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Abstract

Recent theory suggests that tropical terrestrial arthropods are at significant risk from climate warming. Metabolic rate in
such ectothermic species increases exponentially with environmental temperature, and a small temperature increase in a
hot environment can therefore have a greater physiological impact than a large temperature increase in a cool environ-
ment. In two recent studies of the neotropical pseudoscorpion, Cordylochernes scorpioides, simulated climate warming signifi-
cantly decreased survival, body size and level of sexual dimorphism. However, these effects were minor compared with cat-
astrophic consequences for male fertility and female fecundity, identifying reproduction as the life stage most vulnerable to
climate warming. Here, we examine the effects of chronic high-temperature exposure on epigenetic regulation in C. scor-
pioides in the context of naturally occurring variation in mitochondrial DNA. Epigenetic mechanisms, including DNA meth-
ylation, histone modifications and small non-coding RNA (sncRNA) expression, are particularly sensitive to environmental
factors such as temperature, which can induce changes in epigenetic states and phenotypes that may be heritable across
generations. Our results indicate that exposure of male pseudoscorpions to elevated temperature significantly altered the
expression of >60 sncRNAs in testicular tissue, specifically microRNAs and piwi-interacting RNAs. Mitochondrial hap-
logroup was also a significant factor influencing both sncRNAs and mitochondrial gene expression. These findings demon-
strate that chronic heat stress causes changes in epigenetic profiles that may account for reproductive dysfunction in C.
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scorpioides males. Moreover, through its effects on epigenetic regulation, mitochondrial DNA polymorphism may provide
the potential for an adaptive evolutionary response to climate warming.
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Introduction

Adapted to already high and relatively constant temperatures,
tropical terrestrial ectotherms are predicted to be at significant
risk from climate warming [1-4]. In such ectothermic species,
metabolic rate increases exponentially with ambient tempera-
ture [5-8], and a small temperature increase in a hot environ-
ment can therefore have a larger physiological impact than a
large temperature increase in a cool environment [9]. Because
tropical arthropods constitute the vast majority of animal spe-
cies [10], the implications of the metabolic theory of climate
warming for global biodiversity are profound [9, 11]. Unlike tem-
perate zone species, tropical species often exhibit high levels of
mitochondrial DNA sequence variation across small spatial
scales even in the presence of gene flow [12-17]. Given the fun-
damental role of mitochondria in metabolism, sequence varia-
tion in the mitochondrial genome that influences OXPHOS
activity, mitochondrial translational efficiency [18-20] and/or
mitochondrial cellular concentration could be an important de-
terminant of evolutionary responses to rising temperatures [21-
24]. In addition, a growing body of theory and empirical evi-
dence indicate that environmentally induced epigenetic modifi-
cations may be a critical factor in determining the fate of
populations subjected to rapid environmental change [25-35].

Associated with the DNA scaffold is a system of somatically,
intergenerationally and potentially transgenerationally herita-
ble epigenetic marks [36, 37]. In conjunction with long [38] and
short [39] non-coding RNAs (ncRNAs), DNA methylation [40, 41]
and chemical modifications to core histone proteins affect how
tightly DNA is packaged in chromatin [42, 43]. By providing dif-
ferential access to underlying genetic information in a revers-
ible, dynamic and inducible manner, epigenetic marks mediate
the developmental pattern, tissue specificity and environmen-
tal context of gene expression [36, 37]. Among the various clas-
ses of ncRNAs, microRNAs (miRNAs) are conserved sequences
that regulate gene expression at the post-transcriptional stage
[44]. Because binding is generally restricted to a short ‘seed’ re-
gion at the 5’ end of the miRNAs [45], a single miRNA may bind
to the mRNAs of numerous genes, and a single gene may be reg-
ulated by several miRNAs, resulting in complex regulatory net-
works that function in almost all developmental, physiological
and disease-related processes [44, 45]. In contrast, piwi-
interacting RNAs (piRNAs) are highly expressed in gonads
where they function as a germline defence against transposable
element (TE) activity [46-49]. In D. melanogaster, PIWI proteins
are essential for male and female fertility [50], and, in the
mouse, deficiency in PIWI proteins results in TE activation in
testes and complete sterility [51]. There is also increasing evi-
dence that piRNA functions extend beyond germline TE sup-
pression to targeting genes involved in early development, de
novo DNA methylation, and more generally as an epigenetic pro-
gramming mechanism that guides other epigenetic factors to
their targets [52].

Because of its unique reproductive biology and amenability
to experimental manipulation (Fig. 1), the neotropical
pseudoscorpion, Cordylochernes scorpioides (Linneaus 1758)
(Pseudoscorpionida: Chernetidae), is a model tropical ectotherm

for investigating mitochondrial and epigenetic responses to cli-
mate warming [53, 54]. In these arachnids, males transfer sperm
to females in discrete packets via a stalked spermatophore de-
posited on the substrate. Matings can be interrupted following
spermatophore deposition, and the sperm packet collected for
assessment of sperm quantity and quality [53]. Females are vi-
viparous, and nourish developing embryos in an external, trans-
parent brood sac, overlying the genital aperture [53]. This
‘external womb’ form of viviparity facilitates embryonic epige-
nome editing using ncRNAs, and makes possible non-invasive
monitoring of female reproductive status and embryological de-
velopment. In addition, mitochondrial DNA sequence variation
is extensive. Previous sequencing of the C. scorpioides mitochon-
drial coxl gene from populations in central and western
Panamd identified three divergent lineages: one clade consist-
ing predominantly of individuals from central Panamé (Clade
A), and two sister clades (B1 and B2) which appeared to be re-
stricted to western Panamd [55]. However, subsequent sequenc-
ing of the ND2 gene from 66 C. scorpioides laboratory matrilines
revealed that the B2 haplogroup co-occurs with the A hap-
logroup in central Panami at estimated frequencies of 12% and
88%, respectively [53]. Next generation sequencing of the com-
plete mitochondrial genomes of A- and B2-haplogroup individu-
als from our central Panamad laboratory population, as well as
B2- and Bl-haplogroup individuals collected from extreme
western Panamg, revealed a mean divergence between the sym-
patric A and B2 haplogroups of 8.9% across the entire genome
[56]. Further research has established that the two mitochon-
drial haplogroups differ markedly in the expression of nearly all
the mitochondrial OXPHOS genes [Zeh et al., unpublished data].
Previous climate warming research on C. scorpioides, involving a
single-step 3.5°C increase in temperature predicted for the end
of the century by some climate-warming models, established
reproduction as the Achilles’ heel of this pseudoscorpion [53,
54]. Exposure to elevated temperature during development af-
fected size, sexual dimorphism and survivorship only moder-
ately but reduced sperm numbers by >50% and rendered males
and females sterile [53].

