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ABSTRACT

HF radars typically produce maps of surface current velocities without estimates of the measurement
uncertainties. Many users of HF radar data, including spill response and search and rescue operations, in-
corporate these observations into models and would thus benefit from quantified uncertainties. Using both
simulations and coincident observations from the baseline between two operational SeaSonde HF radars, we
demonstrate the utility of expressions for estimating the uncertainty in the direction obtained with the
Multiple Signal Classification (MUSIC) algorithm. Simulations of radar backscatter using surface currents
from the Regional Ocean Modeling System show a close correspondence between direction of arrival (DOA)
errors and estimated uncertainties, with mean values of 15° at 10 dB, falling to less than 3° at 30 dB. Obser-
vations from two operational SeaSondes have average DOA uncertainties of 2.7° and 3.8°, with a fraction of
the observations (10.5% and 7.1%, respectively) having uncertainties of >10°. Using DOA uncertainties for
data quality control improves time series comparison statistics between the two radars, with 2 = 0.6 in-
creasing to 2 =0.75 and RMS difference decreasing from 15 to 12 cms~'. The analysis illustrates the major
sources of error in oceanographic HF radars and suggests that the DOA uncertainties are suitable for as-
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similation into numerical models.

1. Introduction

Oceanographic HF radars produce high-resolution
maps of ocean surface currents that reveal complex
ocean surface dynamics. The contribution of these
maps to our understanding of coastal oceanography
has been limited only by the fact that the measurement
errors are essentially unquantified. The observations
result from complex signal processing techniques that
obscure the errors and their numerous sources. While
many studies have put bounds on the errors, typically
through comparisons with independent measurements,
“further efforts to understand error structure in HF
radar derived data are clearly warranted”” (Oke et al.
2002, p. 5-8), and the HF radar community should
“develop . . . uncertainty estimates so that search areas
can be modeled more effectively” (O’Donnell et al.
2005, p. 7-4). In this paper we aim to further the un-
derstanding of error sources in oceanographic HF radars
and to quantify the uncertainties.
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Oceanographic HF radars typically use one of two
methods for bearing determination: beamforming (Graber
et al. 1997; Chapman et al. 1997; Gurgel et al. 1999) or
direction finding (DF) with Multiple Signal Classifica-
tion (MUSIC; Schmidt 1986). This analysis focuses on
radars using the SeaSonde three-element receive an-
tenna (manufactured by CODAR Ocean Sensors Ltd.),
with MUSIC for direction finding [ongoing work seeks to
extend this analysis to other array types, such as Wellen
Radars (WERA; Gurgel et al. 1999) and the Least Ex-
pensive Radar (LERA; P. Flament et al. 2017, meeting
presentation), but these results will be reported elsewhere].
While MUSIC has numerous advantages over beam-
forming, MUSIC encounters limitations with low SNR,
small numbers of temporal samples, and small numbers
of receive antenna elements—all common characteris-
tics of the SeaSonde and its signal processing techniques.
Further limitations result from closely spaced signal sour-
ces (Krim and Viberg 1996)—a potential characteristic of
the ocean surface currents. It is not thoroughly under-
stood how these limitations translate to observational
uncertainties in the SeaSonde data.
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Many investigations of oceanographic HF radar errors
attempt to infer errors and uncertainties from compari-
sons with in situ current measurements. Following the
methods of Graber et al. (1997), Chapman et al. (1997),
and Chapman and Graber (1997), studies of radars em-
ploying MUSIC (e.g., Emery et al. 2004; Paduan et al.
2006; Liu et al. 2014) were able to attribute errors to the
direction-finding technique. Other studies using in situ
data demonstrated the importance of measured an-
tenna patterns for decreasing error (Kohut and Glenn
2003; Cosoli et al. 2010), and that screening radial data
by SNR improved comparisons with in situ measure-
ments (Cosoli et al. 2012). In these examples geophysical
differences between the measurements limited what
could be attributed specifically to the radar processing,
results further demonstrated by Kohut et al. (2006) with an
ADCP, and Ohlmann et al. (2007) with drifters. To avoid
these complicating factors, other studies adopted a
simulation-based approach. Laws et al. (2000), and later
de Paolo and Terrill (2007), looked at MUSIC perfor-
mance using different ocean current scenarios with variable
SNR. Cook et al. (2007) and Laws et al. (2010) investigated
the influence of antenna pattern distortions on error. In
these examples the SNR, the receive antenna pattern
measurement (APM), and the receive antenna design
were shown to affect the observational errors.

These studies did not address the longstanding needs for
data-based metrics or uncertainty estimates. While the
SeaSonde produces parameters along with observa-
tions (Lipa et al. 2006) that may be close to the final
uncertainty product needed by modelers (D. E. Barrick
2013, personal communication), our preliminary work
suggests that these are poor indicators of error. However,
metrics based on properties of the MUSIC direction of ar-
rival (DOA) function have been shown to improve com-
parison results when used for thresholding (Kirincich et al.
2012). These improvements are significant, particularly as
quality control metrics, but they fall short of providing an
uncertainty estimate with each velocity observation.

Outside of oceanography MUSIC has been thor-
oughly studied and several publications derive analytical
expressions for DOA error. Stoica and Nehorai (1989)
derived the DOA error variance based on a Taylor ex-
pansion of the MUSIC DOA function and the statistical
properties of the eigenvectors of the data covariance
matrix. Given this expression, it is possible to estimate
the uncertainty for a given MUSIC DOA solution. In
the context of oceanographic HF radars, the ability to
produce a MUSIC solution along with an estimate of the
directional error could go a long way toward meeting the
needs of users as described above.

