -total pair cut w.r.t.
s̄ in the graph Ḡ′, generating the same two sets X and Y .
Thus, κ ≤ κT . The converse statement can be established
just as in Case 1, leading to the conclusion that κ = κT .

Remark 1. The above result substantiates our argument that
the replacement of a single trusted node requires allocating
additional measurement and communication resources to the
network so as to preserve the level of robustness (captured by
the critical-index) against adversarial attacks. Furthermore,
the result also identifies how such resources should be
deployed throughout the network so as to achieve the desired
equivalence. While this specific result pertaining to a scalar
dynamical system serves to highlight the utility of trusted
sensor nodes, identifying the exact nature of the measurement
augmentation step for more general systems requires further
analysis. We reserve this as future work.

IV. SUFFICIENT CONDITIONS FOR RESILIENT
DISTRIBUTED STATE ESTIMATION WITH TRUSTED NODES

In the previous section, we explored the benefit of in-
corporating trusted nodes in the context of meeting certain
necessary conditions for Problem 1. The focus of this section
will be to further highlight the impact of trusted nodes
by investigating sufficient conditions for Problem 1. There
are two main goals of this section. First, we shall identify
topological conditions that allow Problem 1 to be solved
based on an estimation strategy discussed later in Section
VI. Second, in line with the underlying theme of this paper,
we shall demonstrate how such topological conditions relax
those obtained in [6], where no trusted nodes are considered.
To this end, we require the following definition from [7].



Definition 7. (r-reachable set with trusted nodes) For a
graph G = (V, E) with a trusted node set T , a set C ⊂ V ,
and an integer r ∈ N+, C is an r-reachable set with trusted
nodes if there exists an i ∈ C such that either |Ni \ C| ≥ r,
or |{Ni \ C} ∩ T | > 0.

In other words, a set C is r-reachable with trusted nodes
if it contains at least one node i that either has at least r
neighbors outside C or has at least one trusted neighbor
outside C. We now define the key topological property
required for solving Problem 1 given a trusted node set T .

Definition 8. (strongly r-robust graph with trusted nodes
w.r.t. S) Given a graph G = (V, E) with a trusted node set
T , a set S ⊆ V , and an integer r ∈ N+, G is strongly r-
robust with trusted nodes w.r.t. S , if for any non-empty subset
C ⊆ V \ S , C is r-reachable with trusted nodes.

In the absence of any trusted nodes, the conventional
notions of r-reachability [11] and strong r-robustness w.r.t.
a set S [6] can be recovered from Definitions 7 and 8 by
setting T = ∅ in the respective definitions. To proceed, we
recall the notion of source nodes introduced in [6].

Definition 9. (Source nodes) For each λj ∈ ΛU (A), let the
set Sj be defined as follows:

Sj , {i ∈ V|rank
[
A− λjIn

Ci

]
= n}. (3)

Then, Sj will be called the set of source nodes for λj .
Let ΩU (A) ⊆ ΛU (A) contain the set of eigenvalues of A

for which V \Sj is non-empty. Given an unstable mode λj ∈
ΩU (A), estimation of the state corresponding to λj requires
a secure medium of information flow from the corresponding
source nodes Sj to the non-source nodes V \ Sj . To achieve
this objective, the concept of a Mode Estimation Directed
Acyclic Graph (MEDAG) was introduced in [6]. In what
follows, we modify the definition of a MEDAG to account
for the presence of trusted nodes.

Definition 10. (Mode Estimation Directed Acyclic Graph
(MEDAG) with trusted nodes) Consider an eigenvalue λj ∈
ΩU (A). Suppose there exists a spanning subgraph Gj =
(V, Ej) of G with the following properties for all f -local
sets A with A ∩ T = ∅, and R = V \ A.

(i) If i ∈ {V \ Sj} ∩ R, then either |N (j)
i | ≥ (2f + 1) or

|N (j)
i ∩T | > 0, where N (j)

i = {l|(l, i) ∈ Ej} represents
the neighborhood of node i in Gj .