In the study reported here, the impacts of elevated tempera-
ture and natural mitochondrial variation on sncRNA expression
in C. scorpioides testicular tissue were investigated using a split-
brood experimental design in which offspring from five A and
five B2 mitochondrial haplogroup females were randomly
assigned to either a diurnally fluctuating control (C) or a
diurnally-fluctuating high temperature (H) regime for rearing
from birth to the adult stage (for details, see [53]). Climate
warming effects were simulated in the high temperature treat-
ment by elevating the average temperature 3.5°C above the con-
trol temperature, which was estimated from long-term, daily
high and low temperature records from C. scorpioides’ native
habitat in central Panamd [53]. edgeR [57] analyses demon-
strated that 70 miRNAs and 14 piRNAs were significantly differ-
entially expressed (DE) in response to either temperature or
mitochondrial haplogroup. More generally, these results sug-
gest that disrupted epigenetic profiles may account for climate-
warming induced reproductive dysfunction in male C. scor-
pioides, and that mitochondrial DNA variation, through its
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Figure 1: reproductive biology of Cordylochernes scorpioides. (A) Mating sequence in which male grasps female (a), produces and deposits spermatophore (b); reverses,
pulling female over spermatophore (c) and maintains contact during sperm uptake phase (d). (B) Sperm packet (stained red) with the everted tube and evacuated sperm
(stained green). (C) Ventral view of gravid female carrying a brood sac containing ~100 early-stage embryos. The images are reproduced from [56].

effects on the expression of sncRNAs, may provide the potential
for an adaptive evolutionary response to climate warming.

Results

Cordylochernes scorpioides Males Abundantly Express
a Diverse Set of miRNAs and piRNAs in Testicular
Tissue

Interrogation with Sequery annotation software [58] of the 20
small RNA libraries from C. scorpioides testicular tissue detected
585 distinct piRNAs and 517 distinct miRNAs that met the
threshold abundance of three or more normalized transcripts
averaged across the 20 samples. Overall, miRNAs were more
abundantly expressed than piRNAs, accounting for 7.53% of the
total small RNA transcriptome compared with 0.53% for
PiRNAs. Total sncRNA transcripts were nearly six times more
abundant than transcript fragments from the 13 OXPHOS genes
of the mitochondrial genome (8.06% versus 1.43% of the total
small RNA transcriptome). Plots of cumulative transcript abun-
dance against abundance rank revealed that piRNAs were more
evenly expressed (Supplementary Fig. S1) than miRNAs
(Supplementary Fig. S2). The 20 most abundantly expressed
miRNAs accounted for 68.5% of overall miRNA transcript abun-
dance compared with a value of 24.7% for piRNAs.

Elevated Temperature Significantly Alters Expression of
sncRNAs in C. scorpioides Testicular Tissue

Temperature exerted significant but opposite effects on overall
miRNA and piRNA expression. In the case of miRNAs, average
overall expression increased 37% at high temperature (Fig. 2;
P<0.0001). In contrast, the high temperature treatment de-
creased average overall piRNA expression by 32% (Fig. 3;
P <0.0001). Sixty-four of the 517 miRNAs (12.4%) were signifi-
cantly DE by temperature. Despite increased overall miRNA ex-
pression, the vast majority (N=57) of DE miRNAs was
significantly downregulated at high temperature, with log,-
fold changes ranging from -2.75 to 0.92 (Fig. 4a; Table 1). Most
noteworthy were the miRNAs, mdo-miR-1547-5p, bmo-let-7-3p,
hsa-miR-3116, mdv2-miR-M14-5p and bmo-miR-6496-3p,
which were abundantly expressed at the control
temperature but strongly downregulated at high temperature
(Table 1).

A similar pattern of high temperature-induced downregula-
tion was evident for piRNAs. Of the six significantly DE piRNAs,
five were significantly downregulated at high temperature, with
log,-fold changes ranging from -2.05 to 1.24 (Fig. 4b; Table 2).

PiRNAs that were abundantly expressed at the control tempera-
ture but strongly downregulated at high temperature included
MIWI2-278992 and MIWI2-169803.

Natural Variation in Mitochondrial DNA Results in
Differential Expression of sncRNA

Investigation of the effects of mitochondrial haplogroups on
sncRNA expression revealed significant differential expression
of a set of miRNAs and piRNAs distinct from those exhibiting
temperature-dependent effects (Fig. 5a; Table 1). Six miRNAs
were significantly DE between mitochondrial haplogroups. Four
of these six miRNAs (dme-miR-315-3p, zma-miR395d-5p, cel-
miR-253-5p and cbr-miR-253) exhibited significant and mark-
edly increased levels of expression in the B2 haplogroup relative
to the A haplogroup, with log,-fold changes ranging from 2.83 to
8.70. Interestingly, all eight significantly DE piRNAs exhibited
markedly decreased B2 expression, with log,-fold changes rang-
ing from -6.97 to —-3.92 (Fig. S5b; Table 2). There were no signifi-
cant interactions between mitochondrial haplogroup and
temperature treatments, suggesting that mitochondrial hap-
logroup influences sncRNA expression, irrespective of tempera-
ture. A heatmap of significantly DE miRNAs and piRNAs
separates the mitochondrial haplogroups into distinct clades in-
dependent of temperature effects (Fig. 6).

