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Abstract- As neural networks continue to infiltrate diverse
application domains, computing will begin to move out of the cloud
and onto edge devices necessitating fast, reliable, and low power
solutions. To meet these requirements, we propose a time-domain
core using one-shot delay measurements and a lightweight post-
processing technique, Dynamic Threshold Error Correction
(DTEC). This design differs from traditional digital
implementations in that it uses the delay accumulated through a
simple inverter chain distributed through an SRAM array to
intrinsically compute resource intensive multiply-accumulate
(MAC) operations. Implemented in 6SnmLP CMOS we achieve, to
our knowledge, the lowest reported energy efficiency for a
neuromorphic processor with 52.4TSOp/s/W (104.8TOp/S/W) at
0.7V with 3b resolution for an impressive 19.1fJ/MAC.

I. INTRODUCTION

The ever-increasing demand for higher performance and
energy efficiency in machine learning (ML) applications has
driven an impressive range of ASICs [1-7] aimed at meeting the
needs. Digital SoCs [3-5,7] have found success by restricting
the weight resolution [8], changing memory access structures,
and guarding operations when the input is zero. However, all
require large registers to store intermediate results and complex
multiplier blocks. An emerging trend [1,2] has been to employ
time-domain circuits to implement dot-products; the main
kernel for ML applications. Fig. 1 details how the dot-product
is computed in the time-domain and in conventional digital
implementations. In time-domain the delay is modulated by the
application inputs and weights to generate proportional delays.
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These delays are accumulated and can be routed to a Time-to-
Digital Converter (TDC) or counter to be processed for use in
the deep learning application. Alternatively, the digital
approach relies on many multiplier blocks and wide merging
adders, typically in an array-like structure, to generate dot-
products. The primary benefit of time-domain circuits is that the
accumulate portion of the MAC is intrinsic to the architecture.
Additionally, the processing unit can be realized as a collection
of inverters making the area and active power consumption very
low. Digital methods can leverage existing IP-blocks for
multipliers and adders and do not require calibration, unlike the
time-domain circuits. Additionally, digital circuits can handle
higher bit operations more effectively due to the binary
encoding. Previous time-domain neuromorphic chips have
fundamental limitations. In [2], a digitally controlled oscillator
was used to modulate the frequency, by switching capacitor
loads representing the weights, while the number of cycles in a
set sampling period was counted. While this closed loop
structure has the benefit of canceling temporal noise, it must
oscillate for many cycles to generate a result. Reference [1] is
also a delay line based approach, but the outputs and weights
are restricted to binary. More critically, their design has twice
the area overhead do to the fact they utilize local reference delay
lines instead of a global reference, and can limit the potential
scalability of the architecture. In this work, we have addressed
the shortcomings of previous designs by implementing
Digitally controlled Delay Lines (DDLs) that are compared to
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Fig. 1. Time-based neurons utilize the delay through basic circuit elements such as inverters to implement the dot-product. Digital neurons
use conventional Boolean logic for arithmetic operations. Both architectures can be mapped to deep learning applications.

This research was supported in part by the National Science Foundation
under award number CCF-1763761 and IGERT grant DGE-1069104.



BITLINE and PIXEL Control Register

—FE-FE-FT

| 3 X X X e e S o S

121 Stage Digital Delay Line
DD De 0 0 0 Sl

: 8 Tuning + 3 Offset

4x Phase Detector

PD

5 =
@ JI. 121 Stage Digital Delay Line : : 8 Tuning Stages : : 3 Offset Stages :
o [i | I !
¢ |- 0oo HX0000[{Xo Do+ a .
x |
3 : L1 L1 L1 L1 L1 L1 : : L1 L1 : : :
E .:. 121 Stage Digital Delay Line : : 8 Tuning + 3 Offset : | 4x Phase Detector : o
S | 0o0o0 FPS-0 0 0 PiSel _'PDI-hPDl—hPDl-:IPDl' 7
vl | a I 2
I;'ij:llllll ||||||::|| Il II:: | | E’
! I I |
< | | | | | | -
Z | (o) T I (o) ;! 4b I 3
s | | | Thermometer | | B
¥ o) | o) Code 1| ¢&
s | QO 64 TOTAL DDLs | | ode ' @
w | |
y | o | o i o :
a | Iy Pl |
a |l Iy ) ! |
e | I ! I
ol : I : I
= -:- | : | :
n | !
| | T
L - )

Fig. 2. Top level schematic of the time-based neuromorphic core. Layout is based on SRAM array. The core contains 64 DDLs each with 129
stages and each has a 4b phase detector that is compared to the reference DDL.

a shared reference delay to compute multi-bit MACs. We will
explain the operating concept, novel accuracy boosting
technique DTEC, and describe the chip measurement results in
the following sections.