(ii) There exists a partition of R into the sets
{L(j)

0 , · · · ,L(j)
Tj
}, where Tj ∈ N+, L(j)

0 = Sj ∩ R,

and if i ∈ L(j)
q (where 1 ≤ q ≤ Tj),

then N (j)
i ∩ R ⊆

⋃q−1
r=0 L

(j)
r . Furthermore,

N (j)
i = ∅, ∀i ∈ L(j)

0 .
Then, we call Gj a Mode Estimation Directed Acyclic Graph
(MEDAG) with trusted nodes for λj ∈ ΩU (A).

Construction of a MEDAG with trusted nodes: We
briefly discuss an algorithm that can be used to construct
a MEDAG with trusted nodes (conditions for the existence
of such a MEDAG will be provided below). Suppose we are

given a trusted set T . For each λj ∈ ΩU (A), our objective
is to construct the subgraph Gj defined in Definition 10, and
in the process identify the sets N (j)

i , ∀i ∈ V . With the sets
N (j)
i in hand, one can implement the resilient distributed

state estimation algorithm to be described later in Section VI.
The MEDAG construction algorithm requires each node i to
maintain a counter ci(j) and a list of indices N (j)

i for each
λj ∈ ΩU (A). These parameters are initialized with ci(j) = 0

and N (j)
i = ∅, for each i ∈ V . Subsequently, the algorithm

proceeds in rounds where in the first round each node in Sj
broadcasts the message “1” to its out-going neighbors, sets
ci(j) = 1, maintainsN (j)

i = ∅ for all future rounds, and goes
to sleep. When a node i ∈ V \ Sj either receives “1” from
at least (2f + 1) distinct neighbors or from a single trusted
neighbor, it sets ci(j) = 1, appends the labels of each of the
neighbors from which it received “1” to N (j)

i , broadcasts the
message “1” to its out-going neighbors, and goes to sleep.
The MEDAG construction algorithm “terminates for λj”, if
there exists Tj ∈ N+ such that ci(j) = 1 ∀i ∈ V , for
all rounds following round Tj . As pointed out earlier, the
objective of the algorithm is to return a set of sets {N (j)

i },
where λj ∈ ΩU (A), and i ∈ V .

Theorem 2. For each λj ∈ ΩU (A), G contains a subgraph
Gj satisfying all the properties of a MEDAG with trusted
nodes for λj , if and only if G is strongly (2f + 1)-robust
with trusted nodes w.r.t. Sj .

Proof. “⇐=” Let A be any f -local set such that A∩T = ∅.
Set R = V \ A. To prove sufficiency, we shall construct
a subgraph Gj satisfying the two properties of a MEDAG
with trusted nodes in Definition 10. Let L(j)

0 = Sj ∩ R.
We can prune the incoming edges of each node in L(j)

0 so
that N (j)

i = ∅ for each i ∈ L(j)
0 . Consider the set C =

{V \ L(j)
0 } ∩R. If such a set is empty, then we are done. If

not, let L(j)
1 be the set of all nodes in C that either have at

least (2f+1) neighbors outside C or have at least one trusted
neighbor outside C. Since G is strongly r-robust with T w.r.t.
Sj , L(j)

1 6= ∅. For each node i ∈ L(j)
1 , let N (j)

i denote the
neighbors of node i outside the set C. It follows from the
above construction that either |N (j)

i | ≥ (2f + 1) or |N (j)
i ∩

T | > 0. Noting that T ⊆ R, we infer that N (j)
i ∩R ⊆ L

(j)
0 .

We can continue the same construction procedure to cover
R. Specifically, having constructed the sets L(j)

0 to L(j)
q−1, if

C = {V\
⋃q−1
r=0 L

(j)
r }∩R is non-empty, then we can construct

a non-empty set L(j)
q using the same arguments employed for

constructing L(j)
1 . Since the set R is finite, the construction

process described above will eventually terminate with Tj ≤
N , yielding a subgraph Gj satisfying Definition 10.