Several recent studies employ the techniques and
results of Stoica and Nehorai (1989) to further the
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understanding of oceanographic radars. Both Lai et al.
(2017c) and Tian et al. (2017) derive an expression
based on Taylor expansion of the MUSIC DOA func-
tion to quantify DOA errors resulting from the differ-
ence between the measured and ideal antenna patterns.
They use the result to improve DOA estimation with
the SeaSonde-like cross loop/monopole system known
as the Ocean State Measuring and Analyzing Radar,
type S (OSMAR-S). Furthermore, Lai et al. (2017a)
attribute average bearing errors to differences between
measured and ideal antenna patterns. These use ideal
patterns in the MUSIC inversion. These studies further
the understanding of the influence of antenna pattern
distortions on DF data, but they do not attempt to as-
sess the Stoica and Nehorai (1989) result for use as an
operational error metric, or as an estimator of HF DOA
error. Given that Stoica and Nehorai (1989) necessarily
make simplifying assumptions about the signal environ-
ment that may or may not apply to oceanographic HF
radars, it remains to be demonstrated that the theoretical
error expressions predict the actual performance of
oceanographic radars.

In this paper we evaluate methods for estimating un-
certainties associated with the radial velocities produced
by SeaSonde oceanographic HF radars. In section 2 we
review the processing of oceanographic HF radar signals
and present factors contributing to errors. In section 3
we present the simulation-based evaluation techniques.
In section 4 we define the Stoica and Nehorai (1989)
expressions for estimating DOA uncertainty. Results
are presented in section 5, along with further discussion
in section 6. Conclusions of the analysis are summa-
rized in section 7, with mathematical symbols defined
in appendix A and additional calculation details in
appendix B.

2. Oceanographic HF radar processing and errors

Figure 1 summarizes the signal processing of ocean-
ographic HF radar data up to radial velocity compo-
nents v,. Boxes on the left are based on previous
publications [Fig. 1 from both Barrick and Lipa (1999)
and de Paolo and Terrill (2007)] and are specific to the
processing of SeaSonde data (Lipa et al. 2006). Other
operational HF radars use a slightly different scheme
with details specific to beamforming. However, it has
been shown that the scheme in Fig. 1 can be used for
somewhat arbitrary receive antenna configurations (e.g.,
P. Broche et al. 2004, meeting presentation; Barbin et al.
2006). Errors arise at several points as shown on the right
in Fig. 1. Here we describe the errors and uncertainties
that arise in HF radar observations, resulting from the
sequence of signal processing steps.
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(1) Range uncertainty due to
windowing

(2) Frequency quantization
error

(3) Covariance matrix uncertainty due
to finite ensemble average

(4) Errors in identifying first order
region (inclusion/exclusion)

(5) Incorrect determination of the
number of signal source bearings, e.g.
error determining N for v,

(6) Errors in estimating 0 (due to
SNR, MUSIC, antenna pattern)

FIG. 1. HF radar data processing flow for estimating radial velocities, with error sources.
[Adapted from Barrick and Lipa (1999) and de Paolo and Terrill (2007).]

1) Range uncertainty due to windowing. The first FFT

of the antenna voltage time series separates signals
by range (cf. Barrick and Lipa 1999). Assuming the
conversion of a continuous flow field into discrete
range rings can be understood as a discretization
process, we can use the theory for analog-to-digital
conversion to estimate error in the range deter-
mination. Given a range cell width Ar, the range
uncertainty can be estimated (Bendat and Piersol
2000) as follows:

/1
o, = EAr ~ 0.29Ar, (1)

where the factor of 1/12 is the variance introduced
when representing the uniformly distributed range
with the discretized value. Furthermore, windowing
(e.g., Hamming) applied to the frequency-modulated
continuous-wave (FMCW) sweep to convert fre-
quency to range causes 20% overlap in adjacent
range cells (Lipa and Barrick 1983) and thus an

increase in the range increment. In this case the range
increment Ar is increased by a factor of 1.2, and (1)
becomes o, = 0.35Ar.

2) Frequency quantization error. For oceanographic
radars signals arrive nearly simultaneously from
all angles within view. FFT processing of the time
series produced by step 1 sorts signal variance
by Doppler frequencies, which are then processed
by MUSIC separately. Given M antennas, the re-
quirement for a noise subspace in the eigen
decompositon limits MUSIC to processing N signal
sources, where N < M. Thus, the FFT preprocessing
allows a radar with just a few receive antennas (e.g.,
M =3) to produce DOA solutions for many more
than M signals in a given time period. After FFT
processing, frequency components are then auto-
and cross multiplied to form power spectra (Lipa
et al. 2006).

The FFT calculation and formation of cross-
spectra (cf. Lipa et al. 2006; de Paolo et al. 2007)
introduce errors in v, as a result of the discretization
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3)

4)

5)

of frequency bins. Using (1) but substituting Av, for
Ar, we can estimate the velocity uncertainty using

o, ~0.29Av . 2)
Here Av, is the radar radial velocity increment,
A SWR
Ay =X , (3)
r 2 N

computed with the transmitted wavelength Arx, the
sweep rate (SWR), and the FFT length (nprr) (Lipa
and Barrick 1983). For a radar with Av, =4.3cm sfl,
oy, =12cm s 1 though longer FFTs reduce oy, to
less than 1 cms ™! (Kirincich et al. 2012; Forget 2015).
Covariance matrix uncertainty due to finite ensemble
averages. After cross multiplying, we average K cross-
spectra (where K is the number of independent en-
sembles, or “‘snapshots”; Van Trees 2002) and form
the covariance matrix C(f) for each frequency bin
f (cf. de Paolo et al. 2007). Finite sampling periods
and the dynamic nature of the ocean surface limit
K. Uncertainty in the covariance matrix resulting from
the choice of K influences the direction-finding esti-
mate, contributing to DOA error, as discussed below.
Error in identifying first-order region. After forming
the cross-spectra, we must determine what portion of
the spectrum contains the signal from the first-order
scattering process, which includes the ocean current
information. To identify frequency bins containing the
first-order signal, operational SeaSondes use empirical
methods (Lipa and Barrick 1983), or image processing
techniques (Kirincich 2017). Errors arise in two ways:
1) when the non-current, or signal is interpreted as orig-
inating from ocean currents or 2) when the signal from
ocean currents is excluded from processing. These
errors can be large in certain situations, such as when
high winds (>15ms ') combine with strong currents
(>2ms™ "), causing the first-order and second-order
signal regions to become indistinguishable (CODAR
2002). On average, these errors are probably less than
or equal to the reported 2-8cms ! noise levels based
on estimates from the power spectra of the HF radar
currents (Emery et al. 2004; Forget 2015).

