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ABSTRACT

HF radars typically produce maps of surface current velocities without estimates of the measurement

uncertainties. Many users of HF radar data, including spill response and search and rescue operations, in-

corporate these observations into models and would thus benefit from quantified uncertainties. Using both

simulations and coincident observations from the baseline between two operational SeaSonde HF radars, we

demonstrate the utility of expressions for estimating the uncertainty in the direction obtained with the

Multiple Signal Classification (MUSIC) algorithm. Simulations of radar backscatter using surface currents

from the Regional OceanModeling System show a close correspondence between direction of arrival (DOA)

errors and estimated uncertainties, with mean values of 158 at 10 dB, falling to less than 38 at 30 dB. Obser-

vations from two operational SeaSondes have average DOA uncertainties of 2.78 and 3.88, with a fraction of

the observations (10.5% and 7.1%, respectively) having uncertainties of.108. Using DOA uncertainties for

data quality control improves time series comparison statistics between the two radars, with r2 5 0:6 in-

creasing to r2 5 0:75 and RMS difference decreasing from 15 to 12 cm s21. The analysis illustrates the major

sources of error in oceanographic HF radars and suggests that the DOA uncertainties are suitable for as-

similation into numerical models.

1. Introduction

Oceanographic HF radars produce high-resolution

maps of ocean surface currents that reveal complex

ocean surface dynamics. The contribution of these

maps to our understanding of coastal oceanography

has been limited only by the fact that the measurement

errors are essentially unquantified. The observations

result from complex signal processing techniques that

obscure the errors and their numerous sources. While

many studies have put bounds on the errors, typically

through comparisons with independent measurements,

‘‘further efforts to understand error structure in HF

radar derived data are clearly warranted’’ (Oke et al.

2002, p. 5-8), and the HF radar community should

‘‘develop . . . uncertainty estimates so that search areas

can be modeled more effectively’’ (O’Donnell et al.

2005, p. 7-4). In this paper we aim to further the un-

derstanding of error sources in oceanographicHF radars

and to quantify the uncertainties.

Oceanographic HF radars typically use one of two

methods for bearing determination: beamforming (Graber

et al. 1997; Chapman et al. 1997; Gurgel et al. 1999) or

direction finding (DF) with Multiple Signal Classifica-

tion (MUSIC; Schmidt 1986). This analysis focuses on

radars using the SeaSonde three-element receive an-

tenna (manufactured by CODAR Ocean Sensors Ltd.),

withMUSIC for direction finding [ongoing work seeks to

extend this analysis to other array types, such as Wellen

Radars (WERA; Gurgel et al. 1999) and the Least Ex-

pensive Radar (LERA; P. Flament et al. 2017, meeting

presentation), but these results will be reported elsewhere].

While MUSIC has numerous advantages over beam-

forming, MUSIC encounters limitations with low SNR,

small numbers of temporal samples, and small numbers

of receive antenna elements—all common characteris-

tics of the SeaSonde and its signal processing techniques.

Further limitations result from closely spaced signal sour-

ces (Krim and Viberg 1996)—a potential characteristic of

the ocean surface currents. It is not thoroughly under-

stood how these limitations translate to observational

uncertainties in the SeaSonde data.Corresponding author: Brian Emery, brian.emery@ucsb.edu
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Many investigations of oceanographic HF radar errors

attempt to infer errors and uncertainties from compari-

sons with in situ current measurements. Following the

methods of Graber et al. (1997), Chapman et al. (1997),

and Chapman and Graber (1997), studies of radars em-

ploying MUSIC (e.g., Emery et al. 2004; Paduan et al.

2006; Liu et al. 2014) were able to attribute errors to the

direction-finding technique. Other studies using in situ

data demonstrated the importance of measured an-

tenna patterns for decreasing error (Kohut and Glenn

2003; Cosoli et al. 2010), and that screening radial data

by SNR improved comparisons with in situ measure-

ments (Cosoli et al. 2012). In these examples geophysical

differences between the measurements limited what

could be attributed specifically to the radar processing,

results further demonstrated byKohut et al. (2006) with an

ADCP, and Ohlmann et al. (2007) with drifters. To avoid

these complicating factors, other studies adopted a

simulation-based approach. Laws et al. (2000), and later

de Paolo and Terrill (2007), looked at MUSIC perfor-

mance using different ocean current scenarios with variable

SNR. Cook et al. (2007) and Laws et al. (2010) investigated

the influence of antenna pattern distortions on error. In

these examples the SNR, the receive antenna pattern

measurement (APM), and the receive antenna design

were shown to affect the observational errors.

These studies did not address the longstanding needs for

data-based metrics or uncertainty estimates. While the

SeaSonde produces parameters along with observa-

tions (Lipa et al. 2006) that may be close to the final

uncertainty product needed by modelers (D. E. Barrick

2013, personal communication), our preliminary work

suggests that these are poor indicators of error. However,

metrics based on properties of the MUSIC direction of ar-

rival (DOA) function have been shown to improve com-

parison results when used for thresholding (Kirincich et al.

2012). These improvements are significant, particularly as

quality control metrics, but they fall short of providing an

uncertainty estimate with each velocity observation.

Outside of oceanography MUSIC has been thor-

oughly studied and several publications derive analytical

expressions for DOA error. Stoica and Nehorai (1989)

derived the DOA error variance based on a Taylor ex-

pansion of the MUSIC DOA function and the statistical

properties of the eigenvectors of the data covariance

matrix. Given this expression, it is possible to estimate

the uncertainty for a given MUSIC DOA solution. In

the context of oceanographic HF radars, the ability to

produce aMUSIC solution along with an estimate of the

directional error could go a long way towardmeeting the

needs of users as described above.

Several recent studies employ the techniques and

results of Stoica and Nehorai (1989) to further the

understanding of oceanographic radars. Both Lai et al.

(2017c) and Tian et al. (2017) derive an expression

based on Taylor expansion of the MUSIC DOA func-

tion to quantify DOA errors resulting from the differ-

ence between themeasured and ideal antenna patterns.

