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Abstract

We characterize optimal mechanisms for the multiple-good monopoly problem
and provide a framework to find them. We show that a mechanism is optimal
if and only if a measure p derived from the buyer’s type distribution satisfies
certain stochastic dominance conditions. This measure expresses the marginal
change in the seller’s revenue under marginal changes in the rent paid to subsets
of buyer types. As a corollary, we characterize the optimality of grand-bundling
mechanisms, strengthening several results in the literature, where only sufficient
optimality conditions have been derived. As an application, we show that the
optimal mechanism for n independent uniform items each supported on [c, ¢+ 1]
is a grand-bundling mechanism, as long as c is sufficiently large, extending
Pavlov’s result for 2 items [Pav11]. At the same time, our characterization also
implies that, for all ¢ and for all sufficiently large n, the optimal mechanism for
n independent uniform items supported on [c, ¢ + 1] is not a grand bundling

mechanism.
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1 Introduction

We study the problem of revenue maximization for a multiple-good monopolist. Given
n heterogenous goods and a probability distribution f over R%,, we wish to design
a mechanism that optimizes the monopolist’s expected revenue against an additive
(linear) buyer whose values for the goods are distributed according to f.

The single-good version of this problem—namely, n = 1—is well-understood, going
back to [RS81, Mye81, MR84, RZ83], where it is shown that a take-it-or-leave-it offer
of the good at some price is optimal, and the optimal price can be easily calculated
from f.

For general n, it has been known that the optimal mechanism may exhibit much
richer structure. Even when the item values are independent, the mechanism may
benefit from selling bundles of items or even lotteries over bundles of items [MMW89,
BB99, Tha04, MV06]. Moreover, no general framework to approach this problem has
been proposed in the literature, making it dauntingly difficult both to identify optimal
solutions and to certify the optimality of those solutions. As a consequence, seemingly
simple special cases (even n = 2) remain poorly understood, despite much research
for a few decades. See, e.g., [RS03] for a comprehensive survey of work spanning our
problem, as well as [MV07] and [FKM11] for additional references.

We propose a novel framework for revenue maximization based on duality theory.
We identify a minimization problem that is dual to revenue maximization and prove
that the optimal values of these problems are always equal. Our framework allows
us to identify optimal mechanisms in general settings, and certify their optimality by
providing a complementary solution to the dual problem, namely finding a solution
to the dual whose objective value equals the mechanism’s revenue. Our framework
is applicable to arbitrary settings of n and f, with mild assumptions such as differ-
entiability. In particular, we strengthen prior work [MV06, DDT13, GK14], which
identified optimal mechanisms in special cases. We exhibit the practicality of our
framework by solving several examples. Importantly, we can leverage our duality
theorem to characterize optimal multi-item mechanisms. From a technical standpoint
we provide new analytical methodology for multi-dimensional mechanism design by
providing extensions to Monge-Kantorovich duality for optimal transportation. We
proceed to discuss our contributions in detail, providing a roadmap to the paper, and

conclude this section with a discussion of related work.



Strong Duality. Our first main result (presented as Theorem 2) formulates a dual
problem to the optimal mechanism design problem, and establishes strong duality
between the two problems. That is, we show that the optimal values of the two
optimization problems are identical. Our approach for developing this dual problem is
outlined below.

We start by formulating optimal mechanism design as a maximization problem
over convex, non-decreasing and 1-Lipschitz continuous functions u, representing the
utility of the buyer as a function of her type, as in [Roc87]. The objective function of
this maximization problem can be written as the expectation of u with respect to a
signed measure p over the type space of the buyer. Measure p is easily derived from
the buyer’s type distribution f (see Equation (3)) and expresses the marginal change
in the seller’s revenue under marginal changes in the rent paid to subsets of buyer
types. Our formulation is summarized in Theorem 1, while Section 2.2 illustrates our
formulation in the basic setting of independent uniform items.

In Theorem 2, we formulate a dual in the form of an optimal transportation
problem, and establish strong duality between the two problems. Roughly speaking,
our dual formulation is given the signed measure y (from Theorem 1) and solves the
following minimization problem: (i) first, it is allowed to choose any measure ' that
stochastically dominates p with respect to convex increasing functions; (ii) second, it
is supposed to find a coupling of the positive part p/, of ;' with its negative part p i.e.
find a transportation from g/, to p’; (iii) if a unit of mass of 1/, at z is transported
to a unit of mass of p/ at y, we are charged ||z — y||;. The goal is to minimize the
cost of the coupling with respect to the decisions in (i) and (ii).

While our dual formulation takes a simple form, establishing strong duality is
quite technical. At a high level, our proof follows the proof of Monge-Kantorovich
duality in [Vil08], making use of the Fenchel-Rockafellar duality theorem, but the
technical aspects of the proof are different due to the convexity constraint on feasible
utility functions. The proof is presented in the online appendix, but it is not necessary
to understand the other results in this paper. We note that our formulation from
Theorem 1 defines a convex optimization problem. One would hope then that infinite-
dimensional linear programming techniques [Lue68, AN87] can be leveraged to establish
the existence of a strong dual. We are not aware of such an approach, and expect
that such formulations will fail to establish existence of interior points in the primal

feasible set, which is necessary for strong duality.



As already emphasized earlier, our identification of a strong dual implies that the
optimal mechanism admits a certificate of optimality, in the form of a dual witness,
for all settings of n and f. Hence, our duality framework can play the role of first-
order conditions certifying the optimality of single-dimensional mechanisms. Where
optimality of single-dimensional mechanisms can be certified by checking virtual welfare
maximization, optimality of multi-dimensional mechanisms is always certifiable by
providing dual solutions whose value matches the revenue of the mechanism, and such
dual solutions take a simple form: they are transportation maps between measures.

Using our framework, we can provide shorter proofs of optimality of known
mechanisms. As an illustrating example, we show in Section 5.1 how to use our
framework to establish the optimality of the mechanism for two i.i.d. uniform [0, 1]
items proposed by [MV06]. Then in Section 5.2, we provide a simple illustration of
the power of our framework, obtaining the optimal mechanism for two independent
uniform [4, 16] and uniform [4, 7] items, a setting where the results of [MV06, Pav11,
DDT13, GK14] fail to apply. The optimal mechanism has the somewhat unusual
structure shown in the diagram in Section 5, where types in Z are allocated nothing
(and pay nothing), types in W are allocated the grand bundle (at price 12), while
types in Y are allocated item 2 and get item 1 with probability 50% (at price 8).

Characterization of Optimal Mechanisms. Substantial effort in the literature
has been devoted to studying optimality of mechanisms with a simple structure
such as pricing mechanisms; see, e.g., [MV06] and [DDT13] for sufficient conditions
under which mechanisms that only price the grand bundle of all items are optimal.
Our second main result (presented as Theorem 3) obtains necessary and sufficient
conditions characterizing the optimality of arbitrary mechanisms with a finite menu
size. We proceed to describe our characterization result in more detail.

Suppose that we are given a feasible mechanism M whose set of possible allocations
is finite. We can then partition the type set into finitely many subsets (called regions)
Ri,..., Ry of types who enjoy the same price and allocation. The question is this:
for what type distributions is M optimal? Theorem 3 answers this question with a
sharp characterization result: M is optimal if and only if the measure p (derived from
the type distribution as described above) satisfies k stochastic dominance conditions,
one per region in the afore-defined partition. The type of stochastic dominance that u
restricted to region R; ought to satisfy depends on the allocation to types from R;,

namely which set of items are allocated with probability 1, 0, or non-0/1.



Theorem 3 is important in that it reduces checking the optimality of mechanisms
to checking standard stochastic dominance conditions between measures derived from
the type distribution f, which is a concrete and easier task than arguing optimality
against all possible mechanisms.

Theorem 3 is a corollary of our strong duality framework (Theorem 2), but requires
a sequence of technical results. One direction of our characterization result requires
turning the stochastic dominance conditions into dual solutions that can be plugged
into Theorem 2 to establish the optimality of a given mechanism. The other direction
requires showing that a dual solution certifying the optimality of a given mechanism
also implies that the stochastic dominance conditions of Theorem 3 must hold.

A particularly simple special case of our characterization result pertains to the
optimality of the grand-bundling mechanism. See Theorem 4. We show that the
mechanism offering the grand bundle at price p is optimal if and only if measure p
satisfies a pair of stochastic dominance conditions. In particular, if Z are the types
who cannot afford the grand bundle and W the types who can, then offering the grand
bundle for p is optimal if and only if the following conditions hold:

- li_|z, the negative part of u restricted to Z, stochastically dominates p|;, the

positive part of u restricted to Z, with respect to all convex increasing functions;
- polw stochastically dominates p_fy with respect to all concave increasing functions.

Already our characterization of grand-bundling optimality settles a long line of research
which only obtained sufficient conditions for the optimality of grand-bundling.

In turn, we illustrate the power of our characterization of grand-bundling optimality
with Theorems 5 and 6, two results that are interesting on their own right. Theorem 5
generalizes the corresponding result of [Pav1l] from two to an arbitrary number of
items. We show that, for any number of items n, there exists a large enough ¢ such
that the optimal mechanism for n i.i.d. uniform [c, ¢ + 1] items is a grand-bundling
mechanism. While maybe an intuitive claim, we do not see a direct way of proving
it. Instead, we utilize Theorem 4 and construct intricate couplings establishing the
stochastic dominance conditions required by the theorem. In view of Theorem 5, our
companion theorem, Theorem 6, seems even more surprising. We show that in the
same setting of n i.i.d. uniform [c, ¢ + 1] items, for any fixed ¢ it holds that, for all
sufficiently large n, the optimal mechanism is not (!) a grand-bundling mechanism.

See Section 6 for the proofs of these results.



Related Work. There is a rich literature on multi-item mechanism design pertaining
to the multiple good monopoly problem that we consider here. We refer the reader to
the surveys [RS03, MV07, FKM11] for a detailed description, focusing on the work
closest to ours.

Much work has focused on obtaining sufficient conditions for optimality of mech-
anisms. Hart and Nisan [HN14], Menicucci et al [MHJ15] and Haghpanah and
Hartline [HH15] provide sufficient conditions for the grand-bundling mechanism to be
optimal. Manelli and Vincent [MV06] provide conditions for the optimality of more
complex deterministic mechanisms and, similarly, [DDT13, GK14] provide sufficient
conditions for the optimality of general (possibly randomized) mechanisms. Finally,
Haghpanah and Hartline [HH15] provide an approach for reverse engineering sufficient
conditions for a simple mechanism to be optimal. These works on sufficient conditions
apply to limited settings of n and f. They typically proceed by relaxing some of the
truthfulness constraints and are therefore only applicable when the relaxed constraints
are not binding at the optimum.

In addition to sufficient conditions, a lot of work has focused on characterizing
properties of optimal mechanisms. Armstrong [Arm96] has shown that optimal
mechanisms always exclude a fraction of buyer types of low value from the mechanism.
Thanassoulis [Tha04], Briest et al [BCKW10] and Hart and Nisan [HN13] show that
randomization is necessary for optimal revenue extraction. In turn, Manelli and
Vincent [MV07] have shown that there exist type distributions for which optimal
mechanisms are arbitrarily complex. Hart and Reny provide an interesting example
where a product type distribution over two items stochastically dominates another,
yet the optimal revenue from the weaker distribution is higher [HR15]. Finally, some
literature [Arm99, HN14, BILW14, LY 13, CH13] has focused on the revenue guarantees
of simple mechanisms, e.g. bundling all items together or selling them separately.

Rochet and Choné [RC98] study a closely related setting, providing a character-
ization of the optimal mechanism for the multiple good monopoly problem where
the monopolist has a (strictly) convex cost for producing copies of the goods. With
strictly convex production costs, optimal mechanism design becomes a strictly concave
maximization problem, which allows the use of first-order conditions to characterize
optimal mechanisms. Our problem can be viewed as having a production cost that
is 0 for selling at most one unit of each good and infinity otherwise. While still convex,

our production function is not strictly convex and is discontinuous, making first-order



conditions less useful for characterizing optimal mechanisms. This motivates the use of
duality theory in our setting. From a technical standpoint, optimal mechanism design
necessitates the development of new tools in optimal transport theory [Vil08], extend-
ing Monge-Kantorovich duality to accommodate convexity constraints in the dual of
the transportation problem. In our setting, the dual of the transportation problem
corresponds to the mechanism design problem and these constraints correspond to
the requirement that the utility function of the buyer be convex, which is intimately
related to the truthfulness of the mechanism [Roc87]. In turn, accommodating the
convexity constraints in the mechanism design problem requires the introduction
of mean-preserving spreads of measures in its transportation dual, resembling the
“multi-dimensional sweeping” of Rochet and Choné.

Ultimately, our work relies on and develops further a fundamental connection of
optimal transportation to designing optimal mechanisms. See Ekeland’s notes on

Optimal Transportation [Ekel0] for more connections to mechanism design.

2 Revenue Maximization as Optimization Program

2.1 Setting up the Optimization Program

Our goal is to find the revenue-optimal mechanism M for selling n goods to a single
additive buyer. An additive buyer has a type x specifying his value for each good.
low high low high

i oLy i L

The type z is an element of a type space X = [[ [z |, where z
are non-negative real numbers. While the buyer knows his type with certainty, the
mechanism designer only knows the probability distribution over X from which x is
drawn. We assume that the distribution has a density f : X — R that is continuous
and differentiable with bounded derivatives.

Without loss of generality, by the revelation principle, we consider direct mech-
anisms. A (direct) mechanism consists of two functions: (i) an allocation function
P : X — [0,1]™ specifying the probabilities, for each possible type declaration of
the buyer, that the buyer will be allocated each good, and (ii) a price function
T : X — R specifying, for each declared type of the buyer, the price that he is charged.
When an additive buyer of type x declares himself to be of type 2’ € X, he receives
net expected utility = - P(z') — T (2').

We restrict our attention to mechanisms that are incentive compatible, meaning that

the buyer must have adequate incentives to reveal his values for the items truthfully,



and individually rational, meaning that the buyer has an incentive to participate in

the mechanism.

Definition 1. Mechanism M = (P,T) over type space X is incentive compatible
(IC) if and only if x - P(x) — T (x) >z - P(2') — T () for all x,2’ € X.

Definition 2. Mechanism M = (P, T) over type space X is individually rational
(IR) if and only if x - P(x) — T (x) >0 for all z € X.

When a buyer truthfully reports his type to a mechanism M = (P, T) (over type
space X), we denote by u : X — R the function that maps the buyer’s valuation
to the utility he receives by M. It follows by the definitions of P and T that
u(z) = x - P(x) — T(x). It is well-known (see [Roc87], [RCI8], and [MV06]), that
an IC and IR mechanism has a convex, nonnegative, nondecreasing, and 1-Lipschitz
utility function with respect to the ¢; norm and that any utility function satisfying
these properties is the utility function of an IC and IR mechanism with P(z) = Vu(x)
and T (z) = P(z) -z — u(x).!

We clarify that a function u is 1-Lipschitz with respect to the ¢; norm if u(z) —
u(y) < ||z —yl|; for all z,y € X. This is essentially equivalent to all partial derivatives
having magnitude at most 1 in each dimension.

We will formulate the mechanism design problem as an optimization problem over

feasible utility functions u. We first define the notation:

- U(X) is the set of all continuous, non-decreasing, and convex functions u : X — R.

- L1(X) is the set of all 1-Lipschitz with respect to the ¢; norm functions u : X — R.

In this notation, a mechanism M is IC and IR if and only if its utility function u
satisfies ©w > 0 and v € U(X) N L1(X). It follows that the optimal mechanism design

problem can be viewed as an optimization problem:

sup / Vu(z) -z — u(x)] f(x)dz.
uEM()Q(L)ZFE)EﬂX) X

Notice that for any utility v defining an IC and IR mechanism, the function
@(r) = u(z) —u(x") also defines a valid IC and IR mechanism since @ € U(X )N L (X)

1On the measure-0 set on which Vu is not defined, we can use an analogous expression for P by
choosing appropriate values of Vu from the subgradient of w.
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and u > 0. Moreover, u achieves at least as much revenue as u, and thus it suffices in
the above program to look only at feasible u with u(z'°%) = 0.

We claim that we can therefore remove the constraint « > 0 and equivalently focus

on solving
sup / [Vu(z) - — (u(z) — w(@""))]f(z)dz. (1)
weU(X)NLL(X) J x
Indeed, this objective function agrees with the prior one whenever u(z'V) = 0.

Furthermore, for any v € U(X) N £1(X), the function a(x) = u(r) — u(z'V) is
nonnegative and achieves the same objective value. Applying the divergence theorem

as in [MV06] we may rewrite the expression for expected revenue in (1) as follows:

[ 1¥uta) 5 = (wle) = a1 =
/3)( u($)f($)($ . ’ﬁ,)dx - / u(x)(Vf(g;) x4+ (n 4 1)f(l‘))dx + u(mlow) (2>

X

where 1 denotes the outer unit normal field to the boundary 0X. To simplify notation

we make the following definition.

Definition 3 (Transformed measure). The transformed measure of f is the (signed)

measure [i (supported within X ) given by the property that

p(A) é/ La(2) f () (2 - n)d —/X La(2)(Vf(2) - & + (n+ 1) f(2))do + La(2"") (3)

0X

for all measurable sets A.”

Interpretation of Transformed Measure: Given (2) and (3), the revenue of the
seller in Formulation (1) can be written as [, udu, which is a linear functional of u
with respect to the measure p. Hence, we will maintain the following intuition of

what measure p represents:

“Measure p quantifies the marginal change in revenue with respect to

marginal changes in the rent paid to subsets of buyer types.”

2Tt follows from boundedness of f’s partial derivatives that j is a Radon measure. Throughout
this paper, all “measures” we use will be Radon measures.



Moreover, our measure satisfies that pu(X) = [, 1du = 0. Indeed, if we substitute
u(z) = 1 to the left hand side of (2), we have that

/x[vu<x) -z = (u(r) — u(@'*)))f (z)de = 0.

Furthermore, we have |u|(X) < oo, since f, Vf and X are bounded.
Summarizing the above derivation, we obtain the following theorem.