Incorrect determination of the number of signal
source bearings. Once the M X M covariance ma-
trix has been formed for Doppler bins in the first-
order region, MUSIC uses the noise eigenvectors
to determine the source DOA(s) (cf. Schmidt 1986;
Tuncer and Friedlander 2009; Emery 2018, man-
uscript submitted to /EEE J. Oceanic Eng.). The
SeaSonde uses a hypothesis testing approach to asso-
ciate the eigenvectors with the signal or the noise,
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determining whether the signal results from a single
bearing N =1 or from ‘““dual” bearings N =2 (Lipa
and Barrick 1983). For both the SeaSonde and other
arrays, the impact of incorrect determination of N has
not been quantified. Another potential source of error
is the possibility of the ocean surface presenting
situations with N = M. The performance of MUSIC
when N = M has not received much attention.

6) Error in estimating the DOA. Several factors contribute
to errors in the DOA estimates from MUSIC, including
the SNR, the accuracy and characteristics of the antenna
pattern measurement, and the angular separation of
the signal sources (cf. Van Trees 2002; Friedlander
2009). As mentioned above, limits on K used to form
C(f) produce uncertainty in both C(f) and the DOA
estimate. Average DOA errors in the range 0°-19°
that have been shown for oceanographic HF radars
(Kohut and Glenn 2003; Emery et al. 2004; Paduan
et al. 2006; Cosoli et al. 2010; Kirincich et al. 2012; Lai
et al. 2017a) likely result from these factors.

The above steps summarize the major sources of error
in currents from oceanographic HF radars. Known
methods for estimating the uncertainty contributed by
steps 1 and 2 were included. In the following sections, we
describe and evaluate analytical expressions for esti-
mating the uncertainty resulting from steps 3 and 6.
Errors resulting from steps 4 and 5 are not investigated
here, and will require further analysis.

3. Signal models and simulation methods
a. General array data model

To present expressions for the error variance, we must
first define the data model and related notation. In the
simplified case of N discrete signal sources (N < M),
following Schmidt (1986) and Stoica and Nehorai (1989),
we define the voltage time series measured at the receive
antenna outputs Y as the product of the N signal sources
impinging on the array from bearings 6y, 6,, ..., fy given
by X(z), and the array response A, plus noise e(¢):

Y = AX(t) + e(t). 4

Here the M X N matrix A gives the response of the
M antenna elements to each signal source,

| | |
a(9,) a(o,) a(6y) |
| | |

where the M X 1 vectors a(f) represent the antenna pat-
tern at each 6. The matrix X() gives the typically complex-
valued signal from the N signal sources, described below.

A= ®)
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Noise given by the matrix e(f) is assumed to be
Gaussian distributed with zero mean and variance
o?. Given A at the source locations 64, ..., Oy, X(t),
and e(t), we compute Y with (4) and then the M X M
data covariance matrix,

Lyyr

C= EYY , (6)
where H denotes the Hermitian conjugate. The matrix C
forms the input to MUSIC. Expressions (4)—(6) define
the data model for general X(¢). This model holds for
arbitrary receive antenna arrays, but in both simulations
described below we use the ideal SeaSonde antenna
pattern. The more complex simulations of ocean back-
scatter require additional processing between (4) and
(6) as we describe below. We first use (4) and (6) with a
relatively simple X(7), which allows us to investigate
error estimates in a simplified scenario.

b. Discrete source simulations

In the simplified discrete source simulations, we de-
fine X(7) as an N X K matrix,

x, () x(&) x,(t)
X@t)=1| N N )

xy(t) xy(,) xN(.tK)

where each row represents a signal source time series.
Each row [e.g., xy(?)] is made up of K normally dis-
tributed random numbers with zero mean (Stoica and
Moses 2005). This model defines independent discrete
signal sources commonly used to test DOA methods
(e.g., Van Trees 2002). The complex-valued matrix A
has dimensions M X N, such that Y is M X K. For each
Monte Carlo simulation, we vary both the values for
sources [X(¢)], and the complex-valued M X K matrix
e(r) at a given SNR. When using this model, we ran 500
simulations at each value of SNR in the range 1-30dB,
with K =9.

c¢. Oceanographic radar simulations

For simulations of backscatter from oceanographic
HF radars, we use a modified version of the signal model
used in previous studies (Barrick and Lipa 1996; Laws
et al. 2000; de Paolo et al. 2007; Laws et al. 2010). Fol-
lowing these we define X(¢),

X(t) =y, expli(w, + @ )]
+vy_expli(—w, + o )t]. (8)

The expression (8) models the signal backscattered
from the ocean surface, with the combined Doppler shift
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resulting from the advancing and receding Bragg
resonant waves *wpg and the currents w.. We com-
pute wg = (2kTXg)1/2 based on the radar wavenumber
krx =2mfrx/c, the radar transmit frequency frx, the
gravitational acceleration g, and the speed of light c.
The radial component of the ocean surface current pro-
vides v, for computing @, =2krxv,. The matrix y.
defines a decorrelation factor, discussed below. Simu-
lations used frx = 13.45MHz in the calculations, but
the results do not depend on the transmit frequency.

A significant difference from the discrete source
simulation is that X(¢) now has dimensions of Ny, X nggr,
where N,, is the length of the vector v, and nggr specifies
the length of the time series as typically produced by
oceanographic HF radars. We interpolate A to the N,
positions in 0 for each value of v,(6), such that (8) re-
sults in X(¢) with dimension Ny, X ngrr and Y with di-
mension M X nggr.

