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Abstract

In many machine learning applications, it is important to explain the predictions of a black-box
classifier. For example, why does a deep neural network assign an image to a particular class? We cast
interpretability of black-box classifiers as a combinatorial maximization problem and propose an efficient
streaming algorithm to solve it subject to cardinality constraints. By extending ideas from Badanidiyuru
et al. [2014], we provide a constant factor approximation guarantee for our algorithm in the case of
random stream order and a weakly submodular objective function. This is the first such theoretical
guarantee for this general class of functions, and we also show that no such algorithm exists for a worst
case stream order. Our algorithm obtains similar explanations of Inception V3 predictions 10 times faster
than the state-of-the-art LIME framework of Ribeiro et al. [2016].

1 Introduction

Consider the following combinatorial optimization problem. Given a ground set N of N elements and a set
function f : 2N 7→ R≥0, find the set S of size k which maximizes f(S). This formulation is at the heart
of many machine learning applications such as sparse regression, data summarization, facility location, and
graphical model inference. Although the problem is intractable in general, if f is assumed to be submodular
then many approximation algorithms have been shown to perform provably within a constant factor from
the best solution.

Some disadvantages of the standard greedy algorithm of Nemhauser et al. [1978] for this problem are
that it requires repeated access to each data element and a large total number of function evaluations.
This is undesirable in many large-scale machine learning tasks where the entire dataset cannot fit in main
memory, or when a single function evaluation is time consuming. In our main application, each function
evaluation corresponds to inference on a large neural network and can take a few seconds. In contrast,
streaming algorithms make a small number of passes (often only one) over the data and have sublinear space
complexity, and thus, are ideal for tasks of the above kind.

Recent ideas, algorithms, and techniques from submodular set function theory have been used to derive
similar results in much more general settings. For example, Elenberg et al. [2016a] used the concept of weak
submodularity to derive approximation and parameter recovery guarantees for nonlinear sparse regression.
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Thus, a natural question is whether recent results on streaming algorithms for maximizing submodular
functions [Badanidiyuru et al., 2014; Buchbinder et al., 2015; Chekuri et al., 2015] extend to the weakly
submodular setting.

This paper answers the above question by providing the first analysis of a streaming algorithm for
any class of approximately submodular functions. We use key algorithmic components of Sieve-Streaming
[Badanidiyuru et al., 2014], namely greedy thresholding and binary search, combined with a novel analysis to
prove a constant factor approximation for γ-weakly submodular functions (defined in Section 3). Specifically,
our contributions are as follows.

• An impossibility result showing that, even for 0.5-weakly submodular objectives, no randomized stream-
ing algorithm which uses o(N) memory can have a constant approximation ratio when the ground set
elements arrive in a worst case order.

• Streak: a greedy, deterministic streaming algorithm for maximizing γ-weakly submodular functions
which uses O(ε−1k log k) memory and has an approximation ratio of (1−ε)γ2 ·(3−e−γ/2−2

√
2− e−γ/2)

when the ground set elements arrive in a random order.

• An experimental evaluation of our algorithm in two applications: nonlinear sparse regression using
pairwise products of features and interpretability of black-box neural network classifiers.

The above theoretical impossibility result is quite surprising since it stands in sharp contrast to known
streaming algorithms for submodular objectives achieving a constant approximation ratio even for worst
case stream order.

One advantage of our approach is that, while our approximation guarantees are in terms of γ, our
algorithm Streak runs without requiring prior knowledge about the value of γ. This is important since
the weak submodularity parameter γ is hard to compute, especially in streaming applications, as a single
element can alter γ drastically.

We use our streaming algorithm for neural network interpretability on Inception V3 [Szegedy et al.,
2016]. For that purpose, we define a new set function maximization problem similar to LIME [Ribeiro et al.,
2016] and apply our framework to approximately maximize this function. Experimentally, we find that our
interpretability method produces explanations of similar quality as LIME, but runs approximately 10 times
faster.

2 Related Work

Monotone submodular set function maximization has been well studied, starting with the classical analysis
of greedy forward selection subject to a matroid constraint [Nemhauser et al., 1978; Fisher et al., 1978].
For the special case of a uniform matroid constraint, the greedy algorithm achieves an approximation ratio
of 1 − 1/e [Fisher et al., 1978], and a more involved algorithm obtains this ratio also for general matroid
constraints [Călinescu et al., 2011]. In general, no polynomial-time algorithm can have a better approximation
ratio even for a uniform matroid constraint [Nemhauser and Wolsey, 1978; Feige, 1998]. However, it is possible
to improve upon this bound when the data obeys some additional guarantees [Conforti and Cornuéjols, 1984;
Vondrák, 2010; Sviridenko et al., 2015]. For maximizing nonnegative, not necessarily monotone, submodular
functions subject to a general matroid constraint, the state-of-the-art randomized algorithm achieves an
approximation ratio of 0.385 [Buchbinder and Feldman, 2016b]. Moreover, for uniform matroids there is also
a deterministic algorithm achieving a slightly worse approximation ratio of 1/e [Buchbinder and Feldman,
2016a]. The reader is referred to Bach [2013] and Krause and Golovin [2014] for surveys on submodular
function theory.

