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Abstract
Applications in environmental monitoring, surveillance and patrolling typically require a network of mobile agents to collec-
tively gain information regarding the state of a static or dynamical process evolving over a region. However, these networks
of mobile agents also introduce various challenges, including intermittent observations of the dynamical process, loss of
communication links due to mobility and packet drops, and the potential for malicious or faulty behavior by some of the
agents. The main contribution of this paper is the development of resilient, fully-distributed, and provably correct state
estimation algorithms that simultaneously account for each of the above considerations, and in turn, offer a general frame-
work for reasoning about state estimation problems in dynamic, failure-prone and adversarial environments. Specifically,
we develop a simple switched linear observer for dealing with the issue of time-varying measurement models, and resilient
filtering techniques for dealing with worst-case adversarial behavior subject to time-varying communication patterns among
the agents. Our approach considers both communication patterns that recur in a deterministic manner, and patterns that are
induced by random packet drops. For each scenario, we identify conditions on the dynamical system, the patrols, the nominal
communication network topology, and the failure models that guarantee applicability of our proposed techniques. Finally, we
complement our theoretical results with detailed simulations that illustrate the efficacy of our algorithms in the presence of
the technical challenges described above.
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1 Introduction

Consider a dynamical process evolving over a geographical
region. Measurements of this process are available at cer-
tain sensing locations distributed over the region. A set of
mobile agents is tasked with collectively estimating the state
of the dynamical process by executing patrols that visit the
various sensing locations, and exchanging information with
each other over a communication medium.

There are various challenges that arise in enabling the
agents to achieve the above task. The first challenge arises
from the fact that the agents are mobile, and hence, do not
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have continuous access to the measurements from any given
sensing location. Thus, even when the monitored dynamical
process is described by a time-invariant system, the mea-
surement model for any given mobile agent is time-varying.
The second challenge arises from the fact that agents may
be assigned to different portions of the overall region, and
execute persistent patrols that visit only a subset of the sens-
ing locations. Thus, each agent can only directly estimate
a portion of the overall state, and must rely on (carefully
crafted) information exchanges with other agents in order
to recover the entire state. Such information exchange rules
must not only account for time-varying communication links
between the agents (due to mobility and communication
losses), but also for malicious agents that seek to disrupt
the state estimation algorithm. Such malicious behavior can
arise, for example, due to some agents being compromised
by an attacker who causes the agents to report incorrect infor-
mation, deviate from their patrols (Goodin 2016), or drop out
of the network altogether (Kube 2018). Indeed, as we show
in Example 1 later in the paper, without accounting for such
behavior, a single adversarial agent can potentially disrupt
the overall state estimation process.

Given the problem and associated challenges listed above,
the goal of this paper is to formulate resilient distributed state
estimationalgorithms that allownetworks ofmobile agents to
estimate the state of themonitoreddynamical process, despite
time-varying measurement models, time-varying communi-
cation links, and malicious adversaries.
Applications The framework developed in this paper can
be employed for the purpose of environmental monitor-
ing (Gandin 1963; Cressie 1990; Abazeed et al. 2013; Xie
and Zhang 2013), oceanographic explorations (Smith et al.
2011; Dunbabin et al. 2004; Higdon 1998), and surveillance
with civilian (Srinivasan et al. 2004) and military (Artelli
and Deckro 2008; Kaur and Kumar 2015) applications.
Essentially, the task of monitoring the state of a changing
environment using autonomous mobile agents falls within
the purview of our present analysis. For instance, one might
be interested in monitoring spatio-temporal processes where
a non-negative scalar quantity (e.g., temperature, oil, dirt,
salinity or traffic congestion) constitutes the state of interest
(see Xie and Zhang 2013; Smith et al. 2011; Dunbabin et al.
2004). One of the key applications of our framework, how-
ever, pertains to mission-critical scenarios where adversarial
attacks on the mobile agents can have far-reaching conse-
quences. A specific example of such a scenario involves the
use of autonomous mobile robots for estimating radiation
concentrations around nuclear plants, following leakages that
are either accidental or due to malicious intent (Qian et al.
2012; Zakaria et al. 2017;Moore 1985). Emergency response
in such hazardous environments dictates the need for attack-
immune distributed approaches, and therein lies the practical
motivation of our work.

1.1 Related work

To highlight the specific contributionsmade by this paper, we
now provide a comprehensive discussion of the similarities
and differences existing between our problem formulation
and various related domains.
Persistent monitoring When monitoring the state of a pro-
cess that grows over time, it is necessary to persistently visit
locations where information regarding the process is avail-
able. This leads to the notion of persistent monitoring, a
problem that has been extensively studied in the robotics
community (Smith et al. 2012; Lynch et al. 2008; Yang
et al. 2008; Graham and Cortés 2012; Martínez 2010; Ogren
et al. 2004). Typically, the persistent monitoring literature
aims to design the trajectories of the mobile agents so as to
accomplish the persistent task in an optimal manner. In con-
trast, our main focus is centered around estimating the state
of an underlying dynamical process, despite time-varying
measurementmodels, communication losses, and adversarial
attacks. In particular, our analysis reveals various condi-
tions to be met by the patrol so as to guarantee stability
of the estimation error dynamics (based on our proposed
strategy). These conditions are a combination of system-
theoretic requirements, network-connectivity requirements,
and requirements dictated by the adversarial and commu-
nication loss models. In this sense, our work complements
the existing literature on persistent monitoring by providing
insights into the design of joint patrolling and state estimation
schemes in dynamic, failure-prone and adversarial environ-
ments.
Sensor scheduling and active information gathering Given
a dynamical system affected by noise, and a set of sensors
measuring the states of the system, the sensor scheduling
literature (Gupta et al. 2006;Mo et al. 2011; Vitus et al. 2012;
Jawaid and Smith 2015) aims to design a rule for choosing
sensors sequentially (in time) so as to minimize a metric
that appropriately captures performance against noise. Most
of the sensor scheduling literature (Mo et al. 2011; Vitus
et al. 2012; Jawaid and Smith 2015) focuses on the finite-
horizon version of the problem, and hence, stability of the
error process is not amajor concern in theseworks. A notable
exception is the very recent work in Asghar et al. (2017) that
provides exact conditions under which an infinite-horizon
sensor schedule leads to an uniformly bounded sequence of
error covariance matrices.

There are various similarities between the sensor schedul-
ing problem as described above, and the problem of active
information gathering in mobile robotics (Atanasov et al.
2014, 2015; Schlotfeldt et al. 2018). Indeed, the design of
a patrol visiting the various sensing locations in the latter
is analogous (to a certain extent) to the design of a sen-
sor scheduling policy in the former. The formulations in
Atanasov et al. (2014, 2015) and Schlotfeldt et al. (2018)
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differ from the standard sensor scheduling setup by explic-
itly accounting for the motion models of the mobile sensors
under consideration. However, the focus still remains on
finite-horizon settings. In contrast to the sensor scheduling
literature and the active information gathering formulations,
our primary goal is to identify conditions on the patrols that
guarantee stability of the estimation error dynamics of each
(uncompromised) mobile agent. The recent work (Schlot-
feldt et al. 2018) extends the approach and results inAtanasov
et al. (2015) to a scenario where a certain number of mobile
sensors are under attack. In addition to various other differ-
ences, our formulation involves a distributed setup (where
the communication network plays a key role) unlike the
decentralized setup considered in Atanasov et al. (2015) and
Schlotfeldt et al. (2018).
Distributed state estimation The problem of estimating
the state of a (linear time-invariant) dynamical process
using a network of static sensors has been studied by sev-
eral researchers over the past decade (Speranzon et al.
2006; Olfati-Saber 2009; Khan and Moura 2008; Matei and
Baras 2012; Khan et al. 2010; Khan and Jadbabaie 2014;
Ugrinovskii 2013; Doostmohammadian and Khan 2013).
However, single-time-scale algorithms that solve such prob-
lems under the most general conditions on the system and
network have been proposed only recently in Park and Mar-
tins (2017), Mitra and Sundaram (2016a, 2018a), Wang and
Morse (2018), Han et al. (2018), Rego et al. (2017) and del
Nozal et al. (2017). While the works stated above primarily
cater to time-invariant communication graphs, the authors in
Wang et al. (2017) propose a hybrid observer that accounts
for a broad class of time-varying networks. Although these
papers provide a rich variety of approaches, none of themdeal
with the aspect of adversarial agents. Preliminary attempts
towards addressing adversarial behavior in the context of
distributed state estimation were undertaken in Matei et al.
(2012) and Khan and Stankovic (2013), but without any the-
oretical guarantees. Recently, the authors in Deghat et al.
(2016) developed an H∞-based filtering approach for detect-
ing biasing attacks in sensor networks. While the analysis in
Deghat et al. (2016) was limited to a certain class of attack
inputs, much more general adversarial models were consid-
ered in our prior work (Mitra and Sundaram 2016b, 2018c),
albeit for time-invariant networks and measurement models.
Resilient distributed algorithms Recent years have wit-
nessed a significant amount of research dedicated towards the
design of resilient distributed algorithms, with applications
to consensus (Vaidya et al. 2012; LeBlanc et al. 2013), opti-
mization (Sundaram and Gharesifard 2015; Su and Vaidya
2016), hypothesis testing (Su andVaidya 2016), static param-
eter estimation (Chen et al. 2018) and broadcasting (Tseng
et al. 2015). Researchers in the robotics community have
also looked into the problem of forming and maintaining
robust mobile-robot formations that facilitate resilient con-

sensus (Saulnier et al. 2017; Guerrero-Bonilla et al. 2017;
Yazıcıoğlu et al. 2015; Saldana et al. 2017; Usevitch and
Panagou 2017; Park and Hutchinson 2017, 2018). Thus, a
key aspect of such problems is the identification of network
topologies that are robust to different adversarial models.
Unlike the consensus scenario, the results in Mitra and
Sundaram (2016b, 2018c) indicate that when it comes to
estimating the state of an external dynamical system despite
adversarial behavior, one needs to incorporate redundancy
in not only the network topology, but also the measurement
structure of the sensors. However, as mentioned earlier, the
analysis in Mitra and Sundaram (2016b, 2018c) was limited
to time-invariant communication networks and static agents.
In light of the above discussion, the main contributions of
this paper are as follows.
Summary of contributions We consider a set of mobile
agents tasked with estimating the state of a linear time-
invariant dynamical system. Each agent is assumed to have a
predefined patrol that visits a subset of the sensing locations.
In Sect. 3, we develop a simple switched linear observer that
allows a given mobile agent to recover those states that can
be detected based on the measurements of the sensing loca-
tions it persistently visits. We establish asymptotic stability
of the proposed observer for a class of periodic patrols. In
Sect. 5, we consider a class of deterministic communica-
tion loss patterns, and develop a resilient distributed state
estimation algorithm that allows each agent to process the
information received from other agents to recover the true
state, despite arbitrary adversarial behavior. Our algorithm is
inspired by recent work that addresses the resilient consensus
problem in asynchronous settings (Saldana et al. 2017;Dibaji
and Ishii 2017). As a byproduct of our analysis, we argue that
our proposed algorithm provably works even in the presence
of bounded (potentially random, time-varying) communica-
tion delays.We also characterize the convergence time of our
algorithm in terms of the system instability, the upper bound
on the delay, and certain properties of the communication
network topology.

In Sect. 7, we model the communication links among
the mobile agents as analog erasure channels that randomly
drop packets based on an i.i.d. Bernoulli process. For this
model, we propose a simple state estimate update rule, and
identify conditions on the dynamical system, the network
topology, and the erasure probability that guarantee mean-
square-stability of the estimation error process. We show
how a notion of network robustness (suitable for the problem
under consideration) known as ‘strong-robustness’ allows
one to deal with high packet drop probabilities, while still
guaranteeing stability. We support our theoretical results
via detailed simulations discussed in Sect. 8. Finally, we
emphasize that all our results apply to a sophisticated and
worst-case adversarialmodel (termedByzantine adversaries)
which is typically considered in the literature on resilient dis-
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tributed algorithms (Vaidya et al. 2012; LeBlanc et al. 2013;
Dolev et al. 1986). From an implementation standpoint, the
results obtained in this paper provide guidelines for design-
ing patrols that account for each of the technical challenges
discussed in this section.

We reported certain preliminary results in Mitra and Sun-
daram (2018d). In this paper, we significantly expand upon
the content in Mitra and Sundaram (2018d) by considering
mobile agents instead of static agents (which leads to the
aspect of time-varying measurement models), providing full
proofs of all results, and supporting such results with illus-
trations and detailed simulations.

