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Abstract. This paper presents a personalized contingency feedback
adaptation system that aims to encourage infants aged 6 to 8 months
to gradually increase the peak acceleration of their leg movements. The
ultimate challenge is to determine if a socially assistive humanoid robot
can guide infant learning using contingent rewards, where the reward
threshold is personalized for each infant using a reinforcement learn-
ing algorithm. The model learned from the data captured by wearable
inertial sensors measuring infant leg movement accelerations in an ear-
lier study. Each infant generated a unique model that determined the
behavior of the robot. The presented results were obtained from the dis-
tributions of the participants’ acceleration peaks and demonstrate that
the resulting model is sensitive to the degree of differentiation among the
participants; each participant (infant) should have his/her own learned
policy.
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1 Introduction

Infants produce a variety of movements in order to modulate task-specific actions
such as reaching, crawling, and walking [1,2]. Through a dynamic process of
exploration and discovery, they learn how to control their bodies and inter-
act with their environments. In contrast to typically developing (TD) infants,
infants at risk (AR) for developmental delays often have neuromotor impairments
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involving strength, proprioception, and coordination. These challenges can lead
to greater difficulty with movement and potentially a decreased motivation to
move and explore.

Past works have used wearable sensors and/or 3-dimensional motion analy-
sis systems to assess differences in movement patterns between infants with TD
and infants AR or with developmental delays. Studies have demonstrated that
movement variables such as kicking frequency, spatiotemporal organization, and
interjoint and interlimb coordination are different between infants with TD and
infants AR [3], with intellectual disability [4], with myelomeningocele [5,6], with
Down syndrome [7], or born preterm [8]. Studies have also shown that the acqui-
sition of new motor skills is correlated to subsequent cognitive development in
infancy [9,10], thus interventions to promote motor skills have the potential to
be used to enhance the overall infant development.

In the first part of this contingency study, the goal was for infants to discover
and learn that the movements of a humanoid robot are contingent upon their
movement. The robot performed a reward action (kicking a ball on a string)
contingently, in response to a desired movement by the infant. Specifically, the
robot rewarded the infant when s/he produced a leg movement above a specified,
constant acceleration value, which we call the activation threshold. In the second
part of this contingency study, we created a personalized contingency feedback
adaption system that aims to encourage infants to gradually increase their peak
acceleration of each movement.

This paper focuses on the evaluation of a reinforcement learning (RL) algo-
rithm that moderates the adaptation of the activation threshold using the data
distributions of the acceleration peaks of every infant from the first part of the
contingency study. The experimentation presented here uses those data as input
for the model, to generate activation threshold values that adjust to each distri-
bution individually. This proof-of-concept of the model is a necessary step before
carrying out a study with infants.

This paper is structured as follows: Sect. 2 presents related work from multi-
ple fields. Next, Sect. 3 explains the origin of the infants’ data from the first part
of the contingency study, summarizing the foundational study that was carried
out. Section 4 provides the details of the proposed model from the second part
of the contingency study, from the discretization to build the set of thresholds
to the RL-based approach. Section 5 presents a simulation of the model using
the infant data. Finally, Sect. 6 summarizes the work and outlines next steps of
this research.

2 Related Work

This multidisciplinary project brings together and builds on insights from multi-
ple research areas. Section 2.1 describes the basic theory of infant motor develop-
ment and the basis of contingency studies. Section 2.2 describes the importance
of early intervention in atypical motor development and the need for personalized
adaptation for each infant.
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2.1 Infant Motor Learning and Adaptation

Current developmental theory proposes that infants learn the connection
between their body and the environment by making frequent exploratory move-
ments that help them to develop task-specific actions [1,2]. For instance, when
nine-month-old infants are placed in a jumper toy, they adjust the timing and
force generation of their legs to optimize bouncing [11]. Our work used wear-
able inertial sensors attached to the infant’s limbs to track the acceleration and
angular velocity of each limb throughout the motor exploration task.

To motivate infant movements, researchers use contingency feedback
paradigms. Historically, infant contingency studies used a mobile paradigm
where a specific arm or leg is attached to the mobile with a string. The more
the infant moves the attached limb, the more sound and motion are generated
by the overhead mobile [12]. Contingency studies have demonstrated that, when
movements are reinforced by mobile motion, infants with typical development
as young as three months old can increase the movement rate of the arm [13],
increase the kicking rate of the leg [14,15], move through a specific knee joint
angle [16], produce more in-phase interlimb coordination by simultaneously mov-
ing both legs together [17], produce more in-phase hip-knee intralimb coordina-
tion by simultaneously extending the hip and knee of one leg [18], or produce
selective hip-knee intralimb coordination (hip flexion with knee extension) by
kicking a panel [19] or moving a foot vertically across a height threshold [20].