They use the result to improve DOA estimation with

the SeaSonde-like cross loop/monopole system known

as the Ocean State Measuring and Analyzing Radar,

type S (OSMAR-S). Furthermore, Lai et al. (2017a)

attribute average bearing errors to differences between

measured and ideal antenna patterns. These use ideal

patterns in the MUSIC inversion. These studies further

the understanding of the influence of antenna pattern

distortions on DF data, but they do not attempt to as-

sess the Stoica and Nehorai (1989) result for use as an

operational error metric, or as an estimator of HF DOA

error. Given that Stoica and Nehorai (1989) necessarily

make simplifying assumptions about the signal environ-

ment that may or may not apply to oceanographic HF

radars, it remains to be demonstrated that the theoretical

error expressions predict the actual performance of

oceanographic radars.

In this paper we evaluate methods for estimating un-

certainties associated with the radial velocities produced

by SeaSonde oceanographic HF radars. In section 2 we

review the processing of oceanographic HF radar signals

and present factors contributing to errors. In section 3

we present the simulation-based evaluation techniques.

In section 4 we define the Stoica and Nehorai (1989)

expressions for estimating DOA uncertainty. Results

are presented in section 5, along with further discussion

in section 6. Conclusions of the analysis are summa-

rized in section 7, with mathematical symbols defined

in appendix A and additional calculation details in

appendix B.

2. Oceanographic HF radar processing and errors

Figure 1 summarizes the signal processing of ocean-

ographic HF radar data up to radial velocity compo-

nents vr. Boxes on the left are based on previous

publications [Fig. 1 from both Barrick and Lipa (1999)

and de Paolo and Terrill (2007)] and are specific to the

processing of SeaSonde data (Lipa et al. 2006). Other

operational HF radars use a slightly different scheme

with details specific to beamforming. However, it has

been shown that the scheme in Fig. 1 can be used for

somewhat arbitrary receive antenna configurations (e.g.,

P. Broche et al. 2004, meeting presentation; Barbin et al.

2006). Errors arise at several points as shown on the right

in Fig. 1. Here we describe the errors and uncertainties

that arise in HF radar observations, resulting from the

sequence of signal processing steps.
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1) Range uncertainty due to windowing. The first FFT

of the antenna voltage time series separates signals

by range (cf. Barrick and Lipa 1999). Assuming the

conversion of a continuous flow field into discrete

range rings can be understood as a discretization

process, we can use the theory for analog-to-digital

conversion to estimate error in the range deter-

mination. Given a range cell width Dr, the range

uncertainty can be estimated (Bendat and Piersol

2000) as follows:

s
r
5

ffiffiffiffiffi

1

12

r

Dr’ 0:29Dr , (1)

where the factor of 1/12 is the variance introduced

when representing the uniformly distributed range

with the discretized value. Furthermore, windowing

(e.g., Hamming) applied to the frequency-modulated

continuous-wave (FMCW) sweep to convert fre-

quency to range causes 20% overlap in adjacent

range cells (Lipa and Barrick 1983) and thus an

increase in the range increment. In this case the range

increment Dr is increased by a factor of 1.2, and (1)

becomes sr 5 0:35Dr.

2) Frequency quantization error. For oceanographic

radars signals arrive nearly simultaneously from

all angles within view. FFT processing of the time

series produced by step 1 sorts signal variance

by Doppler frequencies, which are then processed

by MUSIC separately. Given M antennas, the re-

quirement for a noise subspace in the eigen

decompositon limits MUSIC to processing N signal

sources, whereN,M. Thus, the FFT preprocessing

allows a radar with just a few receive antennas (e.g.,

M5 3) to produce DOA solutions for many more

than M signals in a given time period. After FFT

processing, frequency components are then auto-

and cross multiplied to form power spectra (Lipa

et al. 2006).

The FFT calculation and formation of cross-

spectra (cf. Lipa et al. 2006; de Paolo et al. 2007)

introduce errors in vr as a result of the discretization

FIG. 1. HF radar data processing flow for estimating radial velocities, with error sources.

[Adapted from Barrick and Lipa (1999) and de Paolo and Terrill (2007).]
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of frequency bins. Using (1) but substituting Dvr for

Dr, we can estimate the velocity uncertainty using

s
vr
’ 0:29Dv

r
. (2)

Here Dvr is the radar radial velocity increment,

Dv
r
5

l
TX

2

SWR

n
FFT

, (3)

computed with the transmitted wavelength lTX, the

sweep rate (SWR), and the FFT length (nFFT) (Lipa

and Barrick 1983). For a radar with Dvr 5 4:3 cm s21,

svr 5 1:2 cm s21, though longer FFTs reduce svr to

less than 1 cm s21 (Kirincich et al. 2012; Forget 2015).

3) Covariance matrix uncertainty due to finite ensemble

averages. After cross multiplying, we averageK cross-

spectra (where K is the number of independent en-

sembles, or ‘‘snapshots’’; Van Trees 2002) and form

the covariance matrix C(f ) for each frequency bin

f (cf. de Paolo et al. 2007). Finite sampling periods

and the dynamic nature of the ocean surface limit

K.Uncertainty in the covariance matrix resulting from

the choice of K influences the direction-finding esti-

mate, contributing to DOA error, as discussed below.

4) Error in identifying first-order region. After forming

the cross-spectra, we must determine what portion of

the spectrum contains the signal from the first-order

scattering process, which includes the ocean current

information. To identify frequency bins containing the

first-order signal, operational SeaSondes use empirical

methods (Lipa and Barrick 1983), or image processing

techniques (Kirincich 2017). Errors arise in two ways:

1) when the non-current, or signal is interpreted as orig-

inating from ocean currents or 2) when the signal from

ocean currents is excluded from processing. These

errors can be large in certain situations, such as when

high winds (.15ms21) combine with strong currents

(.2ms21), causing the first-order and second-order

signal regions to become indistinguishable (CODAR

2002). On average, these errors are probably less than

or equal to the reported 2–8cms21 noise levels based

on estimates from the power spectra of the HF radar

currents (Emery et al. 2004; Forget 2015).