“=⇒” We prove necessity via contradiction. Given some
λj ∈ ΩU (A), let there exist a MEDAG Gj with trusted nodes
satisfying Definition 10. Suppose G is not strongly (2f +1)-
robust with trusted nodes w.r.t. Sj . Thus, there exists a non-
empty set C ⊆ V \ Sj that is not (2f + 1)-reachable with
trusted nodes. Consider the trivial f -local set A = ∅ that
satisfies A∩T = ∅. The subgraph Gj must contain a partition



of R = V\A = V into levels that satisfy the second property
of a MEDAG with trusted nodes in Definition 10. With this
in mind, let C be partitioned as C =

⋃q
r=1 Fr, where Fr =

C ∩ L(j)
nr for some set of integers {n1, · · · , nq|1 ≤ ni ≤

Tj ∀i ∈ {1, · · · , q}}. Here, {L(j)
nr }

q
r=1 represents a subset of

the levels that partition R in the MEDAG Gj with trusted
nodes. Without loss of generality, let n1 < n2 < · · · < nq .
Then, from the definition of a MEDAG with trusted nodes,
it follows that for any i ∈ Fn1 , N (j)

i contains elements from
only V\C. As C is not (2f+1)-reachable with trusted nodes,
|N (j)

i | < (2f + 1) and |N (j)
i ∩T | = ∅, thereby violating the

first property of a MEDAG with trusted nodes. This leads to
the desired contradiction and completes the proof.

Remark 2. There are two main implications of the above
theorem. First, based on the proof of sufficiency, we observe
that if G is strongly (2f + 1)-robust with trusted nodes
w.r.t. Sj , then the MEDAG construction algorithm (described
earlier in this section) is guaranteed to terminate for λj .
Second, a major take-away point is the fact that checking the
existence of a MEDAG with trusted nodes can be completed
in polynomial-time. This follows from the observation that
for any λj ∈ ΩU (A), Tj ≤ N , implying that the MEDAG
construction algorithm will take at most N rounds/iterations
to terminate for each such λj .

In Section VI, we shall establish that the existence of a
MEDAG with trusted nodes for each λj ∈ ΩU (A), allows
every regular node to employ a resilient consensus based
filtering algorithm to estimate the state x[k] asymptotically.
Thus, Theorem 2 characterizes certain topological conditions
that allow Problem 1 to be solved. In the absence of any
trusted nodes, the approach developed in [6] requires the
graph G to be strongly (2f + 1)-robust w.r.t. Sj , ∀λj ∈
ΩU (A). Our immediate aim will be to demonstrate that the
conditions obtained in this paper relax those obtained in [6].
To this end, consider the following result.

Theorem 3. Let G be strongly r-robust with trusted nodes
w.r.t. Sj , ∀λj ∈ ΩU (A). Let Ḡ be a graph obtained from G
by replacing each trusted node τ ∈ T with a set of r nodes
such that each of the r nodes have (i) the same measurements
as τ , and (ii) the same in- and out-neighborhood as τ in G.
Then, Ḡ is strongly r-robust w.r.t. Sj , ∀λj ∈ ΩU (A).
A proof of the above theorem is available in [12].

V. COMPLEXITY OF SELECTING TRUSTED NODES

In this section, we establish that the problem of finding
a set of trusted nodes to achieve a certain degree of strong
r-robustness is computationally hard. To prove this result,
we first formally define the problem under consideration.

Definition 11. (Trusted Strong Robustness Augmentation
Problem (TSRAP)) Given a system model (1), a measure-
ment model (2), a communication graph G = (V, E), and
positive integers r, t, does there exist a set of trusted nodes
T of cardinality t such that G is strongly r-robust with trusted
nodes w.r.t. Sj , ∀λj ∈ ΩU (A)?