2 Problem formulation

In this section, we will first clarify the notation to be used
throughout the paper. Subsequently, we will describe each of
the constituentmodels needed to formally define the problem
of interest.
Notation A directed graph is denoted by G = (V, E), where
V = {1, . . . ,m} is the set of nodes and E ⊆ V × V rep-
resents the edges. An edge from node j to node i , denoted
by ( j, i), implies that node j can transmit information to
node i . The neighborhood of the i-th node is defined as
Ni � { j | ( j, i) ∈ E}. The notation |V| is used to denote the
cardinality of a set V . Throughout the rest of this paper, we
use the terms ‘edges’ and ‘communication links/channels’
interchangeably. The set of all eigenvalues (or modes) of a
matrix A is denoted by sp(A) = {λ ∈ C | det(A − λI) = 0}
and the set of all marginally stable and unstable eigenvalues
of A is denoted by ΛU (A) = {λ ∈ sp(A) | |λ| ≥ 1}. The
notations N and N+ are used to denote the set of all non-
negative integers and positive integers, respectively. For a
random variable X, its expected value is denoted by E[X].
Dynamical system model Throughout this paper, we will
focus on a linear time-invariant dynamical process of the
form

x[k + 1] = Ax[k], (1)

where k ∈ N is the discrete-time index, x[k] ∈ R
n is the state

vector and A ∈ R
n×n is the system matrix. Measurements

of the dynamical process (1) are available at N sensing loca-
tions distributed over a geographical region. The notation
Q = {1, . . . , N } will be used to denote the set of all sensing
locations. At each location i ∈ Q, measurements of a portion
of the state x[k] are available via the following observation
model:

y(i)[k] = C(i)x[k], (2)

where y(i)[k] ∈ R
ri and C(i) ∈ R

ri×n . We denote y[k] =[
y(1)[k]T · · · y(N )[k]T

]T
, and C =

[
C(1)T · · · C(N )T

]T
.

For a set S ⊂ {1, . . . , N }, C(S) will be used to denote the
collective measurement matrix corresponding to the sensing
locations in the set S. Such linear (in state) dynamical and
observational models are standard in the literature on state
estimation (Atanasov et al. 2014, 2015; Schlotfeldt et al.
2018).

An eigenvalue λ ∈ ΛU (A) is said to be a detectable eigen-
value w.r.t. the pair (A,C(i)) if

rank

[
A − λI
C(i)

]
= n. (3)

An eigenvalue with magnitude strictly less than one is con-
sidered to be detectable w.r.t. anymeasurement set. Although
we consider noiseless dynamics for clarity of exposition
(like Khan and Jadbabaie 2014; Ugrinovskii 2013; Park and
Martins 2017; Mitra and Sundaram 2016a, 2018a; Wang
and Morse 2018; Wang et al. 2017; Han et al. 2018), the
techniques developed in this paper guarantee bounded mean
square estimation error in the presence of i.i.d. process and
measurement noise with bounded second moments.
Mobile agent model A set V = {1, . . . ,m} of m mobile
agents is tasked with collaboratively estimating the state x[k]
of the process (1) by persistently visiting the N sensing loca-
tions. Specifically, each agent i ∈ V is assigned a persistent
patrol through a subset of the sensing locations. Over the
course of its patrol, each agent can communicate with cer-
tain other agents (e.g., when the distance between the agents
is less than some communication radius). In the absence of
any communication losses, a directed graph G = (V, E) is
used to model the flow of information between them mobile
agents. Specifically, the graph G captures the set of all possi-
ble agent interactions across time. In other words, (i, j) ∈ E
implies that agent i will be in a position to directly trans-
mit information to agent j infinitely often while executing
its patrol. The graph G will be referred to as the baseline
communication graph. The loss of communication between
agents (due to agent movements or packet drops) is modeled
by a time-varying graph G[k] = (V, E[k]), where E[k] ⊆ E
for all k ∈ N.

Remark 1 The notion of ‘sensing locations’ and ‘mobile
agents’ as discussed above can be used to capture the fol-
lowing different scenarios. (1) In the first scenario, one can
assume that physical static sensors are located at each of the
N sensing locations, and that the mobile agents obtain mea-
surements from such sensors on visiting the corresponding
sensing locations. (2) In the second scenario, one can envision
sensors installed on the mobile agents themselves. The sens-
ing locations can then be interpreted as informative points
in the geographical region where a mobile sensor can obtain
non-zero measurements of the state. Specifically, a mobile
sensor present at the i-th location would generate a measure-
ment model of the form (2). In either case, the measurements
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acquired by a mobile agent are a function of its movement
pattern (patrol). The mathematical framework developed in
this paper applies identically to each of the above physically
different scenarios. For the rest of the paper, we will stick
to the first interpretation (for the purposes of illustration),
i.e., static ground sensors positioned at the sensing locations
communicate with mobile agents passing by.

Adversary model A subset A ⊂ V of the mobile agents
are adversarial. We assume that the adversarial agents pos-
sess complete knowledge of the dynamical systemmodel, the
time-varying communication graph topology, the patrolling
strategy and any estimation algorithm employed by the non-
adversarial agents. Adversarial agents are not only allowed
to update and transmit state estimates in an arbitrary manner,
but also to deviate from the rules of any patrolling algorithm.
Furthermore, following the Byzantine fault model (Dolev
et al. 1986), adversaries are allowed to send differing state
estimates to different neighbors at the same instant of time.
Adversaries can also choose not to transmit any estimates
at all to agents within communication radius. This assump-
tion of omniscient adversarial behavior is motivated by the
aim of providing theoretical guarantees against “worst-case”
adversarial behavior. We point out that such Byzantine mod-
els have been commonly studied in the context of distributed
consensus and optimization problems in Vaidya et al. (2012),
LeBlanc et al. (2013), Sundaram and Gharesifard (2015) and
Su and Vaidya (2016). In return for endowing the adversaries
with such worst-case capabilities, we assume that there are
at most f adversarial agents in the neighborhood of any non-
adversarial agent in the baseline communication graph G,
for some constant f ∈ N. This property will be referred
to as the ‘ f -local’ property of the adversarial set. Summar-
ily, the adversary model described thus far will be called
an f -local Byzantine adversary model. The non-adversarial
mobile agents will be referred to as regular agents and be rep-
resented by the set R = V \ A. Finally, we remark that the
number and identities of the adversarial agents are not known
to the regular agents. The regular agents are only aware of the
upper bound f on the number of adversaries in their neigh-
borhood (in the baseline communication graph G). Given the
above setup, we can now describe the problem studied in this
paper.
Objective Suppose we are given the LTI system (1), the mea-
surement model (2), a set ofm mobile agents with a baseline
communication graph G executing a patrol, and an f -local
Byzantine adversary model. Our objectives are (i) to develop
distributed state estimation algorithms that account for time-
varying measurement models, communication losses and
worst-case attacks, and (ii) to analyze under what conditions
(on the dynamical model, the baseline communication graph,
the patrols and the communication loss patterns) the pro-
posed algorithms provably enable each regular mobile agent

to asymptotically estimate the true state of the system (in a
deterministic or stochastic sense).

Achieving the above objective is non-trivial, due to the
need to simultaneously address the three challenges (time-
varying measurement models, time-varying networks, and
adversarial agents). In this paper, we take a significant step
in this direction.

At this stage, we should clarify the answer to the follow-
ing important question: Based on the problem formulated
above, what can one expect from the theoretical results in this
paper, when it comes to the aspect of designing the motion
plan of the mobile agents? Briefly, our main results (namely,
Proposition 1, Theorem 1, and Theorem 2) lay down various
rules that need to be met by the patrols so that they effec-
tively complement the estimation techniques developed in
the paper. These rules are tailored to meet the specific techni-
cal challenges considered in this work, and answer questions
such as: (i) How often does a mobile agent need to visit a
sensing location that provides critical information regarding
the process of interest? (ii) Given that certain agents can be
under attack, howmanymobile agents should visit each such
location? (iii) How often should agents exchange informa-
tion amongst themselves? (iv) Given that certain agents can
be under attack, how can one resiliently diffuse information
across the mobile agent network?

While our answers to the above questions provide high-
level specifications that significantly inform the process of
patrol design, there are various questions that are left open.
For instance, consider the following allocation problem. We
are given a fixed number of sensing locations and mobile
agents. Constraints are placed that limit the sensing regions
of themobile agents, i.e., each agent can only visit a subset of
the sensing locations in the region. Given such constraints,
how does one allocate mobile agents to sensing locations
while meeting the specifications laid down by our theoreti-
cal results? Can such a patrol be designed in the first place?
What is the minimal number of mobile agents that is needed
to achieve the distributed state estimation task?1 Such ques-
tions are inherently of a combinatorial nature, and addressing
them comprehensively is beyond the scope of the present
paper. In Sect. 8, we do, however, discuss a simple strategy
for designing patrols that meet the required specifications.
Finally, note that the rules imposed by our results can either
be used as a guideline when synthesizing patrols, or alterna-
tively as a checklist when given predefined patrols.

1 In the absence of any constraints placed on the sensing capabilities
or movement patterns of an agent, one can just have each mobile agent
patrol all the sensing locations. However, such an assumption would
in general be impractical, thereby necessitating inter-agent communi-
cation. Note that it is precisely the need for inter-agent communication
that makes the issues of communication losses and adversarial attacks
studied in this paper relevant.
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To avoid cumbersome notation and to clearly present the
key ideas, we make the following assumption on the system
matrix in (1).

Assumption 1 The system matrix A has real, distinct eigen-
values.

Whilewemake the above assumption, the results obtained
in this paper can be generalized to systemmatrices with arbi-
trary spectrum via a more detailed technical approach (e.g.,
as outlined in Mitra and Sundaram (2018c), which consid-
ered the effects of adversarial behavior for networks with
time-invariant topologies and measurements, as opposed to
the more general setting that we consider in this paper). The
assumption of real eigenvalues, in particular, considerably
simplifies the structure of the resilient filtering algorithms
studied in Sects. 5 and 7, and hence, facilitates a better
understanding of our core algorithmic ideas. Note that the
assumption of a real spectrum applies to various relevant
dynamical models including (but not limited to) the dis-
cretized double integrator moving target model considered
in Schlotfeldt et al. (2018), the methane gas concentration
model considered in Atanasov et al. (2014), and the diffusion
dynamics models studied in Roy and Dhal (2015), Thanou
et al. (2017) and Chung (2007).

Regarding the observation model (2), we assume that the
pair (A,C) is detectable. Clearly, this is a basic necessary
condition for state estimation even in the absence of time-
varying measurement models, packet drops, or attacks. It
should be pointed out that for any given location i ∈ Q, we
do not assume detectability of the pair (A,C(i)). In a similar
spirit, we do not assume that the set of sensing locations
visited by any agent during its patrol is informative enough
to allow that agent to recover the entire state.

Having introduced the main problem and its specific tech-
nical challenges, we now proceed to develop a solution that
addresses these challenges in the subsequent sections.

3 Periodic patrols for estimating locally
detectable states

There are two main goals that we seek to achieve in this sec-
tion. First, we will focus on the design of a simple switched
linear observer that enables each regular agent to estimate
those states that are detectable w.r.t. the measurements of
the sensing locations it persistently visits. Second, we will
identify conditions on the patrol that guarantee asymptotic
stability of the error dynamics induced by the proposed
switched linear observer. Once the aforementioned objec-
tives are met, a regular agent can be viewed as a source agent
for the states that are detectable via the sensing locations it
visits.