Discussion

Sequencing of replicate C. scorpioides small RNA libraries from A
and B2 mitochondrial haplogroups at control and high tempera-
tures revealed that testes sncRNA expression, particularly
miRNA expression, is strongly influenced by simulated climate
warming and natural mitochondrial variation in this neotropi-
cal ectotherm. Overall, temperature exerted significant effects
on the expression of 64 miRNAs and six piRNAs. The majority of
significantly DE miRNAs decreased in expression at high tem-
perature, in some instances by more than two log folds. The
down regulated aga-miR-13b and bma-miR-2a are members of
the mir-2 miRNA family that is widespread in invertebrates and
regulates cell survival by translational repression of pro-
apoptotic factors [59]. Consequently, reduction in expression of
these miRNAs may be causally linked to C. scorpioides’ sperma-
togenic disruption at high temperature. Overall, piRNA expres-
sion at elevated temperature declined by 32%, and all DE C.
scorpioides piRNAs mapped to piRNAs associated with MIWI2, a
Piwi family member in mice. MIWI2, MIWI2-associated piRNAs
and other protein complexes are essential components for sper-
matogenesis that repress TE activity in distinct ways [60-62].
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Figure 2: bivariate plot of average testes miRNA expression at high temperature versus control temperature. Overall miRNA expression increased 37% at high tempera-
ture. Red dashed line indicates equal miRNA expression at high and low temperature
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Figure 3: bivariate plot of average testes piRNA expression at high temperature versus control temperature. Overall piRNA expression decreased 32% at high tempera-
ture. Red dashed line indicates equal piRNA expression at high and low temperature

First, MIWI2 piRNA complexes function to repress TE activity by
directing DNA methylation machinery to TE sites [60-62].
Second, MIWI, a small RNA-guided RNase, possesses catalytic
activity which functions in genome defence by directly cleaving
transposon messenger RNAs and prevents TE re-insertions that
result in mutations and transposon-induced recombination

[63]. Thus, the significant decrease in the expression of MIWI2-
like piRNAs in C. scorpioides males subjected to high temperature
may suggest that environmentally induced breakdown in the
epigenetic regulation of TE activity contributed to the marked
reduction in sperm produced by C. scorpioides males subjected to
simulated climate warming [53, 54].
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Figure 4: smear plots of (A) miRNAs and (B) piRNAs showing log,-fold changes in expression level at high temperature relative to control as a function of expression
level. Significantly differentially expressed sncRNAs are indicated in red. Blue lines indicate a one log fold change for either increased and decreased expression at high

temperature

It is important to acknowledge two limitations of the study.
First, reliance on publicly-available sncRNA databases due to
the lack of a C. scorpioides reference genome is likely to have
constrained our ability to detect significant temperature and
haplogroup effects, particularly in the case of piRNAs. Across
animal species, miRNAs are better characterized and more
highly conserved than piRNAs [49], and in our study, miRNAs
were more abundant, less variable and more likely to be DE.
Absence of pseudoscorpion-specific piRNAs in the databases
used to characterize piRNA expression could explain the rela-
tively low abundance and reduced sensitivity of piRNAs to tem-
perature. Unfortunately, C. scorpioides appears to possess a large
(~2.5Gb) and complex genome, and generating a reference ge-
nome will require substantial sequencing, assembly and anno-
tation efforts.

Second, our experimental design did not permit determina-
tion of the precise mechanism of temperature-dependent dif-
ferential expression in testes. Testes are composed of
numerous germ and somatic cells types, and temperature in-
duced differential expression could result either from changes
in sncRNA expression at the cellular level, or from alterations in
the cellular composition of the testes. In the absence of cell-
specific expression data, these alternative mechanisms can be
indirectly assessed based on comparison of overall mitochon-
drial gene expression at control versus high temperatures, as
well as on published results on the effect of temperature on the
number of mature sperm in spermatophores [53]. Recent single-
cell RNA-Seq studies of mice demonstrate that mitochondrial
gene expression varies extensively between testicular cell types
and stage of spermatogenesis. Compared with other testicular
cells, the relative abundance of mtDNA transcripts is greatly re-
duced in differentiating sperm cells, including meiotic sperma-
tocytes, post-meiotic haploid round spermatids and elongating
spermatids. This pattern stems from the major reduction in mi-
tochondrial copy number as sperm mature [64], a relationship
likely to hold across animal species. In our study, high tempera-
ture increased overall representation of mitochondrial tran-
script fragments in our small RNA libraries by 42% (P =0.0357),
suggesting a reduction in the proportion of differentiating
sperm cells in the testes of high temperature males. This inter-
pretation is consistent with significantly reduced sperm counts

in high temperature males, who produce only 43% as much
ejaculated sperm as control males [S3]. It therefore seems likely
that differential expression of sncRNAs at the level of testes
stems at least partially from temperature-mediated depletion of
differentiated sperm cells.