5) Incorrect determination of the number of signal

source bearings. Once the M3M covariance ma-

trix has been formed for Doppler bins in the first-

order region, MUSIC uses the noise eigenvectors

to determine the source DOA(s) (cf. Schmidt 1986;

Tuncer and Friedlander 2009; Emery 2018, man-

uscript submitted to IEEE J. Oceanic Eng.). The

SeaSonde uses a hypothesis testing approach to asso-

ciate the eigenvectors with the signal or the noise,

determining whether the signal results from a single

bearing N5 1 or from ‘‘dual’’ bearings N5 2 (Lipa

and Barrick 1983). For both the SeaSonde and other

arrays, the impact of incorrect determination ofN has

not been quantified. Another potential source of error

is the possibility of the ocean surface presenting

situations with N$M. The performance of MUSIC

when N$M has not received much attention.

6) Error in estimating the DOA. Several factors contribute

to errors in the DOA estimates fromMUSIC, including

the SNR, the accuracy and characteristics of the antenna

pattern measurement, and the angular separation of

the signal sources (cf. Van Trees 2002; Friedlander

2009). As mentioned above, limits on K used to form

C(f ) produce uncertainty in both C(f ) and the DOA

estimate. Average DOA errors in the range 08–198

that have been shown for oceanographic HF radars

(Kohut and Glenn 2003; Emery et al. 2004; Paduan

et al. 2006; Cosoli et al. 2010; Kirincich et al. 2012; Lai

et al. 2017a) likely result from these factors.

The above steps summarize the major sources of error

in currents from oceanographic HF radars. Known

methods for estimating the uncertainty contributed by

steps 1 and 2 were included. In the following sections, we

describe and evaluate analytical expressions for esti-

mating the uncertainty resulting from steps 3 and 6.

Errors resulting from steps 4 and 5 are not investigated

here, and will require further analysis.

3. Signal models and simulation methods

a. General array data model

To present expressions for the error variance, we must

first define the data model and related notation. In the

simplified case of N discrete signal sources (N,M),

following Schmidt (1986) and Stoica and Nehorai (1989),

we define the voltage time series measured at the receive

antenna outputs Y as the product of the N signal sources

impinging on the array frombearings u1, u2, . . . , uN given

by X(t), and the array response A, plus noise e(t):

Y5AX(t)1 e(t) . (4)

Here the M3N matrix A gives the response of the

M antenna elements to each signal source,

A5

j j j

a(u
1
) a(u

2
) . . . a(u

N
)

j j j

2

6

4

3

7

5
, (5)

where the M3 1 vectors a(u) represent the antenna pat-

tern at each u. The matrix X(t) gives the typically complex-

valued signal from the N signal sources, described below.
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Noise given by the matrix e(t) is assumed to be

Gaussian distributed with zero mean and variance

s2. Given A at the source locations u1, . . . , uN , X(t),

and e(t), we compute Y with (4) and then the M3M

data covariance matrix,

C5
1

K
YY

H , (6)

whereH denotes theHermitian conjugate. ThematrixC

forms the input to MUSIC. Expressions (4)–(6) define

the data model for general X(t). This model holds for

arbitrary receive antenna arrays, but in both simulations

described below we use the ideal SeaSonde antenna

pattern. The more complex simulations of ocean back-

scatter require additional processing between (4) and

(6) as we describe below. We first use (4) and (6) with a

relatively simple X(t), which allows us to investigate

error estimates in a simplified scenario.

b. Discrete source simulations

In the simplified discrete source simulations, we de-

fine X(t) as an N3K matrix,

X(t)5

2

6

6

4

x
1
(t

1
) x

1
(t
2
) � � � x

1
(t
K
)

.

.

.
1 .

.

.

x
N
(t
1
) x

N
(t

2
) � � � x

N
(t

K
)

3

7

7

5

, (7)

where each row represents a signal source time series.

Each row [e.g., xN(t)] is made up of K normally dis-

tributed random numbers with zero mean (Stoica and

Moses 2005). This model defines independent discrete

signal sources commonly used to test DOA methods

(e.g., Van Trees 2002). The complex-valued matrix A

has dimensions M3N, such that Y is M3K. For each

Monte Carlo simulation, we vary both the values for

sources [X(t)], and the complex-valued M3K matrix

e(t) at a given SNR. When using this model, we ran 500

simulations at each value of SNR in the range 1–30dB,

with K5 9.

c. Oceanographic radar simulations

For simulations of backscatter from oceanographic

HF radars, we use a modified version of the signal model

used in previous studies (Barrick and Lipa 1996; Laws

et al. 2000; de Paolo et al. 2007; Laws et al. 2010). Fol-

lowing these we define X(t),

X(t)5g
1
exp[i(v

B
1v

c
)t]

1g
2
exp[i(2v

B
1v

c
)t] . (8)

The expression (8) models the signal backscattered

from the ocean surface, with the combined Doppler shift

resulting from the advancing and receding Bragg

resonant waves 6vB and the currents vc. We com-

pute vB 5 (2kTXg)
1/2 based on the radar wavenumber

kTX 5 2pfTX/c, the radar transmit frequency fTX, the

gravitational acceleration g, and the speed of light c.

The radial component of the ocean surface current pro-

vides vr for computing vc 5 2kTXvr. The matrix g6

defines a decorrelation factor, discussed below. Simu-

lations used fTX 5 13:45MHz in the calculations, but

the results do not depend on the transmit frequency.

A significant difference from the discrete source

simulation is that X(t) now has dimensions of Nvr 3 nFFT,

where Nvr is the length of the vector vr and nFFT specifies

the length of the time series as typically produced by

oceanographic HF radars. We interpolate A to the Nvr

positions in u for each value of vr(u), such that (8) re-

sults in X(t) with dimension Nvr 3nFFT and Y with di-

mension M3 nFFT.

After forming Y, we compute the FFTs of each row

and then auto- and cross multiply these to form power

and cross-spectra. After averaging K of these, we iden-

tify frequency bins containing the first-order signal with

the methods of Kirincich (2017) and form the C(f ) for

each frequency bin separately (cf. de Paolo et al. 2007)

following the processing sequence outlined in Fig. 1.