3.1 Design of switched linear observers

Toachieve the objectives stated above,wefirst note that based
on Assumption 1, one can perform a coordinate transforma-
tion z[k] � Vx[k] on (1) with an appropriate non-singular
matrix V to obtain

z[k + 1] = Mz[k] = diag(λ1, . . . , λn)z[k],
y(i)[k] = C̄(i)z[k], ∀i ∈ {1, . . . , N } (4)

where sp(A) = {λ1, . . . , λn}, M = VAV−1 and C̄(i) =
C(i)V−1. Commensurate with this decomposition, the j-th
component of the state vector z[k]will be denoted by z( j)[k],
and will be referred to as the component corresponding to the
eigenvalueλ j . Since a non-singular transformationmaps z[k]
to x[k], we focus on estimating z[k]. Consider any regular
agent i ∈ R, and let the subset of sensing locations it vis-
its be denoted by Pi = {i1, . . . , i|Pi |}, where Pi ⊂ Q. Let
O(ir ) denote the eigenvalues of A that are detectable w.r.t.
the measurements available at location ir (i.e.,O(ir ) denotes
the set of detectable eigenvalues of the pair (A,C(ir ))). Thus,
the set of all eigenvalues that are detectable w.r.t. the set of
sensing locations Pi is given by Oi �

⋃|Pi |
r=1O(ir ) (in other

words, Oi denotes the set of all eigenvalues of A that are
detectable w.r.t. the collective measurement set C(Pi )). Our
goal is to design an observer that enables agent i to asymp-
totically estimate all the components of z[k] corresponding
to the eigenvalues inOi . To achieve this goal, we will build a
partial observer for each location visited by agent i . Specifi-
cally, the partial observer at location ir ∈ Pi will be designed
to recover the states of z[k] corresponding to the eigenvalues
inO(ir ). Let such states be denoted by v(ir )[k].2 Wemake two
simple observations at this point. First, if J(ir ) represents the
diagonal matrix with the eigenvalues inO(ir ) on its diagonal,
then we have

v(ir )[k + 1] = J(ir )v(ir )[k]. (5)

The above equation follows directly from the definitions of
each of the components involved in the equation, and the
decoupled nature of the dynamics (4). The second observa-
tion is as follows:

y(ir )[k] = C̃(ir )v(ir )[k], (6)

where C̃(ir ) contains the columns of C̄(ir ) corresponding to
the matrix J(ir ). The second observation follows from the
fact that for a system with distinct eigenvalues, a given

2 We resort to such a notation here since the superscript on the z[k]
states are reserved for eigenvalues, and the subscripts are reserved for
mobile agents. Thus, we introduce the notation v[k], with a superscript
on v[k] pointing to a location number.
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unstable or marginally stable eigenvalue is detectable if
and only if the column of the measurement matrix corre-
sponding to that eigenvalue is non-zero (Chen 1998). Let
σi : N → J = {1, . . . , N , ω} be a function that records the
location of the i-th mobile agent at time-step k. Specifically,
for i ∈ {1, . . . , N }, σi [k] = ir implies that the i-th mobile
agent is at location ir at time-step k, whereas σi [k] = ω

implies that it is commuting between locations at time-step
k. We are now in position to propose the following switched
linear partial observer for estimating v(ir )[k]:

v̂(ir )
i [k + 1] = F(ir )

σi [k]v̂
(ir )
i [k] + α

(ir )
σi [k]L

(ir )
i y(ir )[k], (7)

where

F(ir )
σi [k] =

{
(J(ir ) − L(ir )

i C̃(ir )) if σi [k] = ir ,

J(ir ) if σi [k] 	= ir ,

α
(ir )
σi [k] =

{
1 if σi [k] = ir ,

0 if σi [k] 	= ir .

(8)

In the above equations, v̂(ir )
i [k] represents the estimate of

v(ir )[k] maintained by the i-th mobile agent, and L(ir )
i rep-

resents an output-injection gain that needs to be designed
appropriately to guarantee asymptotic stability of the esti-
mation error dynamics.3 The purpose of the partial observer
given by equations (7) and (8) is to allow the i-th mobile
agent to recover the states that are detectable w.r.t. the mea-
surements of location ir , namely, the states aggregated in the
vector v(ir )[k]. From the structure of the observer, we note
that the i-th mobile agent switches between a Luenberger-
style update rule and an open-loop update rule, depending
upon its current position.

3.2 Periodic patrols and stability analysis

As indicated by the above discussion, the stability of the
proposedobserver depends critically upon themovement pat-
terns of the mobile agents. In what follows, we will restrict
our attention to periodic patrols; such patrols are commonly
considered in the literature (e.g., Smith et al. 2012; Alam-
dari et al. 2014), and offer structure that can be leveraged
to simplify our analysis. To formally characterize a peri-
odic patrol, recall that Pi = {i1, . . . , i|Pi |} represents the
set of sensing locations visited by the i-th mobile agent.
With each such location ir ∈ Pi , we associate a non-
negative integer τ

(ir )
i and a positive integer T (ir )

i such that

σi [τ (ir )
i +qT (ir )

i ] = ir ,∀q ∈ N. Here, τ (ir )
i represents the first

time location ir is visited by the i-th mobile agent, and T (ir )
i

3 The gains L(ir )
i are agent-specific, since different agents might visit

the same location with different frequencies.

represents the time-period with which agent i visits location
ir . We say that the i-th mobile agent executes a feasible peri-
odic patrol if: (i) the mobile agent is never at more than one
sensing location at any given point in time, (ii) each location
in the set Pi is visited infinitely often, and (iii) a given loca-
tion ir ∈ Pi is visited at time-step k only if k = τ

(ir )
i +qT (ir )

i ,
for some q ∈ N. Notice that the first two constraints place
certain limitations on the values that τ (ir )

i and T (ir )
i can take

on. For instance, we must have T (ir )
i 	= 1, ∀ir ∈ Pi (assum-

ing |Pi | > 1). The third property of a feasible periodic patrol
implies that a mobile agent does not stay at any location in
Pi for more than a single time-step.

Let the vector zOi [k] =
[
v(i1)[k]T · · · v(i|Pi |)[k]T

]T

aggregate the components of z[k] that correspond to the set
Oi (recall that Oi denotes the set of detectable eigenvalues
w.r.t. the pair (A,C(Pi ))). Our objective is to identify condi-
tions on the time-periods {T (ir )

i } that enable the i-th regular
mobile agent to asymptotically recover zOi [k]. To this end,
we need the following result.

Lemma 1 Consider a detectable pair (A,C), where A satis-
fies Assumption 1. Then, for any positive odd integer T̄ , the
pair (AT̄ ,C) is also detectable.

Proof Perform a similarity transformation that brings the
pair (A,C) to the form (M, C̄), where M represents the
Jordan canonical form of A. Detectability of (A,C) then
implies detectability of (M, C̄). If T̄ is a positive odd inte-
ger, then based on Assumption 1, MT̄ is a diagonal matrix
with real distinct eigenvalues.4 Detectability of (MT̄ , C̄) fol-
lows as a consequence of the PBH test (Chen 1998), and
the detectability of (M, C̄). Since a similarity transforma-
tion maps (MT̄ , C̄) back to (AT̄ ,C), the pair (AT̄ ,C) is also
detectable. 
�
Proposition 1 Suppose we are given the LTI system (1) and
the measurement model (2) such that the system matrix A
is non-singular and satisfies Assumption 1. Let each regular
mobile agent i execute a feasible periodic patrol character-
ized by the parameters τ

(ir )
i and T (ir )

i , ir ∈ Pi , such that each

time-period T (ir )
i is a positive odd integer. Additionally, let

each regular mobile agent i implement the observer given by
(7) and (8). Then, for each such agent i ∈ R, there exists
a choice of output-injection gains {L(ir )

i } that guarantees
asymptotic convergence of ẑOi [k] to zOi [k], where ẑOi [k]
represents the estimate of zOi [k] maintained by agent i .

Proof For a given mobile agent i ∈ R, establishing that
ẑOi [k] converges to zOi [k] asymptotically requires us to

4 Essentially, an odd period ensures that eigenvalues that are equal in
magnitude, but opposite in sign in A, remain so in AT̄ . Thus, if the
eigenvalues of A are distinct in magnitude, then clearly no restrictions
need to be imposed on the time-period T̄ .
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establish that the estimation error dynamics associated with
each location in Pi converges to zero asymptotically. In
other words, our aim is to prove that for each ir ∈ Pi ,
limk→∞ ‖v̂(ir )

i [k] − v(ir )[k]‖ = 0. To this end, fix a location

ir , and let e
(ir )
i [k] � v̂(ir )

i [k] − v(ir )[k] denote the estimation
error associated with location ir . Based on (5), (6), (7), and
(8), we obtain:

e(ir )
i [k + 1] = F(ir )

σi [k]e
(ir )
i [k]. (9)

Recalling that τ
(ir )
i represents the first time agent i visits

location ir , T
(ir )
i represents the time-period with which agent

i visits location ir , and using (9), we obtain the following
periodic error dynamics:

e(ir )
i [τ (ir )

i + (k + 1)T (ir )
i + 1]

= M(ir )
i e(ir )

i [τ (ir )
i + kT (ir )

i + 1], (10)

where k ∈ N, and

M(ir )
i = (J(ir ) − L(ir )

i C̃(ir ))(J(ir ))
T (ir )
i −1

= (J(ir ))
T (ir )
i − L(ir )

i C̃(ir )(J(ir ))
T (ir )
i −1

.

(11)

To establish asymptotic stability of the periodic error dynam-
ics (10), we need to argue that L(ir )

i can be chosen to

make M(ir )
i Schur stable. Based on (11), this is equiva-

lent to establishing detectability of the pair ((J(ir ))
T (ir )
i , C̃(ir )

(J(ir ))
T (ir )
i −1

). In other words, we need to show that

rank

⎡
⎣ (J(ir ))

T (ir )
i − sI

C̃(ir )(J(ir ))
T (ir )
i −1

⎤
⎦ = n(ir ), ∀s ∈ C s.t . |s| ≥ 1, (12)

where n(ir ) represents the dimension of J(ir ). Based on our
construction, sp(J(ir )) ⊆ sp(A), and hence, J(ir ) is non-
singular since A is assumed to be non-singular. Thus, the
following is true for all s ∈ C:

rank

⎡
⎣ (J(ir ))

T (ir )
i − sI

C̃(ir )(J(ir ))
T (ir )
i −1

⎤
⎦

= rank

⎛
⎝

[
(J(ir ))

T (ir )
i −1

0
0 I

] ⎡
⎣ (J(ir ))

T (ir )
i − sI

C̃(ir )(J(ir ))
T (ir )
i −1

⎤
⎦

(
(J(ir ))

T (ir )
i −1

)−1
⎞
⎠

= rank

[
(J(ir ))

T (ir )
i − sI

C̃(ir )

]
.

(13)

Since the pair (J(ir ), C̃(ir )) is detectable by construction, the
eigenvalues of J(ir ) are real and distinct (since sp(J(ir )) ⊆
sp(A) and A satisfies Assumption 1), and the time-period
T (ir )
i is an odd positive integer, we infer that the pair

((J(ir ))
T (ir )
i , C̃(ir )) is also detectable by appealing toLemma1.

Based on the foregoing discussion, referring to equations (12)

and (13) reveals detectability of the pair ((J(ir ))
T (ir )
i , C̃(ir )

(J(ir ))
T (ir )
i −1

). Thus, the observer gain L(ir )
i can indeed

be chosen appropriately to stabilize the periodically sam-
pled error dynamics (10). Notice that the quantity β

(ir )
i �

max{‖(J(ir )−L(ir )
i C̃(ir ))‖, ‖J(ir )‖} is finite since all matrices

under consideration have finite norm. Since the time-period
T (ir )
i is also finite, the maximum error-norm amplification

(β
(ir )
i )

T (ir )
i of the error dynamics (9), over any time-period, is

also finite. Asymptotic stability of the periodic error dynam-
ics (10) then readily implies asymptotic stability of the error
dynamics (9). This completes the proof. 
�
Remark 2 Based on Proposition 1, we see that a givenmobile
agent i ∈ R is able to asymptotically estimate the portion of
the state z[k] that corresponds to the detectable subspace of
the pair (A,C(Pi )) (namely, the portion that we refer to as
zOi [k]). Furthermore, agent i is able to achieve this without
communicating with any other mobile agent. In this sense,
the detectable subspace of (A,C(Pi )) can be viewed as the
locally detectable portion of agent i , and agent i can be
viewed as the source of information for all the states that
correspond to its locally detectable eigenvalues (namely, the
set of eigenvalues Oi ). It is important, however, to make
a clear distinction between the notion of ‘local detectabil-
ity’ used here, and that used in Mitra and Sundaram (2016a,
2018a) and Wang et al. (2017). In these works, the task of
distributed state estimation is performed collaboratively by
a network of static sensors. As mentioned in the introduc-
tion, our present formulation is applicable to more general
settings (the generalization arising due to the issue of inter-
mittent observations) where the distributed state estimation
task is executed either by a network ofmobile agents that visit
static sensors, or by a network ofmobile sensors. Thus, while
the locally detectable portion of a static sensor is simply the
portion of the state space detectable via the measurements of
that specific sensor, the locally detectable portion of a mov-
ing agent is the portion of the state space that is detectable
w.r.t. the collective measurements of the sensing locations it
persistently visits.

Remark 3 The assumption of non-singularity of A in Propo-
sition 1 is not restrictive. For a system with distinct eigen-
values, the component of the state corresponding to the zero
eigenvalue will stay at zero for all time. Hence, the exis-
tence of an eigenvalue at zero does not affect our objective
of asymptotic state reconstruction.

Remark 4 Note that it is possible for sensors located at
distinct sensing locations to share common detectable eigen-
values. In terms of our observer design, this would cause a
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mobile agent to maintain multiple estimates of the same state
corresponding to different sensing locations. Specifically, for

a given mobile agent i , the vectors v̂
(i p)
i [k] and v̂(iq )

i [k] corre-
sponding to two distinct sensing locations i p, iq ∈ Pi might
contain common components. One can readily eliminate this
redundancy via a slight modification of the approach pre-
sented here. However, this comes at the expense of cluttering
the expositionwithmore notation, and hence,we do not delve
into such details in this paper.