A recent line of work aims to develop new algorithms for optimizing submodular functions suitable for
large-scale machine learning applications. Algorithmic advances of this kind include Stochastic-Greedy
[Mirzasoleiman et al., 2015], Sieve-Streaming [Badanidiyuru et al., 2014], and several distributed ap-
proaches [Mirzasoleiman et al., 2013; Barbosa et al., 2015, 2016; Pan et al., 2014; Khanna et al., 2017b]. Our
algorithm extends ideas found in Sieve-Streaming and uses a different analysis to handle more general
functions. Additionally, submodular set functions have been used to prove guarantees for online and active
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learning problems [Hoi et al., 2006; Wei et al., 2015; Buchbinder et al., 2015]. Specifically, in the online set-
ting corresponding to our setting (i.e., maximizing a monotone function subject to a cardinality constraint),
Chan et al. [2017] achieve a competitive ratio of about 0.3178 when the function is submodular.

The concept of weak submodularity was introduced in Krause and Cevher [2010]; Das and Kempe [2011],
where it was applied to the specific problem of feature selection in linear regression. Their main results state
that if the data covariance matrix is not too correlated (using either incoherence or restricted eigenvalue
assumptions), then maximizing the goodness of fit f(S) = R2

S as a function of the feature set S is weakly
submodular. This leads to constant factor approximation guarantees for several greedy algorithms. Weak
submodularity was connected with Restricted Strong Convexity in Elenberg et al. [2016a,b]. This showed that
the same assumptions which imply the success of regularization also lead to guarantees on greedy algorithms.
This framework was later used for additional algorithms and applications [Khanna et al., 2017a,b]. Other
approximate versions of submodularity were used for greedy selection problems in Horel and Singer [2016];
Hassidim and Singer [2017]; Altschuler et al. [2016]; Bian et al. [2017]. To the best of our knowledge, this is
the first analysis of streaming algorithms for approximately submodular set functions.

Increased interest in interpretable machine learning models has led to extensive study of sparse feature
selection methods. For example, Bahmani et al. [2013] consider greedy algorithms for logistic regression,
and Yang et al. [2016] solve a more general problem using `1 regularization. Recently, Ribeiro et al. [2016]
developed a framework called LIME for interpreting black-box neural networks, and Sundararajan et al.
[2017] proposed a method that requires access to the network’s gradients with respect to its inputs. We
compare our algorithm to variations of LIME in Section 6.2.

3 Preliminaries

First we establish some definitions and notation. Sets are denoted with capital letters, and all big O notation
is assumed to be scaling with respect to N (the number of elements in the input stream). Given a set function
f , we often use the discrete derivative f(B | A) , f(A ∪ B) − f(A). f is monotone if f(B | A) ≥ 0, ∀A,B
and nonnegative if f(A) ≥ 0, ∀A. Using this notation one can define weakly submodular functions based on
the following ratio.

Definition 3.1 (Weak Submodularity, adapted from Das and Kempe [2011]). A monotone nonnegative set
function f : 2N 7→ R≥0 is called γ-weakly submodular for an integer r if

γ ≤ γr , min
L,S⊆N :

|L|,|S\L|≤r

∑

j∈S\L f(j | L)
f(S | L) ,

where the ratio is considered to be equal to 1 when its numerator and denominator are both 0.

This generalizes submodular functions by relaxing the diminishing returns property of discrete derivatives.
It is easy to show that f is submodular if and only if γ|N | = 1.

Definition 3.2 (Approximation Ratio). A streaming maximization algorithm ALG which returns a set S
has approximation ratio R ∈ [0, 1] if E[f(S)] ≥ R · f(OPT ), where OPT is the optimal solution and the
expectation is over the random decisions of the algorithm and the randomness of the input stream order
(when it is random).

Formally our problem is as follows. Assume that elements from a ground set N arrive in a stream at
either random or worst case order. The goal is then to design a one pass streaming algorithm that given
oracle access to a nonnegative set function f : 2N 7→ R≥0 maintains at most o(N) elements in memory and
returns a set S of size at most k approximating

max
|T |≤k

f(T ) ,

up to an approximation ratio R(γk). Ideally, this approximation ratio should be as large as possible, and we
also want it to be a function of γk and nothing else. In particular, we want it to be independent of k and N .