II. ONE-SHOT AND TIME-BASED NEUROMORPHIC
CONCEPT

Conventionally, Boolean computations are used to realize
arithmetic operations in hardware. However, time domain
circuits can also be used at an advantage of lower area and power
per processing unit, and reduced design complexity. The kernel
of all ML algorithms can be distilled into a dot product;
y = Y, xw + b, where x is an input vector, w a weight matrix, and
b is a bias, or offset vector. Our high level architecture is shown
in Fig. 2. An input pulse is presented on the left side of the core
and the delay of each stage is modulated based on the application
inputs. Each stage has 8 delay units (DU) with output taps which
the pulse travels through as seen in Fig. 3. The number of DU
enabled depends on the weight, stored locally in SRAM cells,
and the input pixel, which is applied across the array on the
bitlines. Each DU has two inverters to retain consistent polarity
between stages. This is critical in the event that the rising and
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falling propagation delays are not matched, as well as ensuring
correct polarity at the TDC. The output tap is realized as a
complex tristate gate and the functionality is described in Fig. 4.
The first column shows the circuit schematic and corresponding
connections between the different DUs. The right four columns
show the activated paths, shown with black lines, depending on
the values of the input and weights. DUs is the nominal stage
delay, and is activated through the right branch of the circuit
when the pixel is not present, representing “zero delay.” The
right table shows the mapping between the algorithm weights
and the delays realized in the chip. When the input is present the
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Fig. 4. Left table shows the complex tristate connections used to
implement dot product based on input and weights. Right table
shows 3b weight-delay mapping.
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Fig. 3. (Top) Schematic of pixel stage. Complex tristates (Fig. 4)
drive output bus. (Bottom) Layout of pixel stage.
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Fig. 5. Details of delay to dot product relationship.
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Fig. 6. DTEC concept. Reference DDL bias is increased to elucidate

the strongest DDL.
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Fig. 7. Colormaps (left) show outputs from core after DTEC. Each

row corresponds to results from successive values of the bias. The

red rectangle highlights where DTEC has identified the dominant

output. Bar plots (right) show expected results from software.
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left branch is enabled in the DU corresponding the weight of the
stage. The accumulation in the MAC is achieved naturally as the
pulse passes sequentially through the DDL, stage by stage. The
layout of each DU in the stage is pitch matched to a 6T SRAM
so the layout is regular, compact, and scalable. The bias vector
is applied in the same way for the last eight units. Additionally,
it can be used to tune process variation, so that during evaluation
those pixels are always activated. Fig. 5 shows the relationship
between the time domain computation in the chip and the
expected arithmetic output. The phase detector output maps
roughly to the Relu transfer function. When the reference pulse
beats the neuron rising edge all four thermometer bits are zero,
regardless of the magnitude. The transfer function between the
four bits is linear and then clips, or saturates, once the neuron
pulse is faster than all the offsets.

1L DyYNAMIC THRESHOLD ERROR CORRECTION (DTEC)

In this design we opt for a 2 bit TDC due to the optimal
tradeoff between small area and low power, and strong
architecture performance. In networks with “winner-take-all”
topologies, such as the last stage of classification networks,
ambiguous predictions can occur. Unclear outputs in this work
can stem from limited resolution between phase detector trip-
points or activity outside of the range of the phase detector. To
mitigate this issue, we propose a Dynamic Threshold Error
Correction (DTEC) technique which increases the effectiveness
of the 2bit TDC. As shown in Fig. 6, when two or more DDLs
have the same output, DTEC works by increasing the threshold
bias delay which moves the trip point of the phase detectors.
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Fig. 8. Dataflow for multilayer time-based deep neural network

demonstrated in this work.

DTEC is dynamic due to the fact that the bias sweep would be
terminated after the third evaluation, when the dominant DDL
was identified from the phase detectors. Additionally, DTEC can
be stopped after a fixed number of steps if no dominant DDL
emerges to conserve power. In Fig. 7 the top row of colormaps
shows ambiguous predictions from the core, while successive
rows show the output as DTEC is applied. Red rectangles
highlight where DTEC has successfully identified the target.
Analysis of results from the 3b single layer application (section
IV) show that by applying just two DTEC steps 81.64% of the
correctible errors are recovered. This comes at a cost of just 0.41
additional evaluations per image. After the one-shot evaluation
73% of all images have a dominant output. The remaining 2,668
images begin DTEC and after the first step 46% are resolved and
37% after the second step leaving less than 1,000 images
ambiguous. Thus, 4,108 DTEC evaluations improves the total
accuracy from 69.16% to 82.14%. If three DTEC steps are
applied 88.8% of errors can be recovered at an overhead of 0.51,
demonstrating the dynamic scalability of the technique. DTEC
is an economical and scalable approach to significantly improve
application performance.