4 Preliminaries for resilient distributed state
estimation

As pointed out earlier, a given mobile agent will be able to
estimate only a portion of the system state by persistently
visiting its set of sensing locations. To estimate its locally
undetectable portion, it is reliant on the information received
from its neighbors in the baseline communication graph G
(note that due to communication losses and agent move-
ments, the neighborhood of a given agent at any time-step
will in general only be a subset of its neighborhood in the
baseline graph). It is precisely this aspect of the problem that
dictates the need for robustness against adversarial attacks
coupledwith communication losses. The focus of this section
will be to introduce some of the key ideas and terminology
required to address the above issues. To this end, we intro-
duce the notion of source mobile agents.

Definition 1 (Source mobile agent) A mobile agent i ∈ V
is said to be a source mobile agent for an eigenvalue λ j ∈
ΛU (A), if λ j is detectable w.r.t. the pair (A,C(Pi )), i.e., if
λ j ∈ Oi . The set of all sourcemobile agents for λ j ∈ ΛU (A)

is denoted by S j .

In words, an agent is a source mobile agent for an unsta-
ble or marginally stable eigenvalue of the system if such an
eigenvalue is detectable w.r.t. the collective measurements
available from the agent’s sensing locations.5 Recall that the
set of locally detectable eigenvalues of agent i is denoted
by Oi , and let UOi = sp(A) \ Oi . Our goal in the sub-
sequent sections will be to design resilient state estimation
algorithms that allow agent i to estimate the components of
z[k] corresponding to the eigenvalues in UOi . Such algo-
rithms, however, need to be complemented by incorporating
adequate redundancy in not only the communication network

5 Since we are considering system matrices with distinct eigenvalues,
an eigenvalue is detectable w.r.t. the pair (A,C(Pi )) if and only if it
is detectable w.r.t. (A,C(ir )), for some ir ∈ Pi . The ‘only if’ part
of the statement may not be true for system matrices with repeated
eigenvalues.

x[k + 1] = ax[k]

s1 s2

w1 wmwi· · · · · ·
Fig. 1 A scalar unstable plant is monitored by a clique ofm+2 agents,
where s1 and s2 are the only source agents.A single adversary corrupting
either of the two sources can render the distributed state estimation
problem impossible, irrespective of the choice of algorithm

topology, but also in the measurement structure.6 A simple
illustration of this fact is as follows.

Example 1 Consider a scalar unstable plant monitored by a
clique ofm+2 agents, as depicted in Fig. 1. Agents s1 and s2
are the only agents with access to non-zero measurements,
i.e., they are the source agents for this system. Although this
network is fully connected, the presence of a single adversar-
ial agent makes it impossible for any algorithm to guarantee
estimation of x[k] for every regular agent. Specifically, if
the adversary compromises one of the two source agents,
then it can behave in a way that makes it impossible for the
non-source agents to distinguish between two different state
trajectories of the system, due to the conflicting information
from the two source agents.7

In our prior work (Mitra and Sundaram 2016b), we pro-
posed an algorithm that made use of certain directed acyclic
subgraphs in addressing the resilient distributed state esti-
mation problem (using static sensors over time-invariant
communication graphs). To understand the properties of such
subgraphs, let ΩU (A) ⊆ ΛU (A) denote the set of eigenval-
ues of A for which V \ S j is non-empty.

Definition 2 (Mode estimation directed acyclic graph
(MEDAG)) Consider a mode λ j ∈ ΩU (A). Suppose there
exists a spanning subgraph G j = (V, E j ) of G with the
following properties for all f -local sets A in G (and cor-
responding R = V \ A).

6 This is one of the key differences of our present formulation with the
resilient consensus literature. In the latter setting, there is no external
state that needs to be tracked, and Sundaram and Hadjicostis (2011) and
Pasqualetti et al. (2012) have shown thatmaking the network sufficiently
connected suffices to facilitate resilient consensus.
7 Details of such an attack strategy can be found inMitra and Sundaram
(2018c). For centralized systems where f sensors are compromised,
Fawzi et al. (2014) and Chong et al. (2015) have shown that for recov-
ering the state of the system asymptotically, the system must remain
detectable after the removal of any 2 f sensors.
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(i) If i ∈ {V \ S j } ∩ R, then |N ( j)
i | ≥ 2 f + 1, where

N ( j)
i = {l|(l, i) ∈ E j } represents the neighborhood of

agent i in G j .
(ii) There exists a Tj ∈ N+ such that R can be partitioned

into the sets {L( j)
0 , . . . ,L( j)

Tj
}, where L( j)

0 = S j ∩ R,

and if i ∈ L( j)
q (where 1 ≤ q ≤ Tj ), then N ( j)

i ∩ R ⊆⋃q−1
r=0 L( j)

r . Furthermore, N ( j)
i = ∅,∀i ∈ L( j)

0 .

Then, we call G j aMode Estimation Directed Acyclic Graph
(MEDAG) for λ j ∈ ΩU (A).

Although the concept of a MEDAG was originally devel-
oped for a network with static nodes, we can instead view the
MEDAG as a special information flow structure between the
mobile agents in our present context. With this in mind, we
elaborate on the key properties of this graph structure. First,
it should be noted that Tj and the levels L( j)

0 to L( j)
Tj

can vary
across different f -local sets. For a given f -local set A, we
say a regular agent i ∈ L( j)

m “belongs to level m”, where the
levels indicate the distances of the regular agents from the
source set S j , in the baseline communication graph G. Con-
sider a state z( j)[k] that grows exponentially with time. To
estimate such a state despite adversarial actions, there must
exist a secure medium of information flow from the corre-
sponding source set S j to the rest of the mobile agents (who
do not patrol regions providing information about z( j)[k]). A
MEDAG G j is a subgraph with properties that fulfill this
requirement. Specifically, the first property of a MEDAG
indicates that every regular agent i ∈ V \ S j has at least
(2 f + 1) neighbors in the subgraph G j , while the second
property indicates that all its regular neighbors in such a sub-
graph belong to levels strictly preceding its own level. Our
estimation scheme (described later) requires an agent i to lis-
ten to only its neighbors in N ( j)

i for estimating z( j)[k]. The
second property of a MEDAG then indicates that agents in
level m only use estimates of regular agents in levels 0 to
m − 1 for recovering z( j)[k].

Before proceeding further, we need to understand the
properties of the baseline communication graph G that guar-
antee the existence of a MEDAG G j ,∀λ j ∈ ΩU (A). To this
end, we require the following definitions and result from
Mitra and Sundaram (2018c).

Definition 3 (r -reachable set) For a graph G = (V, E), a set
S ⊂ V , and an integer r ∈ N+, S is an r -reachable set if
there exists an i ∈ S such that |Ni \ S| ≥ r .

Definition 4 (strongly r -robust graph w.r.t. S j ) For r ∈ N+
and λ j ∈ ΩU (A), a graph G = (V, E) is strongly r-robust
w.r.t. to the set of source agents S j , if for any non-empty
subset C ⊆ V \ S j , C is r -reachable.

Lemma 2 Consider an eigenvalue λ j ∈ ΩU (A). The graph
G contains aMEDAG G j if and only if G is strongly (2 f +1)-
robust w.r.t. S j .

Given a λ j ∈ ΩU (A), there might be more than one
subgraph that satisfies the definition of a MEDAG G j . In
Mitra and Sundaram (2016b), we proposed a distributed
algorithm that allowed each node i to identify the sets
N ( j)

i ,∀λ j ∈ UOi , by explicitly constructing a specific
MEDAG G j for each λ j ∈ UOi . In this paper, we assume
that these MEDAGs have already been constructed during
a design phase using such an algorithm. In other words, we
work under the assumption that each agent i is informed of
the set N ( j)

i ,∀λ j ∈ UOi . It will be important to keep in

mind that the setsN ( j)
i are time-invariant as they correspond

to specific MEDAGs in the time-invariant baseline commu-
nication graph G; however, we will allow for the possibility
that each regular agent i ∈ R can only communicate with a
subset of the agents in N ( j)

i at each time-step, due to com-
munication losses and agent mobility.

5 Resilient distributed state estimation over
time-varying networks

In this section, we develop an algorithm that enables each
regular mobile agent to estimate its locally undetectable por-
tion subject to arbitrary adversarial attacks and intermittent
communication losses. We will focus our attention on com-
munication losses that satisfy the following criterion.

Assumption 2 There exists T ∈ N+ such that ∀k ≥
T ,

⋃T
τ=0 G[k − τ ] contains the MEDAG G j for each λ j ∈

ΩU (A).

Assumption 2 places certain design constraints on the
patrols of the agents. In particular, based on the definition
of a MEDAG in Definition 2, the following observations
can be made regarding Assumption 2. (i) The patrols should
be sufficiently informative, i.e., there should exist at least
(2 f + 1) source mobile agents for each λ j ∈ ΩU (A). Cou-
pled with Proposition 1, this requires at least (2 f +1)mobile
agents to periodically visit each informative location (i.e.,
locations providing information regarding unstable modes
of the system) in the geographical region. (ii) The patrols
should ensure that the mobile agents are able to exchange
information sufficiently often, and along sufficiently many
different paths (i.e., as specified by the MEDAG structure).
Thus, loosely speaking, periodic patrols that lead to densely
connected communication networks over time are key to our
subsequent development. In a latter section (namely Sect. 7),
we will consider packet dropping scenarios that do not nec-
essarily satisfy Assumption 2.
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Fig. 2 The above figure depicts an LTI process with 6 states that satis-
fies Assumption 1. The red crosses indicate sensing locations, and the
mobile agents are represented by the blue circles. The dashed rectangles
are used to demarcate the patrolling regions of the agents. A directed
path from one rectangle to another indicates that every agent in the for-
mer can transmit information to every agent in the latter in the baseline
communication graph. Modes λ1 and λ2 of the system are detectable
w.r.t. the measurements available from the left-most rectangular region.
Thus, agents 1, 2 and 3 act as the source mobile agents for modes λ1
and λ2. Source agents for the other modes can be described similarly

An illustration of some of the concepts introduced in the
previous section is shown in Fig. 2. Based on the scenario
described in Fig. 2, a communication loss pattern satisfying
Assumption 2 is illustrated in Fig. 3. From Fig. 3, we notice
that G[k] may not contain the specific MEDAGs constructed
during the design phase for some (or all) k, thereby pre-
cluding direct use of the technique developed in Mitra and
Sundaram (2016b). However, such MEDAGs will be pre-
served in the union graph over the interval [k − T , k],∀k ≥
T . For our subsequent development, we assume that all
estimates being transmitted by regular agents are properly
time-stamped. We now propose the following algorithm.

Let ẑ( j)i [k] denote the estimate of z( j)[k] maintained by
agent i at time-step k. Then, for each λ j ∈ UOi , a regular

agent i updates ẑ( j)i [k] in the following manner.

1. At every time-step k, agent i collects the most recent
estimate of z( j)[k] received from each agent l ∈ N ( j)

i ,
along with the corresponding time-stamp φil [k] ∈ N. It
then evaluates the delay τil [k] = k−φil [k] and computes
the quantity z̄( j)il [k] � λ j

τil [k] ẑ( j)l [k − τil [k]].8 Prior to

receiving the first estimate from an agent l ∈ N ( j)
i , the

value z̄( j)il [k] is maintained at 0 by agent i .9

8 For notational simplicity, while considering the eigenvalue λ j , we
drop the superscript ‘ j’ on the time-stamp φil [k] and the delay τil [k].
9 If agent i receives an estimate without a time-stamp from some agent
inN ( j)

i ∩A, it simply assigns a value of 0 to such an estimate (without
loss of generality). Note that based on Assumption 2, agent i is guar-
anteed to receive a time-stamped estimate from every regular agent l in
N ( j)

i at least once over every interval of the form [k − T , k], ∀k ≥ T ,

i.e., for each l ∈ N ( j)
i ∩ R, z̄( j)il [k] will necessarily be of the form

λ j
τil [k] ẑ( j)l [k − τil [k]], ∀k ≥ T .