After forming Y, we compute the FFTs of each row
and then auto- and cross multiply these to form power
and cross-spectra. After averaging K of these, we iden-
tify frequency bins containing the first-order signal with
the methods of Kirincich (2017) and form the C(f) for
each frequency bin separately (cf. de Paolo et al. 2007)
following the processing sequence outlined in Fig. 1.

In simulations for this study, we obtain v, from the
surface velocity field of the Regional Ocean Modeling
System (ROMS) (Shchepetkin and McWilliams 2005),
as configured and run for Romero et al. (2016). As de-
scribed by Romero et al. (2016), the one-way nesting
scheme and the use of climatology follow Buijsman
et al. (2012) and Uchiyama et al. (2014), with the two
innermost domains forced (e.g., via momentum and
heat fluxes) with the 6-km-resolution Weather Re-
search and Forecasting Model (Skamarock et al. 2005).
For our purposes, ROMS produces plausible surface
currents with a horizontal structure at scales smaller
than those resolved by the HF radar. The innermost
domain encompasses an area larger than the typical
medium-range HF radar coverage area (12-13 MHz),
with a 100-m-resolution grid. Previous studies used sim-
pler ocean current scenarios, such as a slightly random-
ized uniform flow (Barrick and Lipa 1996), a current jet
(Laws et al. 2000), or radial currents resulting from a large
eddy (de Paolo and Terrill 2007). We speculate that the
complex radial velocity profiles obtained from ROMS are
more representative of the real ocean, and that they
provide a realistic and rigorous test of error estimation
schemes.

To use the ROMS surface velocity fields, we first
compute v, relative to a simulated HF radar site for each
ROMS grid point. We then divide the ROMS grid into
range cells, each 1.5km wide containing O(10° — 10%)
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TABLE 1. Specifications of ROMS surface currents used in oceanographic radar simulations.

Range Grid points

cell index Range (km) No. of grid points Bearing min Bearing max per degree
3 4 2349 78.6 304.9 10
8 11.5 6139 91.2 295.5 30
20 29.5 15041 88.3 283.9 77
23 34 16 699 93.7 281.9 89
26 385 17 444 95.2 280.4 94
36 535 17 067 104.9 253.0 115

points from the ROMS grid (Table 1), selecting a rep-
resentative subset of range cells (regions shown in
Fig. 2). The total area of each range cell increases with
range, such that the number of ROMS grid points within
each range cell also increases with range. Variation in
the total angular span covered by each range cell, from
150° to 200°, results in additional variation in the number
of ROMS grid points representing each range cell. For
example each 1° X 1.5-km HF radar “‘bin” is resolved by
between 10 and 115 grid points (Table 1). Figure 3 shows
the profiles of v, obtained from ROMS and used in
the radar simulations. Using v, in (8) defines X(¢) as a
function of 6 and range r within the simulated range cell.
In this study v, is fixed over the K FFTs.

The factor y. in (8) decorrelates simulated signals,
modeling a poorly understood process occurring with
ocean backscatter. While signals backscattered from
the sea surface originate from a single source (the trans-
mit antenna), it is generally assumed that the signals
become decorrelated after scattering from the sea
surface, for angular separations as small as 0.5°-2.0°

(Lipa and Barrick 1983; Barrick and Lipa 1996). Lipa
and Barrick (1983) attribute the value of 0.5° to Barrick
and Snider (1977), who estimate decorrelation times
(about 25s) rather than angular separations, and spec-
ulate that the mechanism decorrelating the signals is
the differential motion of scattering ocean wave trains.
Given these unknowns, we decorrelate signals at less
than 1° when modeling the backscattered signal. In
terms of the direction of arrival estimation, 1° is typi-
cally less than the resolution of MUSIC, defining res-
olution as the “ability . . . to distinguish between tightly
spaced” sources (Friedlander 2009, p. 24). Further
discussion of the MUSIC resolution limit is given in
appendix B.

To decorrelate simulated signals, we construct y. be-
ginning with an N,, X 1 vector of zero mean normally
distributed random numbers y.. We then form
y. =diag(y.), resulting in an N,, X N,, matrix with
nonzero values only on the diagonal. We draw new
values of y. for each of the K data snapshots, with
different values multiplying both the approaching

latitude
("8
=
-

"
=

34F

33.9 .

-120.4 -120.2 -120

-119.8 -119.6 -119.4 -119.2

longitude

FIG. 2. Simulation domain showing ROMS grid (subsampled to 1km), along with 1.5-km-
wide range cells used for HF radar simulations. The yellow triangle shows the simulated HF
radar location, and range cells showing 5° increments are centered on ranges of 4, 11.5, 29.5, 34,
38.5, and 53.5 km. Islands and mainland coast are shown in gray.
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FIG. 3. Radial velocity (v,) vs bearing from the ROMS, found in 1.5-km-wide range cells: (a) 4, (b) 11.5, (c) 29.5,
(d) 34, (e) 38.5, and (f) 53.5 km from a simulated HF radar site as shown in Fig. 2.

v, and receding y_ Bragg peaks separately. Without
this randomizing component, the simulation equations
present correlated sources of signal. Previous simulation-
based studies model wind, assuming a Pierson-Moskowitz
cardioid pattern (Pierson and Moskowitz 1964) as a func-
tion of 6 that multiplies A in (4), with randomness that
decorrelates signals in the way that we use y. (Barrick
and Lipa 1996; Laws et al. 2000). Essentially y.. in (8) is
equivalent to assuming a uniform presence of Bragg
waves, while the use of the Pierson-Moskowitz model
for the wave field is equivalent to assuming fully
developed seas.

d. Detecting the number of signal sources

The oceanographic radar simulation [e.g., (4) with
(8)] describes a scenario with Ny, > M, while MUSIC
requires N < M. The simulation imitates reality, since
operational radars receive signal simultaneously from
all directions and from a multitude of Bragg waves. The
signal processing (Fig. 1) partially resolves this prob-
lem by applying the FFT to the range cell time series

and forming C(f) for each Doppler bin, such that C(f)
considers individual, narrow ranges of v,. Given the
density of the ROMS grid however, narrow ranges of v,
still contain many point sources. Essentially, the eval-
uation of (4) and the subsequent signal processing
combines similarly valued signal sources (similar in
6 and v,) such that these act as spatially cohesive source
patches. With respect to MUSIC then, the determination
of N becomes the problem of finding the number of
spatial patches of similar 6 and v,.