While the role of mitochondrial variation in influencing epi-
genetic regulation in nature remains poorly understood, mito-
chondria are known to be intimately involved in the
establishment of epigenetic states through the conversion of
calories to ATP, acetyl-CoA, NAD+ and SAM, the high-energy
substrates essential for phosphorylation, acetylation, deacetyla-
tion and methylation [18], and through the synthesis of co-
factors associated with active de/methylation and de/acetyla-
tion [19]. Experimental removal of functional mitochondria
from cells alters patterns of DNA methylation that partially re-
vert to their original state when mitochondria are re-introduced
into cells [65]. Similarly, inactivation of mitochondria has been
shown to lead to a 5-fold reduction in miRNA silencing effi-
ciency [66, 67]. Recent findings also point to a key role for mito-
chondria in piRNA biogenesis. Evidence suggests that piRNA-
cluster transcripts are exported from the nucleus to non-
membranous cellular bodies, known as Yb-bodies in ovarian so-
matic cells and nuage in germline cells, that are closely associ-
ated with mitochondria and enriched with piRNA biogenesis
factors [68].

In C. scorpioides, six miRNAs and eight piRNAs were signifi-
cantly DE by the A and B2 mitochondrial haplogroups. Although
natural mitochondrial variation accounted for far fewer DE
sncRNAs than did high temperature, haplogroup-based differ-
ential expression was more extreme in magnitude, with log,-
fold changes ranging from 6.97 to 8.7. Importantly, sncRNA dif-
ferential expression by the two mitochondrial haplogroups can-
not be attributed to differences in nuclear genetic background.
The C. scorpioides individuals used in this study were mated ran-
domly in the laboratory with respect to mitochondrial hap-
logroup for a minimum of 16 generations. Consequently, the
two haplogroups became effectively homogeneous with respect
to nuclear genetic background, greatly increasing the likelihood
that any systematic differences between haplogroups in
sncRNA expression are causally linked to differences in the mi-
tochondrial genome. The coexistence of the highly divergent
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Table 1: differentially expressed (DE) miRNAs in response to temperature treatment and mitochondrial haplogroup

miRNA Identity Haplogroup Temperature Logfold Average  Average Average Average Known
FDR FDR change HA counts CA counts HB2 counts CB2 counts function
aae-miR-13-3p - 4.38E-02 -1.59 3.49 17.54 28.64 40.13 -
aae-miR-14 - 3.08E-02 -1.56 128.40 513.86 220.80 462.52 -
aae-miR-275-3p - 8.05E-03 0.71 530.76 195.21 828.72 417.93 -
aga-miR-13b - 5.68E-03 -1.71 12.13 44.60 28.05 66.23  Regulates cell survival by transla-
tional repression of proapoptotic
factors
aga-miR-14 - 3.04E-02 -1.24 46.49 120.41 63.53 118.93 -
aly-miR4233 - 3.76E-02 -0.99 11.19 19.31 18.12 26.81 -
ame-miR-317 - 1.00E-02 -0.45 1038.84 969.57 1118.94 1253.75 -
ame-miR-3751 - 4.50E-03 -1.64 4.93 16.38 12.01 27.89 -
api-miR-275 - 2.46E-02 0.52 845.67 345.67 982.88 671.13 -
bbe-miR-10a-5p - 2.14E-03 -0.99 62.79 95.23 71.25 111.71 -
bdi-miR7725a-3p - 3.42E-02 -0.90 23.47 35.75 25.61 34.29 -
bfl-miR-9-5p - 3.04E-02 0.49 770.39 376.33 860.98 516.28  Suggested to regulate neuronal
differentiation
bma-miR-2a - 8.00E-03 0.44 1231.73 652.19 1603.27 895.87  Regulates cell survival by transla-
tional repression of proapoptotic
factors
bmo-let-7-3p - 4.85E-05 -2.14 21.62 151.97 340.25 361.82 -
bmo-miR-2762 - 5.50E-03 -1.64 14.70 38.40 22.43 89.05 -
bmo-miR-279a - 8.00E-03 0.67 3420.90 1627.81 4274.12 1798.56 -
bmo-miR-2808a-3p - 1.43E-02 -1.66 4.75 33.85 47.06 45.85 -
bmo-miR-3392 - 6.84E-04 -1.84 8.40 43.30 39.37 80.00 -
bmo-miR-6495-3p - 4.11E-03 -1.61 19.95 48.86 34.82 70.39 -
bmo-miR-6495-5p - 1.25E-02 -1.32 25.81 69.25 122.85 85.16 -
bmo-miR-6496-3p - 3.08E-02 -1.79 42.23 145.98 73.20 577.86 -
bmo-miR-6497-5p - 8.00E-03 -1.57 5.16 21.64 25.97 40.20  Transposable element-associated
small RNAs
cbr-miR-253 1.63E-17 - 8.70 0.89 0.79 492.03 659.48 -
cbr-miR-74b-5p - 2.89E-02 -1.15 11.90 18.90 10.61 19.21 -
cca-miR6117 - 8.41E-04 -1.46 148.21 421.67 731.36 948.41 -
cel-miR-253-5p 1.06E-16 - 6.83 0.70 0.24 111.82 125.99 -
cgr-miR-1973 - 3.04E-02 -1.20 19.88 48.85 28.20 36.44 -
cla-miR-1994 - 9.87E-03 -1.68 4291 228.95 735.07 262.13 -
dme-miR-279-5p - 1.50E-02 -0.76 59.59 79.69 84.86 106.26 -
dme-miR-315-3p 1.11E-05 - 2.83 2.76 3.85 30.18 26.14 -
gga-miR-1753 - 1.46E-02 -1.43 12.48 40.93 110.28 83.01 -
gga-miR-6577-3p - 1.19E-02 -1.29 5.02 15.62 17.64 31.40 -
ggo-miR-198 - 3.78E-03 -1.37 7.75 19.88 12.19 25.99 -
ggo-miR-4520b - 2.24E-02 -2.24 16.15 76.92 24.22 83.04 -
gma-miR395h - 3.08E-02 -1.18 7.65 15.28 13.44 26.07 -
gma-miR6300 - 2.40E-02 0.92 87.33 41.82 279.51 59.01 -
hsa-miR-1973 - 4.57E-03 -1.09 57.95 101.58 72.42 107.18 -
hsa-miR-3116 - 2.46E-07 -1.82 183.19 542.86 208.73 556.81 -
hsa-miR-3662 - 1.12E-02 -1.36 6.40 14.44 15.71 34.62 -
hsa-miR-660-3p - 2.78E-03 -1.85 20.19 107.52 367.56 168.96 -
hsa-miR-6891-3p - 2.89E-02 -1.57 28.10 120.50 384.50 161.85 -
hvu-miR6203 - 5.06E-06 -2.35 9.59 29.96 6.75 43.92 -
mdo-miR-1547-5p - 4.61E-07 -2.44 20.18 126.94 130.67 304.67 -
mdo-miR-7286-3p - 2.28E-05 -2.12 7.04 44.76 16.58 54.72 -
mdo-miR-7360-5p 1.28E-04 - -2.49 29.04 23.62 7.49 1.69 -
mdv2-miR-M14-5p - 3.62E-05 -1.81 99.47 485.26 237.90 531.00 -
mml-miR-607 - 1.16E-02 -1.60 3.93 29.92 20.47 31.73 -
mmu-miR-468-5p - 8.05E-03 -1.29 8.26 19.86 19.95 35.76 -
mmu-miR-6240 - 7.98E-04 -1.22 96.91 151.37 80.90 181.26 -
mmu-miR-7078-3p  3.22E-06 - -2.82 37.66 21.51 2.12 5.53 -
mse-miR-2a - 4.47E-02 -0.70 45.31 53.50 50.30 70.35 -
mse-miR-750 - 3.68E-02 -0.76 54.83 96.39 110.63 103.77 -
oan-miR-1341 - 4.57E-03 -2.45 471 46.62 26.39 122.53 -
oan-miR-1344 - 1.04E-02 -1.91 6.31 21.08 15.89 71.74 -
0sa-miR1425-3p - 4.61E-07 -2.66 5.60 21.47 5.08 43.00 -