Those studies focused on reinforcing motion patterns; in this work we rein-
force precise kinematic values, specifically the peak acceleration of a movement,
aiming to encourage infants to increase the peak acceleration of their leg move-
ments over time.

2.2 Infant Developmental Intervention

The main characteristic of this population is its enormous heterogeneity, since in
such early stages, the aspects in the development and behavior patterns can vary
enormously between individuals. That is why it is difficult to establish general
guidelines and professionals need to make a more personalized analysis.

Approximately 9% of all infants in the United States are AR and could
potentially benefit from early intervention services to address motor, cognitive,
and/or social development [21]. All development domains, such as motor, cog-
nitive, and social, are related, thus an intervention in one domain may provide
benefits in all areas of development [15]. Despite this, the current standard of
care for early intervention practice is to provide infrequent, low-intensity move-
ment therapy or no intervention in infancy [22,23]. New research has shown that
early, intense, and targeted therapy intervention has the potential to improve
neurodevelopmental structure and function [24]. Despite this potential gain, it
can be challenging to find feasible and resource-efficient ways to deliver this
type of intervention in infancy. Our proposed solution is to use a non-contact
socially assistive humanoid robot to provide demonstrations and feedback aimed
to encourage infants in movement exploration tasks. A key aspect of the efficacy
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of this approach is the inclusion of personalized models appropriate for each
infant participant that adapt the exploration task and difficulty to the specific
infant, potentially allowing for higher engagement and improved learning.

Graded cueing is an approach that also aims at personalizing the level of task
difficulty, by using increasingly specific cues or prompts given to the user [25].
This technique has been successful in rehabilitation of patients with brain injury
and stoke, and has also been explored with socially assistive robots used with
children with autism spectrum disorder in learning appropriate social skills
[26,27]. The application of this technique consists of a set of steps that are
applied sequentially. First, the therapist prompts the patient if the patient is
having difficulties completing the assigned task. If, after a while, the patient
continues to have difficulty, the therapist gives an increasingly specific cue, i.e.,
from a general verbal cue of patient’s body posture to a more specific cue such
as imitating patient’s posture to help them to correct it. The purpose of using
graded feedback is to encourage the patient to do most of the work on their own.
The referenced past works address this problem by implementing models based
on finite state machines or Markov Decision Processes. It has been shown to lead
to more efficient learning and better learning outcomes.

This work follows a very similar concept. Different levels of difficulty are
established and the participant starts at a low level. Difficulty levels are related
to thresholds of acceleration peaks. The learning model must find the policy that
allows to move between the different levels from the participant’s progress while
maximizing the received reward (average acceleration). The idea is to adjust the
specificity of the learning task – creating movements with higher acceleration –
by adapting the acceleration threshold required to receive the contingency reward
based on the infant’s past performance on the task.

3 Model Training Data

The training data used in this work were collected in a previous study. We
summarize the data collection only briefly here.

Eight infants with TD between the ages of 6 and 8 months participated in
a contingency feedback experiment in the Greater Los Angeles area. Only TD
infants were recruited for this study as the first step was to enable the system
to adapt to typical infant exploratory movement behavior.

The infant was placed in front of a NAO robot in a chair that allowed for full
leg mobility, as shown in Fig. 1. The infant wore a head-mounted eye tracker.
Opal inertial movement sensors [28] were affixed to each infant limb using cuffs
with pockets. The sensors tracked the tri-axial acceleration and angular velocity
of each limb.

For two minutes, the infant’s baseline movement was measured. During that
time, the robot remained inactive. After the baseline, the robot demonstrated
the reward action three times. The action was a basic knee flexion kick at a
ball on a string. After the demo, the contingency phase of the study ran for
eight minutes. If the infant produced an acceleration from the right leg above a
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Opal APDM Sensors

Eye Tracker

Fig. 1. An infant study participant interacting with the NAO robot in the previous
study

fixed threshold of 3.0 ms−2, the robot performed the reward action. We chose the
acceleration threshold based on a previous study that measured the accelerations
of infant leg movements [29]. In this study, the difficulty of the activity did not
change and the threshold remained fixed throughout the session. The study was
approved by the University of Southern California Institutional Review Board
under protocol #HS–14–00911.

Table 1 shows the acceleration peaks from the eight infants in the study. The
variance among the participants is notable. The values of the means vary based
on performance during the session. For instance, infant 1’s mean peak accelera-
tion is twice that of infant 5. Likewise, the maximum acceleration values reached
by each infant and the number of acceleration peaks generated have a large vari-
ance. This is an indication that there is great heterogeneity in the participant
pool, supporting personalized models rather than a generalized approach.

Table 1. Statistical outcomes of the study participants; N is the number of detected
acceleration peaks for each participant.