In simulations for this study, we obtain vr from the

surface velocity field of the Regional Ocean Modeling

System (ROMS) (Shchepetkin and McWilliams 2005),

as configured and run for Romero et al. (2016). As de-

scribed by Romero et al. (2016), the one-way nesting

scheme and the use of climatology follow Buijsman

et al. (2012) and Uchiyama et al. (2014), with the two

innermost domains forced (e.g., via momentum and

heat fluxes) with the 6-km-resolution Weather Re-

search and Forecasting Model (Skamarock et al. 2005).

For our purposes, ROMS produces plausible surface

currents with a horizontal structure at scales smaller

than those resolved by the HF radar. The innermost

domain encompasses an area larger than the typical

medium-range HF radar coverage area (12–13MHz),

with a 100-m-resolution grid. Previous studies used sim-

pler ocean current scenarios, such as a slightly random-

ized uniform flow (Barrick and Lipa 1996), a current jet

(Laws et al. 2000), or radial currents resulting from a large

eddy (de Paolo and Terrill 2007). We speculate that the

complex radial velocity profiles obtained fromROMSare

more representative of the real ocean, and that they

provide a realistic and rigorous test of error estimation

schemes.

To use the ROMS surface velocity fields, we first

compute vr relative to a simulatedHF radar site for each

ROMS grid point. We then divide the ROMS grid into

range cells, each 1.5 km wide containing O(103 2 104)
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points from the ROMS grid (Table 1), selecting a rep-

resentative subset of range cells (regions shown in

Fig. 2). The total area of each range cell increases with

range, such that the number of ROMS grid points within

each range cell also increases with range. Variation in

the total angular span covered by each range cell, from

1508 to 2008, results in additional variation in the number

of ROMS grid points representing each range cell. For

example each 18 3 1.5-kmHF radar ‘‘bin’’ is resolved by

between 10 and 115 grid points (Table 1). Figure 3 shows

the profiles of vr obtained from ROMS and used in

the radar simulations. Using vr in (8) defines X(t) as a

function of u and range r within the simulated range cell.

In this study vr is fixed over the K FFTs.

The factor g6 in (8) decorrelates simulated signals,

modeling a poorly understood process occurring with

ocean backscatter. While signals backscattered from

the sea surface originate from a single source (the trans-

mit antenna), it is generally assumed that the signals

become decorrelated after scattering from the sea

surface, for angular separations as small as 0.58–2.08

(Lipa and Barrick 1983; Barrick and Lipa 1996). Lipa

and Barrick (1983) attribute the value of 0.58 to Barrick

and Snider (1977), who estimate decorrelation times

(about 25 s) rather than angular separations, and spec-

ulate that the mechanism decorrelating the signals is

the differential motion of scattering ocean wave trains.

Given these unknowns, we decorrelate signals at less

than 18 when modeling the backscattered signal. In

terms of the direction of arrival estimation, 18 is typi-

cally less than the resolution of MUSIC, defining res-

olution as the ‘‘ability . . . to distinguish between tightly

spaced’’ sources (Friedlander 2009, p. 24). Further

discussion of the MUSIC resolution limit is given in

appendix B.

To decorrelate simulated signals, we construct g6 be-

ginning with an Nvr 3 1 vector of zero mean normally

distributed random numbers g6. We then form

g6 5 diag(g6), resulting in an Nvr 3Nvr matrix with

nonzero values only on the diagonal. We draw new

values of g6 for each of the K data snapshots, with

different values multiplying both the approaching

TABLE 1. Specifications of ROMS surface currents used in oceanographic radar simulations.

Range

cell index Range (km) No. of grid points Bearing min Bearing max

Grid points

per degree

3 4 2349 78.6 304.9 10

8 11.5 6139 91.2 295.5 30

20 29.5 15 041 88.3 283.9 77

23 34 16 699 93.7 281.9 89

26 38.5 17 444 95.2 280.4 94

36 53.5 17 067 104.9 253.0 115

FIG. 2. Simulation domain showing ROMS grid (subsampled to 1 km), along with 1.5-km-

wide range cells used for HF radar simulations. The yellow triangle shows the simulated HF

radar location, and range cells showing 58 increments are centered on ranges of 4, 11.5, 29.5, 34,

38.5, and 53.5 km. Islands and mainland coast are shown in gray.
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g1 and receding g2 Bragg peaks separately. Without

this randomizing component, the simulation equations

present correlated sources of signal. Previous simulation-

based studies model wind, assuming a Pierson–Moskowitz

cardioid pattern (Pierson and Moskowitz 1964) as a func-

tion of u that multiplies A in (4), with randomness that

decorrelates signals in the way that we use g6 (Barrick

and Lipa 1996; Laws et al. 2000). Essentially g6 in (8) is

equivalent to assuming a uniform presence of Bragg

waves, while the use of the Pierson–Moskowitz model

for the wave field is equivalent to assuming fully

developed seas.

d. Detecting the number of signal sources

The oceanographic radar simulation [e.g., (4) with

(8)] describes a scenario with Nvr � M, while MUSIC

requires N,M. The simulation imitates reality, since

operational radars receive signal simultaneously from

all directions and from amultitude of Bragg waves. The

signal processing (Fig. 1) partially resolves this prob-

lem by applying the FFT to the range cell time series

and forming C(f ) for each Doppler bin, such that C(f )

considers individual, narrow ranges of vr. Given the

density of the ROMS grid however, narrow ranges of vr
still contain many point sources. Essentially, the eval-

uation of (4) and the subsequent signal processing

combines similarly valued signal sources (similar in

u and vr) such that these act as spatially cohesive source

patches. With respect to MUSIC then, the determination

of N becomes the problem of finding the number of

spatial patches of similar u and vr.