Theorem 1 (Multi-Item Monopoly Problem). The problem of determining the optimal
I1C and IR mechanism for a single additive buyer whose values forn goods are distributed
according to the joint distribution f : X — R is equivalent to solving the optimization

problem

sup /X wdp (4)

weld(X)NL1(X)

where p is the transformed measure of f given in (3).

2.2 Example

Consider n independently distributed items, where the value of each item ¢ is drawn
uniformly from the bounded interval [a;, b;] with 0 < a; < b; < 0o. The support of the
joint distribution is the set X = [].[ai, bil.

For notational convenience, define v = [],(b; — a;), the volume of X. The joint
distribution of the items is given by the constant density function f taking value 1/v

throughout X. The transformed measure p of f is given by the relation

,u(A):]IA(al,...,an)+l/é)X]IA(x)(x-ﬁ)dx—n+1/XHA(x)dx

(% (%

for all measurable sets A. Therfore, by Theorem 1, the optimal revenue is equal to

SUDyer(X)N L1 (X) [ udp, where y is the sum of:
e A point mass of +1 at the point (aq,...,a,).
e A mass of —(n + 1) distributed uniformly throughout the region X.

e A mass of —i—% distributed uniformly on each surface {x € 0X : x; = b;}.

aq

e A mass of -3
i — Qg

distributed uniformly on each surface {z € 0X : z; = a;}.
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3 The Strong Mechanism Design Duality Theorem

Thus far, we have compactly formulated the problem facing the multi-item monopolist
as an optimization problem with respect to the buyer’s utility function; see Formu-
lation (4). Unfortunately, the problem is infinite dimensional and cannot be solved
directly. Moreover, the problem is not strictly convex so we cannot characterize its
optimum using first order conditions. This is an important point of departure in
comparison with the work of Rochet and Choné [RC98], where the strict convexity
of the cost function allowed first order conditions to drive the characterization. For
more discussion see Section 1.

In the absence of strict convexity, our approach is to use duality theory. We are
seeking to identify a minimization problem, called “the dual problem,” and which is

linked to Formulation (4), henceforth called “the primal problem,” as follows:

1. We want that the value of any solution to the dual problem is larger than the
revenue achieved by any solution to the primal problem. If a minimization

13

problem satisfies this property, it is called a “weak dual problem.”

2. Additionally, we want that the optimum of the dual problem matches the
optimum of the primal problem. A minimization problem satisfying this property
is called a “strong dual problem.” It is clear that a strong dual problem is also
a weak dual problem. This type of strong dual problem is what we will identify

in Theorem 2 of this section.

The importance of identifying a strong dual problem is the following. Given a
candidate optimal mechanism, we are guaranteed that a solution to the dual problem
with a matching objective value exists if and only if the candidate mechanism is indeed
optimal. Therefore, solutions to the dual problem constitute “certificates of optimality”
for solutions to the primal, and strong duality guarantees that such dual certificates
are always possible to find for optimal solutions to the primal. Accordingly, we will
be seeking solutions to our dual problem from Theorem 2 to obtain “certificates,
or witnesses, of optimality” for candidate optimal mechanisms. By this we mean
that we will be seeking solutions to the dual that prove (via duality theory) that a
candidate optimal mechanism is indeed optimal. Moreover, these dual solutions take
the form of optimal transportation maps between submeasures induced by measure p

of Definition 3. This tight connection between optimal mechanisms (primal solutions)

11



and optimal transportation maps (dual solutions) drives our characterization of optimal
mechanisms in Theorem 3, as well as the concrete examples we work out in Sections 5,
6.1 and 8. Moreover, by “reverse-engineering the duality theorem” we provide a
framework for identifying optimal mechanisms in Section 7.

Recent work has applied duality theory to identify optimal mechanisms in the
same setting as ours [MV06, DDT13, GK14], albeit this work is restricted in that they
only provide weak dual problems. These approaches remove constraints related to
truthfulness from the primal formulation, and identify weak dual formulations to such
relaxed primal formulations. As such, they provide no guarantee that they can identify
dual certificates of optimality for optimal mechanisms. Indeed, while these techniques
suffice in certain settings (namely when the constraints removed from the primal
happen not to be binding at the optimum), there are simple examples where they fail
to apply. Section 5.2 provides such a two-item example with uniformly distributed
values. In contrast to prior work, we achieve strong duality for the (unrelaxed) primal
formulation and our approach is always guaranteed to work.

In this section, we show how to pin down the right dual formulation for the problem
and prove strong duality. The proof of the result requires many analytical tools from
measure theory. We give a rough sketch of the proof in this section and postpone the

more technical details to the online appendix.

3.1 Measure-Theoretic Preliminaries

We start with some useful measure-theoretic notation:
- I'(X) and ' (X) denote the sets of signed and unsigned (Radon) measures on X.

- Given an unsigned measure v € I'; (X x X)), we denote by 71,72 the two marginals

of v, i.e. 11(A) =v(A x X) and 12(A) = v(X x A) for all measurable sets A C X.

- For a (signed) measure p and a measurable A C X, we define the restriction of p to

A, denoted p|4, by the property p|a(S) = u(ANS) for all measurable S.

- For a signed measure p, we will denote by p, i the positive and negative parts of
i, respectively. That is, p = puy — p—, where py and p_ provide mass to disjoint
subsets of X.

We will also be needing certain stochastic dominance properties, namely first- and

second-order stochastic dominance as well as the notion of convex dominance.
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Definition 4. We say that « first-order (respectively second-order) dominates 3 for
a,f € T'(X), denoted o =1 (8 (respectively o =5 [3), if for all non-decreasing continuous
(respectively non-decreasing concave) functions u: X — R, [uda > [udf.
Similarly, for vector random wvariables A and B with values in X, we say that
A =1 B (respectively A =5 B) if E[u(A)] > E[u(B)] for all non-decreasing continuous

(respectively non-decreasing concave) functions u: X — R.

Definition 5. We say that o convexly dominates 5 for o, 5 € I'(X), denoted a =i 5,
if for all (non-decreasing, convezx) functions u € U(X), [uda > [udf.

Similarly, for vector random wvariables A and B with values in X, we say that

A ¥ e B if E[u(A)] > Elu(B)] for all u € U(X).

Interpretation of Convex Dominance: For intuition, a measure a >, [ if we

can transform 3 to a by doing the following two operations:

1. sending (positive) mass to coordinatewise larger points: this makes the integral

J udp larger since u is non-decreasing.

2. spreading (positive) mass so that the mean is preserved: this makes the integral

J udp larger since u is convex.

The existence of a valid transformation using the above operations is equivalent
to convex dominance. This follows by Strassen’s theorem presented in the online

appendix.

3.2 Mechanism Design Duality

The main result of this paper is that the mechanism design problem, formulated as a

maximization problem in Theorem 1, has a strong dual problem, as follows:

Theorem 2 (Strong Duality Theorem). Let p € I'(X) be the transformed measure of
the probability density f according to Definition 3. Then

swp [ wdu=_int eyl (5)
weU(X)NL1(X) J X YEPH(XXX) Jxx x
’yl_’YQEC’UIM

and both the supremum and infimum are achieved. Moreover, the infimum is achieved

fOT’ some 7* such that P)/T(X) = VS(X) = ,u+<X)7 71k icvx Mot s and 7; jcvx M-
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Interpretation of the Strong Dual Problem: The dual problem of minimizing
J ll# = y|l1dy is an optimization problem that can be intuitively thought as a two
step process:

Step 1: Transform p into a new measure g/ with p/(X) = 0 such that p/ >0 4.
This step is similar to sweeping as defined in [RC98] where they transform the
original measure by mean-preserving spreads. However, here we are also allowed to
perform positive mass transfers to coordinatewise larger points.

Step 2: Find a joint measure v € I'y (X x X) with v = i/, , 72 = ¢ such that
[ llx = yll1dv(x,y) is minimized. This is an optimal mass transportation problem
where the cost of transporting a unit of mass from a point = to a point y is the ¢;
distance ||z — y||1, and we are asked for the cheapest method of transforming the
positive part of x4’ into the negative part of /. Transportation problems of this form
have been studied in the mathematical literature. See [Vil08§].

Overall, our goal in the dual problem is to match the positive part of u to the
negative part of u at a minimum cost where some operations come for free, namely
we can choose any u’ >, ¢ that is convenient to us, foreseeing that transporting

W, to p’ comes at a cost equal to the total ¢; distance that mass travels.

We remark that establishing that the right hand side of (5) is a weak dual for the
left hand side is easy. Proving strong duality is significantly more challenging, and
relies on non-trivial analytical tools such as the Fenchel-Rockafellar duality theorem.

We postpone that proof to the online appendix, and proceed to show weak duality.

Lemma 1 (Weak Duality). Let p € I'(X). Then

sup / udp < inf / x —y|l1dy.
weU(X)NLL(X) J X YELH(XXX) J xx x | |
'Yl_'Ythsz

PrOOF OF LEMMA 1: For any feasible u for the left-hand side and feasible ~ for the

right-hand side, we have

/Xudué/Xud(%—%)ZLXx(U(ﬁ)—U(y))dv(x,y) S/ |z —yllhidvy(z,y)

XxX

where the first inequality follows from ~; — 72 =y ¢ and the second inequality follows

from the 1-Lipschitz condition on w. 0

14



From the proof of Lemma 1, we note the following “complementary slackness”

conditions that a pair of optimal primal and dual solutions must satisfy.

Corollary 1. Let u* and v* be feasible for their respective problems above. Then
Jurdp = [ ||x = yll1dy* if and only if both of the following conditions hold:

1. [uwd(yy — ) = [u*dp.
2. u*(x) —u*(y) = ||z — yll1, v*(z,y)-almost surely.

PrOOF OF COROLLARY 1: The inequalities in the proof of Lemma 1 are tight precisely
when both conditions hold. U

Interpretation of the Complementary Slackness Conditions

Remark 1. Tt is useful to geometrically interpret Corollary 1:

Condition 1: We view 7] —v; (denote this by i) as a “shuffled” p. Stemming
from the p' =, p constraint, the shuffling of 1 into x4’ is obtained via any sequence
of the following operations: (1) Picking a positive point mass ¢, from p, and
sending it from point x to some other point y > x (coordinate-wise). The constraint
[u*dy' = [u*dp requires that u*(x) = u*(y). Recall that u* is non-decreasing, so
u*(z) = u*(z) for all z € [[;[x;,y;]. Thus, if y is strictly larger than z in coordinate
i, then (Vu*); = 0 at all points z “in between” z and y. The other operation we are
allowed, called a “mean-preserving spread,” is (2) picking a positive point mass ¢,
from ., splitting the point mass into several pieces, and sending these pieces to
multiple points while preserving the center of mass. The constraint [w*dy’ = [ u*du
requires that u* varies linearly between x and all points z that received a piece.

Condition 2: The second condition is more straightforward than the first.
We view v* as a “transport” map between its component measures 7 and ~;.
The condition states that if +* transports from location z to location y, then
u*(x) = u*(y) + ||z — y||1. If for some coordinate i, x; < y;, then ||z —y|l; < ||z —y|:
for z with z; = max(z;,y;). This leads to a contradiction since u*(z) — u*(y) <
u*(z) —u*(y) < ||z —yll1 < ||z — y|lr. Therefore, it must be the case that (1) x is
component-wise greater than or equal to y and (2) if z; > y; in coordinate 7, then
(Vu*); = 1 at all points “in between” z and y. That is, the mechanism allocates

item ¢ with probability 1 to all those types.
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By Lemma 1 and Corollary 1, if we can find a “tight pair” of u* and ~*, then
they are optimal for their respective problems. This is useful since constructing a
that satisfies the conditions of Corollary 1 serves as a certificate of optimality for a
mechanism. Theorem 2 shows that this approach always works: for any optimal u*

there always exists a v* satisfying the conditions of Corollary 1.

Remark 2. Tt is useful to discuss what in our dual formulation in the RHS of (5)
makes it a strong dual, comparing to the previous work [DDT13, GK14]. If we were to
tighten the v; — 2 >z @ constraint in our dual formulation to a first-order stochastic
dominance constraint, we essentially recover the duality framework of [DDT13, GK14].
Tightening the dual constraint, maintains the weak duality but creates a gap between
the optimal primal and dual values. In particular, the dual problem resulting from
tightening this constraint becomes a strong dual problem for a relaxed version of the

mechanism design problem in which the convexity constraint on u is dropped.

4 Single-Item Applications and Interpretation

Before considering multi-item settings, it is instructive to study the application of
our strong duality theorem to single-item settings. We seek to relate the task of
minimizing the transportation cost in the dual problem from Theorem 2 to the
structure of Myerson’s solution [Mye81].

Consider the task of selling a single item to a buyer whose value z for the item
is distributed according to a twice-differentiable regular distribution F' supported on
[z,2]. Since n = 1, if we were to apply our duality framework to this setting, we
would choose p according to (3) as follows:

z

WA =Ta(2) - (1 - f(2) 2) +1a(2) - (2) - 2 - / L) (f'(2) - = + 2f(2))d=

4

L) (1 2) 2+ L) S 2 [ L(2) (( - 1;(—F)”) f(z)>/dz

We can interpret the transportation problem of Theorem 2, defined in terms of u, as:

e The sub-population of buyers having the right-most type, z, in the support of

the distribution have an excess supply of f(z) - Z;

3We remind the reader that a differentiable distribution F' is regular when its Myerson virtual

value function ¢(z) = z — l}é()z) is increasing in its support, where f is the distribution density

function.
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e The sub-population of buyers with the left-most type, 2, in the support have an
excess supply of 1 — f(z2) - z;

e Finally, the sub-population of buyers at each other type, 2z, have a demand of

(55

One way to satisfy the above supply/demand requirements is to have every infinitesimal

buyer of type z push mass of z — 1}1(2()3) to its left. Since the fraction of buyers at z is
!/
f(2), the total amount of mass staying with them is then ((z — 1}£()Z)) f(z)) dz as

required. Notice, in particular, that buyers with positive virtual types will push mass
to their left, while buyers with negative virtual types will push mass to their right.

The afore-described transportation map is feasible for our transportation problem
as it satisfies all demand/supply constraints. We also claim that this solution is
optimal. To see this consider the mechanism that allocates the item to all buyers with
non-negative virtual type at a fixed price p*. The resulting utility function is of the
form max{z — p*,0}. We claim that this utility function satisfies the complementary
slackness conditions of Remark 1 with respect to the transportation map identified
above. Indeed, when z > p*, w is linear with u/(z) = 1 and mass is sent to the
left—which is allowed by Part 2 of the remark, while, when z < p*, u is 0 with
u'(z) = 0 and mass is sent to the right—allowed by Part 1(1) of the remark.

In conclusion, when F'is regular, the virtual values dictate exactly how to optimally
solve the optimal transportation problem of Theorem 2. Each infinitesimal buyer of
type z will push mass that equals its virtual value to its left. In particular, the optimal
transportation does not need to use mean-preserving spreads. Moreover, measure
can be interpreted as the “negative marginal normalized virtual value,” as it assigns
measure — <<z — %) f(z))ldz to the interval [z, z + dz], when z # z, Z.

When F' is not regular, the afore-described transportation map is not optimal due
to the non-monotonicity of the virtual values. In this case, we need to pre-process our
measure 4 via mean-preserving spreads, prior to the transport, and ironing dictates
how to do these mean-preserving spreads. In other words, ironing dictates how to

perform the sweeping of the type set prior to transport.
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5 Multi-Item Applications of Duality

We now give two examples of using Theorem 2 to prove optimality of mechanisms for

selling two uniformly distributed independent items.

5.1 Two Uniform [0, 1] Items

Using Theorem 2, we provide a short proof of optimality of the mechanism for two i.i.d.

uniform [0, 1] items proposed by [MV06] which we refer to as the MV-mechanism:

Example 1. The optimal IC and IR mechanism for selling two items whose values

are distributed uniformly and independently on the interval [0, 1] is the following menu:
e buy any single item for a price of %; or
. . 4—/2
e buy both items for a price of =5=.

Let Z be the set of types that receive no goods and pay 0 to the MV-mechanism.
Also, let A, B be the set of types that receive only goods 1 and 2 respectively and
W be the set of types that receive both goods. The sets A, B, Z, W are illustrated in
Figure 1 and separated by solid lines.

1 h ‘ yz
B l
2 p2 R Ps
| W
. Z 3
o V3l LN 1 P6 b7
3 :
| A
00 2—/2 % 1

Figure 1: The MV-mechanism for two i.i.d. uniform [0, 1] items.

Let us now try to prove that the MV mechanism is indeed optimal. As a first step,

we need to compute the transformed measure p of the uniform distribution on [0, 1]%.
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We have already computed p in Section 2.2. It has a point mass of +1 at (0,0), a mass
of —3 distributed uniformly over [0, 1]?, a mass of +1 distributed uniformly on the
top boundary of [0,1]?, and a mass of +1 distributed uniformly on the right boundary.
Notice that the total net mass is equal to 0 within each region Z, A, B, or W.

To prove optimality of the MV-mechanism, we will construct an optimal v* for the
dual program of Theorem 2 to match the positive mass p to the negative p_. Our v*
will be decomposed into v* = 7% + 44 + 8 + 4" and to ensure that vf — 73 =cve i,

we will show that

Z Z A A B B w w
Y1 — V2 tcvaz ,U’Z; Y1 T V2 tcvaz ,U’Ay Y1 — Ve tcvx ,U’B; Y1 T Ve tcvx ,U‘W

We will also show that the conditions of Corollary 1 hold for each of the measures vZ, v4,
7B, and 4" separately, namely [u*d(y{ —~5) = [qu*dp and u*(z) —u*(y) = [z —y[
hold y°-almost surely for S = Z, A, B, and W.

Construction of yZ: Since ji|z is a point-mass at (0,0) and p_|z is distributed
throughout a region which is coordinatewise greater than (0,0), we notice that
|z Zeve 0. We set 7% to be the zero measure, and the relation ’ylZ — ’yZZ =0 = cpw 1]z,

as well as the two necessary equalities from Corollary 1, are trivially satisfied.