2. The values z̄( j)il [k] are sorted from largest to smallest;
subsequently, the largest f and the smallest f of such
values are discarded (i.e., 2 f values are discarded in all)
and ẑ( j)i [k] is updated as

ẑ( j)i [k + 1] = λ j

⎛
⎜⎝

∑

l∈M( j)
i [k]

w
( j)
il [k]z̄( j)il [k]

⎞
⎟⎠ , (14)

where M( j)
i [k] ⊂ N ( j)

i represents the set of agents
whose (potentially) delayed estimates are used by agent
i at time-step k after the removal of the 2 f aforemen-
tioned values. Agent i assigns the consensus weight
w

( j)
il [k] to agent l at time-step k for estimating the

component of the state corresponding to the eigenvalue
λ j . The weights w

( j)
il [k] are non-negative and satisfy∑

l∈M( j)
i [k] w

( j)
il [k] = 1,∀λ j ∈ UOi , and ∀k ∈ N.

We refer to the above algorithm as the Sliding Window
Local-Filtering basedResilient Estimation (SW-LFRE) algo-
rithm. We comment on certain features of this algorithm and
then proceed to analyze its convergence properties.

Remark 5 Like the LFRE algorithm in Mitra and Sundaram
(2018c), the SW-LFRE algorithm also relies on a two-stage
filtering strategy. Specifically, the first stage of filtering cor-
responds to a regular agent i ∈ V \ S j listening to only

its neighbors N ( j)
i ⊆ Ni in the MEDAG G j . This opera-

tion ensures a uni-directional flow of information from the
source agents S j (some of whom might also be adversar-
ial) to the rest of the network. The second stage of filtering
requires agent i to discard certain extreme values received
from agents in N ( j)

i . Whereas the first stage of filtering is
specific to our distributed state estimation approach, the sec-
ond stage of filtering is similar to the W-MSR algorithm
employed in the resilient consensus literature (Vaidya et al.
2012; LeBlanc et al. 2013).A key point of difference between
the LFRE and SW-LFRE algorithms is that in the latter algo-
rithm, at each time-step k, agent i needs to process the most
recent (potentially) delayed state estimate received from each
neighbor in N ( j)

i . Accounting for such delayed state esti-
mates (of an unstable dynamics) requires us to make careful
modifications to the design and analysis of the LFRE algo-
rithm. Also, unlike the LFRE algorithm, implementing the
SW-LFRE algorithm requires the agents to possess adequate
memory, for reasons that follow from the above discussion.

Remark 6 Our approach does not require the agents to pos-
sess a priori knowledge of the value of T in Assumption 2.

Remark 7 Our results will continue to hold if in step 2 of
the SW-LFRE algorithm, agent i simply uses the median
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Fig. 3 Consider the scenario described by Fig. 2, and a 1-local adver-
sarial model (i.e, f = 1). The MEDAG G1 corresponding to mode λ1
is depicted by (a). The subsequent figures show one example sequence
of how the communication pattern evolves over time. Agents 1, 2 and
3 are the source agents for mode λ1, and are at level 0 of G1, agents

4, 5 and 6 are at level 1 of G1, and agents 7, 8 and 9 are at level 2 of
G1. With T = 2, the figure illustrates a communication pattern satisfy-
ing Assumption 2 for mode λ1. Specifically, ∀k ≥ 2, the union graph⋃2

τ=0 G[k − τ ] contains the MEDAG G1

value of z̄( j)il [k], l ∈ N ( j)
i , in the update rule (14). Although

this can reduce computation, the present approach offers a
degree of freedom in choosing the weights w

( j)
il [k], that can

be potentially leveraged to account for issues like noise.

Remark 8 As alluded to earlier in the introduction, this
communication-loss model offers the adversaries the addi-
tional opportunity of sending false information regarding the
time-stamps of their estimates.10 Nevertheless, as we estab-
lish in the next section, our proposed algorithm is immune to
such misbehavior.

6 Analysis of the SW-LFRE algorithm

The following is the main result of this section.

Theorem 1 Given an LTI system (1) and a measurement
model (2), suppose all the conditions stated in Proposition 1
are met. Additionally, let the baseline communication graph
G be strongly (2 f + 1)-robust w.r.t. S j ,∀λ j ∈ ΩU (A), and
let the communication patterns satisfy Assumption 2. Then,
the proposed SW-LFRE algorithm guarantees the following
despite the actions of any set of f -local Byzantine adver-
saries.

– (Asymptotic stability) Each regular agent i ∈ R
can asymptotically estimate the state of the plant, i.e.,
limk→∞ ‖x̂i [k] − x[k]‖ = 0,∀i ∈ R, where x̂i [k] is the
estimate of x[k] maintained by agent i .

– (Rate of convergence) Let e( j)
i [k] = ẑ( j)i [k] − z( j)[k]

denote the error in estimation of the component z( j)[k]
by a regular agent i ∈ V \ S j . Suppose agent i belongs
to level q of the MEDAG G j . Then, there exist constants

10 In other words, due to false time-stamp information, the quantity
ẑ( j)l [k − τil [k]] may not represent the true estimate of an adversarial
agent l at time (k − τil [k]). Thus, we resort to a slight abuse of notation
here.

β( j) > 0 and γ ( j) ∈ (0, 1), such that the estimation error
e( j)
i [k] can be bounded as follows ∀k ≥ (T + 1)q:

|e( j)
i [k]| ≤ β( j)

( |λ j |
γ ( j)

)q(T+1)

(γ ( j))
k
. (15)

Proof For each regular agent i , the state vector z[k] can be
partitioned into the components zOi [k] and zUOi [k] that cor-
respond to the locally detectable and locally undetectable
eigenvalues, respectively, of agent i . Since the conditions
stated in Proposition 1 are met, agent i can asymptotically
recover zOi [k] via persistent patrolling and by implementing
the observer givenby (7) and (8). It remains to show that agent
i can recover zUOi [k], or in other words, for each λ j ∈ UOi ,

we need to prove that limk→∞ |ẑ( j)i [k]−z( j)[k]| = 0. Equiv-
alently, we show that for each λ j ∈ ΩU (A), every regular
agent i ∈ V \ S j can asymptotically recover z( j)[k].

Consider any f -local adversarial setA and letR = V \A.
Consider an eigenvalue λ j ∈ ΩU (A). Since E[k] ⊆ E for
all k, Assumption 2 can hold only if the baseline graph
G contains G j . The latter follows from the conditions of
the theorem and Lemma 2. Next, based on Assumption 2,
note that for all k ≥ T , the union of the graphs over the
interval [k − T , k] contains the MEDAG G j . Recall that

the sets {L( j)
0 ,L( j)

1 , . . . ,L( j)
q , . . .L( j)

Tj
} form a partition of

the set of regular agents R in such a MEDAG. We prove
the desired result by inducting on the level number q. For
q = 0, L( j)

0 = S j ∩ R by definition, and hence all agents
in level 0 can estimate z( j)[k] asymptotically by virtue of
Proposition 1. Next, consider a regular agent i in L( j)

1 and

let e( j)
i [k] � ẑ( j)i [k] − z( j)[k]. We first analyze the SW-

LFRE update rule (14). To this end, at each time-step k, let
the neighbor set N ( j)

i of agent i be partitioned into the sets

U ( j)
i [k],M( j)

i [k] and J ( j)
i [k], where U ( j)

i [k] and J ( j)
i [k]

contain f agents each, with the highest and the lowest values
of z̄( j)il [k] respectively, and M( j)

i [k] contains the remain-

ing agents in N ( j)
i . At any instant k, we can either have
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M( j)
i [k]∩A = ∅ orM( j)

i [k]∩A 	= ∅. In the former case, all

agents inM( j)
i [k] belong toL( j)

0 = S j∩R. Nowconsider the
latter casewhen agent i uses values transmitted by adversarial
agents in its update rule. It follows from the SW-LFRE algo-
rithm, the f -locality of the adversary model, and the fact that
|N ( j)

i | ≥ (2 f +1), that for each l ∈ M( j)
i [k]∩A, there exists

an agent u ∈ U ( j)
i [k] and an agent v ∈ J ( j)

i [k] such that both
u, v ∈ L( j)

0 , and z̄( j)iv [k] ≤ z̄( j)il [k] ≤ z̄( j)iu [k], i.e., z̄( j)il [k] can
be expressed as a convex combinationof z̄( j)iu [k] and z̄( j)iv [k].11
Based on the above discussion and (14), it follows that for all
k, ẑ( j)i [k+1] belongs to the convex hull formed by λ j z̄

( j)
il [k],

l ∈ L( j)
0 . Specifically, there exist weights w̄

( j)
il [k] such that∑

l∈N ( j)
i ∩L( j)

0
w̄

( j)
il [k] = 1, and

ẑ( j)i [k + 1] = λ j

⎛
⎜⎝

∑

l∈N ( j)
i ∩L( j)

0

w̄
( j)
il [k]z̄( j)il [k]

⎞
⎟⎠ . (16)

Since
∑

l∈N ( j)
i ∩L( j)

0
w̄

( j)
il [k] = 1, and z( j)[k+1] = λ j z( j)[k]

based on (4), simple manipulations imply

z( j)[k + 1]

= λ j

⎛
⎜⎝

∑

l∈N ( j)
i ∩L( j)

0

w̄
( j)
il [k]λ j

τil [k]z( j)[k − τil [k]]
⎞
⎟⎠ . (17)

Based on Assumption 2 and step 1 of the SW-LFRE update
rule, we have that for all k ≥ T , z̄( j)il [k] = λ j

τil [k] ẑ( j)l [k −
τil [k]], l ∈ N ( j)

i ∩L( j)
0 . Subtracting (17) from (16), we then

obtain the following error dynamics for all k ≥ T :

e( j)
i [k + 1]

= λ j

⎛
⎜⎝

∑

l∈N ( j)
i ∩L( j)

0

w̄
( j)
il [k]λ j

τil [k]e( j)
l [k − τil [k]]

⎞
⎟⎠ . (18)

Noting that the weights w̄
( j)
il [k] are non-negative, the delay

terms τil [k] are upper bounded by T for l ∈ N ( j)
i ∩ R, λ j

satisfies |λ j | ≥ 1, and using the triangle inequality, we obtain
the following based on (18) for all k ≥ T :

|e( j)
i [k + 1]|

≤ |λ j |(T+1)

⎛
⎜⎝

∑

l∈N ( j)
i ∩L( j)

0

w̄
( j)
il [k]|e( j)

l [k − τil [k]]|
⎞
⎟⎠ . (19)

11 Explicit dependence of u, v on the parameters represented by i, j, l
and k is not shown to avoid cluttering of the exposition.

For every l ∈ L( j)
0 , since e( j)

l [k] converges exponentially12
based on Proposition 1, there exist constants c( j)

l > 0 and

γ
( j)
l ∈ (0, 1) such that |e( j)

l [k]| ≤ c( j)
l (γ

( j)
l )

k
, for all k ∈

N. Let β( j) � max
l∈L( j)

0
c( j)
l and γ ( j) � max

l∈L( j)
0

γ
( j)
l .

Then, we obtain the following inequality based on (19) for
all k ≥ T :

|e( j)
i [k + 1]| ≤ |λ j |(T+1)β( j)(γ ( j))

(k−T )
, (20)

where we have used the fact that
∑

l∈N ( j)
i ∩L( j)

0
w̄

( j)
il [k] =

1. Thus, we obtain (15) for q = 1, implying exponential
stability of the error dynamics (18) for all agents in level 1,
since γ ( j) ∈ (0, 1).

Suppose exponential stability holds for agents in all levels
from 0 to q (where 1 ≤ q ≤ Tj − 1). It is easy to see that the

result holds for all agents in L( j)
q+1 as well, by noting that (i)

a regular agent i ∈ L( j)
q+1 has N ( j)

i ∩ R ⊆ ⋃q
r=0 L( j)

r , and

(ii) any value z̄( j)il [k] used by agent i in the update rule (14)

lies in the convex hull formed by z̄( j)iu [k], u ∈ ⋃q
r=0 L( j)

r .
Based on the induction hypothesis, exponential stability can
then be argued using the same reasoning as the q = 1 case.
Verifying (15) is a matter of straightforward algebra. 
�

We now focus on the impact of bounded communica-
tion delays between mobile agents when the communication
graph among them remains unchanged over time. Here, by a
bounded communication delay we imply that if (i, j) ∈ E[k]
and i, j ∈ R, then any estimate transmitted by agent i to
agent j at time-step k is received by agent j no later than
time-step k+T , for some T ∈ N+. It turns out that the argu-
ments used in the proof of Theorem 1 can be used almost
identically to analyze the impact of bounded communication
delays (potentially random, time-varying) in the presence of
adversaries, for time-invariant communication networks. We
formalize this observation below.

Corollary 1 Given an LTI system (1) and a measurement
model (2), suppose all the conditions stated in Proposition 1
are met. Additionally, let G[k] = G ∀k, where G is strongly
(2 f + 1)-robust w.r.t. S j ,∀λ j ∈ ΩU (A). Furthermore, let
communication delays between any pair of regular agents
in G be bounded by some T ∈ N+. Then, the proposed
SW-LFREalgorithmprovides identical guarantees as in The-
orem 1.