To simplify notation, we use γ in place of γk in the rest of the paper. Additionally, proofs for all our

theoretical results are deferred to the Appendix.
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4 Impossibility Result

To prove our negative result showing that no streaming algorithm for our problem has a constant approxi-
mation ratio against a worst case stream order, we first need to construct a weakly submodular set function
fk. Later we use it to construct a bad instance for any given streaming algorithm.

Fix some k ≥ 1, and consider the ground set Nk = {ui, vi}ki=1. For ease of notation, let us define for
every subset S ⊆ Nk

u(S) = |S ∩ {ui}ki=1| , v(S) = |S ∩ {vi}ki=1| .
Now we define the following set function:

fk(S) = min{2 · u(S) + 1, 2 · v(S)} ∀ S ⊆ Nk .

Lemma 4.1. fk is nonnegative, monotone and 0.5-weakly submodular for the integer |Nk|.

Since |Nk| = 2k, the maximum value of fk is fk(Nk) = 2 · v(Nk) = 2k. We now extend the ground set
of fk by adding to it an arbitrary large number d of dummy elements which do not affect fk at all. Clearly,
this does not affect the properties of fk proved in Lemma 4.1. However, the introduction of dummy elements
allows us to assume that k is an arbitrary small value compared to N , which is necessary for the proof of
the next theorem. In a nutshell, this proof is based on the observation that the elements of {ui}ki=1 are
indistinguishable from the dummy elements as long as no element of {vi}ki=1 has arrived yet.

Theorem 4.2. For every constant c ∈ (0, 1] there is a large enough k such that no randomized streaming
algorithm that uses o(N) memory to solve max|S|≤2k fk(S) has an approximation ratio of c for a worst case
stream order.

We note that fk has strong properties. In particular, Lemma 4.1 implies that it is 0.5-weakly submodular
for every 0 ≤ r ≤ |N |. In contrast, the algorithm we show later assumes weak submodularity only for the
cardinality constraint k. Thus, the above theorem implies that worst case stream order precludes a constant
approximation ratio even for functions with much stronger properties compared to what is necessary for
getting a constant approximation ratio when the order is random.

The proof of Theorem 4.2 relies critically on the fact that each element is seen exactly once. In other
words, once the algorithm decides to discard an element from its memory, this element is gone forever, which
is a standard assumption for streaming algorithms. Thus, the theorem does not apply to algorithms that
use multiple passes over N , or non-streaming algorithms that use o(N) writable memory, and their analysis
remains an interesting open problem.

5 Streaming Algorithms

In this section we give a deterministic streaming algorithm for our problem which works in a model in
which the stream contains the elements of N in a random order. We first describe in Section 5.1 such a
streaming algorithm assuming access to a value τ which approximates aγ · f(OPT ), where a is a shorthand

for a = (
√
2− e−γ/2−1)/2. Then, in Section 5.2 we explain how this assumption can be removed to obtain

Streak and bound its approximation ratio, space complexity, and running time.

5.1 Algorithm with access to τ

Consider Algorithm 1. In addition to the input instance, this algorithm gets a parameter τ ∈ [0, aγ ·f(OPT )].
One should think of τ as close to aγ · f(OPT ), although the following analysis of the algorithm does not
rely on it. We provide an outline of the proof, but defer the technical details to the Appendix.

Theorem 5.1. The expected value of the set produced by Algorithm 1 is at least

τ

a
· 3− e−γ/2 − 2

√
2− e−γ/2

2
= τ · (

√

2− e−γ/2 − 1) .
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Algorithm 1 Threshold Greedy(f, k, τ)

Let S ← ∅.
while there are more elements do

Let u be the next element.
if |S| < k and f(u | S) ≥ τ/k then

Update S ← S ∪ {u}.
end if

end while

return: S

Proof (Sketch). Let E be the event that f(S) < τ , where S is the output produced by Algorithm 1. Clearly
f(S) ≥ τ whenever E does not occur, and thus, it is possible to lower bound the expected value of f(S)
using E as follows.

Observation 5.2. Let S denote the output of Algorithm 1, then E[f(S)] ≥ (1− Pr[E ]) · τ .
The lower bound given by Observation 5.2 is decreasing in Pr[E ]. Proposition 5.4 provides another lower

bound for E[f(S)] which increases with Pr[E ]. An important ingredient of the proof of this proposition is
the next observation, which implies that the solution produced by Algorithm 1 is always of size smaller than
k when E happens.

Observation 5.3. If at some point Algorithm 1 has a set S of size k, then f(S) ≥ τ .

The proof of Proposition 5.4 is based on the above observation and on the observation that the random
arrival order implies that every time that an element of OPT arrives in the stream we may assume it is a
random element out of all the OPT elements that did not arrive yet.