We determine N for use by MUSIC by inspecting

profiles of vr. For example, in Fig. 3a vr . 25 cm s21

occurs only in the region spanning 1058–1308. For this

range of vr we compute MUSIC DOA solutions with

N5 1. For vr between 5 and 12 cm s21, we compute

MUSIC solutions with N5 2. Velocities between 21

and 6 cm s21 occur at three distinct bearings. In this

case we compute MUSIC with N5 2 (as required by

the N,M limitation) and label these as N5 3. Thus,

the profiles of vr require some interpretation for de-

termining N, as the criterion for what constitutes a

FIG. 3. Radial velocity (vr) vs bearing from the ROMS, found in 1.5-km-wide range cells: (a) 4, (b) 11.5, (c) 29.5,

(d) 34, (e) 38.5, and (f) 53.5 km from a simulated HF radar site as shown in Fig. 2.
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spatially distinct source patch is somewhat subjective.

However, this method of determining N for MUSIC al-

lows us to partition the results based onN as presented by

the simulated ocean current. Ideally, this method also

removes signal detection as a significant source of error.

4. Analytical DOA uncertainty expressions

Stoica and Nehorai (1989) derive an expression for the

MUSIC DOA error variance, based on the statistical

properties of the errors in the eigenvectors ofC. Beginning

with theM eigenvalues of C, l1, . . . , lM, we associate the

largest N with the signal and form the M3N matrix of

signal eigenvectors S5 [s1, . . . , sN]. We then associate

the remaining M2N eigenvectors with the noise and

form the M3 (M2N) matrix G5 [g1, . . . , gM2N]. The

MUSIC error variance of the ith DOA is then given by

s2
MU 5

1

2K

aH(u
i
)Ua(u

i
)

h(u
i
)

, (9)

where U is defined as

U5s2

"

�
N

k51

l
k

(s2 2 l
k
)2
S
k
S
H
k

#

, (10)

and h(ui) is given by

h(u
i
)5

da(u
i
)

du

H

GG
H da(u

i
)

du
, (11)

given the noise variance s2 (units: V2), the receive array

vector a(u), and its derivative with respect to u (see

appendix B for derivative calculation methods). As the

eigenvalues approach the noise variance, the denomi-

nator in (10) goes to zero, or (s2
2 lk)/ 0, and the

MUSIC error variance becomes large. The expressions

(9)–(11) produce estimates of the error variance in ra-

dians squared. The DOA uncertainty sMU is then the

positive square root of (9) converted into degrees.

5. Results

a. Discrete source simulations

To investigate the SeaSonde DOA errors in a sim-

plified scenario, we performed simulations of two sour-

ces located at u1 5 222.58 and u2 5 22.58 using the

discrete source model (7) with (4). Figure 4 summarizes

the results, showing the RMS difference sRMS [com-

puted with (B6)] between the source locations uN and

the MUSIC DOA solutions uMU, computed in 2-dB

SNR bins and plotted versus SNR. For SNR between

15 and 25dB, sRMS ranges from 58 to 108, comparable to

the low end of published bearing errors found in ob-

servations (28–308) (Emery et al. 2004; Paduan et al.

2006; Liu et al. 2010; Lorente et al. 2014; Lai et al.

2017a). Standard deviations of the DOA errors (blue

shaded area) illustrate the spread in the data from which

the sRMS are computed.

Figure 4 also shows the estimates of the DOA un-

certainty (sMU) computed with (9). We plot average

values of sMU found in each 2-dB SNR bin, since distinct

values of sMU are produced with each uMU. The figure

demonstrates thatmeansMU tracksRMS for SNR$ 12dB,

underestimating sRMS by 18–28. Error bars on sMU,

showing the bin standard deviations, have a narrower

range than the DOA error standard deviations,

suggesting a limitation of the sMU estimate.

Figure 4 includes the Cramer–Rao Bound sCRB,

which gives the theoretical lower bound on estima-

tion error based solely on the APM, the SNR, and the

number of signal sources (Stoica and Nehorai 1989;

Friedlander 2009) (see appendix B for its calculation).

For SNR ,15, the difference between sRMS and sCRB

becomes substantial, suggesting the possibility of ob-

taining decreased sRMS with the use of a different DOA

estimator. For SNR . 25dB, sMU and sRMS approach

sCRB, illustrating that 1) MUSIC achieves near-optimal

FIG. 4. Results from simulations of two discrete source signals

received with the SeaSonde [computed using (4) with (7)]. The

figure shows the RMS error (sRMS, blue dots) between the simu-

lated signal source bearing (uN) and the DOA solutions (uMU).

Mean values of the error estimates (sMU, black dots) computed

with (9) from Stoica and Nehorai (1989) are also shown. Dashed

line shows the Cramer–Rao lower bound (sCRB) computed with

(B5). Light blue shading indicates 61 standard deviation of the

DOA errors (uN 2 uMU), while black error bars indicate 61 stan-

dard deviation of the sMU estimates. Calculations use 2-dB-wide

SNR bins.
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performance for the SeaSonde in this SNR range; 2) the

theoretical minimum on the SeaSonde DOA error is

around 28; and 3) the lowest error is achieved at the

highest SNR.

Simulations with the discrete source model and the

results in Fig. 4 establish the fundamental performance

of both the SeaSonde array and the DOA uncertainty

estimates given by sMU. That these results depend only

on the ideal SeaSonde antenna patterns, variable SNR,

and two signal sources suggests that these factors are

responsible for a significant fraction of the DOA error

variance. These results reproduce the overall behavior

of much more complex simulations (e.g., Fig. 6b below),

showing the value of the discrete source model for in-

vestigating these aspects of the HF radar processing.

b. Oceanographic radar simulations

Beginning with the ranges cells of vr obtained from

ROMS (e.g., Fig. 3), we simulated voltages received on

the SeaSonde array with (4) and (8) and processed these

as described in section 2. For each 2-dB SNR increment

in the interval 6–36 dB, we ran 400 Monte Carlo simu-

lations. Figure 5 shows the results of one simulation

with SNR ;20 dB, with DOA solutions (uMU) plotted

over the input ocean current (vr) from ROMS (blue

dots). In this example, we use single-bearing solutions

(N5 1) in the MUSIC calculation for vr . 57 cm s21 and

vr ,212 cm s21, three-bearing solutions (N5 3) for vr
between 0 and 210 cm s21, and dual-bearing solutions

(N5 2) for the remainder. Error bars on uMU show the

bearing uncertainties 6sMU estimated with (9). For the

N5 1 case, the DOA solutions fall within ROMS vr,

with correspondingly low sMU. Many of theN5 2 DOA

solutions fall outside the range of bearings spanned by

vr, though the greater sMU associated with these often

includes vr. The N5 3 case illustrates how the presence

of signals from a third bearing biases theMUSICDOAs,

with some falling between areas of vr (e.g., near;2508).