continued
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Table 1:. (continued)
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miRNA Identity Haplogroup Temperature Logfold Average  Average Average Average Known
FDR FDR change HA counts CA counts HB2 counts CB2 counts function
pma-miR-4626 - 8.36E-05 -1.70 53.64 168.18 221.63 313.69 -
rlcv-miR-1L1-5-5p - 1.58E-03 -1.79 5.32 24.58 18.01 40.34 -
sme-let-7c-5p - 3.08E-02 -0.82 48.82 66.37 64.92 92.93 -
sme-miR-133b-3p - 3.08E-02 -0.74 96.99 111.34 77.53 115.92 -
sme-miR-87a-3p - 3.97E-02 0.66 121.83 44.08 133.30 74.32 -
tca-miR-12-5p - 2.84E-06 -2.75 1.02 19.73 7.11 33.94 -
tca-miR-279¢-3p - 4.63E-03 -1.51 13.38 46.88 43.64 80.54 -
tca-miR-279e-3p - 1.02E-02 -1.26 11.55 30.85 25.05 39.95 -
tca-miR-2944a-3p - 1.17E-02 -1.38 7.03 24.70 18.17 37.52 -
tca-miR-31-5p - 4.57E-03 -1.54 5.40 19.70 11.27 24.93 -
tca-miR-3828-3p - 3.08E-02 -1.57 6.85 29.45 50.84 4343 -
tur-miR-12a-5p - 1.81E-04 -1.93 7.37 35.53 21.43 63.20 -
tur-miR-34-5p - 1.79E-02 -1.10 15.28 24.88 17.69 33.55 -
tur-miR-5738-5p - 7.98E-04 -1.66 10.52 28.14 19.59 60.43 -
zma-miR395d-5p 8.78E-14 - 5.11 1.94 0.21 66.67 50.32  Thought to target mRNAs coding

for ATP sulphurylases, upregu-
lated in Arabidopsis during sul-
phate-limited conditions

A total of 64 DE miRNAs were detected between temperature treatments and six DE miRNAs between mitochondrial haplogroup. FDRs represent the level of signifi-
cance determined by edgeR. Positive and negative log fold changes indicate increased and decreased expression, respectively. For miRNAs with temperature FDRs, log
fold change represents high temperature relative to control temperature. For miRNAs with haplogroup FDRs, log fold change represents B2 haplogroup relative to A
haplogroup. Average number of counts are noted for: high temperature A mitochondrial haplogroup (HA); control temperature A mitochondrial haplogroup (CA); high
temperature B2 mitochondrial haplogroup (HB2) and control temperature B2 mitochondrial haplogroup (CB2). Although most miRNAs in miRBASE do not have a

known function, functions that have been suggested are included in the table.

Table 2: differentially expressed (DE) piRNAs in response to temperature treatment and mitochondrial haplogroup

PiRNA Identity Haplogroup Temperature Log fold Average HA Average CA Average HB2 Average CB2
FDR FDR change counts counts counts counts
MIWI2-169803 - 0.0011 -1.46 17.86 99.16 46.50 88.91
MIWI2-169803 - - -1.27 19.88 65.10 39.41 57.44
MIWI2-169819 0.0291 - -5.45 25.82 54.16 0.00 0.00
MIWI2-189701 - 0.0134 -1.13 50.63 173.49 146.45 247.78
MIWI2-251905 - 0.0011 -2.05 6.75 69.09 0.00 0.00
MIWI2-265104 0.0010 - -4.52 342.08 673.85 12.99 11.04
MIWI2-278992 - 0.0413 -1.97 13.96 153.56 0.91 3.85
MIWI2-278992 0.0047 - -3.92 13.96 153.56 0.91 3.85
MIWI2-291701 0.0042 - —4.86 37.22 307.10 111 3.41
MIWI2-370324 0.0291 - -5.58 27.26 61.73 0.00 0.00
MIWI2-407429 - 0.0172 -1.14 18.10 77.70 44.53 92.16
MIWI2-521209 - 0.0011 1.24 58.97 30.72 41.25 29.30
MIWI2-521209 - - 1.14 57.36 24.17 30.32 28.73
MIWI2-531856 0.0410 - -4.53 20.55 22.42 0.00 0.23
MIWI2-614295 0.0123 - -6.19 77.93 79.35 0.31 0.00
MIWI2-622507 0.0030 - -6.97 39.37 482.45 0.79 0.00