Proposition 5.4. For the set S produced by Algorithm 1,

E[f(S)] ≥ 1

2
·
(

γ · [Pr[E ]− e−γ/2] · f(OPT )− 2τ
)

.

The theorem now follows by showing that for every possible value of Pr[E ] the guarantee of the theorem
is implied by either Observation 5.2 or Proposition 5.4. Specifically, the former happens when Pr[E ] ≤
2−
√
2− e−γ/2 and the later when Pr[E ] ≥ 2−

√
2− e−γ/2.

5.2 Algorithm without access to τ

In this section we explain how to get an algorithm which does not depend on τ . Instead, Streak (Algo-
rithm 2) receives an accuracy parameter ε ∈ (0, 1). Then, it uses ε to run several instances of Algorithm 1
stored in a collection denoted by I. The algorithm maintains two variables throughout its execution: m is
the maximum value of a singleton set corresponding to an element that the algorithm already observed, and
um references an arbitrary element satisfying f(um) = m.

The collection I is updated as follows after each element arrival. If previously I contained an instance
of Algorithm 1 with a given value for τ , and it no longer should contain such an instance, then the instance
is simply removed. In contrast, if I did not contain an instance of Algorithm 1 with a given value for τ ,
and it should now contain such an instance, then a new instance with this value for τ is created. Finally, if
I contained an instance of Algorithm 1 with a given value for τ , and it should continue to contain such an
instance, then this instance remains in I as is.

Theorem 5.5. The approximation ratio of Streak is at least

(1− ε)γ · 3− e−γ/2 − 2
√
2− e−γ/2

2
.
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et al., 2012] (regions from any other segmentation would also suffice). The number of superpixels is bounded
by N = 30. After a feature selection step, a final regression is performed on only the selected features. The
following feature selection methods are supplied by LIME: 1. Highest Weights: fits a full regression and keep
the k features with largest coefficients. 2. Forward Selection: standard greedy forward selection. 3. Lasso:
`1 regularization.

We introduce a novel method for black-box interpretability that is similar to but simpler than LIME. As
before, we segment an image into N superpixels. Then, for a subset S of those regions we can create a new
image that contains only these regions and feed this into the black-box classifier. For a given model M , an
input image I, and a label L1 we ask for an explanation: why did model M label image I with label L1.
We propose the following solution to this problem. Consider the set function f(S) giving the likelihood that
image I(S) has label L1. We approximately solve

max
|S|≤k

f(S) ,

using Streak. Intuitively, we are limiting the number of superpixels to k so that the output will include only
the most important superpixels, and thus, will represent an interpretable explanation. In our experiments
we set k = 5.

Note that the set function f(S) depends on the black-box classifier and is neither monotone nor sub-
modular in general. Still, we find that the greedy maximization algorithm produces very good explanations
for the flower classifier as shown in Figure 3 and the additional experiments in the Appendix. Figure 2(b)
shows that our algorithm is much faster than the LIME approach. This is primarily because LIME relies on
generating and classifying a large set of randomly perturbed example images.

7 Conclusions

We propose Streak, the first streaming algorithm for maximizing weakly submodular functions, and prove
that it achieves a constant factor approximation assuming a random stream order. This is useful when the
set function is not submodular and, additionally, takes a long time to evaluate or has a very large ground set.
Conversely, we show that under a worst case stream order no algorithm with memory sublinear in the ground
set size has a constant factor approximation. We formulate interpretability of black-box neural networks as
set function maximization, and show that Streak provides interpretable explanations faster than previous
approaches. We also show experimentally that Streak trades off accuracy and running time in nonlinear
sparse regression.

One interesting direction for future work is to tighten the bounds of Theorems 5.1 and 5.5, which are
nontrivial but somewhat loose. For example, there is a gap between the theoretical guarantee of the state-
of-the-art algorithm for submodular functions and our bound for γ = 1. However, as our algorithm performs
the same computation as that state-of-the-art algorithm when the function is submodular, this gap is solely
an analysis issue. Hence, the real theoretical performance of our algorithm is better than what we have been
able to prove in Section 5.
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A Appendix

A.1 Proof of Lemma 4.1

The nonnegativity and monotonicity of fk follow immediately from the fact that u(S) and v(S) have these
properties. Thus, it remains to prove that fk is 0.5-weakly submodular for |Nk|, i.e., that for every pair of
arbitrary sets S,L ⊆ Nk it holds that

∑

w∈S\L

fk(w | L) ≥ 0.5 · fk(S | L) .

There are two cases to consider. The first case is that fk(L) = 2 · u(L) + 1. In this case S \ L must contain
at least dfk(S | L)/2e elements of {ui}ki=1. Additionally, the marginal contribution to L of every element of
{ui}ki=1 which does not belong to L is at least 1. Thus, we get

∑

w∈S\L

fk(w | L) ≥
∑

w∈(S\L)∩{ui}k
i=1

fk(w | L) ≥ |(S \ L) ∩ {ui}ki=1|

≥ dfk(S | L)/2e ≥ 0.5 · fk(S | L) .