Construction of v and ~”: In region A, y |4 is distributed on the right boundary
while pi_ |4 is distributed uniformly on the interior of A. We construct v by transport-
ing the positive mass pi4|4 to the left to match the negative mass p_|4. Notice that
this indeed matches completely the positive mass to the negative since pu(A) = 0 and
intuitively minimizes the ¢, transportation distance. To see that the two necessary
equalities from Corollary 1 are satisfied, notice that v{* = iy |4,74 = p_|a so the
first equality holds. The second inequality holds as we are transporting mass only
to the left and thus the measure 7* is concentrated on pairs (z,y) € A x A such
that 1 = x; > y; > % and xy = yo. Moreover, for all such pairs (x,y), we have that
u(z) —u(y) = (w1 — 2) — (y1 — 2) =21 — y1 = |lz — y|[1. The construction of ¥ is

similar.

Construction of vV We construct an explicit matching that only matches leftwards
and downwards without doing any prior mass shuffling. We match the positive mass
on the segment p;p4 to the negative mass on the rectangle p;psopsps by moving mass

downwards. We match the positive mass of the segment p3p; to the negative mass
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on the rectangle pspspgpr by moving mass leftwards. Finally, we match the positive
mass on the segment p3ps to the negative mass on the triangle popsps by moving mass
downwards and leftwards. Notice that all positive/negative mass in region W has been
accounted for, all of (u|w )+ has been matched to all of (u|y)- and all moves were

473\/5) - (yl T Y2 — 473\/5) =

down and to the left, establishing u(z) — u(y) = (v1 + 22 —
T+ 22—y — Y2 = [z —ylfi.

5.2 Two Uniform But Not Identical Items

We now present an example with two items whose values are distributed uniformly
and independently on the intervals [4, 16] and [4, 7]. We note that the distributions
are not identical, and thus the characterization of [Pav11] does not apply. In addition,
the relaxation-based duality framework of [DDT13, GK14] (see Remark 2) fails in
this example: if we were to relax the constraint that the utility function u be convex,
the “mechanism design program” would have a solution with greater revenue than is

actually possible.

Example 2. The optimal IC and IR mechanism for selling two items whose values
are distributed uniformly and independently on the intervals [4,16] and [4,7] is as

follows:
e [f the buyer’s declared type is in region Z, he receives no goods and pays nothing.

o [f the buyer’s declared type is in region Y, he pays a price of 8 and receives the

first good with probability 50% and the second good with probability 1.

e [f the buyer’s declared type is in region W, he gets both goods for a price of 12.

4 8 16

Figure 2: Partition of [4,16] x [4,7] into different regions by the optimal mechanism.
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The proof of optimality of our proposed mechanism works by constructing a
measure v = vZ +~Y +~+" separately in each region. The constructions of ¥V and v#
are similar to the previous example. The construction of ¥, however, is a little more
intricate as it requires an initial shuffling of the mass before computing the optimal

way to transport the resulting mass. The proof is presented in the online appendix.

5.3 Discussion

Our examples in this section serve to illustrate how to use our duality theorem
to verify the optimality of our proposed mechanisms, without explaining how we
identified these mechanisms. These mechanisms were in fact identified by “reverse-
engineering” the duality theorem. The next two sections provide tools for performing
this reverse-engineering. In particular, Section 6 provides a characterization of mech-
anism optimality in terms of stochastic dominance conditions satisfied in regions
partitioning the type space. Alleviating the need to reverse-engineer the duality
theorem, Section 7 prescribes a straightforward procedure for identifying optimal

mechanisms. We use this procedure to solve several examples in Section 8.

6 Characterizing Optimal Finite-Menu Mechanisms

To prove the optimality of our mechanisms in the examples of Section 5, we explicitly
constructed a measure vy separately for each subset of types enjoying the same allocation
in the optimal mechanism, establishing that the conditions of Corollary 1 are satisfied
for each such subset of types separately. In this section, we show that decomposing
the solution v of the optimal transportation dual of Theorem 2 into “regions” of types
enjoying the same allocation in the optimal solution u of the primal, and working
on these regions separately to establish the complementary slackness conditions of
Corollary 1 is guaranteed to work.

Even with this understanding of the structure of dual witnesses, it may still be
non-trivial work to identify a witness certifying the optimality of a given mechanism.
We thus develop a more usable framework for certifying the optimality of mechanisms,
which does not involve finding dual witnesses at all. In particular, we show in
Theorem 3 that a given mechanism M is optimal for some f if and only if appropriate
stochastic dominance conditions are satisfied by the restriction of the transformed
measure j of Definition 3 to each region of types enjoying the same allocation under

M. We thus provide conditions that are both necessary and sufficient for a given
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mechanism M to be optimal, a characterization result.
To describe our characterization, we define the intuitive notion a “menu” that a

certain mechanism offers.

Definition 6. The menu of a mechanism M = (P, T) is the set
Menup = {(p,t) : 3z € X, (p, 1) = (P(x), T(x))}.

Clearly, an IC mechanism allocates to every type x the option in the menu that maxi-
mizes that type’s utility. Figure 3 shows an example of a menu and the corresponding

partition of the type set into subsets of types that prefer each option in the menu.

100

(100%,100%), $100

(58%,93%), $60

(15%,85%), $37

(35%,74%), $33

(77%,70%), $54

(82%,71%), $59

(47%,50%), $24

(42%,25%), $12 (71%,19%), $27

(41%,23%), $11

(57%,18%), $18

(100%,5%), $40
(0%,0%), $0
(72%,5%), $26

0 100

Figure 3: Partition of the type set X = [0,100]? induced by some menu of lotteries.

The revenue of a mechanism with a finite menu-size comes from choices in the
menu that are bought with strictly positive probability. The menu might contain
options that are only bought with probability 0, but we can get another mechanism
that gives identical revenue by removing all those options. We call this the essential

form of a mechanism.

Definition 7. A mechanism M is in essential form if for all options (p,t) € Menup,
Pri[{z € X : (p,t) = (P(x), T(x))}] > 0.
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We will now show our main result of this section under the assumption that the
menu size is finite. We expect that our tools can be used to extend the results to the
case of infinite menu size with a more careful analysis. We stress that the point of
our result is not to provide sufficient conditions to certify optimality of mechanisms,
as in [MV06, DDT13, GK14], but to provide necessary and sufficient conditions. In
particular, we show that verifying optimality is equivalent to checking a collection of
measure-theoretic inequalities, and this applies to arbitrary mechanisms with a finite
menu-size. The proof of our result is intricate, requiring several technical lemmas,
so it is postponed to the online appendix. The most crucial component of the proof
establishes that the optimal dual solution v in Theorem 2 never convexly shuffles mass
across regions of types that enjoy different allocations. (I.e. to obtain ' =1 — 7o
from g we never need to move mass across different regions.) Similarly, we argue that
the optimal v never transports mass across regions.

Before formally stating our result, it is helpful to provide some intuition behind it.
Consider a region R corresponding to a menu choice (p,t) of an optimal mechanism
M. As we have already discussed, we can establish that the dual witness v, which
witnesses the optimality of M, does not transport mass between regions and, likewise,
the associated “convex shuffling” transforming p to /' = 7 — 72 doesn’t shuffle across
regions. Given this, our complementary slackness conditions of Corollary 1 imply then

that p4|g can be transformed to p_|g using the following (intra-region R) operations:
e spreading positive mass within R so that the mean is preserved

e sending (positive) mass from a point * € R to a coordinatewise larger point
y € R if for all coordinates where y; > z; we have that the corresponding

probability of the menu choice satisfies p; = 0

e sending (positive) mass from a point x € R to a coordinatewise smaller point

y € R if for all coordinates where y; < x; we have that p; = 1

Our characterization result involves stochastic dominance conditions that are
slightly more general than the standard notions of first, second and convex dominance.

We need the following definition, which extends the notion of convex dominance.

Definition 8. We say that a function v : X — R is v-monotone for a vector
v € {—1,0,41}" if it is non-decreasing in all coordinates i for which v; = 1 and

non-increasing in all coordinates v for which v; = —1.
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A measure o convexly dominates a measure § with respect to a wvector v €

{—=1,0,+1}", denoted o = cpuw) B, if for all convex U-monotone functions u € U(X):

/uda > /udﬁ.

Similarly, for vector random wvariables A and B with values in X, we say that
A > cvuey) B if E[u(A)] > E[u(B)] for all convex v-monotone functions v € U(X).

The definition of convex dominance presented earlier coincides with convex domi-
nance with respect to the vector 1. Moreover, convex dominance with respect to the
vector —1 is related to second-order stochastic dominance as follows:

o > (_T)ﬂ@BEQQ.

—CVX

Measures satisfying the dominance condition of Definition 8 must have equal mass.

Proposition 1. Fiz two measures a, f € T'(X) and a vector v € {—1,0,1}". If it
holds that o = coaw) B, then o(X) = B(X).

We are now ready to describe our main characterization theorem. Our character-
ization, stated below as Theorem 3 and proven in the online appendix, is given in

terms of the conditions of Definition 9.

Definition 9 (Optimal Menu Conditions). A mechanism M satisfies the optimal

menu conditions with respect to u if for all menu choices (p,t) € Menuy, we have

Pt |R Seva(@) H—|R

where R={x € X : (P(x),T (z)) = (p,t)} is the subset of types that receive (p,t) and
U is the vector whose i-th coordinate v; takes value 1 if p; =0, value —1 if p; =1 or
value 0 if p; € (0,1).

Theorem 3 (Optimal Menu Theorem). Let p be the transformed measure of a
probability density f as per Definition 5. Then a mechanism M with finite menu size
18 an optimal IC and IR mechanism for a single additive buyer whose values for n
goods are distributed according to the joint distribution f if and only if its essential

form satisfies the optimal menu conditions with respect to .
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Interpretation of the Optimal Menu Conditions: A simple interpretation of
the optimal menu conditions that Theorem 3 claims are necessary and sufficient
for the optimality of mechanisms is this. Take some region R of the type set X
corresponding to the types that are allocated a specific menu choice (p,t) by optimal
mechanism M. Let us consider the revenue [ R U dp extracted by M from the types
in region R. Is it possible to extract more revenue from these types? We claim
that the optimal menu condition for region R guarantees that no mechanism can
possibly extract more from the types in region R. Indeed, consider any utility
function u induced by some other mechanism. The revenue extracted by this other
mechanism in region R is [,udp = [pu*dp + [(u — u*)dp < [pu*dp. That
il r(u—u*)dpu <0 follows directly from the optimal menu condition for region R.
Indeed, since u*(x) = p-x —t in region R, it follows that, whatever choice of u we
made, u — u* is a convex v-monotone function in region R, where v is the vector
defined by p as per Definition 9. Our condition in region R reads u|g Sy U
hence [,(u—u*)dp < 0. Our line of argument implies the sufficiency of the optimal
menu conditions, as they imply that for each region separately no mechanism can
beat the revenue extracted by M. The more surprising part (and harder to prove) is
that the conditions are also necessary, implying that optimal mechanisms are locally

optimal for every region R of types that they allocate the same menu choice to.

A particularly simple special case of our characterization result, pertains to the
optimality of the grand-bundling mechanism. Theorem 3 implies that the mechanism
that offers the grand bundle at price p is optimal if and only if the transformed
measure /4 satisfies a pair of stochastic dominance conditions. In particular, we obtain

the following theorem:

Theorem 4 (Grand Bundling Optimality). For a single additive buyer whose values
for n goods are distributed according to the joint distribution f, the mechanism that
only offers the bundle of all items at price p is optimal if and only if the transformed
measure [ of f satisfies ply =2 0 =y 1|z, where W is the subset of types that can
afford the grand bundle at price p, and Z the subset of types who cannot.

Next, we explore implications of our characterization of grand bundling optimality.
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6.1 Example Applications of Grand Bundling Optimality

We now present an example application of our characterization result to determine
the optimality of mechanisms that make a take-it-or-leave-it offer of the grand bundle
of all items at some price. Our result applies to a setting with arbitrarily many items,
which is relatively rare in the literature. More specifically, we consider a setting with
n iid goods whose values are uniformly distributed on [c, ¢ + 1]. Tt is easy to see that
the ratio of the revenue achievable by grand bundling to the social welfare goes to 1
when either n or ¢ goes to infinity.* This implies that grand-bundling is optimal or
close to optimal for large values of n and c. Indeed, the following theorem shows that,

for every n, grand bundling is the optimal mechanism for large values of c.

Theorem 5. For any integer n > 0 there exists a ¢y such that for all ¢ > ¢y, the
optimal mechanism for selling n iid goods whose values are uniform on [c,c+ 1] is a

take-it-or-leave-it offer for the grand bundle.

Remark 3. [Pavll] proved the above result for two items, and explicitly solved for
co =~ 0.077. In our proof, for simplicity of analysis, we do not attempt to exactly

compute ¢y as a function of n.

Our proof of Theorem 5 uses the following lemma, which enables us to appropriately
match regions on the surface of a hypercube. The proof of this lemma and of Theorem 5

appears in the online appendix.
Lemma 2. Forn > 2 and p > 1, define the (n — 1)-dimensional subsets of [0, 1]":

p—1 1/(n—1)
A= ax:l=x,>09>---> 12, andxngl—(—)
p

B={y:y1 > >y,=0}.
There exists a continuous bijective map ¢ : A — B such that
e [Forallx € A, x is componentwise greater than or equal to o(x)

o For subsets S C A which are measurable under the (n — 1)-dimensional surface
Lebesgque measure v(-), it holds that p - v(S) = v(@(9)).

4This follows by setting a price for the grand-bundle equal to (¢ + %)n — v/nlogen and noting
that a straightforward application of Hoeffding’s inequality gives that the bundle is accepted with
probability close to 1.
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n— 1/(n—1)
o Foralle >0, if pr(z) <€ thenx, >1— <61+—1> '

+
A

4

Figure 4: The regions of Lemma 2 for the case n = 3.

The main difficulty in proving Theorem 5 is verifying the necessary stochastic
dominance relations above the grand bundling hyperplane. Our proof appropriately
partitions this part of the hypercube into 2(n! + 1) regions and uses Lemma 2 to show
a desired stochastic dominance relation holds for an appropriate pairing of regions.
The proof of Theorem 5 is in the online appendix.

We now consider what happens when n becomes large while ¢ remains fixed. In
this case, in contrast to the previous result, we show using our strong duality theorem

that grand bundling is never the optimal mechanism for sufficiently large values of n.

Theorem 6. For any ¢ > 0 there exists an integer ng such that for all n > ng, the
optimal mechanism for selling n iid goods whose values are uniform on [c,c + 1] is

not a take-it-or-leave-it offer for the grand bundle.

Proof. Given c, let n be large enough so that

n-+1 nc

< 1.
n! * (n—1)!

To prove the theorem, we will assume that an optimal grand bundling price p exists
and reach a contradiction.

As shown in Section 2.2, under the transformed measure p the hypercube has mass
—(n + 1) in the interior, +1 on the origin, ¢ + 1 on every positive surface x; = ¢ + 1,

and —c on every negative surface x; = c.
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According to Theorem 3, for grand bundling at price p to be optimal it must hold
that ju|z, =<cos 0 for the region Z, = {x : ||z||; < p}. If p > nc+ 1 this could not
happen, since for the function 1,,—..1(z) (which is increasing and convex in [¢, ¢ + 1]™)
we have that pr Lyycer1dp = w(Z,N{xy = c+1}) = pa(Z,N{z1 =c+1}) >0
which violates the pi|z, <cve 0 condition.

To complete the proof, we now consider the case that p < nc+ 1 and will derive
a contradiction. For the necessary condition p|z, =<ce 0 to hold, it must be that
w(Z,) = 0. Since p < nc + 1, none of the positive outer surfaces of the cube have
nontrivial intersection with Z,, so all the positive mass in Z, is located at the origin.
Therefore, p1(Z,) = 1 which means that y_(Z,) = 1 as well. Moreover, since
p<nc+1=2Z,C Z,1, we also have that y_(Z,.+1) > pn_(2,) = 1.

To reach a contradiction, we will show that pu_(Z,..1) < 1. We observe that
we can compute p_(Zye41) directly by summing the n-dimensional volume of the
negative interior with the (n — 1)-dimensional volumes of each of the n negative

surfaces enclosed in Z,.,1.” The first is equal to:

(n+1) x Vol[{z € (c,c+1)" : ||z][i <nc+1}] =

+1
(n+1) x Vol[{z € (0,1)" : ||z]; < 1}] = (nn' )
while the latter is equal to:
nxcxVol[{z € (c,e+1)""t||z]i +c <nc+1}] =
nx e x Vol [{z e (0,1)" " : ||zl < 1}] = ﬁ
Therefore, we get that 1 < u_(Zye41) = % + gy which is a contradiction since
we chose n to be sufficiently large to make this quantity less than 1. O]

5The geometric intuition of this step of the argument is that, for large enough n, the fraction of
the n-dimensional hypercube [0, 1]™ which lies below the diagonal ||z|| = 1 goes to zero, and similarly
the fraction of (n — 1)-dimensional surface area on the boundaries which lies below the diagonal also
goes to zero as n gets large.
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7 Constructing Optimal Mechanisms

7.1 Preliminaries

The results of the previous section characterize optimal mechanisms and give us the
tools to check if a mechanism is optimal. In this section, we show how to use the
optimal menu conditions we developed to identify candidate mechanisms. In particular,
Theorem 3 implies that (in the finite menu case) to find an optimal mechanism we need
to identify a set of choices for the menu, such that for every region R that corresponds
to a menu outcome it holds that jiy|r =coaw) #—|r for the appropriate vector ¢. This
implies that u, (R) = u_(R), so at the very least the total positive and the total
negative mass in each region need to be equal. This property immediately helps us
exclude a large class of mechanisms and guides us to identify potential candidates. We
note that in this section we will develop techniques which apply not just to finite-menu
mechanisms but to mechanisms with infinite menus as well.

We will restrict ourselves to a particularly useful class of mechanisms defined
completely by the set of types that are excluded from the mechanism, i.e. they receive
no items and pay nothing. We call this set of types the exclusion set of a mechanism.
The exclusion set gives rise to a mechanism where the utility of a buyer is equal to
the ¢; distance between the buyer’s type and the closest point in the exclusion set.
All known instances of optimal mechanisms for independently distributed items fall

under this category. We proceed to define these concepts formally.

Definition 10 (Exclusion Set). Let X =[]/, [z, 2]""]. An exclusion set Z of X

is a convex, compact, and decreasing® subset of X with nonempty interior.