A total of eight DE piRNAs were detected between haplogroups and six between temperature treatments. FDRs represent the level of significance determined by edgeR.
Positive and negative log fold change indicate increased or decreased expression, respectively. For piRNAs with temperature FDRs, log fold change represents high
temperature relative to control temperature. For piRNAs with haplogroup FDRs, log fold change represents B2 haplogroup relative to A haplogroup. Average number of
counts are noted for: high temperature A mitochondrial haplogroup (HA); control temperature A mitochondrial haplogroup (CA); high temperature B2 mitochondrial

haplogroup (HB2) and control temperature B2 mitochondrial haplogroup (CB2).

A and B2 haplogroups in central Panama is particularly intrigu-
ing given the strong effect of haplogroup on sperm competitive
ability. In two-male sperm competition experiments, DNA pro-
filing has demonstrated that B2 males sire 264% more offspring
than A males, and this B2 competitive advantage cannot be
explained by female mitochondrial haplogroup or male nuclear
genetic background [56]. RNA sequencing of large RNA libraries
implicates differential expression of 11 mitochondrial oxidative
phosphorylation genes in the B2 competitive advantage,

including a >20-fold upregulation of atp8 in B2 males [Zeh et al,,
unpublished data]. Whether differential expression of sncRNAs
contributes to the B2 sperm competitive advantage remains to
be investigated.

Recent studies suggest that the microbiome of a species can
modify epigenetic regulation in host cells, including the expres-
sion of ncRNAs [69]. While it was confirmed that none of the
males used in our sncRNA expression analyses was infected
with the common bacterial endosymbiont, Wolbachia, it is
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Figure 5: smear plots of (A) miRNAs and (B) piRNAs showing log,-fold changes in expression level for the B2 mitochondrial haplogroup relative to the A haplogroup as
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Figure 6: a heatmap showing expression levels of six significantly differentially expressed (DE) miRNAs and eight DE piRNAs in B2 and A haplogroups. For these 14 DE
sncRNAs, the A and B2 haplogroup samples cluster into two distinct clades as indicated in the dendrogram

important to recognize that temperature-mediated changes in
the species composition and abundance of the C. scorpioides
microbiome could be a factor contributing to the differential ex-
pression of sncRNAs detected in this study.

In theory, C. scorpioides individuals could avoid temperature-
induced epigenetic disruption by strategically exploiting rela-
tively cool microhabitats, a topic briefly considered elsewhere
[53]. Ongoing research, employing temperature loggers to record
diurnal temperature fluctuations in the range of habitat types

utilized by C. scorpioides in central Panama, indicates that mean
daily temperatures in all of these microhabitats exceed those in
full shade by at least 1°C. However, diurnal fluctuations vary
greatly with host tree type (standing versus fallen), microhabitat
type (under bark on the top, side or underneath of branches, or
in accumulated wood-boring beetle frass), and tree exposure to
solar radiation (closed versus open canopy). Diurnal tempera-
ture fluctuations are maximal on the top surfaces of fallen
trunks in open canopy habitats where daily maximum
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temperatures can exceed 43°C and diurnal fluctuations can ex-
ceed 20°C. Diurnal temperature fluctuations are minimal in
standing trees in closed canopy habitats and in the frass micro-
habitats of all trees. While tree and microhabitat effects on diur-
nal temperature regimes appear to have important implications
for C. scorpioides abundance, it seems unlikely that microhabitat
selection could mitigate the long-term effects of global warming
on this tropical ectotherm.

In C. scorpioides, exposure to a large and abrupt increase in
temperature severely compromised reproductive function [53,
54] and was associated with altered, and apparently disrupted,
sncRNA expression. More generally, a fundamental question in
evolutionary biology is whether altered epigenetic regulation
augments or hinders adaptive evolution [26-30, 34, 70].
Epigenetic ‘mutations’, that is, changes in DNA methylation,
chromatin states and the diversity and/or abundance of
ncRNAs, typically exhibit mutation and reversion rates orders
of magnitude greater than DNA sequence based (genetic) muta-
tions [27, 71]. In a model in which epigenetic variation was as-
sumed to be random with respect to fitness, epigenetic
mutations exerted three qualitatively different effects on adap-
tation, depending on their stability and fitness effects relative
to genetic mutations [70]. Large-effect epigenetic mutations
tended to slow adaptation and result in lower equilibrium fit-
ness, whereas small-effect epigenetic mutations either slowed
early adaptation but allowed populations to attain higher final
fitness or, alternatively, accelerated early adaptation at the cost
of increased mutational load and lower final fitness [70]. Finally,
in the model simulations, epigenetic changes were ultimately
replaced by genetic mutations, suggesting that epigenetic muta-
tions are most important in early responses to environmental
change ([70]; see also [27]). Interestingly, recent empirical stud-
ies provide evidence of epigenetic mutations in the initial steps
of divergence between populations of birds [72], fish [73] and
mammals [74]. In addition, it has now been established that en-
vironmentally induced epigenetic mutations can precipitate ge-
netic changes [75].