The second case is that fk(L) = 2 · v(L). In this case S \ L must contain at least dfk(S | L)/2e elements of
{vi}ki=1, and in addition, the marginal contribution to L of every element of {vi}ki=1 which does not belong
to L is at least 1. Thus, we get in this case again

∑

w∈S\L

fk(w | L) ≥
∑

w∈(S\L)∩{vi}k
i=1

fk(w | L) ≥ |(S \ L) ∩ {vi}ki=1|

≥ dfk(S | L)/2e ≥ 0.5 · fk(S | L) .

A.2 Proof of Theorem 4.2

Consider an arbitrary (randomized) streaming algorithm ALG aiming to maximize fk(S) subject to the
cardinality constraint |S| ≤ 2k. Since ALG uses o(N) memory, we can guarantee, by choosing a large
enough d, that ALG uses no more than (c/4) · N memory. In order to show that ALG performs poorly,
consider the case that it gets first the elements of {ui}ki=1 and the dummy elements (in some order to be
determined later), and only then it gets the elements of {vi}ki=1. The next lemma shows that some order of
the elements of {ui}ki=1 and the dummy elements is bad for ALG.

Lemma A.1. There is an order for the elements of {ui}ki=1 and the dummy elements which guarantees that
in expectation ALG returns at most (c/2) · k elements of {ui}ki=1.

Proof. Let W be the set of the elements of {ui}ki=1 and the dummy elements. Observe that the value of fk
for every subset of W is 0. Thus, ALG has no way to differentiate between the elements of W until it views
the first element of {vi}ki=1, which implies that the probability of every element w ∈W to remain in ALG’s
memory until the moment that the first element of {vi}ki=1 arrives is determined only by w’s arrival position.
Hence, by choosing an appropriate arrival order one can guarantee that the sum of the probabilities of the
elements of {ui}ki=1 to be at the memory of ALG at this point is at most

kM

|W | ≤
k(c/4) ·N

k + d
=

k(c/4) · (2k + d)

k + d
≤ kc

2
,

where M is the amount of memory ALG uses.

The expected value of the solution produced by ALG for the stream order provided by Lemma A.1 is at
most ck + 1. Hence, its approximation ratio for k > 1/c is at most

ck + 1

2k
=

c

2
+

1

2k
< c .
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A.3 Proof of Observation 5.3

Algorithm 1 adds an element u to the set S only when the marginal contribution of u with respect to S is
at least τ/k. Thus, it is always true that

f(S) ≥ τ · |S|
k

.

A.4 Proof of Proposition 5.4

We begin by proving several intermediate lemmas. Recall that γ , γk, and notice that by the monotonicity
of f we may assume that OPT is of size k. For every 0 ≤ i ≤ |OPT | = k, let OPTi be the random set
consisting of the last i elements of OPT according to the input order. Note that OPTi is simply a uniformly
random subset of OPT of size i. Thus, we can lower bound its expected value as follows.

Lemma A.2. For every 0 ≤ i ≤ k, E[f(OPTi)] ≥ [1− (1− γ/k)i] · f(OPT ).

Proof. We prove the lemma by induction on i. For i = 0 the lemma follows from the nonnegativity of f
since

f(OPT0) ≥ 0 = [1− (1− γ/k)0] · f(OPT ) .

Assume now that the lemma holds for some 0 ≤ i − 1 < k, and let us prove it holds also for i. Since
OPTi−1 is a uniformly random subset of OPT of size i− 1, and OPTi is a uniformly random subset of OPT
of size i, we can think of OPTi as obtained from OPTi−1 by adding to this set a uniformly random element
of OPT \OPTi−1. Taking this point of view, we get, for every set T ⊆ OPT of size i− 1,

E[f(OPTi) | OPTi−1 = T ] = f(T ) +

∑

u∈OPT\T f(u | T )
|OPT \ T |

≥ f(T ) +
1

k
·

∑

u∈OPT\T

f(u | T )

≥ f(T ) +
γ

k
· f(OPT \ T | T )

=
(

1− γ

k

)

· f(T ) + γ

k
· f(OPT ) ,

where the last inequality holds by the γ-weak submodularity of f . Taking expectation over the set OPTi−1,
the last inequality becomes

E[f(OPTi)] ≥
(

1− γ

k

)

E[f(OPTi−1)] +
γ

k
· f(OPT )

≥
(

1− γ

k

)

·
[

1−
(

1− γ

k

)i−1
]

· f(OPT ) +
γ

k
· f(OPT )

=

[

1−
(

1− γ

k

)i
]

· f(OPT ) ,

where the second inequality follows from the induction hypothesis.