We determine N for use by MUSIC by inspecting
profiles of v,. For example, in Fig. 3a v,>25cms "
occurs only in the region spanning 105°-130°. For this
range of v, we compute MUSIC DOA solutions with
N =1. For v, between 5 and 12cms !, we compute
MUSIC solutions with N =2. Velocities between —1
and 6ecms™! occur at three distinct bearings. In this
case we compute MUSIC with N =2 (as required by
the N <M limitation) and label these as N = 3. Thus,
the profiles of v, require some interpretation for de-
termining N, as the criterion for what constitutes a
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spatially distinct source patch is somewhat subjective.
However, this method of determining N for MUSIC al-
lows us to partition the results based on N as presented by
the simulated ocean current. Ideally, this method also
removes signal detection as a significant source of error.

4. Analytical DOA uncertainty expressions

Stoica and Nehorai (1989) derive an expression for the
MUSIC DOA error variance, based on the statistical
properties of the errors in the eigenvectors of C. Beginning
with the M eigenvalues of C, Ay, ..., Ay, we associate the
largest N with the signal and form the M X N matrix of
signal eigenvectors S = [sy, ..., sy]. We then associate
the remaining M — N eigenvectors with the noise and
form the M X (M — N) matrix G=(g,, ..., g,_y]- The
MUSIC error variance of the ith DOA is then given by

> _ 1 a"(6)Ua)

IMUTOK T h(B) 2
where U is defined as
N A
Uu=o?| Y, L__88/|, (10)
k=1 (62 —A,)
and A(6;) is given by
_da(0)" _ da(o,)
h(,) = 10 GG 10 (11)

given the noise variance o2 (units: V?), the receive array
vector a(f), and its derivative with respect to 6 (see
appendix B for derivative calculation methods). As the
eigenvalues approach the noise variance, the denomi-
nator in (10) goes to zero, or (o —A;) — 0, and the
MUSIC error variance becomes large. The expressions
(9)-(11) produce estimates of the error variance in ra-
dians squared. The DOA uncertainty oy is then the
positive square root of (9) converted into degrees.

5. Results
a. Discrete source simulations

To investigate the SeaSonde DOA errors in a sim-
plified scenario, we performed simulations of two sour-
ces located at §; = —22.5° and 6, = 22.5° using the
discrete source model (7) with (4). Figure 4 summarizes
the results, showing the RMS difference orms [com-
puted with (B6)] between the source locations 6y and
the MUSIC DOA solutions 6y, computed in 2-dB
SNR bins and plotted versus SNR. For SNR between
15 and 25 dB, orys ranges from 5° to 10°, comparable to
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FIG. 4. Results from simulations of two discrete source signals
received with the SeaSonde [computed using (4) with (7)]. The
figure shows the RMS error (orms, blue dots) between the simu-
lated signal source bearing (6y) and the DOA solutions (Oyu)-
Mean values of the error estimates (o\y, black dots) computed
with (9) from Stoica and Nehorai (1989) are also shown. Dashed
line shows the Cramer—Rao lower bound (ocrp) computed with
(B5). Light blue shading indicates =1 standard deviation of the
DOA errors (0 — 6ymy), while black error bars indicate =1 stan-
dard deviation of the oy estimates. Calculations use 2-dB-wide
SNR bins.

the low end of published bearing errors found in ob-
servations (2°-30°) (Emery et al. 2004; Paduan et al.
2006; Liu et al. 2010; Lorente et al. 2014; Lai et al.
2017a). Standard deviations of the DOA errors (blue
shaded area) illustrate the spread in the data from which
the orms are computed.

Figure 4 also shows the estimates of the DOA un-
certainty (o\y) computed with (9). We plot average
values of oy found in each 2-dB SNR bin, since distinct
values of oy are produced with each 6yy. The figure
demonstrates that mean oy track ogrys for SNR = 12 dB,
underestimating orys by 1°-2°. Error bars on owmu,
showing the bin standard deviations, have a narrower
range than the DOA error standard deviations,
suggesting a limitation of the oy estimate.

Figure 4 includes the Cramer—-Rao Bound ocgsp,
which gives the theoretical lower bound on estima-
tion error based solely on the APM, the SNR, and the
number of signal sources (Stoica and Nehorai 1989;
Friedlander 2009) (see appendix B for its calculation).
For SNR <15, the difference between oryms and ocrp
becomes substantial, suggesting the possibility of ob-
taining decreased orvs With the use of a different DOA
estimator. For SNR > 25dB, ouy and orms approach
OCRB, illustrating that 1) MUSIC achieves near-optimal
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performance for the SeaSonde in this SNR range; 2) the
theoretical minimum on the SeaSonde DOA error is
around 2°% and 3) the lowest error is achieved at the
highest SNR.