IV. TEST CHIP MEASUREMENTS AND APPLICATION
DETAILS

We evaluate the core on the MNIST benchmark [9]. Fig. 9
shows the comparison of classification accuracy on an 11x11
image for single and two layer networks between expected
simulated software results, one-shot evaluation, and DTEC. To
reduce the 28x28 grayscale images to 11x11 binary images, 3
pixels are sliced from all four sides of the image. Then, a fixed
resizing command is applied, and finally the pixels are binary
thresholded. Fig. 8 shows how the core can be used in a multi-
layer deep neural net application. Each bit of the thermometer
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TABLE I. COMPARISON TABLE

This Work A-SSCC'6 [1]| CICC'"7[2] ISSCC'17 [3] | ISSCC'17 [4] |ISSCC'16 [5]|1SSCC'16[6]| Science'14[7]
Chip Architecture Time-Based Time-Based | Time-Based Digital Digital Digital Sw. Cap Digital
Algorithm Target FCDNN & CNN FCDNN & CNN |FCDNN & CNN|FCDNN & CNN|FCDNN & FFT CNN CNN & SGD|FCDNN & CNN
Technology [nm] 65 65 65 28 FDSOI 40 65 40 28
Chip Area [mm?] 0.644 3.61 0.24 1.87 741 12.25 0.012 430
Precision* [b] [B,T,2,3] B 3 [4-16] [6-32] 16 3 [B,T]
On-Chip SRAM [kB] 8.06 20 3 144 270 181.5 -] 256MB
VDD [V] 1.2 (Nom.) | 0.7 (Emax) 1 1.2 0.6 0.65 0.82 1 0.85
Frequency [MHz] 1700 285 23041 792 200 19.3 250 1000 0.001
Energy Efficiency** [TSop/s/W] 36.2 52.4 48.2 2.47 5.0 0.19 .18 3.86 0.04
Hardware Efficiency [GE/PE][1] 38.4 76.5 33.2 7456 18269 50637 288 6.5

*B=Binary, T=Ternary **Synaptic Op=MAC

code is expanded as the input in the next layer. The input is
divided into four segments, and the weight matrix is copied four
times (L20-L23), which gives each bit equal weighting. In the
example shown in Fig. 8, 30 neurons in layer 1 yield a 120 bit
input to layer 2. By applying DTEC, the ambiguous results are
almost completely recovered and the slight loss in accuracy is
due to output differences smaller than a single tuning bit. Fig.
10 shows the tradeoff between power consumption and nominal
stage delay for various supply voltages. Power is kept
exceptionally low because rarely are more than two stages
switching at a time in a DDL. A wide operating voltage range
is enabled, due to the all-digital time-based design choices. If
the design incorporated pipelining, it could achieve even greater
throughput. That is, multiple pulses could be pushed into the
DDL and the input could shift as well. This is ideally suited for
Convolutional Nets where a weight filter slides across an
image. In this case, the image could slide across the weights
while input pulses are applied to the DDL. Die photo and design
specs are highlighted in Fig. 11. Table I shows strong
performance compared with state of the art. All comparisons
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Fig. 11. Die photo and summary with reported metrics at 1.2V.

are made at the highest reported energy efficiency operating
point. We report the best energy efficiency and a very
competitive gate equivalent count for each processing unit at
half the size of [1]. Our chip is scalable in voltage, weight
resolution, and is versatile in that it is able to tackle fully
connected deep networks as well as convolutional nets.

V. CONCLUSION

We described a time-based neuromorphic core based on
one-shot DDLs in 65nm LP CMOS and proposed an error
recovery technique, DTEC. It uses inverter delays to compute
the dot product kernel, making it ideally suited for ML
applications. The proposed core is validated on the MNIST
dataset and achieves near simulated prediction accuracy on
single and multi-layer networks after applying our error
correction technique, DTEC. Maximum energy efficiency of
54.2TSOPs/s/W with 3b resolution at 0.7V makes the proposed
architecture attractive for edge devices.
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