We summarize the implications of Theorem 1 and Corol-
lary 1 in the following remarks.

12 Although we only establish asymptotic stability of the error dynam-
ics in Proposition 1, verifying exponential stability is fairly straightfor-
ward, and hence, not explicitly proven.
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Remark 9 For a given mode λ j ∈ ΩU (A), the constants β( j)

and γ ( j) are indicative of the time of convergence of the
estimation errors (corresponding to the state z( j)[k]) of the
source agents S j . In other words, these constants are dictated
by the observer equations (7) and (8). While β( j) encom-
passes the effects of the patrol time-periods and the initial
state estimation errors, γ ( j) essentially represents the slow-
est rate of convergence among the source agents S j . In this
context, Theorem 1 relates the time of convergence of the
non-source agents to that of the source agents, and shows
how the instability of themode under consideration, themax-
imumdelay T , and distances from the source set (captured by
the different levels of theMEDAG) feature in such a relation.

Remark 10 When it comes to addressing the effect of
network-induced delays in the context of distributed state
estimation (using static sensors and in the absence of any
adversarial attacks), there is limited literature that provides
any theoretical guarantees. Approaches such as the one out-
lined in Millán et al. (2012) typically seek to account for
delays and packet-drops by formulating LMI-based con-
ditions that do not in general provide any graph-theoretic
insights. In contrast, the proposed SW-LFRE algorithm
allows one to deal with bounded delays in a much simpler
manner by exploiting the uni-directional flow of information
that is inherent to our approach.We conjecture that our results
pertaining to bounded delays will carry over to more general
system and measurement models, such as those considered
in Park andMartins (2017),Mitra and Sundaram (2018a) and
Wang and Morse (2018).

7 Resilient distributed state estimation over
analog erasure channels

In the previous section, we analyzed a communication fail-
ure model where the patterns described by Assumption 2
recurred in a deterministic manner. In this sense, the time-
varying communication patterns considered in the previous
section can be attributed to agent movements. In contrast, the
focus of this section will be to analyze time-varying commu-
nication patterns that are a consequence of imperfections in
the communication channel.Wemodel such imperfections as
randompacket drops that can potentially lead to a violation of
the conditions stated in Assumption 2. To isolate the impact
of random packet drops, we will assume for the remainder
of this section that the patrols have been designed to ensure
that the baseline communication topology is retained at every
time-step in the absence of packet drops. In other words, in
this section, we assume that such packet drops are the sole
cause of communication losses. The task of analyzing time-
varying communication patterns that are a consequence of

both agent movements and random packet drops is left as
future work.

With these points in mind, we now explore a scenario
where each communication link between the mobile agents
is modeled as an analog erasure channel as defined in Elia
(2005). In particular, the transmission of information across
any link (i, j) ∈ E is governed by a random process ξi j [k]
that ismemoryless, i.e., ξi j [k] is i.i.d. over time. Furthermore,
across space, the packet dropping processes over different
links are independent. For any k, the random variable ξi j [k]
follows a Bernoulli fading distribution, i.e., ξi j [k] = 0 with
erasure probability p and ξi j [k] = 1with probability (1− p);
the implications of ξi j [k] assuming the values 0 and 1 will
be discussed shortly.

Our objective in this section will be to design an esti-
mation protocol that guarantees mean-square stability of the
estimation error dynamics for each regular agent, in the fol-
lowing sense.

Definition 5 (Mean-square stability (MSS)) The estimation
error dynamics of the regular agents is said to bemean-square
stable if limk→∞ E[‖ei [k]‖2] = 0,∀i ∈ R, where ei [k] =
x̂i [k] − x[k], and the expectation is taken with respect to the
packet dropping processes ξi j [k], (i, j) ∈ E .

7.1 Channels with no delay

We first consider the case where ξi j [k] = 1 implies that
any data packet transmitted by agent i at time k is received
perfectly by agent j at time k, and when ξi j [k] = 0, such a
packet is dropped completely. For this model, we propose a
simple algorithm described as follows.

For each λ j ∈ UOi , a regular agent i updates its estimate
of z( j)[k] in the following manner. 13

– At each time-step k, if it receives estimates from at least
(2 f + 1) agents in N ( j)

i , it runs the LFRE algorithm,
i.e., it removes the largest f and the smallest f estimates
ẑ( j)l [k], l ∈ N ( j)

i and updates ẑ( j)i [k] as

ẑ( j)i [k + 1] = λ j

(∑
l∈M( j)

i [k]w
( j)
il [k]ẑ( j)l [k]

)
, (21)

where the setM( j)
i [k] and theweightsw( j)

il [k] are defined
as in the description of theSW-LFREalgorithm inSect. 5.
Otherwise, it runs open-loop as follows:

ẑ( j)i [k + 1] = λ j ẑ
( j)
i [k]. (22)

13 Unlike the SW-LFRE algorithm developed in Sect. 5, the algorithm
we propose here is memoryless, i.e., at each time-step, an agent acts
only on the information that it acquires (via measurements and from
neighboring agents) at that time-step. We do this primarily to simplify
the analysis.
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The above algorithm provides the following guarantees.

Theorem 2 Given an LTI system (1), and a measurement
model (2), suppose all the conditions stated in Proposition 1
are met. Let the baseline communication graph G be strongly
(m f + 1)-robust w.r.t. S j ,∀λ j ∈ ΩU (A), where m ∈ N+ is
a constant. For each (i, j) ∈ E , let ξi j [k] be a Bernoulli
packet dropping process with erasure probability p, that is
i.i.d. over time and independent of packet dropping processes
over other links. Suppose m ≥ 3 and that the following is
true14:

ρ2 p̄ < 1, (23)

where ρ is the spectral radius of A, and

p̄ � 1 −
(m−1) f +1∑
l=(2 f +1)

(
(m − 1) f + 1

l

)
(1 − p)l p(m−1) f +(1−l).

(24)

Then, the estimation algorithm described by the update rules
(21)and (22)guaranteesmean-square stability in the sense of
Definition 5, despite the actions of any f -local set of Byzan-
tine adversaries.

Proof Note that the packet dropping processes do not affect
the estimation of the locally detectable portions of the state,
i.e., each regular mobile agent i can recover zOi [k] asymp-
totically since the conditions stated in Proposition 1 are
satisfied. Consider any f -local adversarial set A and let
R = V \ A. Consider an eigenvalue λ j ∈ ΩU (A). Since
G is strongly (m f + 1)-robust w.r.t. S j , a trivial extension
of Lemma 2 implies that there exists a MEDAG G j with

|N ( j)
i | ≥ (m f + 1),∀i ∈ {V \ S j } ∩ R. We induct on the

level numbers q of such a MEDAG G j present in the base-
line communication graph G. Let i be an agent in level 1. Let
Ii [k] be an indicator random variable15 such that Ii [k] = 1
if agent i uses the update rule (22) and Ii [k] = 0 if agent
i uses the update rule (21). To make the presentation clear,
we make the following assumption. Suppose agent i receives
estimates from more than (2 f + 1) agents in N ( j)

i at a cer-
tain time-step k. Then, after removing 2 f estimates based on
the LFRE algorithm, it listens to only a single agent l picked
arbitrarily from M( j)

i [k], while running (21).16 Combining
(21) and (22), we obtain

ẑ( j)i [k + 1] = λ j

(
Ii [k]ẑ( j)i [k] + (1 − Ii [k])ẑ( j)l [k]

)
, (25)

14 The choice of m ≥ 3 is justified later in Remark 13.
15 To avoid cluttering the exposition, we drop the superscript ‘ j’ on
Ii [k] and certain other terms throughout the proof, since they can be
inferred from context.
16 The result continues to hold for the general update rule (21).

where l ∈ M( j)
i [k].17 It is easy to see that the error e( j)

i [k] =
ẑ( j)i [k] − z( j)[k] follows the dynamics:

e( j)
i [k + 1] = λ j

(
Ii [k]e( j)

i [k] + (1 − Ii [k])e( j)
l [k]

)
. (26)

Defining σ
( j)
i [k] � E[(e( j)

i [k])2], and using (26), we obtain:

σ
( j)
i [k + 1]=λ2j E[I2

i [k]]σ ( j)
i [k]+λ2j E[(1−Ii [k])2(e( j)

l [k])2]
+ 2λ2j E[(Ii [k] − I2

i [k])(e( j)
i [k])(e( j)

l [k])]︸ ︷︷ ︸
g[k]

,

≤λ2j p
( j)
i [k]σ ( j)

i [k] + λ2j (1 − p( j)
i [k]) max

r∈N ( j)
i ∩L( j)

0

σ
( j)
r [k],

≤ (λ2j p̄) σ
( j)
i [k] + λ2j ( max

r∈N ( j)
i ∩L( j)

0

σ
( j)
r [k]),

(27)

where p( j)
i [k] is the probability that Ii [k] = 1. We now jus-

tify each of the above steps. For arriving at the first equality,
we used the fact that e( j)

i [k] is independent of Ii [k] for any
i ∈ R, based on the update rules (21) and (22), and the
nature of the packet dropping processes. Notice that when
agent l is adversarial, it may have precise knowledge of the
number of packets received by agent i at time-step k; the
estimate ẑ( j)l [k] it transmits to agent i might then be influ-
enced by such knowledge. Regardless of this fact, whenever
l ∈ M( j)

i [k], based on the LFRE update rule (21) and the
f -locality of the adversarial model, it follows from argu-
ments identical to those in Theorem 1 that e( j)

l [k] can be

expressed as a convex combination of e( j)
u [k] and e( j)

v [k], for
some u, v ∈ N ( j)

i ∩L( j)
0 . Since such agents are regular, their

errors at time k are independent of Ii [k]. The above discus-
sion combined with the fact that g[k] = 0 (since Ii [k] is
an indicator random variable) leads to the second inequality
in (27). Observe that since L( j)

0 = S j ∩ R, it follows from

Proposition 1 that limk→∞ max
r∈N ( j)

i ∩L( j)
0

σ
( j)
r [k] = 0.

For arriving at the final inequality,wefirst note that p( j)
i [k]

can potentially vary over time and across different agents
since the adversarial agents are allowed to behave arbitrar-
ily. In particular, a compromised agent may choose not to
transmit estimates even if all out-going communication links
from such an agent are intact. Thus, since it is impossible
to exactly compute p( j)

i [k], we instead seek to upper-bound
it. To this end, note that the probability that Ii [k] = 0, i.e.,
the probability that agent i receives estimates from at least
(2 f + 1) agents in N ( j)

i at time k, is lower bounded by the
probability that it receives estimates from at least (2 f + 1)

17 The setM( j)
i [k] is not well-definedwhen Ii [k] = 1. For such a case,

l can be taken to be any node in the set N ( j)
i ∩ R.
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Fig. 4 Plot illustrating how the effective packet drop probability p̄ can
be reduced by increasing the level of robustness m. For this example,
ρ = 2 and f = 3

agents in N ( j)
i ∩ R at time k. The latter probability can be

further lower bounded by (1− p̄) (where p̄ is given by (24))
by noting that |N ( j)

i ∩ R| ≥ ((m − 1) f + 1) based on the
f -locality of the fault model. In light of the above discus-
sion, we have p( j)

i [k] ≤ p̄, leading to the last inequality in
(27). Finally, equation (23) implies that λ2j p̄ < 1, and in turn

guarantees that limk→∞ σ
( j)
i [k] = 0, based on Input to State

Stability (ISS) and the foregoing discussion.
Suppose limk→∞ σ

( j)
i [k] = 0 for all agents in levels 0 to

q. Consider an agent i ∈ L( j)
q+1[k]. Its error dynamics can

be bounded as in (27), with g[k] = 0 for reasons discussed
above, and e( j)

l [k] = α
( j)
il [k]e( j)

u [k]+(1−α
( j)
il [k])e( j)

v [k], for
some α

( j)
il [k] ∈ [0, 1], and some u, v ∈ ⋃q

r=0 L( j)
r . The last

argument follows from the LFRE update rule (21). Consider
the term E[(e( j)

u [k])(e( j)
v [k])] appearing in σ

( j)
l [k]. Since

σ
( j)
u [k] and σ

( j)
v [k] converge to 0 based on the induction

hypothesis, we can use the Cauchy-Schwartz inequality to
bound E[(e( j)

u [k])(e( j)
v [k])] as follows:

E[(e( j)
u [k])(e( j)

v [k])] ≤
√

σ
( j)
u [k]σ ( j)

v [k]. (28)

This implies limk→∞ σ
( j)
l [k] = 0,∀ l ∈ M( j)

i [k]. The rest
of the proof can be completed following similar arguments
as the q = 1 case. 
�

The term p̄ appearing in (23) and (24) can be interpreted as
the effective packet drop/erasure probability for the problem
under study. With this in mind, the implications of the above
result are described as follows.