Definition 11 (Mechanism of an Exclusion Set). Every exclusion set Z of X induces

a mechanism whose utility function uy : X — R is defined by:
uz(x) = min [z — ;.

Note that, since the exclusion set Z is closed, for any z € X there exists a z € Z
such that uz(z) = ||z — z||;. Moreover, we show below that any such utility function

uy satisfies the constraints of the mechanism design problem. That is, the mechanism

6A decreasing subset Z C X satisfies the property that for all a,b € X such that a is component-
wise less than or equal to b, if b € Z then a € Z as well.
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corresponding to uy is IC and IR. The proof of the following claim is straightforward

casework and appears in the online appendix.

Claim 1. Let Z be an exclusion set of X. Then uy is non-negative, non-decreasing,
convex, and has Lipschitz constant (with respect to the {1 norm) at most 1. In
particular, uz is the utility function of an incentive compatible and individually

rational mechanism.

7.2 Constructing Optimal Mechanisms for 2 Items

To provide sufficient conditions for uyz to be optimal for the case of 2 items, we define
the concept of a canonical partition. A canonical partition divides X into regions

such that the mechanism’s allocation function within each region has a similar form.

Y

Roughly, the canonical partition separates X based on which direction (either “down,’
“left,” or “diagonally”) one must travel to reach the closest point in Z. While the

definition is involved, the geometric picture of Figure 5 is straightforward.

Definition 12 (Critical price, Critical point, Outer boundary functions). Let Z be
an exclusion set of X. Denote by P the mazimum value P = max{z +y: (z,y) € Z},

we call P the critical price. We now define the critical point (Zcpi, Yerit), such that
Teg =min{x : (x, P —x) € Z} and Yoy = min{y : (P —y,y) € Z}
We define the outer boundary functions of Z to be the functions si, sy given by
s1(z) = max{y : (z,y) € Z} and s2(y) = max{x : (x,y) € Z},

with domain [0,z cy| and [0, yer] Tespectively.

Definition 13 (Canonical partition). Let Z be an exclusion set of X with critical
Point (X ity Yerie) as in Definition 12. We define the canonical partition of X induced
by Z to be the partition of X into Z U AU BUW, where

A={(z,y) e X 1z <zuu}\Z; B={(z,y) € X 1y <yea}\Z; W=X\(ZUAUB),

as shown in Figure 5.

Note that the outer boundary functions si, so of an exclusion set Z are concave and

thus are differentiable almost everywhere on [0, ¢;] and have non-increasing derivatives.
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Figure 5: The canonical partition

We now restate the utility function uy of a mechanism with exclusion set Z in

terms of a canonical partition.

Claim 2. Let Z be an exclusion set of X with outer boundary functions si,ss and
critical price P, and let Z U AU B UW be its canonical partition. Then for all

(v1,v9) € X, the utility function uy of the mechanism with exclusion set Z is given by:

;

0 ’I,f V1, Ug ISV

Vg — 31(U1) Zf U1, U2
UZ(UDUQ) =

(
(

v1 — Sa(va) if (v1, 09
(

\U1+U2—P Zf V1, U2

Proof. The proof is fairly straightforward casework. We prove one of the cases here,
and the remaining cases are similar.

Pick any v = (v1,v2) € A. We will show that the closest z € Z is the point
2* = (v1,51(v1)). Pick 2/ = (21,2}) € Z such that uz(v) = ||[v — 2’[|1. It must be the
case that z] < vy, since otherwise (vq, z5) would be in Z (as Z is decreasing) and
strictly closer to v.

We now have that [|v — 2|1 > ||v|li — [|Z'[li = [Jv]|1 — maxgep,v)(® + s1(2)). Since
the less restricted maximization problem, max,cjoz,,(z + s1(¢)) is maximized at
Zerig and the function (x + s;(x)) is concave, the maximum of the more constrained
version is achieved at x = v;. Thus, we have that, ||[v — 2/[|; > ||v|1 — v1 — s1(v1) =

ve — s1(v1) = |lv — 2*||x. O
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We now describe sufficient conditions under which uy is optimal.

Definition 14 (Well-formed canonical partition). Let Z U AUBUW be a canonical
partition of X induced by exclusion set Z and let p be a signed Radon measure on X
such that (X) = 0. We say that the canonical partition is well-formed with respect

to p if the following conditions are satisfied:
1. p|lz Zeve 0 and plyy =2 0, and
2. forallve X and all e > 0:

o /|4 ([vr,v1 + €] X [v2,00)) > 0, with equality whenever vy =0

o /|5 ([v1,00) X [v2,v9 + €]) > 0, with equality whenever vy =0

We point out the similarities between a well-formed canonical partition and the
sufficient conditions for menu optimality of Theorem 3. Condition 1 gives exactly the
stochastic dominance conditions that need to hold in regions Z and WW. We interpret
Condition 2 as saying that u|4 (resp. p|g) allows for the positive mass in any vertical
(resp. horizontal) “strip” to be matched to the negative mass in the strip by only
transporting “downwards” (resp. “leftwards”). These conditions, guarantee (single-
dimensional) first order dominance of the measures along each strip which is stronger
requirement than the convex dominance conditions of Theorem 3. In practice, when g
is given by a density function, we verify these conditions by analyzing the integral
of the density function along appropriate vertical or horizontal lines. Even though
Theorem 3 applies only for mechanisms with finite menus, we prove in Theorem 7
that a mechanism induced by an exclusion set is optimal for a 2-item instance if
the canonical partition of its exclusion set is well-formed. Refer back to Figure 5 to

visualize such a mechanism.

Theorem 7. Let u be the transformed measure of a probability density function f.
If there exists an exclusion set Z inducing a canonical partition Z U AU B U W
of X that is well-formed with respect to u, then the optimal IC and IR mechanism
for a single additive buyer whose values for two goods are distributed according to
the joint distribution f is the mechanism induced by exclusion set Z. In particular,
the mechanism uses the following allocation and price for a buyer with reported type

(x,y) € X:

o if (x,y) € Z, the buyer receives no goods and is charged 0;

32



o if (z,y) € A, the buyer receives item 1 with probability —s\(x), item 2 with
probability 1, and is charged s1(z) — xs)(x);

o if (x,y) € B, the buyer receives item 2 with probability —sh(y), item 1 with
probability 1, and is charged ss(y) — ysh(y);

o if (z,y) € W, the buyer receives both goods with probability 1 and is charged P;
where sy, s9 are the boundary functions and P is the critical price as in Definition 12.

Proof. We will show that uz maximizes sup,ey(x)nc,(x) Jx dp- By Corollary 1, it
suffices to provide a v € I' (X x X)) such that v1 =2 = e ft, [uzd(y1—72) = [ uzdp,
and uz(x) —uz(y) = ||x — y||1 holds vy-almost surely. The v we construct will never

transport mass between regions. That is, ¥ = 77 + Y + Y4 + 75 where’
e vz = 0. We notice that (yz)1 — (7z)2 = 0 =z 1|2

e 7y is constructed such that (yw)1 — (Yw)2 =z 1l and the component-wise
inequality x > y holds vy (x,y) almost surely.® As in our proof of Theorem 3,
the existence of such a 7, is guaranteed by Strassen’s theorem for second order

dominance (presented in the appendix).

o 4 € I'y (A x A) will be constructed to have respective marginals |4 and
f—|a, and so that, v4(z,y) almost surely, it holds that z; = y; and xs > ys.
Thus, (y4)1 — (Y4)2 = p|a, and 4 sends positive mass “downwards.”? We
claim that such a map can indeed be constructed, by noticing that Property 2 of
Definition 14 guarantees that, restricted to any vertical strip inside A, p, first-
order stochastically dominates p_.'" Hence, Strassen’s theorem for first-order
dominance guarantees that restricted to that strip p, can be coupled with p_

so that, with probability 1, mass is only moved downwards.

Measure 74 satisfies x1 = y1, y4(x, y) almost surely, and hence also

uz(r) —uz(y) = (v2 — s(r1)) — (y2 — s(y1)) = 2 — 2 = [[z — yl1.

"We chose this notation for simplicity, where vz € T, (Z x Z), yw € T (W x W), and so on.

8 As in Example 2 and as discussed in Remark 1, we aim for )y to transport “downwards and
leftwards” since both items are allocated with probability 1 in W.

90nce again, the intuition for this construction follows Remark 1.

0Indeed, as € — 0, Property 2 states exactly the one-dimensional equivalent condition for first-order
stochastic dominance in terms of cumulative density functions.
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7

e 5 € I' (BxB) is constructed analogously to 4, except sending mass “leftwards.

That is, yg(z,y) almost-surely, the relationships z; > y; and x5 = yo hold.

It follows by our construction that v = vz + 1w + 4 + 75 satisfies all necessary
properties to certify optimality of uy. n

8 Applying Theorem 7 to find optimal mechanisms

In this section, we provide example applications of Theorem 7. A technical difficulty
is verifying the stochastic dominance relation p|y =5 0 required to apply the theorem.
In our examples, we will have the stronger condition ulyy =; 0, which is easier to
verify, yet still imposes technical difficulties. In Section 8.1, we present a useful tool,
Lemma 3, for verifying first-order stochastic dominance. In Section 8.2 we then provide

example applications of Theorem 7 and Lemma 3 to solve for optimal mechanisms.

8.1 Verifying First-Order Stochastic Dominance

A useful tool for verifying first order dominance between measures is the following.'!

Lemma 3. Let C = [p1, q1) X [p2,q2) where q1 and qa are possibly infinite and let R be
a decreasing nonempty subset of C. Consider two measures k, A € I'y(C) with bounded

integrable density functions g, h : C — R respectively that satisfy the conditions:
e g(z,y) = h(z,y) =0 for all (z,y) € R.

o [.g(z,y)dedy = [, h(zx,y)drdy.

e For any basis vector e; € {e; = (1,0),ea = (0,1)} and any point z € R:
qi—%i
/ g(z+7e;) — h(z+ 71e;)dr < 0.
0

o There exist non-negative functions a : [p1,q1) — Rsg and B : [pa2, ¢2) — R,
and an increasing function n: C — R such that for all (x,y) € C\ R:

g(z,y) — h(z,y) = a(x) - B(y) - n(z,y)

Then k =1 A.

"The lemma also appeared as Theorem 7.4 of [DDT13] without a proof. We provide a detailed
proof in the online appendix.
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Lemma 3 provides a sufficient condition for a measure to stochastically dominate
another in the first order. Its proof is given in the online appendix and is an application
of a claim which states that an equivalent condition for first-order stochastic dominance
is that one measure has more mass than the other on all sets that are unions of finitely
many “increasing boxes.” When the conditions of Lemma 3 are satisfied, we can
induct on the number of boxes by removing one box at a time. We note that Lemma 3

is applicable even to distributions with unbounded support.

Interpreting the Conditions of Lemma 3: Lemma 3 is applicable whenever two
density functions, g and h, are nonzero on some set C \ R, where R is a decreasing
subset of some two-dimensional box C. This setting is motivated by Figure 5 and
Theorem 7. Recall that, in order to apply Theorem 7, we need to check a second
order stochastic dominance condition in region W, namely p|yy =2 0.

While Theorem 7 demands checking a second order stochastic dominance
condition, an easier and sufficient goal is to check first order stochastic domi-
nance, namely ulyy =; 0. To do this, we can readily use Lemma 3, by taking
C = [Tait, ) X [Yerit, 00), R =CN Z, and g, h the densities corresponding to mea-
sures /iy |y and p_|yw. The way region W is defined in Theorem 7 guarantees that
the two measures have equal mass, so the first two conditions of the lemma will
be satisfied automatically. For the third condition, we need to verify that, if we
integrate g — h along either a vertical or a horizontal line outwards starting from any
point in R, the result is non-positive. The last condition of Lemma 3 requires that
the density function of the measure pulyy), i.e. g — h, have an appropriate form. If
the values of the buyer for the two items are independently distributed according to

distributions with densities f; and f;, then the density of measure p in the interior

according to Equation 3 can be written as — fi(z) f2(y) (% + J;é;—é))y + 3). The
fi(@)z (Y)Y

last condition of the lemma is thus satisfied if the functions

s
h@ and ) are

decreasing, a condition that is easy to verify.

8.2 Examples

We apply Theorem 7 to obtain optimal mechanisms in several two-item settings.
In Section 8.2.1, we consider two independent items distributed according to beta
distributions. We find the optimal mechanism, showing that it actually offers an
uncountably infinite menu of lotteries. We conclude with Section 8.2.2 where we

discuss extensions of Theorem 7 to distributions with infinite support, providing the
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optimal mechanism for two arbitrary independent exponential items, as well as the

optimal mechanism for an instance with two independent power-law items.
8.2.1 An Optimal Mechanism with Infinite Menu Size: Two Beta Items

In this section, we will use Theorem 7 to calculate the optimal mechanism for two items
distributed according to Beta distributions. In doing so we illustrate a general approach
for finding closed-form descriptions of optimal mechanisms via the following steps: (i)
definition of the sets Siop and Syignt, (1i) computation of a critical price p*, (iii)
definition of a canonical partition in terms of (i) and (ii), and (iv) application
of Theorem 7. Our approach succeeds in pinning down optimal mechanisms in all
examples considered in Sections 8.2.1—8.2.2, and we expect it to be broadly applicable.
Finally, it is noteworthy that the optimal mechanism for the setting studied in this
section offers the buyer a menu of uncountably infinitely many lotteries to choose from.
Using our approach we can nevertheless compute and succinctly describe the optimal
mechanism. We also note in Remark 4 that our identified mechanism is essentially
unique, hence the uncountability of the menu is inevitable.

Consider two items whose values are distributed independently according to the
distributions Beta(aq,b;) and Beta(as, by), respectively. That is, the distributions are

given by to the following two density functions on [0, 1]:

1

)bQ—l.
B(al, bl)

fi(x) = - fyly) = 1y

B(U,Q, bg

To find the optimal mechanism for our example setting, we first compute the measure
4 induced by f. Notice that

V(o) 2:9) = 37(0) = =) 2 — @22 30 )
= (a1 =~ DA foly) + (0 = D7 i) ly)
~ (@ = Dfi(@) foly) + (b = )7~ R f(0) = 3 () ()

b1—1+bQ—1

— A ) (55 + 22

+(1—a1—b1—a2—b2))

where the last equality used the identity *- = ﬁ — 1. We also observe that
fi(z)x =0 whenever = 0 or z = 1 (as long as b; > 1), and an analogous property

holds for y. Thus, the transformed measure y is comprised of:
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e a point mass of +1 at the origin; and
e mass distributed on [0, 1]* according to the density function

bp—1 by—1
1 L0
11—z 1—y

fi(@) f2(y) ( +(1—a1—b1—a2—b2)) :

Note that in the case b; = 1, our analysis still holds, except there is also positive mass

on the boundary z; = 1.

Deriving the Optimal Mechanism for a Concrete Setting of Parameters.
We now analyze a concrete example of two independent Beta distributed items where
a1 = ap = 1 and by = by = 2. That is, we consider two items whose values are

distributed independently according to the following two density functions on [0, 1]:

fl@)=20-2);  fly)=2(1-y)
As discussed above, the transformed measure p comprises:
e a point mass of +1 at the origin; and

e mass distributed on [0, 1]*> according to the density function

(@) faly) (1% L 5) |

Note that the density of y is positive on P = {( €(0,1)*: =+ = 5> 5} U {0}

y)

and non-positive on N' = {(x,y) 0,1)2\ {0} : —+ ﬁ < 5}, and that N U{0}
is a decreasing set.

Step (i). We first attempt to identify candidate functions for s; and s, that will lead to
a well-formed canonical partition. We do this by defining two sets Siop, Siignt C [0, 1)%
We require that (z,y) € Sy iff fyl p(x,t)dt = 0. That is, starting from any point
z € Siop and integrating the density of 1 “upwards” from ¢t = y to ¢t = 1 yields zero.
Since AU {0} is a decreasing set, it follows that Si,, C A and that integrating u
upwards starting from any point above Sy, yields a positive integral. Similarly, we
say that (z,y) € Syignt iff fxl u(t,y)dt = 0, noting that Syigns C N. Siop and Siigne are

shown in Figure 6.
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2—3z
4—b5x”

We analytically compute that (z,y) € Sip if and only if y = Similarly,

(2,9) € Sy if and only if z = 2222,

In particular, for any = < 2/3 there exists a y such that (z,y) € Siop, and there

does not exist such a y if x > 2/3. Furthermore, it is easy to verify by computing the

02 2-3x _ 20
0z% 4—5x —  (4-5z

below Syign: are strictly convex.

second derivative of B < 0 that the region below S, and the region

Step (ii). We now need to calculate the critical point and the critical price. To do
this we set the critical price p* ~ .5535 as the intercept of the 45° line in Figure 6
which causes pu(Z) = 0 for the set Z C [0, 1]* lying below Siop, Siight and the 45°
line. We can also compute the critical point (Zeit, Yerit) & (.0618,.0618) by finding the
intersection of the critical price line with the sets Siop, and Shottom. Moreover, by the

definition of the sets Siop and Spottom, We know that the candidate boundary functions

23z 2-3y
4—bx 4-5y’

are s1(z) = and so(y) = with domain [0, Zeit) and [0, Yerit) respectively.

Step (iii). We can now compute the canonical partition and decompose [0, 1]? into

the following regions:
A={(z,y): 2 € [0,2a1) and y € [s1(x),1]}; B ={(z,y) : y € [0, Yerit) and x € [s2(y), 1]}

W = {(2,9) € Terits 1] X [Yerity 1] : 2 +y > p*}; Z=1[0,1>\ WU.AUB)

as illustrated in Figure 6.

Step (iv). We claim that the canonical partition Z U AU B U W is well-formed
with respect to . Condition 2 is satisfied by construction of Sy, and Sighe and the
corresponding discussion in Step (i). To check for Condition 1, note that given the
definition of p*, it holds that for all regions R = Z, A, B and W, we have u(R) = 0.
Recall that Siop, Sright € N and, since N'U {6} is a decreasing set, i has negative
density along these curves and all points below either curve, other than at the origin.
Hence, p_|z =1 pi|z which implies that pu|z; <., 0. Hence, the only non-trivial
condition of Definition 14 that we need to verify is p|y =2 0. In fact, we can apply
Lemma 3 to conclude the stronger dominance relation plyy =1 0. See the online
appendix. Having verified all conditions of Definition 14 we apply Theorem 7 to

conclude the following.