The random-walk model [70] discussed above represents
only the tip of the iceberg with respect to the possible conse-
quences of epigenetic inheritance for evolutionary dynamics.
Other modelling frameworks assume that heritable epigenetic
changes are environmentally induced, based on accumulating
evidence that parents bestow an environmental legacy on off-
spring by transmitting acquired epigenetic changes through
eggs and sperm [76-79]. Parental exposure to environmental
stimuli that modify epigenetic states can directly affect both so-
matic and germline tissues, resulting in intergenerational epige-
netic effects [80]. In gravid, viviparous pseudoscorpion females,
direct environmental induction impacts three generations si-
multaneously: maternal somatic tissue in the FO generation;
foetal somatic tissue in the F1 generation, and foetal primordial
germ cells that will contribute to the F2 generation, as it does in
gestating female mammals [81]. In males, direct exposure is re-
stricted to two generations, paternal somatic tissue and sperm.
Models positing environmentally induced intergenerational and
transgenerational epigenetic effects indicate that the adaptive
value of epigenetic inheritance depends on the pace of environ-
mental change, the level of environmental heterogeneity, life
history characteristics, and the correlation between environ-
mental conditions experienced by offspring and parents [26, 27,
29, 33, 34] These theoretical predictions are supported by empir-
ical studies, demonstrating the adaptive value of transgenera-
tional phenotypic plasticity as a buffer against environmental
change [25, 30, 32]. For example, in Arabidopsis, exposure of the
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parental generation to high temperature resulted in a 5-fold in-
crease in fitness in the F3 generation [25]. Similarly, in experi-
ments carried out on D. melanogaster, offspring fitness increased
linearly with the temperature experienced by their parents over
a range of constant temperatures from 18°C to 29°C [82].

It is important to recognize, however, that not all intergen-
erational epigenetic effects are adaptive, as evidenced by nu-
merous studies of humans and model organisms,
demonstrating stress-induced transmission of altered epige-
netic states that disrupt the phenotype, reduce fertility and in-
crease disease susceptibility [76, 77, 83, 84]. Epigenetic
mechanisms involve fundamental metabolic pathways that are
fuelled by mitochondria and are energetically expensive to
maintain [18, 19, 85]. Exposure to extreme environmental condi-
tions can disrupt the intricate processes involved in the epige-
netic regulation of gene expression and attenuate the
suppression of TE sequences [86]. Future theoretical and empiri-
cal studies should seek to identify the conditions under which
epigenetic modifications facilitate or impede adaptive
responses to environmental challenges.

Conclusion

Our study demonstrates that chronic heat stress causes
changes in testicular epigenetic profiles that may at least par-
tially account for reduced reproductive function in C. scorpioides
males exposed to increased temperature, and that mitochon-
drial DNA polymorphism, through its effects on epigenetic regu-
lation, may provide the potential for an adaptive evolutionary
response to climate warming. Since tropical terrestrial arthro-
pods constitute the vast majority of animal species, the findings
of this study have important implications for understanding the
consequences of climate change for global biodiversity.

Materials and Methods
Study Organism and Experimental Design

Experimental pseudoscorpions were drawn from a large labora-
tory population established from 350 C. scorpioides adults and
nymphs collected in 2006 and 2008 from six locations spanning
a 60 km region in central Panama [53]. In this laboratory popula-
tion, pseudoscorpions were reared and maintained in individual
vials to ensure virginity, and matings were staged to maintain a
large number of field-collected matrilines. Each generation, no
matings were carried out between full siblings, half siblings or
first cousins in order to minimize inbreeding. Within these con-
straints, pairs for mating were chosen randomly without regard
to mitochondrial haplogroup. Because random mating between
haplogroups was performed for a minimum of 16 generations,
individuals from the two haplogroups were effectively homoge-
nized for nuclear genetic background. To avoid possible con-
founding effects of Wolbachia infection on sncRNA expression,
Wolbachia-specific MLST PCR assays were used to confirm that
all C. scorpioides matrilines used in the study were uninfected
with Wolbachia (for methodology, see [87]).

To investigate the effects of climate warming and mitochon-
drial haplogroup on sncRNA expression, a split-brood experi-
mental design was used in which 40 first-stage nymphs
(protonymphs) from five A and five B2 mitochondrial hap-
logroup females were randomly assigned to either a diurnally
fluctuating control (C) or a diurnally fluctuating high tempera-
ture (H) regime for rearing from birth to the adult stage (for
details, see [53]). Climate warming effects were simulated in the
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high temperature treatment by elevating the average tempera-
ture 3.5°C above the control temperature. The control tempera-
ture was estimated from long-term, daily high and low
temperature records from C. scorpioides’ native habitat in central
Panama [53].

Testicular Tissue Dissection and RNA Extraction

Five full-sibling families for each of the two mitochondrial hap-
logroups were randomly selected for testicular tissue dissection
and RNA extraction. To obtain sufficient RNA, dissected testes
from four young adult males were pooled within control and
high temperature treatments for each of the 10 full-sibling fami-
lies. Males were frozen in liquid nitrogen, dissected under 20-
40x magnification, and the testes surgically removed [88]. Total
RNA was purified into small (<200 nucleotides) and large (>200
nucleotides) fractions using a PureLink® miRNA Isolation Kit in
combination with a PureLink® RNA Mini Kit (ThermoFisher
Scientific, Waltham, MA, USA). Purified RNA samples were
stored at -80°C for further downstream processing prior to
sequencing.