These simulation results suggest that sMU provides a

useful indicator of error.

Results of the radar simulations with ROMS are

summarized by computing the sRMS between the source

uN and the MUSIC uMU, in 2-dB-wide SNR bins. As de-

scribed in the appendix, sRMS is computed between uMU

and the uN from the nearest vr in bearing. Figure 6 shows

the results of these calculations, plotting sRMS versus

SNR, with the results partitioned by the N empirically

determined from the input ocean current field.

Figure 6a shows the results for N5 1, with sRMS , 58

for SNR . 10 dB. The results in Fig. 6b with N5 2

show increased sRMS over theN5 1 case, particularly in

the SNR range of 10–25dB, where sRMS is more than

double that forN5 1. These results are similar to Fig. 4,

though with narrower bin standard deviations of

uN 2 uMU (blue shading). Figure 6c with N5 3 shows

sRMS consistently near 158, showing the influence of

the additional signal source (i.e., N5M) on the MUSIC

calculation. Overall, sRMS increases with increasingN, as

shown by curves of sRMS in Figs. 6a–c. Figures 6a and 6b

also demonstrate the relationship between SNR and er-

ror, which breaks down for N5 3 (Fig. 6c).

Figure 6 shows the mean of sMU found in 2-dB SNR

bins, along with the standard deviation. In both the

N5 1 andN5 2 cases, Figs. 6a and 6b, sMU tracks sRMS,

providing a reasonable estimate of the observed RMS

error. However, Fig. 6c suggests that mean sMU un-

derestimates sRMS when SNR .10dB and N5 3. In

Fig. 6c, mean sMU ’ 88 is found at relatively high SNR,

while in the N5 1 and N5 2 cases these values of mean

sMU are found only at low SNR. In each example, mean

sMU $ 88 corresponds to relatively high sRMS. This ob-

servation, along with the correspondence between sMU

and sRMS, otherwise suggests the use of sMU as a metric

for thresholding.

c. Application to operational radars

Uncertainty estimates were also evaluated by pro-

cessing spectra from two SeaSondes, located at Santa

Cruz Island, California (SCI1), and San Nicolas Island,

California (SNI1), using software we developed (Emery

2018). Starting with unaveraged SeaSonde spectra files

(CSQ), the software follows the methods and conven-

tions of the SeaSonde processing scheme (e.g., Fig. 1).

Rather than running the DOA processing on 10-min

FIG. 5. Radial velocity vs bearing from the ROMS (blue dots;

also shown in Fig. 3b), found in a 1.5-km-wide range cell, 11.5 km

from a simulated HF radar site. The figure shows example DOA

solutions (dots) and6sMU (error bars) forN5 1, 2, and 3, from a

simulation with a maximum SNR of 20 dB.
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moving averages of auto- and cross-spectra, as is typical

for SeaSonde processing, we computedmoving averages

of 16 auto- and cross-spectra every 10min. Since each

power spectrum results from 256 s of data, the average

covers 68.3min. The software also uses the First Order

Line (FOL) toolbox (Kirincich 2017) for first-order re-

gion identification. Antenna patterns were obtained for

both sites using the methods of Emery et al. (2014) with

two months of data.

Figure 7 shows time series of vr from near the baseline

between SCI1 and SNI1, for the interval 10–12 August

2013. The plots show vr every 10min from the spatial

area within 618 in bearing and 63 range cells of the

midpoint between the sites for a total of 21 locations on

each radial grid. Vertical bars at each velocity observa-

tion show the sMU error estimate in degrees. In general,

smaller sMU occurs when vr falls into groups, suggesting

that the repeatable observations of vr have lower DOA

errors. Based on inspection of the cross-spectra, obser-

vations of vr near 100 cm s21 in Fig. 7a result from ship

backscatter. Figure 7 and Table 2 show sight differences

in mean and median sMU from the two sites. Slightly

lower mean and median sMU from SCI1 correspond to

the slightly higher SNR observed there.

Figure 8 shows the spatial distribution of sMU, aver-

aged over 10–20 August 2013. The figure shows a wide

FIG. 6. Results from radar simulations using the input current field from ROMS, showing

sRMS and the mean of the estimated errors sMU, when the same velocity is present: (a) at a

single bearing (N5 1), (b) at two bearings (N5 2), and (c) at three bearings (N5 3). Blue

shaded regions show61 standard deviation of the bin DOA errors, while the black error bars

show 61 standard deviation of the bin sMU estimates.
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range of average values, along with high values found

at particular bearings, indicating a dependence on the

APM. Only a fraction of the observations have sMU . 108

for these two HF radars (SCI: 10.5%; SNI: 7.1%; Table 2).

The prevalence of high values of sMU in Fig. 8 and the

outlier vr in Fig. 7 with high values of sMU further

suggest the use of sMU as a quality control metric.

Using the near-baseline data described for Fig. 7, we

compute the RMS difference (RMSD) and r2 between

the two time series, varying the threshold value of sMU

for removing data. Figure 9 shows r2 and RMSD, versus

the threshold value of sMU along with the 95% confi-

dence intervals. The comparison statistics improve for

small values of the sMU threshold. Figure 9 suggests that

removing all but the lowest error data will provide the

best comparison. Similar results were found using

slightly smaller and slightly larger overlapping spatial

areas.We interpret the Fig. 9 results as an indication that

the sMU estimates contain useful information about the

DOA uncertainty.