Example 3. The optimal mechanism for selling two independent items whose values
are distributed according to fi(x) = 2(1 — ) and fo(y) = 2(1 — y) has the following
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Figure 6: The well-formed canonical partition for f(z) = 2(1—=x) and fa(y) = 2(1—y).

outcome for a buyer of type (x,y):
o [f(z,y) € Z, the buyer receives no goods and is charged 0.

o If (z,y) € A, the buyer receives item 1 with probability —s(z)
with probability 1, and is charged si(x) — xs)(z) =

o [f (z,y) € B, the buyer receives item 2 with probability —sb(y)
with probability 1, and is charged ss(y) — ysh(y) =

= ﬁ, item 2

2—3x 2x
4—5x + (4—5x)2 "

ﬁ7 item 1

23y | 2%
4—5y + (4—5y)2 "

o [f(z,y) € W, the buyer receives both items and is charged p* ~ .5535.

Remark 4. Note that the mechanism identified in Example 3 offers an uncountably

large menu of lotteries. One could wonder whether there exists a different optimal

mechanism offering a finite menu. Using our duality theorem we can easily argue that

the utility function induced by every optimal mechanism equals the utility function

u(z) induced by our mechanism in Example 3. Hence, up to the choice of subgradients

at the measure-zero set of types where Vu(x) is discontinuous, the allocations offered

by any optimal mechanism must agree with those of our mechanism in Example 3.

Therefore, every optimal mechanism must offer an uncountably large menu. The proof

of uniqueness is given in the online appendix.
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Summary of Beta Distributions. FExample 3 shows that the optimal mechanism
for two Beta distributed items offers a continuum of lotteries, thereby having infinite
menu-size complexity [HN13]. Still, using our techniques we can obtain a succinct and
easily-computable description of the mechanism.

Working similarly to Example 3, we can obtain the optimal mechanism for broader
settings of parameters. Figure 7 illustrates the optimal mechanism for two items
distributed according to Beta distributions with different parameters. The reader can

experiment with different settings of parameters at [Tza).

(D 2 3)

Figure 7: Canonical Partitions for different cases of Beta distributions. The shaded
region is where the measure 1 becomes negative. (Note that when the second parameter
b; of the Beta distribution of some item ¢ equals 1, p has positive mass on the outer
boundary z; = 1.) (1) Beta(1,1) and Beta(1,1), (2) Beta(2,2) and Beta(1,1), (3)
Beta(2,2) and Beta(2,2).

8.2.2 Distributions of Unbounded Support: Exponential and Power-Law

So far, this paper has focused on type distributions with bounded support. In this
section, we note that Theorem 1, Lemma 1, and Theorem 7 can be easily modified to
accommodate settings with unbounded type spaces, as long as the type distribution
decays sufficiently rapidly towards infinity. On the other hand, we do not know
extensions of our strong duality theorem (Theorem 2), and the optimal menu conditions
(Theorem 3) for unbounded type distributions, due to technical issues.

In the online appendix, we provide a short discussion of the modifications required
to obtain an analog of Theorem 7 for unbounded distributions that are sufficiently
fast-decaying, and present below two example settings that can be analyzed using the
modified characterization theorem. Both examples are taken from [DDT13].

In Example 4, the optimal mechanism for selling two power-law items is a grand

bundling mechanism. The canonical partition induced by the exclusion set of the
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grand-bundling mechanism is degenerate (regions A and B are empty), and establishing
the optimality of the mechanism amounts to establishing that the first-order stochastic

dominance condition for the induced measure p holds in region W.

Example 4. The optimal IC and IR mechanism for selling two items whose values
are distributed independently according to the probability densities fi(x) =5/(1 + x)°
and fo(y) = 6/(1 + )" respectively is a take-it-or-leave-it offer of the bundle of the
two goods for price p* ~ .35725.

Example 5 provides a complete solution for the optimal mechanism for two items
distributed according to independent exponential distributions. In this case, the
canonical partition induced by the exclusion set of the mechanism is missing region A,

and possibly region B (if A\ = \).

Example 5. For all Ay > Xy > 0, the optimal IC and IR mechanism for selling two
items whose values are distributed independently according to exponential distributions

f1 and fy with respective parameters A1 and Ay offers the following menu:
1. receive nothing, and pay 0;

2. receive the first item with probability 1 and the second item with probability
Ao/A1, and pay 2/\i; and

3. receive both items, and pay p*;

where p* is the unique 0 < p* < 2/X\y such that
M({(:c,y) € RQEO x4y <ptand Mix+ Ay < 2}) =0,

where 1 1s the transformed measure of the joint distribution.

9 Conclusions

We provided a duality-based framework for revenue maximization in a multiple-good
monopoly. Our framework shows that every optimal mechanism has a certificate of
optimality, taking the form of an optimal transportation map between measures. Using
this framework, we characterized optimal mechanisms, showing that a mechanism

is optimal if and only if certain stochastic dominance conditions are satisfied by a
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wnp

Figure 8: The canonical partition of R, for the proof of Example 5. In this diagram,
p* > 2/ If p* <2/)\;, B is empty. The positive part p, of p is supported inside
P N {0} while the negative part p_ is supported within Z,- UN.

measure induced by the buyer’s type distribution. This measure expresses the marginal
change in the seller’s revenue under marginal changes in the rent paid to subsets of
buyer types.

We also provided several tools for checking the pertinent stochastic dominance
conditions in two dimensions. These tools were useful in establishing the optimality
of mechanisms in a multitude of two-item examples that we studied. While our
characterization holds for an arbitrary number of items, verifying stochastic dominance
in higher dimensions becomes significantly harder. An interesting future direction is
to develop tools for checking stochastic dominance in higher dimensions. This will be
useful for establishing optimality of mechanisms for three and more items.

Another important research direction is to obtain conditions for the type distribu-
tion under which the optimal mechanism has a simple closed-form description. For
example, are there broad conditions implying that grand bundling is optimal or that
the optimal mechanism takes the form of the mechanisms in Theorem 77

Finally a major open problem is to extend our results to multiple bidders. Even for
the presumably simple setting of two bidders with independent and identical values
for two items that are uniformly distributed in [0, 1], the revenue-optimal mechanism

is unknown.
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Strong Duality for a Multiple-Good Monopolist

Online Appendix

A Strong Mechanism Design Duality - Proof of

Theorem 2

In this section, we give a formal proof of the strong mechanism duality theorem. To
carefully prove the statement, we specify that the proof is for Radon measures. A Radon
measure is a locally-finite inner-regular Borel measure. We use I'(X) = Radon(X)
(resp. I't(X) = Radon (X)) as the set of signed (resp. unsigned) Radon measures
on X. The transformed measure of a distribution is always a signed Radon measure

as it defines a bounded linear functional on the utility function w.'?

A.1 A Strong Duality Lemma

The overall structure of our proof of Theorem 2 is roughly parallel to the proof of
Monge-Kantorovich duality presented in [Vil08], although the technical aspects of our
proof are different, mainly due to the added convexity constraint on u. We begin
by stating the Legendre-Fenchel transformation and the Fenchel-Rockafellar duality

theorem.

Definition 15 (Legendre-Fenchel Transform). Let E be a normed vector space and
let A: E— RU{+o00} be a convex function. The Legendre-Fenchel transform of A,
denoted A*, is a map from the topological dual E* of E to RU {oo} given by

A*(2") = sup ((z%, 2) — A(2)) .
2€E
Claim 3 (Fenchel-Rockafellar duality). Let E be a normed vector space, E* its
topological dual, and ©,= two convez functions on E taking values in R U {+o00}. Let
O*,=* be the Legendre-Fenchel transforms of © and = respectively. Assume that there
exists zg € E such that ©(zy) < +00, Z(29) < +00 and O is continuous at zy. Then

inf[©(z) + Z(2)] = max[-O"(—z") — E*(2")].

z€EE z*eb*

12More formally, this follows from Riesz representation theorem
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Lemma 4. Let X be a compact convex subset of R, and let p € T'(X) be such that
w(X)=0. Then

inf x —y|hdy(z,y) = su / d / d )
N SN N e ( T e

V1= cva M+ x < xr—
TEeuhs #() (@) <lla—yll

and the infimum on the left-hand side is achieved.

PROOF OF LEMMA 4: We will apply Fenchel-Rockafellar duality with £ = CB(X x X),

the space of continuous (and bounded) functions on X x X equipped with the || - ||o

norm. Since X is compact, by the Riesz representation theorem E* = I'(X x X).
We now define functions 60, = mapping CB(X x X) to RU {400} by

0 if f(x,y) > —|lz —y| forall z,y € X
(f) = .
+00 otherwise

400 otherwise.

=(f) = { [ bdp— — [ ¢dpy if f(z,y) = ¥(y) — ¢(x) for some ¥, ¢ € U(X)

We note that = is well-defined: If ¢(z) — ¢(y) = ¢'(z) — ¢'(y) for all x,y € X, then
W(x)—'(x) = ¢(y) — ¢/ (y) for all ,y € X. This means that ¢/’ differs from 1 only by
an additive constant, and ¢ differs from ¢’ by the same additive constant, and therefore
(since pu4 and g have the same total mass) [y du_— [y ¢dpy = [ W'dp_— [, ¢'dp.

It is clear that O(f) is convex, since any convex combination two functions for which
f(z,y) > —||lx — y||; will yield another function for which the inequality is satisfied.
It is furthermore clear that = is convex, since we can take convex combinations of the
1 and ¢ functions as appropriate. (Notice that U(X) is closed under addition and
positive scaling of functions.)

Consider the function zy € CB(X x X) which takes the constant value of 1. It
is clear that ©(zp) = 0 and Z(zp) = p—(X) < oo. Furthermore, ©(z) = 0 for any
z € CB(X x X) with ||z — z0|lc < 1, and therefore O is continous at z;. We can thus
apply the Fenchel-Rockafellar duality theorem.
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We compute, for any v € ['(X x X):

6(—y) = sup [ |ttt

fECB(XxX)
_{o iff(%y)Z—Hx—yHlV%MX]

+00 otherwise

- (— f(x,y>dv<x,y>) ~ ( f<x,y>dv<x,y>) |
feECB(XxX) XxX feCB(XxX) XxX
Fay)z=lz=ylh F@y)<llz—ylh

We claim therefore that

Jxwx Iz =ylidy(z,y) if v € TH(X x X)

00 otherwise.

0 (=) =

Indeed, if v is a positive linear functional, then the result follows from monotonicity,
since ||z — y||; is the pointwise greatest function f satisfying the constraint f(z,y) <
|z — yl|1, and ||z — y||; is continuous. Suppose instead that ~ is a signed Radon
measure which is not positive everywhere. Then there exists a continuous nonnegative
function g : X x X — R such that [ gdy = —¢ for some € > 0." Since g(z,y) > 0, it
follows that —kg(x,y) <0 < ||z — yl||; for any & > 0. Therefore

sup (/XxX f(:v,y)dv(x,y)) > /—kg(aﬁ,y)dv(w’,y) = ke.

feCB(XxX)

fy)<lz—ylh

The claim follows, since k£ > 0 is arbitrary.

We similarly compute, for any v € I'(X x X):

=)= sup [ | rewie-

fECB(XxX)

_ { Sy dp- — [y ddpuy i f(2,y) = ¥(y) — ¢(x) and ¥, ¢ € U(X)

400 otherwise

= s [ | 0w = sy~ [ vau+ [ ¢du+]

13Formally, we have used Lusin’s theorem to find such a ¢ which is continuous, as opposed to
merely measurable.
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We notice that =Z*(y) > 0 for all v € I'(X x X) by setting ©» = ¢ = 0 and thus
O (—y) + Z*(7) = 0 if y € ' (X X X). Moreover, when v € I'{ (X x X):

=)= sup [/X ) - o) — [ v+ [ qﬁdm}

,peU(X

= S U Yd(y — )+/X¢d(/i+—71)}

0 if ’71 “cvr M+ and ’72 Devr M-

oo otherwise.

The last equality is true because if v, >y, 1+ doesn’t hold, we can find a function
¢ € U(X) such that [ ¢d(py —~1) > 0. Since we are allowed to scale ¢ arbitrarily, we
can make the inside quantity as large as we want. The same holds when p_ %, 7.

We now apply Fenchel-Rockafellar duality:

inf [O(f) +E(f)] = max_[-O"(—7) - E'(7)]

fECB(X xX) YEDN(X x X)

”> ”m ull (/ vn- = /(bdﬂ+ ey (XxX) { /XXme_yH dy(z,y) — = (7)]

Fzy)=v(y) cbx
¢¢€U

g;jx (/ Ydp— — /cbdm) :VerT??ix <—/Xxx |Ix—y||1d7(x,y)>

¢($) "p(y)<”$ y”l 'Yl cvx U+
Y2 =R cvah—

sup (/ pdpy — /@/Jdu min </ Hw—yllldv(:v,y))-
Wy, ¢€u VGFJr X><X XxX

z < 55 V1= cvz bt
#@)— P S lo—yll T vty

A.2 From Two Convex Functions to One

Lemma 5. Let X = [[I_ [z, a1 for some z® 2" >0, and let u € T(X) such
that u(X) = 0. Then

sup (/ odpy —/ wd,u> = sup (/ udpiy —/ udu).
dpEU(X) X X weU(X)NL1(X) X X

#(@) = (y)<llz—yl1
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Furthermore, if the supremum of one side is achieved, then so is the supremum of the

other side.

Proor orF LEMMA 5: Given any feasible u for the right-hand side of Lemma 5, we
observe that ¢ = 1) = u is feasible for the left-hand side, and therefore the left-hand
side is at least as large as the right-hand side. It therefore suffices to prove the reverse
direction of the inequality. Let ¢ and v be feasible for the left-hand side. Given ¢, it
is clear that ¥ must satisfy ¥ (y) > sup,[o(x) — ||z — y|l1].

Set ¢(y) = sup,[p(x) — ||z — yl1]. Since ¢ exists, this supremum indeed has finite
value. Since 9 < 1) pointwise, it follows that fx Ydp_ < fX Ydp—. We must now
prove that ¢» € U(X), thereby showing that ¢, is feasible for the left-hand side and

that replacing v by ¥ does not decrease the objective value.
Claim 4. ¢ € U(X) and ¢ € L;(X).

Proof. We will first show that ¢ € U(X). We need to show continuity, monotonicity,

and convexity.

e Continuity. Continuity of ¢ follows from the Maximum Theorem since both ¢

and | - ||y are uniformly continuous.

e Monotonicity. Let y < ¢/ coordinate-wise and let x be arbitrary. We must
show that there exists an 2’ such that ¢(x) — ||z — y|l1 < é(a) — ||2" — y/|[1. Set
x, = max{x;,y.}. Since z < a’, we have ¢(x) < ¢(x’). We notice that if z; > v}
then z} = z; and thus |z} — yi| < |z; — y;|, while if ; <y} then |2} — y}| = 0.
Therefore, we have that ||z — y||; > |2’ — ¥/||1 and thus ¢(z) — ||z — y|1 <
o(x') — ||l=" — ¢'||1, as desired.

e Convexity. Let y,v',y” be collinear points in X such that y = yu;y/" Then,

given any x, we must show that there exist 2’ and z” such that

o) = ll2" =yl + o(=") = 2" = " |y = 26(2) = 2l|= = yll1.
We define 2 and z} as follows:

— If yi > oY, set x} = max{z;,y.} and = = max{2x; — =}, y!}.

i

— If yl <9l, set o = max{z;,y;} and x, = max{2x; — a7, y}}.

i
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Notice that ' + z” > 2z, and thus (since ¢ is convex and monotone) we have
¢(x') + ¢(2") = 2¢(x).

Suppose without loss of generality that y; > y7. We now consider two cases:

— yi > x;. We then have 2} = y; and 2! = max{2z; — y,,y/}. Therefore,

lyi — ] = 0 and |y — 2f| < |y — 2x; + y}| = 2|y; — x| since Y + y! = 2y;.

— yb < x;. We now have 2} = x; and 2z = max{x;,y/'} = z;. Therefore

ly! — x| + |y — x| is equal to |y} + v — 2x;|, which equals |2y; — 2x;].

Therefore, we have that |y, — 2| + |y — | < |2y; — 2, for all i, which implies
that [l2" —¢/|[, + [[2" = ¢"[ly < 2[lz =yl

We have thus shown that ¢ € U(X). We will now show that ¢ € £;(X). We have

() = ¥(y) = supinf(p(z) — ||z =zl — d(w) + [lw — yll)

z

< sup(¢(2) — |z = 2y = 6(2) + [l2 = ylh)

=sup(||lz =yl — |z = zlh) <[l =yl

O

Since ¢,1) are a feasible pair of functions for the left-hand side of Lemma 5,

we know that ¢ satisfies the inequality ¢(z) < infy[¢)(y) + ||z — y|l1]. We now set
o(z) = inf,[(y) + ||z — y|l1]. It is clear that the value of the left-hand objective
function under ¢, is at least as large as its value under ¢, .

We claim that not only is ¢ continuous, monotonic, and convex, but in fact that
¢ = 1. We notice that ¢(z) < ¥(x) + ||z — x||; = ¥(x). To prove the other direction

of the inequality, we compute

o(x) = inf [U(y) + |z = ylh] = ¥(z) + inf [(y) = $(z) + o —ylh] = ¥(2)

where the last inequality holds since ¥(x) — 1 (y) < ||z — y||;. Therefore ¢ = v, and
thus ¢ € U(X). Since ¢ satisfies the inequality ¢(x) — ¢(y) < ||z —y||; it is feasible for
the right-hand side of Lemma 5, and the value of the right-hand objective under ¢ is
at least as large the value of the left-hand objective under ¢, 1. We notice finally that
if ¢, 1) are optimal for the left-hand side, then ¢ is optimal for the right-hand side. [J
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A.3 Proof of Theorem 2

By combining Lemma 1, Lemma 4, and Lemma 5, we have

inf / xr —ylhdy = Sup / udj
*yEF+(X><X) X><XH H ueU(X)NL1(X) J X

Y1—V2Zm1p

T e </ P /W“ ): it / lz = ylldv(z, y).
¢>1/1€Z/1 'yEF.,_ (XxX) Jxxx

¢() y)<||x yHl 'Yl cvr 4

2 <cvzlz'/—

By Lemma 4, the last minimization problem above achieves its infimum for some ~*.
We notice that v* is also feasible for the first minimization problem above, and therefore
the inequality is actually an equality and +* is optimal for the first minimization
problem. In addition, since v* is feasible for the last minimization problem, it satisfies
V(X)) = v(X) = py(X). All that remains is to prove that the supremum to the

maximization problem is achieved for some u*. A proof of this fact is in Appendix A .4.