Simulations with the discrete source model and the
results in Fig. 4 establish the fundamental performance
of both the SeaSonde array and the DOA uncertainty
estimates given by oy. That these results depend only
on the ideal SeaSonde antenna patterns, variable SNR,
and two signal sources suggests that these factors are
responsible for a significant fraction of the DOA error
variance. These results reproduce the overall behavior
of much more complex simulations (e.g., Fig. 6b below),
showing the value of the discrete source model for in-
vestigating these aspects of the HF radar processing.

b. Oceanographic radar simulations

Beginning with the ranges cells of v, obtained from
ROMS (e.g., Fig. 3), we simulated voltages received on
the SeaSonde array with (4) and (8) and processed these
as described in section 2. For each 2-dB SNR increment
in the interval 6-36 dB, we ran 400 Monte Carlo simu-
lations. Figure 5 shows the results of one simulation
with SNR ~20dB, with DOA solutions (6yy) plotted
over the input ocean current (v,) from ROMS (blue
dots). In this example, we use single-bearing solutions
(N =1) in the MUSIC calculation for v, > 57 cm s land
v, < —12cms™ ), three-bearing solutions (N = 3) for v,
between 0 and —10cms™ %, and dual-bearing solutions
(N =2) for the remainder. Error bars on 6y show the
bearing uncertainties =0y estimated with (9). For the
N =1 case, the DOA solutions fall within ROMS v,,
with correspondingly low oy. Many of the N =2 DOA
solutions fall outside the range of bearings spanned by
v,, though the greater oy associated with these often
includes v,. The N = 3 case illustrates how the presence
of signals from a third bearing biases the MUSIC DOAs,
with some falling between areas of v, (e.g., near ~250°).
These simulation results suggest that oy provides a
useful indicator of error.

Results of the radar simulations with ROMS are
summarized by computing the orys between the source
6 and the MUSIC 6y, in 2-dB-wide SNR bins. As de-
scribed in the appendix, orys is computed between Oyy
and the 6y from the nearest v, in bearing. Figure 6 shows
the results of these calculations, plotting oryms versus
SNR, with the results partitioned by the N empirically
determined from the input ocean current field.

Figure 6a shows the results for N =1, with ogms < 5°
for SNR > 10dB. The results in Fig. 6b with N =2
show increased orvs Oover the N = 1 case, particularly in
the SNR range of 10-25dB, where ogrys is more than
double that for N = 1. These results are similar to Fig. 4,
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FIG. 5. Radial velocity vs bearing from the ROMS (blue dots;
also shown in Fig. 3b), found in a 1.5-km-wide range cell, 11.5 km
from a simulated HF radar site. The figure shows example DOA
solutions (dots) and *oy (error bars) for N =1, 2, and 3, from a
simulation with a maximum SNR of 20 dB.

though with narrower bin standard deviations of
On — Opu (blue shading). Figure 6¢ with N =3 shows
orMs consistently near 15°, showing the influence of
the additional signal source (i.e., N = M) on the MUSIC
calculation. Overall, orys increases with increasing N, as
shown by curves of orys in Figs. 6a—c. Figures 6a and 6b
also demonstrate the relationship between SNR and er-
ror, which breaks down for N = 3 (Fig. 6¢).

Figure 6 shows the mean of oy found in 2-dB SNR
bins, along with the standard deviation. In both the
N =1and N =2 cases, Figs. 6a and 6b, oy tracks orums,
providing a reasonable estimate of the observed RMS
error. However, Fig. 6¢c suggests that mean oyy un-
derestimates orys When SNR >10dB and N=3. In
Fig. 6¢, mean oy ~ 8° is found at relatively high SNR,
while in the N =1 and N = 2 cases these values of mean
omu are found only at low SNR. In each example, mean
omu = 8° corresponds to relatively high orums. This ob-
servation, along with the correspondence between oy
and orys, otherwise suggests the use of oy as a metric
for thresholding.

c¢. Application to operational radars

Uncertainty estimates were also evaluated by pro-
cessing spectra from two SeaSondes, located at Santa
Cruz Island, California (SCI1), and San Nicolas Island,
California (SNI1), using software we developed (Emery
2018). Starting with unaveraged SeaSonde spectra files
(CSQ), the software follows the methods and conven-
tions of the SeaSonde processing scheme (e.g., Fig. 1).
Rather than running the DOA processing on 10-min
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FIG. 6. Results from radar simulations using the input current field from ROMS, showing
orms and the mean of the estimated errors oy, when the same velocity is present: (a) at a
single bearing (N =1), (b) at two bearings (N =2), and (c) at three bearings (N = 3). Blue
shaded regions show *1 standard deviation of the bin DOA errors, while the black error bars
show *1 standard deviation of the bin oy estimates.

moving averages of auto- and cross-spectra, as is typical
for SeaSonde processing, we computed moving averages
of 16 auto- and cross-spectra every 10 min. Since each
power spectrum results from 256s of data, the average
covers 68.3 min. The software also uses the First Order
Line (FOL) toolbox (Kirincich 2017) for first-order re-
gion identification. Antenna patterns were obtained for
both sites using the methods of Emery et al. (2014) with
two months of data.

Figure 7 shows time series of v, from near the baseline
between SCI1 and SNII1, for the interval 10-12 August
2013. The plots show v, every 10min from the spatial
area within *=1° in bearing and *3 range cells of the

midpoint between the sites for a total of 21 locations on
each radial grid. Vertical bars at each velocity observa-
tion show the oy error estimate in degrees. In general,
smaller oy occurs when v, falls into groups, suggesting
that the repeatable observations of v, have lower DOA
errors. Based on inspection of the cross-spectra, obser-
vations of v, near 100cms ™' in Fig. 7a result from ship
backscatter. Figure 7 and Table 2 show sight differences
in mean and median oyy from the two sites. Slightly
lower mean and median oy from SCI1 correspond to
the slightly higher SNR observed there.

Figure 8 shows the spatial distribution of oy, aver-
aged over 10-20 August 2013. The figure shows a wide
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FIG. 7. Plots of v, (cm's™ 1) vs time with oy (°) for HF radars at (a) Santa Cruz Island and
(b) San Nicolas Island at 10-min intervals from 0000 UTC 10 Aug to 0000 UTC 12 Aug 2013.

range of average values, along with high values found
at particular bearings, indicating a dependence on the
APM. Only a fraction of the observations have oy > 10°
for these two HF radars (SCI: 10.5%; SNI: 7.1%; Table 2).
The prevalence of high values of oy in Fig. 8 and the
outlier v, in Fig. 7 with high values of oy further
suggest the use of oy as a quality control metric.