Remark 11 (Increasing ‘network robustness’ reduces ‘effec-
tive packet drop probability’) Given knowledge of the
spectral radius ρ of A, an upper-bound f on the number of
adversaries in the neighborhood of any regular agent, and
the erasure probability p of the communication medium,
suppose we are faced with the problem of designing a

communication topology that guarantees mean-square sta-
bility in the sense of Definition 5. Theorem 2 provides an
answer to this problem by quantitatively relating our notion
of ‘strong-robustness’ in Definition 4 to the effective packet
drop probability p̄. For instance, as shown in Fig. 4, given
the parameters ρ, f and p, one can generate a plot for ρ2 p̄
offline, and choose m to satisfy the MSS criterion ρ2 p̄ < 1.
Subsequently, one can proceed to design a network that is
strongly (m f + 1)-robust w.r.t. S j , λ j ∈ ΩU (A). It is easy
to verify that p̄ is monotonically increasing in p, and mono-
tonically decreasing in m. In other words, for a fixed ρ and
f , one can tolerate higher erasure probabilities p by increas-
ing the robustness parameter m. In the context of the mobile
agents that we are considering in this paper, this corresponds
to changing the patrols of the individual agents so that they
encounter the other agents in such a way that the baseline
communication network (containing the set of all agent inter-
actions over time) is sufficiently robust.

Remark 12 Note that when f = 0, i.e., in the absence
of adversaries, equation (23) reduces to ρ2 p < 1. This
condition is reminiscent of the MSS criterion for remote
stabilization of an LTI system over a Bernoulli packet drop-
ping channel (Hespanha et al. 2007). This observation can
be explained by viewing the contribution due to the LFRE
update (21) (that helps stabilize the error dynamics (26)) as
an analogue of the stabilizing input in the remote stabilization
problem.

Remark 13 We now justify the need form ≥ 3 in Theorem 2.
Suppose the network is strongly (m f +1)-robust withm ≤ 2.
In this case, each adversarial agent may follow the simple
strategy of never transmitting its estimate. If the adversaries
compromise f agents in some set N ( j)

i , where i ∈ R and
λ j ∈ UOi , then such a strategymight cause the regular agent
i to run open-loop forever based on the algorithm described
by the update rules (21) and (22). Instead of running open-
loop, suppose that if a regular agent i does not hear from
some neighbor inN ( j)

i at time k, it assigns a value of 0 to the
corresponding estimate, and then employs the LFRE update
rule (21). Such an approach will in general not work either,
due to the following reason. Unlike the communication loss
model studied in Sect. 5, where each regular agent was guar-
anteed to eventually receive estimates from ‘enough’ regular
neighbors, no such guarantees can be claimed for the analog
erasure channel model studied here. Thus, while strongly
(2 f + 1)-robust networks sufficed in Sect. 5, the choice of
m ≥ 3 is in fact necessary in the present context for achiev-
ing MSS based on our specific approach. However, m = 2
does suffice for certain variants of the analog erasure channel
model, as we discuss next.
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7.2 Channels with erasure and delay

In this section, we consider a variant of the analog erasure
channel that accounts for the presence of random delays. To
this end, let (i, j) ∈ E , and let v[k] be a message transmitted
by agent i to agent j at time-step k. Then, a channelwith delay
and erasure causes agent j to receive the following message:

r[k] = ξi j [k]v[k] + (1 − ξi j [k])v[k − τi j [k]], (29)

where ξi j [k] is the memory-less packet dropping process
described earlier, τi j [k] ∈ N+ is a random delay satisfy-
ing 1 ≤ τi j [k] ≤ T , and T ∈ Z>0. In words, the channel
output r[k] is either equal to the present channel input v[k]
with probability (1− p), or equal to a delayed channel input
with probability p, where the delay is upper bounded by
some positive constant T . It should be noted that the erasure
channel model considered here is a generalization of the era-
sure channel with delay in Elia (2005), where the delays are
constant. For this model, we have the following result.

Proposition 2 Given an LTI system (1) and a measurement
model (2), suppose all the conditions stated in Proposition 1
are met. Let the baseline communication graph G be strongly
(2 f + 1)-robust w.r.t. S j ,∀λ j ∈ ΩU (A). Let each com-
munication link of G be modeled as a channel with delay
and erasure as described by Eq. (29). Then, the SW-LFRE
algorithm provides identical guarantees as Theorem 1, with
probability 1.

Proof The proof follows from the following simple obser-
vation. Based on the channel model (29), note that for each
λ j ∈ ΩU (A), every regular agent i ∈ V \S j is guaranteed to
receive a state estimate that is at most T time-steps delayed,
from each of its regular neighbors inN ( j)

i , at every time-step
k, ∀k ≥ T . This corresponds to a special case of the bounded
delay model in Corollary 1, and the result thus follows. 
�

8 Simulation study

In this section, we substantiate our theoretical results via
a detailed simulation study. To this end, we first describe
our general simulation setup, and then propose a simple
patrolling strategy that meets the design specifications laid
down by the theoretical results developed in this paper.
Simulation model and a simple patrolling strategyOur gen-
eral setup is as follows. We consider a geographical region
partitioned into K cells, with r sensing locations distributed
within each cell. A dynamical process evolves within each
cell, and the processes across different cells are assumed to
be decoupled. A network of mobile agents is deployed over
this region; the task of each agent is to gain global situational
awareness by estimating the state of the dynamical process

in every cell (i.e., not only the state of the process within
the cell that it is patrolling). Suppose (i) the sensing capabil-
ities and movement patterns of any given agent are limited
to a single cell, i.e., an agent can persistently visit all the
sensing locations within its own cell, but not cross over to
adjacent cells, and (ii) the communication radius is such that
each agent in a given cell can nominally communicate with
all agents in each adjacent cell. However, such communica-
tion is subject to random packet drops based on the model
described in Sect. 7.1.

Based on the above setting, and the development in Sect. 7,
it is clear that we need at least (3 f + 1) mobile agents
patrolling each cell, and hence, a total of (3 f + 1)K mobile
agents monitoring the overall region. The nominal commu-
nication patterns can be viewed as arising from a preferential
attachment type mechanism (where each new agent attaches
itself to (3 f +1) existing agents), and ensure that the baseline
communication graph is strongly (3 f +1)-robust w.r.t. every
relevant source set (Mitra and Sundaram 2018c).18 Thus, for
the scenario described above, the overall patrolling strategy
simply boils down to persistent periodic intra-cell patrols
(with the periods chosen appropriately based on Proposi-
tion 1). In what follows, we demonstrate how such patrols
complement the estimation techniques developed in this
paper by considering a specific instance of the above setup.

Let K = 4, and r = 10. In each of the 4 cells, the 10
sensing locations are randomly distributed. For all our sim-
ulations, we consider a 1-local Byzantine adversary model.
There are (3 f + 1) = 4 mobile agents within each cell. As
detailed above, each agent executes a periodic patrol that per-
sistently visits each of the sensing locations within its own
cell, without crossing over to adjacent cells. This scenario is
depicted in Fig. 5, where Cell 1 is patrolled by agents 1–4,
Cell 2 is patrolled by agents 5–8, Cell 3 is patrolled by agents
9–12, andCell 4 is patrolled by agents 13–16. Figure 5depicts
the baseline communication graph pattern where each agent
in Cell 1 can communicate with all agents in Cells 2 and 4
(adjacent cells), but with no agent in Cell 3; the communi-
cation patterns for the other cells can be described similarly.
Finally,we emphasize that the baseline communicationgraph
in Fig. 5 may not be retained entirely at each time-step, due
to random packet drops.
Information flow patternsBased on the discussion in Sect. 3,
since eachmobile agent persistently visits every sensing loca-
tion within its own cell, it acts as a source of information for
all the states associated with its own cell. Figure 6 shows
the MEDAG that dictates the flow of information among the
mobile agents for estimating the states evolving in Cell 1.
Specifically, this MEDAG will have all agents in Cell 1 at

18 The need for strong (3 f + 1)-robustness in the baseline network
was provided in Remark 13, and will also be justified explicitly via
simulations.
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Fig. 5 This figure illustrates the general simulation setup comprising of
a region partitioned into 4 cells. Each cell has 10 randomly distributed
measurement locations represented by the red crosses, and 4 mobile
agents patrolling within the cell. Cell 1 is patrolled by agents 1–4, Cell
2 is patrolled by agents 5–8, Cell 3 is patrolled by agents 9–12, and Cell
4 is patrolled by agents 13–16. The edges depict the baseline commu-
nication graph, representing the fact that each agent in a given cell can
nominally communicate with all agents in adjacent cells. However, all
communication links are subject to random packet drops

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Cell 1

4lleC2lleC

Cell 3

Fig. 6 This figure illustrates the MEDAG (in the baseline communi-
cation graph) that dictates the flow of information for estimating the
states of the process evolving in Cell 1. The agents in Cell 1 act as
source agents (level 0), the agents in Cells 2 and 4 are at level 1, while
agents in Cell 3 are at level 2 of this MEDAG. A directed edge from
Cell i to Cell j indicates that each agent in Cell i has a directed edge to
each agent in Cell j in the baseline graph

level 0 (source agents), all agents in Cells 2 and 4 at level
1, and all agents in Cell 3 at level 2. This information flow
is compactly represented in Fig. 7a. In a similar manner,
MEDAGs for Cells 2, 3 and 4 are compactly represented via
Fig. 7b–d, respectively.

8.1 Tracking unstable dynamical processes

In our first simulation study based on the setup described
above, we consider identical unstable dynamical processes
evolving in each cell. Processes in different cells start out
from different initial conditions and hence evolve differently

2 1

3 4

2 1

3 4

2 1

3 4

2 1

3 4

(a) (b)

(c) (d)

Fig. 7 This figure illustrates the information flow patterns for the esti-
mation of the different inter-cell processes. Each cell is represented by a
single square node, and the dashed edges indicate how agents commu-
nicate among themselves for estimating the various states. Specifically,
figures a, b, c and d represent the way estimates are processed for
recovering the states in Cells 1, 2, 3 and 4, respectively

across cells. For each cell, we consider a 20-dimensional LTI
systemwith a diagonal systemmatrix (any systemmatrix sat-
isfying Assumption 1 can be diagonalized). The system has
real, distinct eigenvalues distributed uniformly from 0.5 to
1.2, i.e., the spectral radius of the system is ρ = 1.2. Since
all eigenvalues are of the same sign and distinct (i.e., of dis-
tinct magnitude), Lemma 1, Proposition 1 and Footnote 4
indicate that the time-period with which each location is vis-
ited can be chosen arbitrarily (as long as they induce feasible
periodic patrols as defined in Sect. 3). The 10 measurement
locations within each cell are numbered from 1 to 10, and
the measurement vector at the i-th location is taken to be
a row vector with entries of 1 at the (2i − 1)-th and 2i-th
positions. Thus, precisely two eigenvalues of the system are
observable from each location within each cell. Locations in
Cells 1, 2, 3 and 4 are visited with time-periods 13, 14, 14,
and 14, respectively (each location within a given cell is vis-
ited by all mobile agents patrolling that cell with the same
time-period). The observer gains are designed based on the
procedure outlined in the proof of Proposition 1. The initial
conditions for states in Cells 1, 2, 3 and 4 are 0.07, 0.05, 0.03
and 0.01, respectively (all the states in the same cell start at
the same value). All state estimates are initialized from zero.
We now study various aspects of the problem.
Effect of random packet drops We first focus on the impact
of random packet drops coupled with adversarial attacks. For
this case, since ρ = 1.2, f = 1, and the baseline commu-
nication graph is strongly (m f + 1)-robust with m = 3, the
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condition forMSS stated in Theorem 2 indicates that the era-
sure probability can be at most 0.32. The erasure probability
is set to this maximum value, and agent 5 in Cell 2 is consid-
ered to be adversarial. Specifically, at any given time-step, if
the communication link from agent 5 to some other agent i
is intact, then agent 5 does the following. It adjusts its state
estimate transmitted to agent i to be equal and opposite to the
sum of the other state estimates being used by agent i at that
time-step. This action is intended to keep the state estimates
of agent i static. Note that none of the other agents know that
agent 5 is adversarial. We will discuss the specific repercus-
sions of such an adversarial attack in the example discussed
in Sect. 8.2. For now, we focus on the effect of the erasure
probability p.