A.4 Existence of Optimal Mechanism

We now prove that the supremum of the maximization problem of Theorem 2 is achieved
for some u*. Consider a sequence of feasible functions uy, us, ... € U(X)N Ly (X) such
that [ + Uidp converges monotonically to the supremum value V', which we have proven
is finite.!" Since p(X) = 0, we may without loss of generality assume that u;(0") = 0
for all u;. Since all of the functions are bounded by |z"&!|; and are 1-Lipschitz
(which implies equicontinuity), the Arzela-Ascoli theorem implies that there exists
a uniformly converging subsequence. Let u* be the limit of that subsequence. Since
the convergence is uniform, the function u* is 1-Lipschitz, non-decreasing and convex
and thus feasible for the mechanism design problem. Moreover, since the objective
is linear, the revenue of the mechanism with that utility is equal to V' and thus the

supremum is achieved.

A.5 Omitted Proofs from Section 5 - Example 2

It is straightforward to verify that the mechanism is IC and IR. All that remains is to
prove that the utility function «* induced by the mechanism is optimal.

The transformed measure p of the type distribution is composed of:

MFiniteness is also obvious because X is bounded and the infimum problem is feasible.
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A point mass of +1 at (4,4).

Mass —3 distributed throughout the rectangle (Density —%)

Mass +§ distributed on upper edge of rectangle (Linear density —i—%)

e Mass —% distributed on lower edge of rectangle (Linear density —%)

Mass +§ distributed on right edge of rectangle (Linear density +§)

Mass —% distributed on left edge of rectangle (Linear density —%)

We claim that u(Z) = pu(Y') = p(W) = 0, which is straightforward to verify.

We will construct an optimal v* for the dual program of Theorem 2, using the
intuition of Remark 1. Our v* will be decomposed into v* = 7% +~¥ + W with 4% ¢
L (ZxZ), vy el (Y xY),and ¥V € T (W x W). To ensure that v} — 73 =cve i,

we will show that

A A . Y Y . w w
71— V2 icvx /’L|Z7 Y1 T 72 icvx ,LL’Y, Y1 T Ve tcvm M‘W

We will also show that the conditions of Corollary 1 hold for each of the measures 77,
7Y, and 4" separately, namely [ u*d(vi' —~3') = [, u*dp and u*(z) —u*(y) = ||z —y[
hold y4-almost surely for A = Z, Y, and W.

Construction of v#. Since p|z is a point-mass at (4,4) and p_|z is distributed
throughout a region which is coordinatewise greater than (4,4), we notice that u|z <cs
0. We therefore set 77 to be the zero measure, and the relation 77 — 72 = 0 = e pt] 2,

as well as the two necessary equalities from Corollary 1, are trivially satisfied.

Construction of vW. We will construct YW € T'(uy|w,p—_|w) such that z >
y component-wise holds ¥ (z,y) almost surely. Geometrically, we view this as
“transporting” 4 |w into p_|w by moving mass downwards and leftwards. Indeed,
since both items are allocated with probability 1 in W, being able to transport both
downwards and leftwards is in line with our interpretation of the second condition of

Corollary 1, as explained in Remark 1.'°

15To prove the existence of such a map, it is equivalent by Strassen’s theorem to prove that py|w
stochastically dominates u_|w in the first order, but in this example we will directly define such a
map.
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We notice that py|w consists of mass distributed on the top and right edges of W,
while 1|y consists of mass on the interior and bottom of W. We first match the .
mass on [8,16] x {7} with the y_ mass on [8,16] x [1, 7] by moving mass downwards,
then we match the p; mass on {16} x [4, 1] with the p_ mass on [22,16] x (4, ] by
moving mass to the left, and we finally match the i, mass on {16} x [, 7] with the
remaining negative mass arbitrarily. Noticing that u*(x) = ||z||; — 12 for all z € W,

it is straightforward to verify the desired properties from Corollary 1.

Construction of v¥. This is the most involved step of the proof. Since item 2 is
allocated with 100% probability in region Y, by Remark 1 we would like to transport
the positive mass p |y into p_|y by moving mass straight downwards. However,
this is impossible without first “shuffling” uly, due to the negative mass on the left
boundary of Y. Therefore, we first “shuffle” the positive part of uly (on the top
boundary) to push positive mass onto the point (4,7) (the top-left corner of Y'), and
only then do we transport the positive part of the shuffled measure into the negative
part by sending mass downwards. Since the positive and negative parts of u|y must be
matchable by only sending mass downwards, we know how the post-shuffling measure
should look. In particular, on every vertical line in region Y the net post-shuffling

mass should be zero.

So rather than constructing v¥ with v — 43" equal to |y, we will have 4 — 3 =
wly + a, where the “shuffling” measure @ = a; — a_ =, 0. As discussed above, we

set a to have density function

1 1 20
falz1,22) = Loyer - (511214 + 21 (Zl — §)> Ley.

The measure « is supported on the line [4, 8] x {7} and consists of a point mass of
é at (4,7) followed by allocating mass along the 1-dimensional upper boundary of
Y according to a density function which begins negative and increases linearly. It

is straightforward to verify that a =, 0,'° which we need for feasibility, and that

16Since « is supported on a 1-dimensional line, this verification uses a property analogous to the
standard characterization of one-dimensional second-order stochastic dominance via the cumulative
density function. Informally, we can argue that o >, 0 by considering integrals of one-dimensional
test functions (by restricting our attention to the line zo = 7) and noticing that, since a(Y) = 0, we
need only consider test functions h which have value 0 at z; = 4. We then use the fact that all linear
functions integrate to 0 under o and that (ignoring the point mass at z; = 4, since h is 0 at this
point) the density of « is monotonically increasing.
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fY u*da = 0, which we need to satisfy complementary slackness.

We are now ready to define v¥ € I'(uy|y + oy, |y + a_). We construct v¥ so that
x1 =y, and x5 > 1 hold 4¥ (z,y) almost surely. Since p |y + ay only assigns mass
to the upper boundary of Y, to show that v¥ can be constructed so that all mass is
transported “vertically downwards” we need only verify that p |y +ay and p_|y +a—

assign the same density to any vertical “strip” in Y. Indeed,

(-ly + ) ({4} x [6,7]) = p_[y ({4} x [6,7]) = 5 = o ({4} x [6,7])
= (ugly + o) ({4} < [6,7])

Q|

and, for all z; &+ € € (4, 8], we compute the following, using the fact that the surface

area of Y N ([z1 — €, 21 + €] x [4,7]) is 2¢- (& — 1):

(u-ly=aly)([z2r = €, 21 + €] x [4,7])

1 7 1 [ate 9

e Bk [T
12 <€ 2 21 /., . (2= 3)dz
€21 € 1 40€e Te

Since u* has the property that u*(z1,a) — u*(z1,0) = a — b for all (z1,a),(z1,b) € Y
(as the second good is received with probability 1), it follows that ¥ satisfies the

necessary conditions of Corollary 1.

B Proof of Stochastic Conditions of Section 6

Our goal in this section is to prove Theorem 3. We begin by presenting some useful

probabilistic tools that will be essential for the proof.

B.1 Probabilistic Lemmas

We first present a useful result about convex dominance of random variables. For

more information about this result, see Theorem 7.A.2 of [SS10].

Lemma 6 (Strassen’s Theorem). Let A and B be random vectors. Then A =.pe B if
and only if there exist random vectors A and é, defined on the same probability space,
such that A =, A, B =, B, and E[EM] > A almost surely, where the final inequality

15 componentwise and where =4 denotes equality in distribution.
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It is easy to extend the above result to convex dominance with respect to a vector

v as defined in Definition 8.

Lemma 7 (Extended Strassen’s Theorem). Let A and B be random vectors. Then
A Zcva(w) B if and only if there exist random vectors A and B, defined on the same

probability space, with A =, A, B =4 B, such that (almost surely):
o if v; = +1, then E[B;|A] > A,
o ifv; =0, then E[B;]A] = A,
e ifv; = —1, then E[BAA] < A

We now state a multivariate variant of Jensen’s inequality along with the necessary
condition for equality to hold. The proof of this result is standard and straightforward,

and thus is omitted.

Lemma 8 (Jensen’s inequality). Let V' be a vector-valued random variable with values
in [0, M]™ and let u be a convex Lipschitz-continuous function mapping [0, M]* — R.
Then E[u(V)] > w(E[V]). Furthermore, equality holds if and only if, for every a in the
subdifferential of u at E[V], the equality w(V) = a-(V —E[V]) + u(E[V]) holds almost

surely.

The following lemma is a conditional variant of Lemma 8, based on the multivariate
conditional Jensen’s inequality, as in Theorem 10.2.7 of [Dud02]. This lemma is used

as a tool for Lemma 10, the main result of this subsection.

Lemma 9. Let (2, A, P) be a probability space, V' be a random variable on 2 with
values in X where X = [[I_ [z% 2", and u : X — R be convex and Lipschitz
continuous. Let C be any sub-o-algebra of A and suppose that E[u(V)|C] = w(E[V|C])
almost-surely. Then for almost all x € § the equality u(y) = ay, - (Y — yz) + u(ys)
holds almost surely with respect to the law '™ Pyc(-,x) , where y, is the expectation of

the random variable with law Pyic(-,x) and a,, is any subgradient of u at y,.

PrOOF OF LEMMA 9: The proof is based on the proof of the multivariate conditional
Jensen’s inequality, as in Theorem 10.2.7 of [Dud02]. This theorem requires |V/| and

u oV to be integrable, which is true in our setting. We note that the theorem applies

1"The law Py (-, x) allows us to express the conditional distribution of V' given C
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when u is defined in an open convex set, but because u is Lipschitz continuous we
can extend it to a function with domain an open set containing X. The multivariate
conditional Jensen’s inequality states that, almost surely, E[V|C] € C and E[u(V)|C] >
u(E[V|C]). The proof of Theorem 10.2.7 in [Dud02] furthermore shows that the

following two equalities hold:

E[VIC](JS):/Xwac(dy,:v); E[U(V)IC](HS)Z/XU(y)Pvc(dy,x)-

Since E[u(V)|C](z) = w(E[V|C])(x) for almost all x, we apply the unconditional Jensen

inequality (Lemma 8) to the laws Pyc(-,x) to prove the lemma. O

We now present Lemma 10. This lemma states that for random variables A and
B with A <, B if it holds that u(A) = u(B) for some convex function u, then there
exists a coupling between A and B with several desirable properties, including that

points are only matched if u shares a subgradient at these points.

Lemma 10. Let A and B be vector random variables with values in X, where X =
| x?igh], such that A <.z B. Let u: X — R be 1-Lipschitz with respect to the
¢y norm, convez, and monotonically non-decreasing. Suppose that E[u(A)] = E[u(B)]
and that g : X — [0,1]" is a measurable function such that for all z € X, g(2) is a
subgradient of u at z.

Then there exist random variables A =4 A and B =4 B such that, almost surely:
o u(B) =u(A)+g(A)-(B-A)

. g(fl) is a subgradient of u at B.

e E[B|A] is componentwise greater or equal to A

o u(E[B|A]) = u(A).

ProOOF OF LEMMA 10: By Lemma 6, there exist random variables A =4 A and

B =, B such that E[B[A] is componentwise greater than or equal to A almost surely.
We have

N ~

and therefore E[E[u(B)|A]] = E[u(E[B|A])] = E[u(B)] = E[u(A)].



Since u is monotonic, u(A) < u(E[B|A]) almost surely. Since E[u(A)] = E[u(E[B|A))]],
it follows that u(A) = u(E[B|A]) almost surely.

Select any collection of random variables {B|;_.} corresponding to the laws
Ppg (-, ). For almost all values = of A, E[B] 4i_,) 1S componentwise greater than x
and u(z) = w(E[B|;_,]). We claim now that any subgradient a, of u at z is also a

subgradient of u at E[B] ;__]. Indeed, choose such a subgradient a,. We compute

and therefore a, - E[B] i, = a;-x, by non-negativity of the subgradient. Furthermore,

for any point z € X,

A~

u(z) > uw(x) +a, - (2 — ) = w(E[B|4_,]) + @z - (2 — )
= wE[B|;_,]) + as - (z — E[B|;_,])

and thus a, is a subgradient of u at E[B] ;__].

Since E[E[u(B)|A]] = E[u(E[B|A])], by Jensen’s inequality it follows that E[u(B)|A] =
u(E[B|A]) almost surely. By Lemma 9, it therefore holds for almost all values z of A
that the equality

u(y) = ag - (y = E[Bli,]) + w(B[Bli,]) = ao - (y — 2) + u(E[B|;_,])
=a; - (y — x) + u(z)

holds B| ;__ almost surely.
Lastly, we will show that, almost surely, a, is a subgradient of u at B[ i, Indeed,

for any p € X, and almost all values of x we have

u(p) > u(@) +a, - (p— ) = () + a, - (Blj_, —2) +a, - (p— Bli,)
w(Bli_,) +as - (p— Bli_,).

B.2 Proof of the Optimal Menu Theorem (Theorem 3)

To prove the equivalence we prove both implications of the theorem separately.
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B.2.1 Sufficiency Conditions

We will show that the Optimal Menu Conditions of Definition 9 imply that a mechanism
M is optimal. To show the theorem, we construct a measure  such that the conditions
of Corollary 1 are satisfied. We will construct this measure separately for every region
that corresponds to a menu choice of mechanism M.

Consider a menu choice (p,t) € Menuy, the corresponding region R and the
corresponding vector ¢ as in Definition 9. Let A and B be random vectors distributed
according to the (normalized) measures p4|R and p—|R. From the Optimal Menu
Conditions, we have that A|p <.z B|r (almost surely). By the extended version of
Strassen’s theorem (Lemma 7), it holds that there exist random vectors A, B with
A=, Al and B =, B|g, such that (almost surely):

e if v; = +1, then E[B;|A] > A,
e if v; = 0, then E[B;|A] = 4,
e if v; = —1, then E[B;|A] < A4,

Now define the random variable C' = min(E[B|A], A) where we take the coordinate-

wise minimum. We now have that (almost surely):

~

Let vg be the measure according to which the vector (/21, C’) is distributed. By
construction, yg1 = i+ |r and Yre <evz f—|r, and thus Yg1 — Yr2 =cvw ft|r. Moreover,

the conditions of Corollary 1 are satisfied:

o u(z) —u(y) = ||z — yl|1, is satisfied yz(x, y)-almost surely since A is larger than

C only in coordinates for which v; = —1 and thus p; = 1.

o [ud(ypi — Vr2) = [ud(ps|r — p—|r) is satisfied: By definition we have that
Judyr = [udpy|r. Moreover, we can also show that [udype = [udu_|g
by noting that [udu_|g = p_(R)E[u(B)] = u_(R)E[p- B —t] = u_(R)E[p -
E[B|A]—t] and that u_(R) E[p- E[B|A]—t] is equal to u_(R)E[p-C—t] = [ udyge
since C; # E[B;|A] only when E[B;|A] is strictly larger than A; which only

happens only in coordinates ¢ where v; = +1 and thus p; = 0.
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This completes the proof that the Optimal Menu Conditions imply optimality of the
mechanism since we can construct a feasible measure ~ satisfying the conditions of

Corollary 1 by considering the sum of the constructed measures for each region.
B.2.2 Optimality implies Stochastic Conditions

We will now prove the other direction of the result. Consider an optimal mechanism
M = (P, T) with a finite menu size over type space X = [/, [z°¥, z}"¢"]. Since M
is given in essential form, in the menu of M there is no dominated option. So for all
options on the menu there is a set of buyer types that strictly prefer it from any other
option, and that set of types occurs with positive probability.

Now, define the set Z = {x € X : p-ax—t = P(x) -z — T(x) for (p,t) €
Menuy with (p,t) # (P(z), T (z))}. This is the set of types where there is no single
option that is the best and it is where the utility function of the mechanism is not

differentiable. We show the following lemma.
Lemma 11. ¢ (Z) =0

Proof. Note that, by its construction, p_ assigns zero mass to any k-dimensional
surface for £ < n — 2. Moreover, it only assigns mass to (n — 1)-dimensional surfaces
which lie along the boundary of X.

Every pair of distinct choices (p,t), (p/,t') € Menuy, defines a hyperplane p-x —t =
p' - x —t' containing the types who derive the same utility from these two choices. As
the menu is finite, there exist a finite number of such pairs, hence a finite number
of hyperplanes. The set Z contains a subset of types in the finite union of these
hyperplanes, so p_ assigns no mass to the subset of Z which lies on the interior of X.

Regarding the p_-measure of Z on the boundaries, notice that the intersection
of each of the aforementioned hyperplanes p-x —t = p' - & — t' with each boundary
r; = 7°V is (n — 2)-dimensional, unless the hyperplane coincides with x; = V. If
it is (n — 2)-dimensional then its measure under p_ is 0. Otherwise, it must be that
pj = p;, for all j # 4, and p; # pj; say p; > p; without loss of generality . This implies
that (p,t) must dominate (p’,t’), for all types € X. This contradicts our assumption

that no menu choices are dominated. O

Let u be the utility function of the optimal mechanism M = (P, 7)) and v be the
optimal measure of Theorem 2. Then, ~ satisfies the properties of Corollary 1. In

particular, it holds that:
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/ud(% +p) = /ud(u+ +72) (6)

2. u(z) —u(y) = ||z — y|l1, v(z,y) almost surely. Since this can happen only if
x is coordinate-wise greater than y, it holds (almost surely with respect to )
that ||z —y|l1 = >_, x: — >, y; which implies that (almost surely) u(z) — >, z; =
u(y) — >,y and thus

Jwte) =S = [ ) - an )

1

Moreover, again since x is coordinate-wise greater than y almost surely with respect

to 7, it follows that v icw(_f) .