To characterize the complexity of TSRAP, we will provide
a reduction from the NP-hard Set Cover Problem (SCP),
defined as follows.

Definition 12. (Set Cover Problem (SCP)) Given a col-
lection of elements U = {1, · · · , p}, a set of subsets F =
{F1, · · · ,Fm} of U , and a positive integer t, do there exist
t subsets in F whose union is U?

Theorem 4. The TSRAP problem is NP-hard.

Proof. Given an instance of SCP, we first construct an
instance of TSRAP as follows. We consider a scalar unstable
dynamical system x[k + 1] = λx[k], and construct an
associated communication graph G with node set V =
{u1, · · · , up, f1, · · · , fm} of cardinality p + m. Each node
ui corresponds to an element of U , and each node fj
corresponds to the subset Fj ∈ F . If ui ∈ Fj , then a
directed edge is added from node fj to node ui. Each node
fj ∈ F is allocated a non-zero measurement of the state
x[k]. The cardinality of the trusted set T is taken to be t, and
the desired level of strong robustness is given by r = |F|.
Clearly, the above TSRAP instance can be constructed in
polynomial-time. We now argue that the answer to any given
instance of SCP is “yes” if and only if the answer to the
constructed instance of TSRAP is “yes”.

Suppose the answer to the SCP instance is “yes”. Thus,
there exists a set of t subsets of F whose union is U . Without
loss of generality, let these subsets be {F1, · · · ,Ft}. Let the
set of trusted nodes T be {f1, · · · , ft}. We first observe that
the set of source nodes S (the set of nodes that can detect
λ) of G is precisely the set F . Thus, T ⊂ S . To establish
that G is strongly r-robust with trusted nodes w.r.t. S , we
pick a non-empty subset C ⊆ V \ S = U . Since every node
ui ∈ U has a neighbor in T ⊂ S , every non-empty subset
C ⊆ U is r-reachable with trusted nodes. Thus, the answer
to the constructed instance of TSRAP is “yes”.

To show the converse, we proceed via contraposition.
Suppose the answer to the SCP instance is “no”. In other
words, there does not exist any t subsets of F that cover
U . Consider any set of trusted nodes T of cardinality t. Let
M = F ∩ T . We first consider the case when M is non-
empty. In this case, there exists at least one node ui ∈ U
that has neighbors only in F \M. Noting that the source set
S = F , we consider the non-empty set C = {ui} contained
in V \S = U . Since r = |F|, it follows that ui neither has a
trusted neighbor nor has at least r neighbors. Thus, C is not
r-reachable with trusted nodes. For analyzing the case when
M is empty, we observe that there must exist at least one
node ui ∈ U such that Ni ⊂ F . It then follows that C = {ui}
is not |F|-reachable with trusted nodes. Consequently, G is
not strongly r-robust with trusted nodes w.r.t. S , regardless
of the way t trusted nodes are picked in G. In other words,
the answer to the constructed TSRAP instance is “no”. This
completes the proof.

A polynomial-time greedy heuristic that finds a (sub-
optimal) set of trusted nodes can be found in [12].



VI. RESILIENT DISTRIBUTED STATE ESTIMATION WITH
TRUSTED NODES

In this section, we develop an algorithm that leverages the
presence of a trusted node set T to solve Problem 1. For
simplicity of notation, we make the following assumption.

Assumption 1. A has real, distinct eigenvalues.