Let us now denote by o1, o2, . . . , ok the k elements of OPT in the order in which they arrive, and, for every
1 ≤ i ≤ k, let Si be the set S of Algorithm 1 immediately before the algorithm receives oi. Additionally,
let Ai be an event fixing the arrival time of oi, the set of elements arriving before oi and the order in which
they arrive. Note that conditioned on Ai, the sets Si and OPTk−i+1 are both deterministic.

Lemma A.3. For every 1 ≤ i ≤ k and event Ai, E[f(oi | Si) | Ai] ≥ (γ/k) · [f(OPTk−i+1)− f(Si)], where
OPTk−i+1 and Si represent the deterministic values these sets take given Ai.

Proof. By the monotonicity and γ-weak submodularity of f , we get
∑

u∈OPTk−i+1

f(u | Si) ≥ γ · f(OPTk−i+1 | Si)

= γ · [f(OPTk−i+1 ∪ Si)− f(Si)]

≥ γ · [f(OPTk−i+1)− f(Si)] .
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Since oi is a uniformly random element of OPTk−i+1, even conditioned on Ai, the last inequality implies

E[f(oi | Si) | Ai] =

∑

u∈OPTk−i+1
f(u | Si)

k − i+ 1

≥
∑

u∈OPTk−i+1
f(u | Si)

k

≥ γ · [f(OPTk−i+1)− f(Si)]

k
.

Let ∆i be the increase in the value of S in the iteration of Algorithm 1 in which it gets oi.

Lemma A.4. Fix 1 ≤ i ≤ k and event Ai, and let OPTk−i+1 and Si represent the deterministic values
these sets take given Ai. If f(Si) < τ , then E[∆i | Ai] ≥ [γ · f(OPTk−i+1)− 2τ ]/k.

Proof. Notice that by Observation 5.3 the fact that f(Si) < τ implies that Si contains less than k elements.
Thus, conditioned on Ai, Algorithm 1 adds oi to S whenever f(oi | Si) ≥ τ/k, which means that

∆i =

{

f(oi | Si) if f(oi | Si) ≥ τ/k ,

0 otherwise .

One implication of the last equality is

E[∆i | Ai] ≥ E[f(oi | Si) | Ai]− τ/k ,

which intuitively means that the contribution to E[f(oi | Si) | Ai] of values of f(oi | Si) which are too small
to make the algorithm add oi to S is at most τ/k. The lemma now follows by observing that Lemma A.3
and the fact that f(Si) < τ guarantee

E[f(oi | Si) | Ai] ≥ (γ/k) · [f(OPTk−i+1)− f(Si)]

> (γ/k) · [f(OPTk−i+1)− τ ]

≥ [γ · f(OPTk−i+1)− τ ]/k .

We are now ready to put everything together and get a lower bound on E[∆i].

Lemma A.5. For every 1 ≤ i ≤ k,

E[∆i] ≥
γ · [Pr[E ]− (1− γ/k)k−i+1] · f(OPT )− 2τ

k
.

Proof. Let Ei be the event that f(Si) < τ . Clearly Ei is the disjoint union of the events Ai which imply
f(Si) < τ , and thus, by Lemma A.4,

E[∆i | Ei] ≥ [γ · E[f(OPTk−i+1) | Ei]− 2τ ]/k .

Note that ∆i is always nonnegative due to the monotonicity of f . Thus,

E[∆i] = Pr[Ei] · E[∆i | Ei] + Pr[Ēi] · E[∆i | Ēi] ≥ Pr[Ei] · E[∆i | Ei]
≥ [γ · Pr[Ei] · E[f(OPTk−i+1) | Ei]− 2τ ]/k .

It now remains to lower bound the expression Pr[Ei] ·E[f(OPTk−i+1) | Ei] on the rightmost hand side of
the last inequality.

Pr[Ei] · E[f(OPTk−i+1) | Ei] = E[f(OPTk−i+1)]− Pr[Ēi] · E[f(OPTk−i+1) | Ēi]
≥ [1− (1− γ/k)k−i+1 − (1− Pr[Ei])] · f(OPT )

≥ [Pr[E ]− (1− γ/k)k−i+1] · f(OPT )

where the first inequality follows from Lemma A.2 and the monotonicity of f , and the second inequality
holds since E implies Ei which means that Pr[Ei] ≥ Pr[E ] for every 1 ≤ i ≤ k.
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Proposition 5.4 follows quite easily from the last lemma.