6. Discussion

Both sMU and sCRB illuminate factors controlling er-

ror in the DOA of oceanographic radars. Taken to-

gether, sCRB and sMU show that error in the DOA

estimate depends on K, the SNR, the specific receive

array, its antenna pattern, and the derivative of the an-

tenna pattern with respect to u. Though not explicit in

the expression for sMU, the number of array elements

(M) implicitly factors into the DOA error and sMU es-

timate (Stoica and Nehorai 1989; Lai et al. 2017b). The

dependence on M, and thus array design, implies

different theoretical accuracies for different arrays.

While our results are specific to SeaSondeHF radars, we

have performed numerous evaluations of sMU with sim-

ulations involving different receive arrays. Simulation-

based experiments, using both 16-element linear arrays

and 8-element rectangular grid arrays, thus far suggest

that sMU substantially underestimates sRMS for these

radars. These results may confirm the importance of

the bias term in computing DOA error (Xu and

Buckley 1992), particularly for arrays with M. 3. The

bias term appears to be very small or zero when

N5M2 1.

The complex currents obtained from ROMS often

present the same velocity at more N than there are M,

such that often N$M (as stated above, MUSIC is lim-

ited to identifying N,M bearings). When N$M,

FIG. 7. Plots of vr (cm s21) vs time with sMU (8) for HF radars at (a) Santa Cruz Island and

(b) San Nicolas Island at 10-min intervals from 0000 UTC 10 Aug to 0000 UTC 12 Aug 2013.

TABLE 2. Statistics of sMU as computed for each HF radar site

over 10–20 Aug 2013.

Site

sMU

mean (8)

sMU std

dev (8)

sMU

median (8)

% of sMU

. 108

Data

points

SCI 2.7 6.9 2.0 10.5 8058

SNI 3.8 13.2 2.7 7.1 8784
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MUSIC is unable to partition the signal and noise

subspaces (Krim and Viberg 1996; Abramovich et al.

2009), causing a corruption of the noise subspace. This

causes an increase in the MUSIC DOA errors—errors

that appear to be captured by sMU. For SeaSondes

with M5 3, results suggest that while sMU may not

approximate the errors when the current field pres-

ents N. 2 (e.g., Fig. 6), the sMU values that result are

large in the mean and thus provide a useful uncertainty

metric.

Systems using larger numbers of antennas, such as

withM5 8 orM5 16, would encounter the problem of

N$M less often. The ability of these systems to re-

solve more flow complexity when using direction of

arrival methods such as MUSIC instead of beam-

forming has been demonstrated (Sentchev et al. 2013).

With a few exceptions (e.g., Barbin et al. 2006; Forget et al.

2008; Molcard et al. 2009; Orfila et al. 2015), oceano-

graphic systems with M$ 8 typically use beamforming

techniques that negate the possibility of within beam-

width resolution.

This analysis suggests that the DOA method is a

major source of random error in oceanographic radar

ocean current observations. When combined with other

sources of error (e.g., Fig. 1), these may explain the in-

trinsic noise found previously in HF radar data by

looking at the power spectral density of HF radar time

series (Emery et al. 2004; Forget 2015). In a detailed

investigation of the noise properties ofWERAHF radar

using MUSIC, Forget (2015) showed that even with

outlier removal an inherent noise persists, reducing the

effective temporal resolution. Random bearing errors

resulting from the DOAmethod (MUSIC in both cases)

certainly contribute to—if not fully explain—the re-

ported noise level. The occurrence of N$M, or er-

rors resulting from the determination of N, may also

contribute.

7. Conclusions

We evaluate an analytical approach given by Stoica

and Nehorai (1989) for estimating sMU along with the

direction measured by SeaSonde oceanographic HF

radars. By simulating the backscattered signals from a

realistic example of the ocean surface currents, we show

that sMU track errors in theDOAs produced byMUSIC.

We also compute sMU for two operational SeaSondeHF

radars, producing mean sMU values of 2.78 (SCI) and

3.88 (SCI). Results from these HF radars show improved

comparison statistics along an overwater baseline when

using sMU as an error threshold for eliminating vr with

large bearing errors.

Expressions from Stoica and Nehorai (1989) give

bearing uncertainty estimates associated with each radial

velocity. These estimates enable the mapping of un-

certainty and enable the calculation of the error covari-

ance among surface current observations. Oceanographic

HF radar processing schemes, such as the SeaSondes,

accurately estimate the radial current speed, but they less

accurately estimate the bearing to the patch of ocean

surface where the radial speed occurs. Given this prop-

erty of data from individual HF radars, algorithms used

to form the total vector velocities should account for

bearing uncertainties. Further work remains to propagate

the spatial uncertainty estimate provided by sMU to the

total velocity vector, but it is expected that the uncertainty

estimates will be useful for assimilating HF radar data

into numerical models of ocean circulation.

These results along with previous results from the

literature cited above outline the primary sources of

error for oceanographic HF radars. The analysis supports

the following for the quantification of uncertainty

FIG. 8. Maps of average of sMU (8) over 10–20 Aug 2013 for

HF radars at (a) Santa Cruz Island and (b) San Nicolas Island.

Both maps show a section of the Southern California Bight,

with bathymetry (black lines), islands, and the mainland (gray

regions).
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in the radial velocity components of oceanographic

radars:

v
r
(r, u)5 v

r
(r6s

r
, u6s

u
)6s

vr
, (12)

where (1) provides an estimate for the range uncertaintysr,

(2) provides an estimate for the bin velocity uncertaintysvr,

and (9) provides the estimate for the bearing uncertainty

su when using MUSIC. Errors resulting from interfering

signals, improper determination of the first-order region,

or imperfect knowledge of the antenna pattern are not

quantified by (12). Estimating the contribution from these

additional components of error and the identification of a

general method for estimating errors in data from all

oceanographic radars are the subjects of ongoing work.
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APPENDIX A

Mathematical Symbols

The definition of each mathematical symbol is defined

in Table A1.