Using the near-baseline data described for Fig. 7, we
compute the RMS difference (RMSD) and r? between
the two time series, varying the threshold value of oy
for removing data. Figure 9 shows 7> and RMSD, versus
the threshold value of oy along with the 95% confi-
dence intervals. The comparison statistics improve for
small values of the oy threshold. Figure 9 suggests that
removing all but the lowest error data will provide the
best comparison. Similar results were found using
slightly smaller and slightly larger overlapping spatial
areas. We interpret the Fig. 9 results as an indication that
the oy estimates contain useful information about the
DOA uncertainty.

TABLE 2. Statistics of oy as computed for each HF radar site
over 10-20 Aug 2013.

oMU OMU std OMU % of OMU Data
Site mean (°) dev(®) median (°) > 10° points
SCI 2.7 6.9 2.0 10.5 8058
SNI 3.8 13.2 2.7 7.1 8784

6. Discussion

Both oy and ocgrg illuminate factors controlling er-
ror in the DOA of oceanographic radars. Taken to-
gether, ocrg and oyy show that error in the DOA
estimate depends on K, the SNR, the specific receive
array, its antenna pattern, and the derivative of the an-
tenna pattern with respect to 6. Though not explicit in
the expression for oy, the number of array elements
(M) implicitly factors into the DOA error and oy es-
timate (Stoica and Nehorai 1989; Lai et al. 2017b). The
dependence on M, and thus array design, implies
different theoretical accuracies for different arrays.
While our results are specific to SeaSonde HF radars, we
have performed numerous evaluations of oy with sim-
ulations involving different receive arrays. Simulation-
based experiments, using both 16-element linear arrays
and 8-element rectangular grid arrays, thus far suggest
that oy substantially underestimates ogrys for these
radars. These results may confirm the importance of
the bias term in computing DOA error (Xu and
Buckley 1992), particularly for arrays with M > 3. The
bias term appears to be very small or zero when
N=M-1.

The complex currents obtained from ROMS often
present the same velocity at more N than there are M,
such that often N = M (as stated above, MUSIC is lim-
ited to identifying N <M bearings). When N=M,
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FIG. 8. Maps of average of omy (°) over 10-20 Aug 2013 for
HF radars at (a) Santa Cruz Island and (b) San Nicolas Island.
Both maps show a section of the Southern California Bight,
with bathymetry (black lines), islands, and the mainland (gray
regions).

MUSIC is unable to partition the signal and noise
subspaces (Krim and Viberg 1996; Abramovich et al.
2009), causing a corruption of the noise subspace. This
causes an increase in the MUSIC DOA errors—errors
that appear to be captured by oyy. For SeaSondes
with M =3, results suggest that while oy may not
approximate the errors when the current field pres-
ents N >2 (e.g., Fig. 6), the oy values that result are
large in the mean and thus provide a useful uncertainty
metric.

Systems using larger numbers of antennas, such as
with M = 8 or M = 16, would encounter the problem of
N =M less often. The ability of these systems to re-
solve more flow complexity when using direction of
arrival methods such as MUSIC instead of beam-
forming has been demonstrated (Sentchev et al. 2013).
With a few exceptions (e.g., Barbin et al. 2006; Forget et al.
2008; Molcard et al. 2009; Orfila et al. 2015), oceano-
graphic systems with M = 8 typically use beamforming
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techniques that negate the possibility of within beam-
width resolution.

This analysis suggests that the DOA method is a
major source of random error in oceanographic radar
ocean current observations. When combined with other
sources of error (e.g., Fig. 1), these may explain the in-
trinsic noise found previously in HF radar data by
looking at the power spectral density of HF radar time
series (Emery et al. 2004; Forget 2015). In a detailed
investigation of the noise properties of WERA HF radar
using MUSIC, Forget (2015) showed that even with
outlier removal an inherent noise persists, reducing the
effective temporal resolution. Random bearing errors
resulting from the DOA method (MUSIC in both cases)
certainly contribute to—if not fully explain—the re-
ported noise level. The occurrence of N =M, or er-
rors resulting from the determination of N, may also
contribute.

7. Conclusions

We evaluate an analytical approach given by Stoica
and Nehorai (1989) for estimating oy along with the
direction measured by SeaSonde oceanographic HF
radars. By simulating the backscattered signals from a
realistic example of the ocean surface currents, we show
that omy track errors in the DOAs produced by MUSIC.
We also compute oy for two operational SeaSonde HF
radars, producing mean oy values of 2.7° (SCI) and
3.8°(SCI). Results from these HF radars show improved
comparison statistics along an overwater baseline when
using oy as an error threshold for eliminating v, with
large bearing errors.

Expressions from Stoica and Nehorai (1989) give
bearing uncertainty estimates associated with each radial
velocity. These estimates enable the mapping of un-
certainty and enable the calculation of the error covari-
ance among surface current observations. Oceanographic
HF radar processing schemes, such as the SeaSondes,
accurately estimate the radial current speed, but they less
accurately estimate the bearing to the patch of ocean
surface where the radial speed occurs. Given this prop-
erty of data from individual HF radars, algorithms used
to form the total vector velocities should account for
bearing uncertainties. Further work remains to propagate
the spatial uncertainty estimate provided by oy to the
total velocity vector, but it is expected that the uncertainty
estimates will be useful for assimilating HF radar data
into numerical models of ocean circulation.

These results along with previous results from the
literature cited above outline the primary sources of
error for oceanographic HF radars. The analysis supports
the following for the quantification of uncertainty
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in the radial velocity components of oceanographic
radars:

v(r,0)=v(rto,0*0,)=* oy (12)
where (1) provides an estimate for the range uncertainty o,
(2) provides an estimate for the bin velocity uncertainty o,
and (9) provides the estimate for the bearing uncertainty
oy when using MUSIC. Errors resulting from interfering
signals, improper determination of the first-order region,
or imperfect knowledge of the antenna pattern are not
quantified by (12). Estimating the contribution from these
additional components of error and the identification of a
general method for estimating errors in data from all
oceanographic radars are the subjects of ongoing work.
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APPENDIX A

Mathematical Symbols
The definition of each mathematical symbol is defined
in Table Al.