Although the above assumption might seem restrictive,
the results that we derive subsequently can be generalized
to account for system matrices with arbitrary spectrum
using a more detailed technical analysis [10]. Since any A
satisfying Assumption 1 can be diagonalized via an appro-
priate similarity transformation, we assume without loss of
generality that A is already in diagonal form. Specifically,
A = diag(λ1, · · · , λn), where sp(A) = {λ1, · · · , λn}.
Let the component of the state vector x[k] corresponding
to eigenvalue λj be denoted by x(j)[k]. Building on the
general idea developed in [6], for each λj ∈ ΩU (A), the
source nodes Sj and the non-source nodes V \ Sj employ
separate update rules for estimating x(j)[k]. In particular,
the source nodes maintain local1 Luenberger observers for
estimating x(j)[k], while the non-source nodes rely on a
resilient consensus based protocol to achieve this task. For
any node i, let the set of eigenvalues it can detect be denoted
by Oi, and let UOi = sp(A)\Oi. Then, the following result
from [6] states that node i can estimate the locally detectable
portion of x[k] without interacting with its neighbors.

Lemma 1. Suppose Assumption 1 holds. Then, for each
regular node i ∈ R and each λj ∈ Oi, a local Lu-
enberger observer can be constructed that ensures that
limk→∞ |x̂(j)i [k] − x(j)[k]| = 0, where x̂

(j)
i [k] denotes the

estimate of x(j)[k] maintained by node i.
We now develop a filtering algorithm that accounts for the

presence of trusted nodes, and allows each regular node to
estimate the locally undetectable portion of the dynamics,
despite potential adversaries in its neighborhood.

For each λj ∈ UOi, i ∈ R updates x̂(j)i [k] as follows.

1) At each time-step k, it collects the estimates of x(j)[k]
received from only those neighbors that belong to
N (j)
i ⊆ Ni. (Recall that N (j)

i represents the neighbor-
set of node i in the MEDAG with trusted nodes Gj).

2) If N (j)
i ∩ T 6= ∅, then x̂(j)i [k] is updated as follows:

x̂
(j)
i [k + 1] = λj

∑
l∈N (j)

i ∩T

w̄
(j)
il x̂

(j)
l [k], (4)

where the weights are non-negative and chosen to
satisfy

∑
l∈N (j)

i ∩T
w̄

(j)
il = 1.

3) If N (j)
i ∩ T = ∅, then node i ranks the estimates

of x(j)[k] received from nodes in N (j)
i from highest

to lowest. It then removes the highest and lowest f
estimates (i.e., removes 2f estimates in all), and updates

1Here, by ‘local’ we imply that such observers can be constructed and
run without any information from neighbors.

x̂
(j)
i [k] based on the following rule:

x̂
(j)
i [k + 1] = λj

∑
l∈M(j)

i [k]

w
(j)
il [k]x̂

(j)
l [k], (5)

where M(j)
i [k] ⊂ N (j)

i (⊆ Ni) is the set of nodes from
which node i chooses to accept estimates of x(j)[k] at
time-step k, after removing the f highest and f lowest
estimates from N (j)

i . The weights are nonnegative and
chosen to satisfy

∑
l∈M(j)

i [k]
w

(j)
il [k] = 1.

We refer to the above algorithm as the Local-Filtering based
Resilient Estimation algorithm with Trusted nodes (LFRE-
T). We have the following result, with a proof in [12].

Theorem 5. Consider the system (1) and measurement
model (2). Let T ⊂ V denote the set of trusted nodes in
G. Let the communication graph G be strongly (2f + 1)-
robust with trusted nodes w.r.t. Sj , ∀λj ∈ ΩU (A). Then, the
proposed LFRE-T algorithm solves Problem 1.

VII. CONCLUSION

We studied the problem of incorporating trusted nodes to
relax the redundancy requirements for resilient distributed
state estimation. Given a set of trusted nodes, we identified
separate necessary and sufficient conditions for the problem
under consideration, and demonstrated the benefit of trusted
nodes through such conditions. We studied the complexity of
selecting a trusted node set, and proposed an attack-resilient
distributed state estimation algorithm adapted to account for
the presence of trusted nodes. As future work, we plan to
further explore the trade-offs and complexities associated
with designing robust sensor networks with trusted nodes.
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