APPENDIX B

Calculation Details

a. MUSIC resolution limit

The MUSIC resolution limit, defined as the ability

to distinguish closely spaced signal sources, is ap-

proximated by

Du5 u
HPBW

SNR21/p , (B1)

FIG. 9. Comparison statistics between velocities measured at SCI1 and SNI1 in a region of

overlapping coverage along the baseline, computed after thresholding with sMU: (a) r
2 and

(b) RMSD, and (c) sample size. Shaded region shows the 95% confidence interval, with the

interval in (b) obtained with bootstrap sampling (Efron and Tibshirani 1994).
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where p ranges between 2 and 4 (Friedlander 2009; Amar

andWeiss 2007), and uHPBW is the half-power beamwidth.

To estimate Du we compute uHPBW by first computing the

beam pattern B following Van Trees (2002),

B5
1

M
A(u

o
)HA(u) , (B2)

where uo is a reference angle, and then finding uHPBW as

the range of u, where jBj2$ 0:5maxjBj2 (Van Trees 2002).

Defined this way, the SeaSonde uHPBW 5 1318, while a

uniform linear array (ULA) with 1/2lTX spacing and

M5 16 has uHPBW 5 6.58. These values suggests a

minimum Du on the order of 108–208 for the SeaSonde

(with SNR5 30 dB and p5 2 or p5 4). Using data we

processed from SeaSondes (which has the individual

MUSIC DOA solutions), we plotted the angular dif-

ference between dual-bearing solutions versus SNR

(not shown), indicating a minimum Du on the order of

108. For the purposes of simulating ocean current

backscatter, these results suggest that decorrelating

sources separated by ,18 adequately approximates

backscatter from the ocean surface.

b. Cramer–Rao lower bound

In addition to estimates of sMU, we compute the

Cramer–Rao bound (CRB) on DOA error variance

following Stoica and Nehorai (1989) and Friedlander

(2009). Here we use its square root sCRB to illustrate

factors controlling the DOA error, to compare with un-

certainties estimated with (9), and to compare with sim-

ulation results. We compute sCRB from the antenna

pattern a(u) and from assumed values of SNR, K, and N.

Following Friedlander (2009) we estimate a covariance

matrixCy directly from these known variables, along with

the identity matrix I,

C
y
5 �

N

k51

SNR
k
a(u

k
)a(u

k
)H 1 I . (B3)

We then define the (i, j)th element of the N3N Fisher

information matrix,

F
i,j
5 trace

"

C
21
y

›C
y

›u
i

C
21
y

›C
y

›u
j

#

. (B4)

From F the CRB is given by

s2
CRB$

1

K
F
21

[CRB. (B5)

Calculation of the derivative ofCy with respect to u in (B4)

is described below. As defined above sCRB applies to the

estimation ofDOAuncertainties for discrete signal sources.

c. Simulation DOA errors

We compute errors in the DOA estimates as the RMS

difference between the simulated source bearing uN and

uMU. We compute the sRMS for a given ensemble of

n DOA solutions as

s
RMS

5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
n

i51

u
Ni
2 u

MUi

� �2

n

v

u

u

u

t

. (B6)

TABLE A1. Definitions of symbols used in the manuscript.

Symbol Definition

A Matrix of receive array vectors

a(u) Receive array vector

B Beam pattern

C(f ) Data covariance matrix at Doppler

frequency f

Cy Estimate of covariance matrix

c Speed of light

Dr Range cell width (km)

Dvr Radar radial velocity increment (cm s21)

e(t) Noise time series

fTX Radar transmit frequency

g Gravitational acceleration

G Matrix of noise eigenvectors gM2N

g6 Decorrelation factor

K No. of data snapshots (e.g., No. of

spectra averaged together)

kTX Radar wavenumber

lM Eigenvalues of C(f )

lTX Wavelength of transmitted radio wave

M No. of receive antennas

N No. of signal sources or signal source

bearings

n No. of data points in sRMS calculation, or

sample size

Nvr Length of the vector vr
nFFT Length of the time series for FFT processing

r Range (km)

S Matrix of signal eigenvectors sN
s2 Noise variance

sCRB Cramer–Rao lower bound on DOA error

sMU DOA error estimated with (9)

sRMS DOA RMS error

sr Range uncertainty (km)

svr Radial velocity uncertainty (cm s21)

u Direction from radar to signal source

uN Direction from radar to Nth signal source

uHPBW Half-power beamwidth

uMU DOA solution from MUSIC (MUSIC

estimate of uN)

vr Radar radial velocity component (cm s21)

6vB Frequency shift due to Bragg resonant

waves

vc Frequency shift resulting from ocean

currents

X(t) Signal source time series

Y Receive antenna voltage time series matrix
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A typical ensemble includes all points within a given

range of SNR. For discrete source simulations with the

source u specified, calculation of (B6) is straightforward.

However, when computing sRMS for simulations using

ROMS, the calculation is more complex. In this case, a

DOA solution uMU, associated with a given vr, results

from a signal that may originate from a wide range of

bearings. For example, the radial currents in Fig. 3a

have vr 5 10 cm s21 for bearings between 958–1008 and

1608–1858, meaning that uN can take on any value in

these ranges. When computing the error with a DOA solu-

tion uMU, we retain the smallest difference uNi
2 uMUi

for

use in (B6), using the value of uN from the current field

that is closest to the DOA solution.

d. Derivative calculations

Assuming an ideal pattern for SeaSondes, the array

derivative in (11) can be evaluated analytically, but

for APMs from operational radars we must evaluate

the array derivative numerically. We compute these

derivatives using the second-order accurate centered

difference:

da(u
j
)

du
5

a(u
j11

)2 a(u
j21

)

2Du
. (B7)

Edges are evaluated using the first-order accurate forward

and backward one-sided approximations (LeVeque 2007):

da(u
1
)

du
5

a(u
2
)2 a(u

1
)

Du
, (B8)

da(u
n
)

du
5

a(u
n
)2 a(u

n21
)

Du
. (B9)

We compute the derivative of Cy with respect to u in

(B4) as in Friedlander (2009),

›C
y

›u
i

5SNR
i

da(u
i
)

du
a(u

i
)H1SNR

i
a(u

i
)
da(u

i
)H

du
. (B10)

The array derivatives are computed as described above.
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