Proof of Proposition 5.4. Lemma A.5 implies, for every 1 ≤ i ≤ dk/2e,

E[∆i] ≥
γ

k
f(OPT )[Pr[E ]− (1− γ/k)k−dk/2e+1]− 2τ

k

≥ γ

k
f(OPT )[Pr[E ]− (1− γ/k)k/2]− 2τ

k

≥
(

γ · [Pr[E ]− e−γ/2] · f(OPT )− 2τ
)

/k .

The definition of ∆i and the monotonicity of f imply together

E[f(S)] ≥
b

∑

i=1

E[∆i]

for every integer 1 ≤ b ≤ k. In particular, for b = dk/2e, we get

E[f(S)] ≥ b

k
·
(

γ · [Pr[E ]− e−γ/2] · f(OPT )− 2τ
)

≥ 1

2
·
(

γ · [Pr[E ]− e−γ/2] · f(OPT )− 2τ
)

.

A.5 Proof of Theorem 5.1

In this section we combine the previous results to prove Theorem 5.1. Recall that Observation 5.2 and
Proposition 5.4 give two lower bounds on E[f(S)] that depend on Pr[E ]. The following lemmata use these
lower bounds to derive another lower bound on this quantity which is independent of Pr[E ]. For ease of the
reading, we use in this section the shorthand γ′ = e−γ/2.

Lemma A.6. E[f(S)] ≥ τ
2a (3− γ′ − 2

√
2− γ′) = τ

a ·
3−e−γ/2−2

√
2−e−γ/2

2 whenever Pr[E ] ≥ 2−√2− γ′.

Proof. By the lower bound given by Proposition 5.4,

E[f(S)] ≥ 1

2
· {γ · [Pr[E ]− γ′] · f(OPT )− 2τ}

≥ 1

2
·
{

γ ·
[

2−
√

2− γ′ − γ′
]

· f(OPT )− 2τ
}

=
1

2
·
{

γ ·
[

2−
√

2− γ′ − γ′
]

· f(OPT )− (
√

2− γ′ − 1) · τ
a

}

≥ τ

2a
·
{

2−
√

2− γ′ − γ′ −
√

2− γ′ + 1
}

=
τ

a
· 3− γ′ − 2

√
2− γ′

2
,

where the first equality holds since a = (
√
2− γ′ − 1)/2, and the last inequality holds since aγ · f(OPT ) ≥

τ .

Lemma A.7. E[f(S)] ≥ τ
2a (3− γ′ − 2

√
2− γ′) = τ

a ·
3−e−γ/2−2

√
2−e−γ/2

2 whenever Pr[E ] ≤ 2−√2− γ′.

Proof. By the lower bound given by Observation 5.2,

E[f(S)] ≥ (1− Pr[E ]) · τ ≥
(

1− 2 +
√

2− γ′
)

· τ

=
(

√

2− γ′ − 1
)

·
√
2− γ′ − 1

2
· τ
a
=

3− γ′ − 2
√
2− γ′

2
· τ
a

.

Combining Lemmata A.6 and A.7 we get the theorem.
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A.6 Proof of Theorem 5.5

There are two cases to consider. If γ < 4/3 · k−1, then we use the following simple observation.

Observation A.8. The final value of the variable m is fmax , max{f(u) | u ∈ N} ≥ γ
k · f(OPT ).

Proof. The way m is updated by Algorithm 2 guarantees that its final value is fmax. To see why the other
part of the observation is also true, note that the γ-weak submodularity of f implies

fmax ≥ max{f(u) | u ∈ OPT} = f(∅) + max{f(u | ∅) | u ∈ OPT}

≥ f(∅) +
1

k

∑

u∈OPT

f(u | ∅) ≥ f(∅) +
γ

k
f(OPT | ∅) ≥ γ

k
· f(OPT ) .

By Observation A.8, the value of the solution produced by Streak is at least

f(um) = m ≥ γ

k
· f(OPT ) ≥ 3γ2

4
· f(OPT )

≥ (1− ε)γ · 3(γ/2)
2

· f(OPT )

≥ (1− ε)γ · 3− 3e−γ/2

2
· f(OPT )

≥ (1− ε)γ · 3− e−γ/2 − 2
√
2− e−γ/2

2
· f(OPT ) ,

where the second to last inequality holds since 1−γ/2 ≤ e−γ/2, and the last inequality holds since e−γ+e−γ/2 ≤
2.

It remains to consider the case γ ≥ 4/3 · k−1, which has a somewhat more involved proof. Observe that
the approximation ratio of Streak is 1 whenever f(OPT ) = 0 because the value of any set, including the
output set of the algorithm, is nonnegative. Thus, we can safely assume in the rest of the analysis of the
approximation ratio of Algorithm 2 that f(OPT ) > 0.