Small RNA Library Preparation and Next Generation
Sequencing

The 20 small RNA fractions were first analysed using an Agilent
Small RNA Analysis kit (Agilent Technologies, Inc., Santa Clara,
CA, USA) to determine total concentration of small nucleic acid
sequences (6-150nt), and the percentage of miRNA within each
sample. All sequenced samples exceeded the minimum re-
quirement for small RNA library preparation of 1ng of miRNAs
in at most 1 ug of total RNA in a 3 ul volume. One control tem-
perature and one high temperature small RNA testes sample
from each of five A-haplogroup and five B2-haplogroup families
were submitted for sequencing in two blocks of ten samples
each. In total, there were five replicates of each temperature
treatment and mitochondrial haplogroup combination: high
temperature A-haplogroup (HA.1-HA.5), control temperature A-
haplogroup (CA.1-CA.5), high temperature B2-haplogroup
(HB2.1-HB2.5) and control temperature B2-haplogroup (CB2.1-
CB2.5). Because of shallow sequencing depth, the second block
of samples was re-submitted for sequencing. Small RNA library
preparation and sequencing were carried out by the Nevada
Genomics Center at the University of Nevada, Reno. Samples
were first concentrated by speed vac prior to library preparation.
Since the lowest amount of small RNA in all 20 samples was
7ng, libraries were prepared, starting with 7ng of small RNA,
according to manufacturer’s protocols for small RNA samples
using the Life Technologies’ Ion Total RNA-Seq Kit v2 Library Kit
(ThermoFisher Scientific, Waltham, MA, USA). In order to distin-
guish sample identities, each sample was barcoded with a
unique adaptor sequence using the Ion Express™ RNA-Seq
Barcodes, following manufacturer’s protocols. Library size veri-
fication and quantitation were performed using the Agilent
High Sensitivity DNA Kit (Agilent Technologies, Inc., Santa
Clara, CA, USA). Templated Ion Sphere Particles (ISPs) were pre-
pared using Life Technology’s Ion PI Template OT2 200™ Kit
version 2. Sequencing was performed on a Life Technologies Ion
Torrent Proton Sequencer using the Life Technology’s Ion PI™
Sequencing 200 Kit™ version 2 and Life Technologies’ Ion PI™
v2 Chip™. Across the 20 small RNA samples sequenced, the
mean read length was 20bp and the mean sequencing depth
was 2.7 M reads, with a range of 0.5-4.7 M reads.

sncRNA Transcriptome Analysis

sncRNA annotation and expression analyses were adapted from
the computer-assisted annotation pipeline and Sequery, an an-
notation software program [58]. Since the first sequencing run
from the second block of small RNA samples resulted in shallow
sequencing depth, the first sequencing run and the second se-
quencing run for the second block were combined. Sequencing
files from the second block were trimmed to provide an average
of 3.5M reads, the same average from the first block of samples
submitted for sequencing. Raw sequencing files were trimmed
of their adapters and separated by barcode using the Torrent
Suite 4.0.2 software. Sequences <15 nt were removed and single
files were split into sub-files containing, at most, 500000
sequences to accommodate limitations in Sequery. Since Ion
Torrent sequencing quality scores are >Q20 until approximately
the 75th base addition, we did not perform quality trimming,
given the targeted sequence lengths of 24-32 nucleotides. The
fastq files for the 20 small RNA sequencing libraries have been
deposited in the NCBI Short Read Archive under accession num-
bers (SRR7971701-SRR7971720).

For sncRNA identification and expression, sequenced reads
were compared with deduplicated reference files containing
~30000 identified miRNA sequences from miRBase [89] and
~1000000 piRNA sequences from piRNA clusters [58] under a 1-
2 nucleotide substitution allowance, non-exhaustive match pa-
rameter using Sequery [58]. Sequence comparison/annotation
output files contained the abundance of each matched se-
quence, a sncRNA sequence identity, where the match occurred
in the reference sequence, and the percentage difference be-
tween each match [58]. The miRNA and piRNA reference data-
bases are available as Supplementary Files S01-S05.

Output files were converted to count tables containing only
sequence identity and abundance of sequenced reads and se-
quence counts were normalized to counts per million (CPM)
based on sequencing depth alone [90]. To eliminate pseudo-
counts or false positives, the total abundance for each sncRNA
from all 20 sequenced samples was sorted from highest to low-
est, summed from one identity to the next, and plotted against
the cumulative number of sncRNAs (Supplementary Figs S1 and
S2). Very low abundance sequences, likely to represent false
positives, were eliminated by excluding sncRNA identities that
did not contain at least ten sequenced counts in any of the 20
sequenced samples, and did not meet a threshold abundance of
three or more normalized transcripts averaged across the 20
samples. These threshold abundance criteria eliminated
sequences contributing negligibly to overall transcript abun-
dance (Supplementary Figs S1 and S2), and resulted in the inclu-
sion of 517 miRNAs and 585 piRNAs for differential expression
analyses. A description of the complete Sequery analysis pipe-
line is provided as Supplementary Fig. S3. Python scripts for
editing sequence files are available as Supplementary Files S06—
S11.

Statistics and Bioinformatics

Separate files containing total miRNA and piRNA sequence
counts were loaded into R statistical software and tested for sig-
nificant differential expression using edgeR, a Bioconductor
software package that allows for examination of differential ex-
pression of replicated count data [57]. This program uses an
overdispersed Poisson model to account for biological and tech-
nical variability and empirical Bayes methods to moderate the
degree of overdispersion across transcripts [57]. Analyses were
performed using generalized linear models to examine the
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effects of temperature increase, mitochondrial haplogroup and
temperature x haplogroup interactions on sncRNA expression.
Analyses that examined expression differences between tem-
perature treatments and interactions with mitochondrial hap-
logroups included family identification as a blocking factor.
Significant DE sncRNAs and genes were represented with a false
discovery rate (FDR) equal to or >0.05, which controlled for the
expected proportion of incorrectly rejected null hypotheses in
multiple comparisons. Average abundances of miRNAs and
piRNAs were tested for significance against temperature treat-
ment, mitochondrial haplogroup and the interaction between
temperature treatment and mitochondrial haplogroup. The
edgeR commands for carrying out the above analyses are avail-
able as Supplementary Fig. S3.

Supplementary Data

Supplementary data are available at EnvEpig online.
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