The simulation results for the case described above are
shown in Fig. 8. The notation ‖e(i j)

q [k]‖ is used to indicate the
estimation error norm of agent q in Cell i , w.r.t. the dynamics
in Cell j , at time-step k. Despite adversarial attacks and ran-
dom packet drops, we see that the error plots corroborate the
theory developed in this paper. The decaying spikes in the
intra-cell error norm plots are a consequence of the periodic
motions of the mobile agents. The inter-cell error norm plots
inherit this trend coupled with the effect of random packet
drops and adversarial injections.

The effect of a high erasure probability is shown in Fig. 9.
For this case, the erasure probability is p = 0.8. To isolate
the effect of random packet drops, we assume that all agents
are regular for this specific illustration. Even so, some of
the inter-cell estimation error norms grow unbounded with
time, as shown in Fig. 9. Figure 10 illustrates the dynamically
changing communication links between the different agents,
for both high and low erasure probabilities.
Effect of omissive attacksWe illustrate the need for (3 f +1)-
strong robustness, as discussed in Remark 13. Consider a
scenario where agents in Cell 3 cannot communicate with
agents in Cell 4. Furthermore, suppose each agent in Cell
3 can communicate with only agents 5-7 in Cell 2. This
communication pattern leads to a (2 f + 1)-strongly robust
networkw.r.t. the agents inCell 1. Suppose agent 5 is compro-
mised and follows the simple strategy of never transmitting
estimates to agents in Cell 3. For this scenario, the estimation
error plots for agents in Cell 3 are shown in Fig. 11. These
plots justify our claim that (3 f +1)-strong robustness is nec-
essary for achieving MSS based on the algorithm described
in Sect. 7.1.

8.2 Tracking a diffusion process

As pointed out in the Introduction, one of the main applica-
tions of the theory developed in this paper is environmental
monitoring. In particular, one might be interested in mon-
itoring the concentration of a physical quantity (such as a
gas) that evolves based on a spatio-temporal process. Such

processes are commonly described by the Laplacian dynam-
ics in continuous-time (Roy and Dhal 2015; Thanou et al.
2017; Chung 2007). For our purpose, we consider a discrete-
time version of the Laplacian dynamics for which the system
matrix is of the form I − εL, where ε is a small number
that is indicative of the sampling period, and L is the graph
Laplacian matrix induced by the sensing locations. For our
simulations, we take ε = 0.01. We consider decoupled dif-
fusion processes evolving in each cell. For each cell, the
Laplacian matrix induced by the sensing locations within the
cell is constructed as follows. Locations that are within a
certain Euclidean distance (taken to be 15 distance units) are
considered to be connected. This connectivity pattern defines
the adjacency matrix between the sensing locations, and in
turn defines the Laplacian dynamics. Based on our choice of
the threshold distance, the sensing locations within each cell
induce an undirected connected graph. Since the Laplacian
matrix corresponding to an undirected connected graph has
precisely one eigenvalue at zero, it follows that the dynamics
matrix I − εL associated with each cell has precisely one
eigenvalue at 1, and all other eigenvalues non-negative with
magnitude strictly less than 1 (the latter statement follows
from basic properties of a Laplacian matrix). In other words,
the dynamics in each cell are marginally stable. Within each
cell, we assume that the i-th component of the state is mea-
sured by the i-th location. All other parameters (the number
and positions of the sensing locations, the time-periods of
the patrols, the adversarial model etc.) are the same as the
first simulation example. Based on our analysis in Sect. 7.1,
for marginally stable systems, MSS is guaranteed as long as
the erasure probability is strictly less than 1. To validate this
claim, we consider an erasure probability as high as 0.8. The
simulation results for this case as shown in Fig. 12 corrobo-
rate the developed theory.
Effect of Byzantine attacks Finally, to emphasize the impor-
tance of the resilient filtering techniques developed in the
paper, we consider a scenariowhen there are no packet drops,
and the baseline communication graph is retained at every
time-step. Our goal will be to illustrate that although the
communication network satisfies the robustness conditions
needed for countering adversarial behavior, the absence of a
resilient state estimation algorithmprevents someof the regu-
lar agents from tracking the true state. To this end, we need to
consider a state estimation algorithm that does not account for
adversarial behavior, such as those proposed in Park andMar-
tins (2017), Mitra and Sundaram (2018a), Wang and Morse
(2018) and Wang et al. (2017). For the sake of illustration,
we consider the algorithm developed in Mitra and Sundaram
(2018a). Unlike the two-stage filtering techniques described
in Sects. 5 and 7.1, the approach in Mitra and Sundaram
(2018a) focuses only on maintaining a uni-directional flow
of information from the source mobile agents to the non-
source mobile agents. In other words, for some λ j ∈ UOi ,
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(a) Error Norms for Cell 1 Agents

(b) Error Norms for Cell 2 Agents

(c) Error Norms for Cell 3 Agents

(d) Error Norms for Cell 4 Agents

Fig. 8 Plots of the estimation error norms for the scenario described in
Sect. 8.1. The erasure probability is set to its maximum allowable value
0.32 (to ensure MSS) and agent 5 in Cell 2 acts as an adversarial agent.

The notation ‖e(i j)
q [k]‖ is used to indicate the estimation error norm of

agent q in Cell i , w.r.t. the dynamics in Cell j , at time-step k

an agent i ∈ R simply takes a convex combination of the
state estimates of its neighbors belonging to the set N ( j)

i ,

for updating ẑ( j)i [k]. In the absence of adversarial attacks or
communication losses, convergence of such an update rule
can be established using similar arguments as in Mitra and
Sundaram (2018a). For the present scenario, suppose agent 5
in Cell 2 is adversarial. Since adversarial agents are assumed

to be omniscient, agent 5 is aware of the state estimates being
transmitted to each agent at every time-step, and the weights
placed on such estimates. For any regular agent i , if agent
5 belongs to the set N ( j)

i , it simply transmits an estimate
to agent i that cancels out the effect of the other estimates
corresponding to the set N ( j)

i . This attack has the effect of

keeping the state estimate ẑ( j)i [k] static. Illustration of such
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Fig. 9 Illustration of certain inter-cell estimation error plots for the scenario described in Sect. 8.1, corresponding to high erasure probability. For
this example, the erasure probability is p = 0.8. However, all agents are regular

Fig. 10 Illustration of dynamically changing communication links at different time-steps k. Figures a–d represent the case when the erasure
probability p is 0.32. Figures e-h represent the case when the erasure probability p is 0.8

an attack is shown in Fig. 13 where asymptotic stability of
the error dynamics is not achieved.

9 The path to implementation

The framework for distributed state estimation with mobile
agents that we have established in this paper encom-
passes a wide range of real-world considerations, including
time-varying measurement models (due to agent mobility),
time-varying communication links between agents (due to
probabilistic packet drops, agent mobility, and limited com-
munication ranges), andByzantine agents (which are capable
of capturing both benign failures andmalicious compromises
by attackers). The detailed simulations that we provided in
the previous section incorporate all of these features, and
demonstrate that the theoretical guarantees that we provide
do, in fact, hold under the stated assumptions on the under-
lying dynamical processes and the multi-agent system. The
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Fig. 11 Illustration of the need for strong-(3 f + 1) robustness, as
pointed out in Remark 13. Adversarial agents choosing not to trans-
mit estimates (omissive attacks) can cause the estimation errors to grow
unbounded with time

generality of our framework, coupledwith the validation pro-
vided by our simulations, indicates that our approach holds
promise for real-world implementations.
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Fig. 12 Plots of the estimation error norms for the scenario described in Sect. 8.2. The erasure probability is set to p = 0.8, and agent 5 in Cell 2
acts as an adversarial agent

To achieve a full real-world implementation, the first step
(and challenge) will be to deploy a set of mobile robots,
each executing a patrol in such a way that the baseline
graph satisfies the conditions that we have identified for our
resilient distributed state estimation algorithms (for instance,
(3 f +1)-strong robustness with respect to each set of source
agents for the random packet drop scenario). The patrolling
strategy described in our simulation section is a promising

(and relatively simple) candidate for implementation, as it
only requires the entire region to be partitioned into disjoint
cells, and to have (3 f + 1) agents executing periodic patrols
within each cell, with the ability to communicate with all
agents in adjacent cells (notwithstanding intermittent packet
drops). Given an upper bound on the transmission range of
the individual robots, the sizes of the cells can be scaled
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Fig. 13 Illustration of a Byzantine attack for the diffusion dynamics
model considered inSect. 8.2.Agent 5 inCell 2 is aByzantine adversary,
and transmits estimates that keep the estimates of the regular agents
static. Although the network is strongly (3 f + 1)-robust w.r.t. every
source set and there are no packet drops, a non-resilient state estimation
algorithm fails to achieve asymptotic stability of the error dynamics
(i.e., the errors do not converge to zero)

down appropriately in order to satisfy this communication
constraint.

The second step will be to create a dynamical process
for the mobile agents to monitor. A simple diffusion process
(e.g., a gas spreading over a region starting from a given
point) like the one studied in Sect. 8.2 would be a promising
candidate, as this process can be approximated via an LTI
system of the form (1), where the system matrixA is a graph
Laplacian (Thanou et al. 2017; Chung 2007). The concentra-
tion of gas at different points in the region can be sensed by
ground-based sensors (Liu et al. 2012), which transmit their
information to the mobile agents that pass by during their
patrols. Several disjoint diffusion processes can be instanti-
ated, one for each cell in the region. Once these processes are
instantiated and the mobile agent patrols are implemented,
the switched linear observers described in Sect. 3 can be
implemented to test the ability of each agent to asymptot-
ically track the state of the system within its cell (i.e., the
concentrations of gas at various points in the cell).

Once each agent is able to estimate the gas concentrations
in its own cell, the third step will be to enable the agents
to exchange information with agents in neighboring cells.
This can be done by constructing the MEDAGs described in
Sect. 4, andhaving the agents run theSW-LFREalgorithm for
the deterministic failure model considered in Sect. 5, or the
algorithm described in Sect. 7.1 for the random packet drop
scenario. The MEDAGs and the estimation algorithms can
be programmed into the agents before deployment. As a first
test, the ability of the algorithm to enable global state esti-
mation can be verified in the absence of any malicious agents
(i.e., by having all agents participate in the algorithm as pro-
grammed). Once that has been verified, one of the agents
can then be programmed to deviate from the algorithm in an
arbitrary manner (e.g., by broadcasting random or large val-
ues to its neighbors at certain time-steps). The ability of the

algorithm to provide resilience to such malicious behavior
can then be verified.

Aside from additional hardware challenges that would be
inherent to any real-world implementation, we anticipate that
the above pathway (and associated milestones) will lead to
a successful demonstration of the resilient distributed state
estimation framework that we have established in this paper.

10 Summary and future work

In this paper, we studied the problem of estimating the state
of a dynamical process evolving over a certain region with
a team of mobile agents. We assumed that each agent vis-
its a subset of sensing locations via a periodic patrol; at
each sensing location, the agent obtains a measurement of
a portion of the state of the system. We showed how to
construct observers for each agent to asymptotically recover
the locally detectable parts of the system state, and formu-
lated state exchange and update rules for agents to recover
the locally undetectable parts of the state. Our algorithms
provide resilience to a certain number of worst-case (Byzan-
tine) agents under certain conditions on the baseline network
topology. Our framework encompasses intermittent obser-
vations due to agent patrols, time-varying communication
networks due to packet drops and agent mobility, and Byzan-
tine behavior by the agents. We illustrated the efficacy of our
approach via detailed simulations, and described a path to a
real-world implementation.

In addition to implementing our algorithm, a natural next
step would be to formulate patrol strategies that provide
the required robustness conditions on the baseline network
while also allowing the individual agents to recover the
state. We provided one example of such a patrol strategy
in our simulations, and anticipate that the insights from
that strategy (along with results about robustness of dif-
ferent networks provided in Usevitch and Panagou (2017),
Guerrero-Bonilla et al. (2017), Saulnier et al. (2017), Zhang
et al. (2015) and Usevitch and Panagou (2018)) can be lever-
aged to develop additional classes of patrolling strategies.
We plan on studying the effect of incorporating memory
(like the SW-LFRE approach) in the state estimation algo-
rithm described in Sect. 7.1 for the random packet drop
scenario. While we established MSS based on the memory-
less algorithm described in Sect. 7.1, it would be interesting
to investigate if other forms of stochastic stability (such as
almost sure convergence) can be established for the ana-
log erasure channel model considered in Sect. 7.1, subject
to adversarial attacks. For more general system and obser-
vation models than the ones considered in this paper, the
problem of designing a persistent patrol that guarantees sta-
bility of the estimation error dynamics is challenging. Recent
results along this direction are available in Mitra and Sun-
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daram (2018b). Finally, while the delays considered in this
paper were network-induced, one can also investigate the
impact of measurement delays (in a distributed setup) lever-
aging recent results on this topic (Chakrabarty et al. 2017,
2018).
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