APPENDIX B

Calculation Details
a. MUSIC resolution limit

The MUSIC resolution limit, defined as the ability
to distinguish closely spaced signal sources, is ap-
proximated by
SNR ™17,

AG=0 (B1)

HPBW
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TABLE Al. Definitions of symbols used in the manuscript.

Symbol Definition

A Matrix of receive array vectors

a(6) Receive array vector

B Beam pattern

C() Data covariance matrix at Doppler
frequency f

C, Estimate of covariance matrix

c Speed of light

Ar Range cell width (km)

Av, Radar radial velocity increment (cms™!)

e(r) Noise time series

frx Radar transmit frequency

g Gravitational acceleration

G Matrix of noise eigenvectors g,,_y

Y Decorrelation factor

K No. of data snapshots (e.g., No. of
spectra averaged together)

krx Radar wavenumber

Ay Eigenvalues of C(f)

Atx Wavelength of transmitted radio wave

M No. of receive antennas

N No. of signal sources or signal source
bearings

n No. of data points in orys calculation, or
sample size

Ny, Length of the vector v,

NFFT Length of the time series for FFT processing

r Range (km)

S Matrix of signal eigenvectors sy

o? Noise variance

OCRB Cramer—Rao lower bound on DOA error

oMU DOA error estimated with (9)

ORMS DOA RMS error

Oy Range uncertainty (km)

oy, Radial velocity uncertainty (cms ™)

0 Direction from radar to signal source

On Direction from radar to Nth signal source

Oupew Half-power beamwidth

Omu DOA solution from MUSIC (MUSIC
estimate of fy)

v, Radar radial velocity component (cms ™ ')

*wp Frequency shift due to Bragg resonant
waves

w, Frequency shift resulting from ocean
currents

X(z) Signal source time series

Y Receive antenna voltage time series matrix

where p ranges between 2 and 4 (Friedlander 2009; Amar
and Weiss 2007), and Oyppw is the half-power beamwidth.
To estimate A we compute Oyppw by first computing the
beam pattern B following Van Trees (2002),
1 H
B=--A(0,) A(®). (B2)
M o
where 6, is a reference angle, and then finding Oypgw as

the range of 0, where |B|” = 0.5max|B|* (Van Trees 2002).
Defined this way, the SeaSonde 6yppw = 131°, while a
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uniform linear array (ULA) with 1/2Arx spacing and
M =16 has Ogpgw = 6.5°. These values suggests a
minimum A# on the order of 10°-20° for the SeaSonde
(with SNR =30dB and p =2 or p =4). Using data we
processed from SeaSondes (which has the individual
MUSIC DOA solutions), we plotted the angular dif-
ference between dual-bearing solutions versus SNR
(not shown), indicating a minimum A6 on the order of
10°. For the purposes of simulating ocean current
backscatter, these results suggest that decorrelating
sources separated by <1° adequately approximates
backscatter from the ocean surface.

b. Cramer—Rao lower bound

In addition to estimates of oy, we compute the
Cramer-Rao bound (CRB) on DOA error variance
following Stoica and Nehorai (1989) and Friedlander
(2009). Here we use its square root ocgp to illustrate
factors controlling the DOA error, to compare with un-
certainties estimated with (9), and to compare with sim-
ulation results. We compute ocgg from the antenna
pattern a(f) and from assumed values of SNR, K, and N.
Following Friedlander (2009) we estimate a covariance
matrix C, directly from these known variables, along with
the identity matrix I,

C = i SNR,a(6,)a(9,)" +1. (B3)
k=1

We then define the (i, j)th element of the N X N Fisher
information matrix,

3 . aCy 7lacy
Fi,/' = trace Cy T@lcy Tej . (B4)
From F the CRB is given by
2 |
OCrp = X F =CRB. (BS)

Calculation of the derivative of C, with respect to 6 in (B4)
is described below. As defined above ocrp applies to the
estimation of DOA uncertainties for discrete signal sources.

c. Simulation DOA errors
We compute errors in the DOA estimates as the RMS
difference between the simulated source bearing 6 and

Omu- We compute the orvs for a given ensemble of
n DOA solutions as

(B6)
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A typical ensemble includes all points within a given
range of SNR. For discrete source simulations with the
source 0 specified, calculation of (B6) is straightforward.
However, when computing orms for simulations using
ROMS, the calculation is more complex. In this case, a
DOA solution 6y, associated with a given v,, results
from a signal that may originate from a wide range of
bearings. For example, the radial currents in Fig. 3a
have v, =10cms™ ' for bearings between 95°-100° and
160°-185°, meaning that 6y can take on any value in
these ranges. When computing the error with a DOA solu-
tion Oy, we retain the smallest difference 6y, — Oy, for
use in (B6), using the value of 0y from the current field
that is closest to the DOA solution.

d. Derivative calculations

Assuming an ideal pattern for SeaSondes, the array
derivative in (11) can be evaluated analytically, but
for APMs from operational radars we must evaluate
the array derivative numerically. We compute these
derivatives using the second-order accurate centered
difference:

da(6,) _ a(0,.,) —a®,_,)
do 2A6 '

(B7)

Edges are evaluated using the first-order accurate forward
and backward one-sided approximations (LeVeque 2007):

da(9,) a(6,) —a(®,)

a9 A6 ’ (B3)
da(0,) _a(6,)—a(6, )

©,)_ - . (BY)

We compute the derivative of C, with respect to 6 in
(B4) as in Friedlander (2009),

d() ()

=SNR,—a(6,)" + SNR.a(h,)— "—.  (B10)

86.
l

The array derivatives are computed as described above.
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