We are now ready to use Lemma 10 which follows from Jensen’s inequality. We will

apply it in two different steps, which we will then combine to show that 11|z <cve(®)

T

Step (ia): We will first apply Lemma 10 to random variables A, B distributed
according to the measures v9 + 4 and v, + p_ respectively. Since p — - <eor 71— V2,
by the feasibility of 7, we have that A <., B. Moreover, E[u(A)] = Elu(B)], from

Equation (6) above, and u is convex and non-decreasing, from the feasibility of w.

To apply Lemma 10, we choose the function g(x), which is a subgradient functions of

u, as follows:

— For all x € X \ Z the best choice from the menu of M is unique, hence the
subgradient of u is uniquely defined. For all such z, we set g(z) = P(z).

— For all other x, u has a continuum of different subgradients at z. In particular,
any vector in the convex hull of {p:p -z —t =u(x),(p,t) € Menuy,} is a valid
subgradient. Thus, we can always choose ¢g(z) to equal a vector of probabilities

that doesn’t appear as an allocation of any choice in menu M.

Step (ib): it follows from Lemma 10 that there exist random variables A =, A
and B =, B such that, almost surely, g(fl) is a subgradient of u at B. Fixing some
(p,t) € Menuy, and its corresponding region R = {x : p = P(x)}, we denote by
cl(R) = RUOR the closure of R and by int(R) = cl(R) \ Z the set of types which
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strictly prefer (p,t) to any other option in the menu. Note in particular that int(R)
may contain points on the boundary of X. With this notation, we have that almost

surely:

Beint(R) = A e int(R); (8)
Aeint(R) = B e d(R). (9)

This is because, from Lemma 10, we know that g(fl) is a subgradient of u at B
almost surely, and we know by definition of int(R) that the subgradient is unique

whenever B € int(R). Thus, it holds almost surely that whenever B € int(R) we

A ~

have g(A) = g(B). Since g is chosen to have differing values on int(R) and on Z,
it follows that whenever B € int(R), A € int(R) almost surely. The implication
A € int(R) = B € cl(R) follows from the fact that the subgradient at any point
x € int(R) can only serve as a subgradient for points y € cl(R).

From Lemma 10, we also have that u(E[B|A]) = u(A) almost surely. It follows that,

almost surely,
u(E[B|A]) ']IAeint(R) = u(4) 'HAeint(R)

Given (9) and since w is linear restricted to cl(R), it follows that the left hand side
equals:
E[u(B)|A] - ]IAeint(R)

We also have from Lemma 10 that, almost surely, it holds componentwise
E[B|A] > A. (10)
The above imply that, almost surely:
pi >0 = E[Bj|A] Licinr) = A; - Licine(r) (11)

as otherwise we cannot have E[u(B)|A] Dicinr) = u(A) - L icine(r)> given that u is

linear and non-decreasing in cl(R).

Equations (10), (11) and Lemma 7 imply that

~

A- ]IAEint(R) eve(@) B - HAeint(R) (12)

62



for the ¥ defined in Definition 9 for the menu choice (p,t). Note that:

A

- B. B-1

- B-

B Licinyry = A,Beint(R) T A€int(R)AB¢int(R)

A

I;
Lseimecry T B Licine(r)npeint(r)

where for the second equality we used (8). Hence, (12) implies:

’72|int( + H+|1nt _cvx(v M |1nt + /71|1nt(R +€R (13)

where g is the non-negative measure corresponding to B-1; Acint(R)ABint(R) (scaled

back appropriately by u,(X) = p_(X)).

Step (iia): We will now apply a flipped version of Lemma 10, for convex non-
increasing functions,'® to the convex function u(z) — ", z;."" We set random variables
A’, B" distributed according to the measures 7; and .. Since vy =
that B’ =,

shown above.

= eon(—T) Y1, We have

) A'. Moreover, Efu(A') ~ Y, A7) = E[u(B') - ¥, B} from Equation (7)

ZL‘

We choose the function g(z) — T as the subgradient of u(z) — 32, z;.

Step (iib): Fixing any region R and the corresponding int(R), cl(R) and ¢ as above,
we mirror the arguments of Step (i). Now, the version of Lemma 10 for non-increasing
functions implies that there exist random variables A =, A and B' =, B’ such that,

almost surely:

E[B'|A] < A’ (14)
pi <1 = E[BIA) Licien = A7 Licinny (15)

Equations (14), (15) and Lemma 7 imply that

A" L ging(r) Deva(@) B L cine(r) (16)

181t is easy to verify that the guarantees of the lemma remain the same except the third guarantee
changes to “componentwise smaller than.”
Notice that the partial derivatives are non-positive.

63



and, hence,

'71’int(R) jcvx(ﬁ) 72|int(R) + g}%a (17)

where similarly to our derivation above £ is the non-negative measure corresponding

to B ]IA/EIIlt )/\B’%int(R)'

We now combine the results of Steps (i) and (ii) to finish the proof. Combining (13)
and (17), we get that:

Lt int(R) Seve(@) H—|me(r) + &R + &R (18)
From Proposition 1, it must hold that
(i) (X)) = 1 [ine () (X) + Er(X) + ER(X).

Summing over all regions and noticing that ), f1— |int(r)(X) = p—(X), from Lemma 11,
we get that

pa(X) = 114 (2) +Z€R ) + Er(X))-

But i1 (X) = p—(X), hence p4(Z) = 325 (Er(X) + ER(X)) = 0, as all of p, {g and
¢, are non-negative. Therefore, we can rewrite the property (18) as:

H/—i—'R evz (V) ,u |R

C Missing Proofs of Section 6 - Theorem 5

In this appendix we complete the proof of Theorem 5

PROOF OF LEMMA 2: We define the mapping ¢ : A — B by ¢(x) = y, where

n— 1/(n—1 Ti — Xy .
ylz[l—p(l—(l—xn) 1)}/( ); yizl_x cyp fori>1.
. . .. . 1 1/(n—1)
We first claim that ¢ is a bijection. As x,, ranges from 0 to 1 — <p7> , We see

that y; ranges from 1 to 0, and thus there is a bijection between valid y; values and

valid x,, values. Furthermore, for any fixed y; and x,, there is a bijection between x;
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and y; for i = 2,...,n— 1. (By varying z; between x,, and 1 we can achieve all values
of y; between 0 and y;.) Furthermore, for any fixed y; and x,, the mapping from z; to
y; is an increasing function of x;, and therefore for all € A we have y; € [0, 1] and
Y1 > Ya > - >y, = 0. Thus, ¢ is a bijection between A and B. Next, we claim that
for any x € A, it holds that x is componentwise at least as large as ¢(z). Since 7 = 1,
it trivially holds that x; > ¢(x). Fix a value of z,, (and hence of ), and consider
the bijection g : [z,, 1] — [0,y1] given by g(2) = 11 (2 — x,)/(1 — ). We must show
that z — g(z) > 0 for all z € [z,,1]. This follows from noticing that z — g(z) is a linear
function of z and both x, — g(x,) =z, and 1 — g(1) = 1 — y; are nonnegative.

We now show that ¢ scales surface measure of every measurable S C A by a
factor of 1/p. Instead of directly analyzing surface measures, it suffices to prove
that the function ¢’ : W — W scales volumes by p, where W C R"! is the set
{w:1>w; >+ >w,—; >0} and ¢'(w) drops the last (constant) coordinate of
o(1,wy, ..., w,_1) and then (for notational convenience) permutes the first coordinate
to the end. That is,

W1 — Wp—1 Wp—2 — Wp-1

O(wy, . wyy) = ( 2(Wp—1), - - -, z(wnl),z(wnl))

11— Wn—1 1-— Wn—1

where 2(wp_1) = [1— p(1 = (1 — w,_ )"/,

We now analyze the determinant of the Jacobian matrix J of ¢'. We notice that the
only non-zero entries of J are the diagonals and the rightmost column. In particular,
J is upper triangular, and therefore its determinant is the product of its diagonal

entries. We therefore compute

det(J) = (M) L9 [1—p(1—(1- wn_l)n—l)]l/(nfl)

1 - Wp—1 au}n—l

:(M) — (2w )P e (= 11— w )" ) =

1—w,_1 n—1
as desired.
Lastly, suppose y; < €. Then [1 —p(1 — (1 — xn)"fl)]l/(n_l) < e and thus z, >
ner L\ U/(n=1)
1— (ﬁ) _ H
p

PRrOOF OF THEOREM 5: We now complete the proof of Theorem 5. Fix the dimension

n. For any value of ¢, the transformed measure on the hypercube (¢, ¢+ 1)" we obtain
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is as follows:
e A point mass of +1 at (¢,c,...,c).
e Mass of —(n 4+ 1) uniformly distributed throughout the interior.
e Mass of —c distributed on each surface x; = ¢ of the hypercube.
e Mass of ¢ + 1 distributed on each surface x; = ¢ + 1 of the hypercube.

For notational convenience when checking the stochastic dominance properties of
Theorem 3, we will shift the hypercube to the origin. That is, we will consider instead
the measure u¢ on [0, 1]™ which has mass +1 at the origin, mass of —c on each each
surface x; = 0, et cetera. It is important to notice that the mass that p assigns to the
interior of [0, 1]™ and to the origin do not depend on ¢, while the mass on each surface
is a function of c.

For any h € (0, 1), define the region Z(h) = {z € [0,1]" : |||l < h}. For any fixed
co, it holds that p$°(Z(h)) =1 for all h € (0,1) and there exists a small enough A’ > 0
such that p®(Z(h')) < 1. Since for this fixed A’ it holds that pu® (Z(h')) increases
with ¢ (and becomes arbitrarily large as ¢ becomes large), there must exist a ¢ > ¢
such that p¢ (Z(h')) = 1, and thus u¢(Z(h')) = 0. We can therefore pick a decreasing
function p* : R>g — (0, 1) such that, for all sufficiently large ¢, u°(Z(p*(c))) = 0.2 As
argued above, for any small enough A’ > 0 there exists a ¢’ such that u (Z(R')) = 1
and thus p*(¢’) = h’. It follows that p*(c) — 0 as ¢ — oc.

For all ¢, define the following subsets of [0, 1]™:

Ze=Az: |zl <p*(@));  We=A{z:|lz]i = p*(c)}

We notice that pS (Z. N W,) = p° (Z. N W,) = 0. By construction, for large enough ¢

we have ;¢(Z.) = 0. In addition, the only positive mass in Z,. is at the origin, and

thus 1|z, =cva 1|2,

To apply Theorem 3, it remains to show that, for sufficiently large ¢, % |w, = o (=T)
£21

1 |w,. To prove this, we partition W, into 2(n!+ 1) disjoint*' regions, Py, Py,, ..., B, ,

200ur intention is to argue that for ¢ large enough, the optimal mechanism will be grand bundling
for a price of p*(c) + ¢, where the additive +c¢ term comes from our shift of the hypercube to the
origin.

21For notational simplicity, our regions overlap slightly, although the overlap always has zero mass
under both p$ and p¢ .

66



and Ny, N,,,..., Ny, where o; is a permutation of 1,...,n. This partition will be
such that U;P; contains the entire support of u<|w, and U;N; contains the entire
support of ¢ [w,. We will show that u[p, = (- T) pe |, for all j, thereby proving

MS’-|W(, jcvac(ff) MC_|WL
For every permutation o of 1,...,n, define:

1 1/(n—1)
Pl— $I1—$0(1)>.§CO—(2)>"'>.§C‘U(n)>oaﬂd .CUO.(n)<1— !
o - - - - —= c 1

No={y: 12 000) 2+ 2 Yotuo1) 2 Yotw) = 0}

Denote by p £ (c+ 1)/c the ratio between the surface densities of u¢ and u¢ on P,
and N’ respectively, and let ¢, : P, — N/ be the bijection given by Lemma 2. By
construction, < (S) = p’ (ps(S)) for all measurable S C P,.

Denote N, = N’ \ Z. and P, £ ¢~'(N,). By construction, ¢ is a bijection between
P, and N,, preserving the respective the measures pS and p¢, such that for all
x € P,, x is componentwise at least as large as ¢(x). Therefore, by Strassen’s theorem,

LS e, = (1) HE |n,. Lastly, we define

Py={z€10,1]" : z; = 1 for some i} \ (U PC,> ; No=(0,1)"\ Z..

Py consists of all points on the outer surface of the hypercube which have not yet been
matched to any N, and Ny consists of all points on which p¢ is nontrivial which have
not yet been matched.”” It therefore remains only to show that uS |p, = eva(—1) 1| Ny -

We claim that, for large enough ¢, Py only contains points with all coordinates
greater than 3/4. Indeed:

L)1/(71_1)

o ,
e is in some P, .

e Bvery x with z; = 1 but some z; <1 — (
e For large ¢, every x with z; = 1 but some z; < 3/4 is in some P..

e We claim that for large ¢, every x € P.\ P, has all coordinates at least

3/4. Indeed, for every z € P.\ P,, it must be that ¢(x) € Z., and thus

p*(c)"71+p—1> 1/(n-1) ‘ A

lo(x)|li < p*(c). By Lemma 2, we have x5¢,) > 1 — ( >

S

22 A1l other points on which u¢ is nontrivial have been matched either to the origin (if the point
lies in Z.), or to some point in P, (if the point lies in N/ \ Z.).
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c gets large, p — 1 and p*(¢) — 0. Thus, for sufficiently large ¢, we have
r € P\ P, implies &,(,) > 3/4. Since x,(,) is the smallest coordinate of x, it

follows that all coordinates of any x € P. \ P, are greater than 3/4.

e Thus, for sufficiently large ¢, every = with z; = 1 but some z; < 3/4 lies in some

P, and hence does not lie in F,.

By construction, u¢ |y, and uS |p, have the same total mass. Consider independent
random variables X and Y corresponding to u |y, and pS |p,, respectively, where
we scale both measures so that they are probability distributions. By Lemma 6, it
suffices to show that for sufficiently large ¢, Y > E[X] almost surely.”® Since p|p, is
supported on Fy, we need only show that all coordinates of E[X] are less than 3/4.
We recall that u¢ assigns a total mass of n + 1, distributed uniformly, to the interior

of the hypercube. As ¢ gets large, p*(c) approaches 0, and thus

pe(Z.n (0,1)")
1e (0, 1)m)

For large ¢, therefore, E[X| becomes arbitrarily close to the center of the hypercube,

which is the point with all coordinates equal to 1/2. Therefore we have

,Uj_|PO jcmx(ff) :uc—|N0

D Supplementary Material for Section 7

Proor or CLAIM 1: It is obvious that uz is non-negative. To show that uy is
non-decreasing, it suffices to prove that uz(x) > uz(y) for x,y € X \ Z with z
component-wise greater than or equal to y. Let z, € Z be the closest point to x.
Denote by z, the point with each coordinate being the component-wise minimum of

2 and y. Since Z is decreasing, z, € Z. We now compute
ug(e) = ||z =l = Y [(z)i — @l = D Imin{(z2)iu:} — vl = 12 =yl > uz(y)

and thus uyz is non-decreasing.

23In general, to prove second order dominance we might need to nontrivially couple X and Y. In
this case, however, choosing independent random variables suffices.

68



We will now show that uy is convex. Pick arbitrary z,y € X. Denote by z, and
2, points in Z such that uz(z) = ||z — 2|1 and uz(y) = ||y — 2,]/1. Since Z is convex,
the point (2, + 2,)/2 is in Z. Thus

Uz (x—;—y) <

and therefore uy is convex.

THY Ltz
2 2

oMz =zl 4 lly = 2l _ ug(2) +us(y)

- 2 2

1

Lastly, we verify that uy has Lipschitz constant at most 1. Indeed,

uz(w) —uz(y) < llv = zyll —uz(y) =z = 2l = lly = 2l < llz =yl

E Supplementary Material for Sections 7 and 8

E.1 Verifying Stochastic Dominance - Proof of Lemma 3

We begin with the standard result that a sufficient condition for first-order stochastic

dominance is that one measure assigns more mass than the other to all increasing sets.

Claim 5. Let a, 3 be positive finite Radon measures on R, with a(R%,) = B(RY,).
A necessary and sufficient condition for oo =1 3 is that for all increasing®* measurable
sets A, a(A) > B(A).

ProOF OF CLAIM 5: Without loss of generality assume that a(R%;) = B(R%,) = 1.

It is obvious that the condition is necessary by considering the indicator function
of any increasing set A. To prove sufficiency, suppose that the condition holds and
that on the contrary, a does not stochastically dominate 5. Then there exists an

increasing, bounded, measurable function f such that

/ fdg — / fda > 27F+1

for some positive integer k. Without loss of generality, we may assume that f is

nonnegative, by adding the constant of —f(0) to all values. We now define the

24 An increasing set A C RY , satisfies the property that for all a,b € RY such that a is component-
wise greater than or equal to b, if b € A then a € A as well.

69



function f by point-wise rounding f upwards to the nearest multiple of 27%. Clearly

f is increasing, measurable, and bounded. Furthermore, we have

/fdﬁ—/fdaz/fdﬁ—/fda—Q‘k>2‘k+1—2‘k>O.

We notice, however, that f can be decomposed into the weighted sum of indicator
functions of increasing sets. Indeed, let {ry,...,r,} be the set of all values taken
by f, where r1 > o > --- > r,,,. We notice that, for any s € {1,...,m}, the set

Ay ={z: f(2) > r,} is increasing and measurable. Therefore, we may write

f = Z(TS - Ts—l)ls
s=1

where I is the indicator function for A, and where we set ro = 0. We now compute

[ 75 =300 = 1840 £ Yt~ ri-a(a) = [ fa,

contradicting the fact that [ fd8 > [ fda. O

Due to Claim 5, to verify that a measure « stochastically dominates  in the first
order, we must ensure that a(A) > §(A) for all increasing measurable sets A. This
verification might still be difficult, since an increasing set can have fairly unconstrained
structure. In Lemma 13 we simplify this task by showing that we need not verify the

inequality for all increasing A, but rather only for a special class of increasing subsets.