Let τ∗ be the maximal value in the set {(1−ε)i | i ∈ Z} which is not larger than aγ ·f(OPT ). Note that τ∗

exists by our assumption that f(OPT ) > 0. Moreover, we also have (1−ε) ·aγ ·f(OPT ) < τ∗ ≤ aγ ·f(OPT ).
The following lemma gives an interesting property of τ∗. To understand the lemma, it is important to note
that the set of values for τ in the instances of Algorithm 1 appearing in the final collection I is deterministic
because the final value of m is always fmax.

Lemma A.9. If there is an instance of Algorithm 1 with τ = τ∗ in I when Streak terminates, then in
expectation Streak has an approximation ratio of at least

(1− ε)γ · 3− e−γ/2 − 2
√
2− e−γ/2

2
.

Proof. Consider a value of τ for which there is an instance of Algorithm 1 in I when Algorithm 2 terminates,
and consider the moment that Algorithm 2 created this instance. Since the instance was not created earlier,
we get that m was smaller than τ/k before this point. In other words, the marginal contribution of every
element that appeared before this point to the empty set was less than τ/k. Thus, even if the instance had
been created earlier it would not have taken any previous elements.

An important corollary of the above observation is that the output of every instance of Algorithm 1 that
appears in I when Streak terminates is equal to the output it would have had if it had been executed on
the entire input stream from its beginning (rather than just from the point in which it was created). Since we
assume that there is an instance of Algorithm 1 with τ = τ∗ in the final collection I, we get by Theorem 5.1
that the expected value of the output of this instance is at least

τ∗

a
· 3− e−γ/2 − 2

√
2− e−γ/2

2
> (1− ε)γ · f(OPT ) · 3− e−γ/2 − 2

√
2− e−γ/2

2
.

The lemma now follows since the output of Streak is always at least as good as the output of each one of
the instances of Algorithm 1 in its collection I.
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We complement the last lemma with the next one.

Lemma A.10. If γ ≥ 4/3 · k−1, then there is an instance of Algorithm 1 with τ = τ∗ in I when Streak
terminates.

Proof. We begin by bounding the final value of m. By Observation A.8 this final value is fmax ≥ γ
k ·f(OPT ).

On the other hand, f(u) ≤ f(OPT ) for every element u ∈ N since {u} is a possible candidate to be OPT ,
which implies fmax ≤ f(OPT ). Thus, the final collection I contains an instance of Algorithm 1 for every
value of τ within the set

{

(1− ε)i | i ∈ Z and (1− ε) · fmax/(9k2) ≤ (1− ε)i ≤ fmax · k
}

⊇
{

(1− ε)i | i ∈ Z and (1− ε) · f(OPT )/(9k2) ≤ (1− ε)i ≤ γ · f(OPT )
}

.

To see that τ∗ belongs to the last set, we need to verify that it obeys the two inequalities defining this set.
On the one hand, a = (

√
2− e−γ/2 − 1)/2 < 1 implies

τ∗ ≤ aγ · f(OPT ) ≤ γ · f(OPT ) .

On the other hand, γ ≥ 4/3 · k−1 and 1− e−γ/2 ≥ γ/2− γ2/8 imply

τ∗ > (1− ε) · aγ · f(OPT ) = (1− ε) · (
√

2− e−γ/2 − 1) · γ · f(OPT )/2

≥ (1− ε) · (
√

1 + γ/2− γ2/8− 1) · γ · f(OPT )/2

≥ (1− ε) · (
√

1 + γ/4 + γ2/64− 1) · γ · f(OPT )/2

= (1− ε) · (
√

(1 + γ/8)2 − 1) · γ · f(OPT )/2 ≥ (1− ε) · γ2 · f(OPT )/16

≥ (1− ε) · f(OPT )/(9k2) .

Combining Lemmata A.9 and A.10 we get the desired guarantee on the approximation ratio of Streak.

A.7 Proof of Theorem 5.6

Observe that Streak keeps only one element (um) in addition to the elements maintained by the instances
of Algorithm 1 in I. Moreover, Algorithm 1 keeps at any given time at most O(k) elements since the set S it
maintains can never contain more than k elements. Thus, it is enough to show that the collection I contains
at every given time at most O(ε−1 log k) instances of Algorithm 1. If m = 0 then this is trivial since I = ∅.
Thus, it is enough to consider the case m > 0. Note that in this case

|I| ≤ 1− log1−ε

mk

(1− ε)m/(9k2)
= 2− ln(9k3)

ln(1− ε)

= 2− ln 9 + 3 ln k

ln(1− ε)
= 2− O(ln k)

ln(1− ε)
.

We now need to upper bound ln(1− ε). Recall that 1− ε ≤ e−ε. Thus, ln(1− ε) ≤ −ε. Plugging this into
the previous inequality gives

|I| ≤ 2− O(ln k)−ε = 2 +O(ε−1 ln k) = O(ε−1 ln k) .
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