Definition 16. For any z € RY,, we define the base rooted at z to be
B. 2 {7 :2=7},

the minimal increasing set containing z, where the notation z < 2z’ denotes that every

component of z is at most the corresponding component of 2.

We denote by @, to be the set of points in RY, with all coordinates multiples of
27k,
Definition 17. An increasing set S is k-discretized if S = UzeSka B.. A corner ¢

of a k-discretized set S is a point ¢ € SN Q. such that there does not exist z € S\ {c}
with z < c.
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Lemma 12. Fvery k-discretized set S has only finitely many corners. Furthermore,

S = Ueee B., where C is the collection of corners of S.

Proor orF LEMMA 12: We prove that there are finitely many corners by induction
on the dimension, n. In the case n = 1 the result is obvious, since if S is nonempty
it has exactly one corner. Now suppose S has dimension n. Pick some corner
¢=(c1,...,cn) € S. We know that any other corner must be strictly less than ¢ in

some coordinate. Therefore,

n 2'“01

]C]<1+Z|{c€€st cz<cz}|—1+ZZ|c€Cst ¢ =¢—27%j|.

=1 j=1

By the inductive hypothesis, we know that each set {c eCst. ¢ =0¢— 2"“]’} is
finite, since it is contained in the set of corners of the (n — 1)-dimensional subset of S

th coordinate ¢; — 27%j. Therefore, |C| is finite.

whose points have

To show that S = J .. Be, pick any z € S. Since S is k-discretized, there exists a
b€ SNQsuch that z € By. If b is a corner, then z is clearly contained in J .. Be.
If b is not a corner, then there is some other point &' € SN Q; with & < b. If V' is a
corner, we're done. Otherwise, we repeat this process at most 2% y b; times, after
which time we will have reached a corner ¢ of S. By construction, we have z € B,, as

desired. 0

We now show that, to verify that one measure dominates another on all increasing
sets, it suffices to verify that this holds for all sets that are the union of finitely many

bases.

Lemma 13. Let g, h : RY; — R be bounded integrable functions such that fR” g(x)dx
and fR" x)dx are finite. Suppose that, for all finite collections Z of points in RZ,,

J

Then for all increasing sets A C R%,

/A g(2)dz > /A h(z)dz.

PROOF OF LEMMA 13: Let A be an increasing set. We clearly have A = |

we hcwe

N g(z)dx Z/U h(z)dzx.

z€Z TF z2€Z B

zeA
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For any point z € RY,, denote by 2™* the point in RY, such that for each component
i, the i"" component of 2™* is the maximum of 0 and z; — 27%.

We define the following two sets, which we think of as approximations of A:

A2 ) B A2 | B

z€EANQk ZEANQg

It is clear that both A} and AY are k-discretized. Furthermore, for any z € A there
exists a 2 € AN Qy, such that each component of 2’ is at most 27* more than the

corresponding component of z. Therefore AL C A C AL

J

Wy, ={z € R%;: 2 > k for some i} ; Wi ={z€R%) 2 <kforalli}.

We now will bound

g(x)dx—/A g(x)dx.

u 1
k k

Let

The set W contains all points which are lie inside in a box of side length % rooted at

the origin, and W), contains all points outside of this box. We have the immediate

(loose) bound that
/ gdx —/ gdxr < / gdzx.
AUNW, Al nWwy, Wi

Furthermore, since limy o [ic gdz = [5. gdx, we know that limj_, fWk gdx = 0.
P> ) ;

lim / gdx —/ gdz | = 0.
k—o00 AZka Akak

Therefore,

Next, we bound
[ ade= [ gde < gl (VEAENW) - V(AL N WD)
AUNWE ALnwye

where |g|sy,p < 00 is the supremum of g, and V(-) denotes the Lebesgue measure.
For each m € {1,...,n+ 1} and z € R%;, we define the point 2k by

max{0,z — 2%} ifi<m

m,k

% otherwise
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and set

Ap s ) B

z€EANQ

We have, by construction, A, = A} and AY = A}, Therefore,

V(AN W) = V(AL A WE) =Y (VAP n W) = V(AP nWwy)) .

m=1

We notice that, for any point (21, 22, .., Zm_1, Zmi1s - - 2n) € [0, k], there is an

interval I of length at most 2% such that
(Zla R2y vy Am—1, W, Zm—2, - - -, Zn) € (A?Jrl \ AZL) N ch
if and only if w € I. Therefore,

V(AP N WE) — V(AR N W)

/ / / / 27 Rz dzy, 1d2my - dzy, = o kpn-1,

We thus have the bound

[9lsup (V(AEOWE) = V(AL AWE)) < Jglsup Y 27K = nlglup2 k"

m=1

and therefore

/ gdx—/ gdx:/ gda:—/ gdx—i—/ gdaz—/ gdx
u Al AYNW, AL Wy, AYNWE Alnwe
< / gdm—/ gdz | +nlglap2 "KL
AW, Al Wi

lim </ gdz —/ gdx) = 0.
k—ro0 u Al
k k

In particular, we have
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Since fA“ gdzx > fA gdzr > fA, gdx, we have
k k

lim gdr = / gdr = lim gdzx.

Similarly, we have
/ hdx = lim hdx
A

k—o00 l
Al

/(g—h)d:r: lim (/ gdx—/ hdx).

Since Al is k-discretized, it has finitely many corners. Letting Z; denote the corners
of Al, we have Al = UzEZk B., and thus by our assumption IAZ gdx — fAZ hdz > 0 for
all k. Therefore [,(g — h)dz > 0, as desired. O

and thus

l
k

We are now ready to prove Lemma 3.
PROOF OF LEMMA 3:
We begin by defining, for any a and b with p; < a < b < ¢, the function

¢t [p2, q2) = R by

() & / (9(z1,02) — hzr, wn))dza.

This function ¢b(w,) represents the integral of g — h along the vertical line from (a, wy)
to (b, ws).

Claim 6. If (a,w;) € R, then (®(w,) < 0.

PROOF OF CLAIM 6: The inequality trivially holds unless there exists a z; € [a, b] such
that g(z1,we) > h(z1,ws), so suppose such a z; exists. It must be that (21, wsy) ¢ R,
since both g and h are 0 in R. Indeed, because R is a decreasing set it is also true

that (21, wy) ¢ R for all Z; > z;. This implies by our assumption that
9(Z1,w2) — h(Z1,wa) = a(z1) - B(wa) - (Z1, wa),

for all Z; > z;. Given that g(z1,ws) > h(z1,wy) and that n(-,ws) is an increasing
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function, we know that g(Z1,ws) > h(Z1,ws) for all Z; > 2. Therefore, we have

(i (wa) < CPws) < I (ws).

We notice, however, that (7' (w9) < 0 by assumption, and thus the claim is proven.[]

We now claim the following;:

Claim 7. Suppose that (°(w3) > 0 for some wj € [ca,q2). Then C2(wy) > 0 for all

Wy € [w;7 q2)'

PROOF OF CLAIM 7: Given that ¢®(w}) > 0, our previous claim implies that
(a,w3) ¢ R. Furthermore, since R is a decreasing set and we > w3, follows that
(a,ws) € R, and furthermore that (c,wy) € R for any ¢ > a in [¢1, ¢1). Therefore, we

may write

b b
(H(wy) = / (921, w0) — h(z1,w0))dzy = / (a(z1) - Blws) - 0z, wn))dea.

Similarly, (c,w3) € R for any ¢ > a, so

b
) = [ (alar) - Blwi) e, wp)ia
Note that, since ¢?(w3) > 0, we have 8(w}) > 0. Thus, since 7 is increasing,

5(102)
B(w3)

as desired. O

e / (a(z1) - Bluwn) - 1z, w3))dz = 222 oy > 0,

We extend g and h to all of RQZO by setting them to be 0 outside of C. By Claim 13,
to prove that g > h it suffices to prove that [, gdedy > [, hdzdy for all sets A which
are the union of finitely many bases. Since g and h are 0 outside of C, it suffices to
consider only bases B, where 2’ € C, since otherwise we can either remove the base
(if it is disjoint from C) or can increase the coordinates of 2z’ moving it to C without
affecting the value of either integral.

We now complete the proof of Lemma 3 by induction on the number of bases in

the union.
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Base Case. We aim to show [, (9 — h)dzdy > 0 for any r = (r,75) € C. We have

q2 q1 q2
| =nasty= [* ["(g-miadz = [z
T T2 r1 ()

By Claim 7, we know that either (%! (z;) > 0 for all z5 > 73, or (f!(z) < 0 for all 2z,
between p, and 75. In the first case, the integral is clearly nonnegative, so we may

assume that we are in the second case. We then have

q2 q2
/ M (22)dz 2/ M (29)dzy = / / g — h)dzdz
" " o
:/ / (9 — h)dzodz.
T1 p2

By an analogous argument to that above, we know that either qu; (g — h)(z1, 22)dz
is nonnegative for all z; > r; (in which case the desired inequality holds trivially) or
is nonpositive for all z; between p; and r;. We assume therefore that we are in the

second case, and thus

a1 qz g1 q2
/ / (9 — h)dzedzy > / / (9 — h)dzodz = /(g — h)dzdy,
T Jp2 p1 Jp2 c

which is nonnegative by assumption.

Inductive Step. Suppose that we have proven the result for all sets which are finite

unions of at most k£ bases. Consider now a set

k+1

A=|JB.o
i=1

We may assume that all 2 are distinct and that there do not exist distinct 2, 2(9)
with 2@ component-wise less than 219 since otherwise we could remove one such B
from the union without affecting the set A and the desired inequality would follow

from the inductive hypothesis.

We may therefore order the 2 such that

<. (k+1)

o<z (k)

< (k—1)

< 2 (1)

76



(1) (2)

D2 < 2yl < 2y (3)

< 24 (h+1).

<“'<22

zZ9

N
=
+
=

D2 R Z(k-_\L\

b1
<1
Figure 9: We show that either decreasing zékH) to zék) or removing z**1 entirely

decreases the value of [ A(f —g). In either case, we can apply our inductive hypothesis.

By Claim 7, we know that one of the two following cases must hold:

2P (k+1)
Case 1: ( ;) (w2) <0 forall pp <wy <2y .
21

In this case, we see that
+1)

(k+1) (k) (k
2 21 ) Z(k>
— q)dz1dze = ! w)dw < 0.
Z(k) Z(k+1)(f g) Z(k) zikﬂ)( ) -
2 1

2

For notational purposes, we denote here by (f — ¢)(S) the integral [((f — g)dz1dz

for any set S. We compute

(f=9)(A) > (f —9)(4)
+(f—9) <{Z : z§k+1) <z < ZYC) and Zék’) << Zék-ﬁ-l)})

k
=(f-9) (U B.oU B(z§k+1>,z;k>)>

i=1

k—1
=(f—9) (U B,y U B(Z§k+l)7zék)))

i=1
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where the last equality follows from (z%k), zék)) being component-wise greater than or

equal to (z%kﬂ), zék)) The inductive hypothesis implies that the quantity in the last
line of the above derivation is > 0.

2 (k+1)
Case 2: ( ;) (w2) >0 for all wy > 25" .

21

In this case, we have

q2 ZYC) 92 L (k)
— q)dz1dze = ! w)dw > 0.
/Z(k+1) /Z<k+1)(f 9) 1422 k1) Z£k+1)( ) =
2 1 2

Therefore, it follows that

(f—9)(A)=(f—9) (U Bm)

+(f—9) ({Z : Z§k+1) <z < Z§k) and Zék—H) < 22}>
k
i=1

where the final inequality follows from the inductive hypothesis.

E.2 Veriftying Stochastic Dominance in Example 3

We sketch the application of Lemma 3 for verifying that u. | =1 p—|w in Example 3.
We set C = [Zeit, 1] X [Yerit, 1] and R = ZNC, so that W = C\ R. We let g and h being
the positive and negative parts of the density function of plyy, respectively, so that
the density of p|yy is given by g — h. Since Z lies below both curves Siop and Syignt, we
know that integrating the density of 1 along any horizontal or vertical line outwards
starting anywhere on the boundary of Z yields a non-positive quantity, verifying the

second condition of Lemma 3. In addition, on W = C \ R, we have

dlersia) = hiarvia) = filefalen) (12 + 12 —5)

1—21 1—22

which satisfies the third condition of Lemma 3, as 1/(1—2;)+1/(1—23) —5 is increasing.
Finally, we verify the first condition of Lemma 3 by integrating g — h over C. This

integral is equal to u(W) = 0 and thus all conditions of Lemma 3 are satisfied.
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E.3 Uniqueness of Mechanism in Example 3

To argue that the utility u(z) is shared by all optimal mechanisms, we start by
constructing an optimal solution 7* to the RHS of (5). ~* needs to satisfy the
complementary slackness conditions of Corollary 1 against any optimal solution u* to
the LHS of (5). We will choose our solution 7* so that the complementary slackness
conditions will imply u* = u. Let us proceed with the choice of v*. Recall the
canonical partition Z U AU BUW of the type space, identified above, and illustrated
in Figure 6. We define a solution v* to the RHS of (5) that separates into the four
regions as follows (the optimality of this v* follows easily by checking that it satisfies

the complementary slackness conditions of Corollary 1 against u):

Region Z Recall that, in region Z, we have u|z <. 0. Our solution v* matches
the +1 unit of mass sitting at the origin to the negative mass spread throughout
region Z, by moving positive mass to coordinate-wise larger points and performing
mean preserving spreads. By the complementary slackness conditions of Corollary 1

(see Remark 1 for intuition), it follows that u*(z) = 0, for any optimal solution u* to
the LHS of (5).

Regions A and B In regions A and B our solution v* transports mass vertically
and, respectively, horizontally. The complementary slackness conditions imply then
that any optimal solution u* to the LHS of (5) u* must change linearly in the second

coordinate in region A and linearly in the first coordinate in region B.

Region W Finally, in region W we want to show that any optimal u satisfies
|u(Z) —u(y)| = ||&— 9|1 if £ > ¥ coordinate-wise. This is not as straightforward as the
previous 2 cases as we don’t have an explicit description of the optimal dual solution.
However, we can use Lemma 3 to show that there exists a measure v* which is optimal
for the dual and matches types on the top right corner (with values ~ (1,1)) to types
close to the bundling line (with values x; + 2 ~ p*) which implies that any optimal
function u must be linear in W.

By continuity, any optimal v must be equal to z; + 2o — p* = 0 when 2z, 4+ 25 = p*.
Moreover, it holds that u(z) < z; + 29 — p*, because u is 1-Lipschitz. We will now

show the reverse inequality by showing that u(1,1) = 2 — p*. Recall that the density
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of measure p in region W is equal to:

1 1
= -5
(21, 22) = fi(21) fa(22) (1 — 15 )
where fi(z) = fao(z) = (1 — x). Lemma 3 implied that py|w =1 p—| but didn’t
give a transport map 7 constructively. To partially specify a transport map  that is
optimal for the dual, we define for sufficiently small ¢ > 0 the measure p/ which has

density

(o0, 22) = (1) ) (1 + max (1; L) . 5)

— 22’ 1-— Z1
when (z1,22) € [1 — ¢,1] and p'(21,22) = u(21,22) otherwise. In particular, p' is
obtained by removing some positive mass from p in [1 — ¢, 1] and thus g/(W) <

u(W) = 0. Moreover, notice that we defined p’ so that fl’z/('zl’“) is still an increasing

z1) f2(22)
function. Now, let R’ be the region enclosed within the curves s1(x), sa(y), © +y = p*
and z +y = p' for p’ > p* so that ¢/ (W \ R') = 0. This defines a decomposition
of measure p|yy into two measures p'|w\p and ply — g of zero total mass

(Figure 10).

2/3 ot W

1/2

1/2 2/3

Figure 10: Decomposition of measure p|yy into measures (/[ and plyw — 1w\ -
The dark shaded regions R and H = [1 — ¢, 1] show the support of z|y — 1/ |w\ s

We apply Lemma 3 for ' in region W\ R’ to get that p/|\ g =1 0. We also have
that (u — p')|w =1 p|r since (u — p')|yy contains only positive mass supported on

[1—¢, 1]? and every point in the support pointwise dominates every point in the support
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of p|g. Thus, there exists an optimal transport map ~* in region W such that y* =
Y + 4@ and 4@ transports the mass p/' |\ p while 7# transports mass arbitrarily
from (u — p')|w to plr. Given such an optimal 7*, the complementary slackness
conditions of Corollary 1 imply that any feasible v must satisfy |u(2) —u(2")| = ||Z7—2"||1
whenever mass is transfered from Z to 2. This can only happen if u(1,1) =2 — p*

and implies that u(Z) = 21 + 2o — p* everywhere on W.

F Extending to Unbounded Distributions

Several results of this paper extend to unbounded type spaces, although such extensions
impose additional technical difficulties. Here we briefly discuss how some of our results
generalize.

We can often obtain a “transformed measure” (analogous to Theorem 1 even when
type spaces are unbounded) using integration by parts. We wish to ensure, however,
that the density function f decays sufficiently quickly so that there is no “surface term
at infinity.” For example, we may require that lim,, ., fi(z;)2? — 0, as in [DDT13].
We note that without some conditions on the decay rate of f, it is possible that the
supremum revenue achievable is infinite and thus no optimal mechanism exists.

Similar issues arise when integrating with respect to an unbounded measure p. It
is helpful therefore to consider only measures p such that [ ||z[|1d|u| < oo, to ensure
that [ wudp is finite for any utility function u. The measures in our examples satisfy
this property. We can (informally speaking) attempt to extend this definition to
unbounded measures (with regularity conditions such as [ ||z1d|u| < 0o) by ensuring
that whenever the “smaller” side has infinite value, so does the larger side.

Importantly, the calculations of Lemma 1 (weak duality) hold for unbounded g,
provided [ ||z|l1d|p| < co. Thus, tight certificates still certify optimality, even in the
unbounded case. However, our strong duality proof relies on technical tools which
require compact spaces, and thus these proofs do not immediately apply when p is
unbounded.

To summarize our discussion so far, we can often transform measures and obtain an
analogue of Theorem 1 for unbounded distributions (provided the distributions decay
sufficiently quickly), and can easily obtain a weak duality result for such unbounded

measures, but additional work is required to prove whether strong duality holds.
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