VARIABLE N MEAN STDEV MIN Q1 MEDIAN Q3 MAX
ACC_PEAKS_U01 655 11.20 9.65 3.00 4.98 8.53 13.77 87.39
ACC_PEAKS_U02 417 9.77 8.06 3.01 4.30 6.31 12.51 45.66
ACC_PEAKS_U03 166 6.63 7.01 3.00 3.47 4.57 7.056 55.74
ACC_PEAKS_U04 326 9.51 8.61 3.02 4.21 5.87 11.15 63.49
ACC_PEAKS_U05 311 5.95 4.20 3.00 3.60 4.38 6.44 38.11
ACC_PEAKS_U06 499 8.98 8.69 3.00 4.20 5.78 9.38 72.41
ACC_PEAKS_U07 273 18.56 22.72 3.01 4.12 6.53 24.46 94.92
ACC_PEAKS_U08 359 7.11 6.16 3.01 3.85 4.98 7.88 48.26
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The results of the previous study were promising and informed the objec-
tives of this work. The majority of infants were able to learn the contingency
with a set activation threshold. They moved above threshold more often in the
contingency phase, in which they interacted with the robot, than in the baseline
phase. Therefore, the next step is to try adjust the difficulty of the activity and
determine if infants are able to adapt to a changing activation threshold.

4 User Adaptation Model

This section explains the proposed model for threshold adaptation in the infant
movement contingency study. Section 4.1 provides a high level description of the
problem. Section 4.2 explains the discretization of the peak acceleration values.
Finally, Sect. 4.3 presents the RL approach for the adjustment of difficulty.

4.1 Problem Description

As noted earlier, the objective of the model is to adapt the activation threshold
θ of the robot’s reward action in real time. To achieve this, the contingency
phase was segmented and the participants progress evaluated to determine the
threshold for the next segment. Progress is defined in terms of the average of
the acceleration peaks, since this work is focused on identifying thresholds that
achieve a higher average in the acceleration of the infant’s movements.

The threshold adaptation process was carried out during the contingency
phase, in which the robot gave a reward (i.e., kicking the ball) each time
the infant exceeded the current threshold, otherwise the robot remained still.
Figure 2 is a representation of the contingency timeline divided into N segments.
Each segment lasts 40 s; the duration was determined empirically to allow enough
time for the infants to adapt to the new difficulty and for the model to receive
enough learning experiences in every session.

The system started with an initial threshold θ0 that changed over time based
on the outcome obtained in each segment. At each time step n with 0 < n < N ,
the model decides whether to raise, lower, or keep the threshold value θn, i.e., the
difficulty of the activity (assuming higher thresholds are more difficult), based
on the average value of the acceleration peaks obtained in the last segment. Each
θn took its values from a set of thresholds Γ selected as described in Sect. 4.2.

The objective was to find the value of the threshold θ that maximized the
acceleration of each infant’s target limb. As shown in Sect. 3, the acceleration
values reached by the infants are quite different from each other. Therefore, it
is important to learn an individual model of each infant in order to obtain the
threshold. The decision to modify the threshold is dependent on the threshold
levels for each infant, the average acceleration value obtained in the previous
segment, and the infant’s degree of engagement. These variables were chosen
because they are used by experts, and the aim is to learn a policy for each infant
that adjusts the level of difficulty of the activity similar to the way a health care
professional would.
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θ0

Input:
• User’s engagement in the task
• Average of the accelera�on peaks of the last segment
• The infant’s calculated thresholds:

Objec�ve:
• Adjust the threshold of every segment

Low Mid-low Mid Mid-High High

Con�ngency Timeline

Segment θn θN

Fig. 2. Representation of the contingency problem

4.2 Discretization of the Acceleration Values

This section explains how the acceleration values of each infant were discretized
to built a set Γ = {θ1, θ2, . . . , θq} composed of q discretized threshold values
that best match the data collected in their past sessions. In this study, 5 levels
of difficulty related to acceleration peaks were established a priori, i.e., q = 5.
Additionally, we assumed Γ is sorted in ascending order, i.e., ∀i, j and i <
j, θi < θj so that each threshold value corresponded to a level of difficulty:
“low, mid–low, mid, mid–high, high”.

As discussed in Sect. 3, preliminary analysis of the data revealed large dif-
ferences in the movement data captured from the participating infants; some
demonstrated double the average acceleration peaks of others. This evidence is
consistent with previous research in development [30]. Together with potentially
higher variability within and across infants in different AR populations, this
determined the need to create independent models for each participant. This, in
turn, suggested that each infant should have a discretized set of thresholds, Γ ,
adapted to their abilities.

Instead of using a uniform discretization, we used a K-means algorithm with
k = 5 that allowed for finding the five centroids that best separated the accel-
eration data for each infant [31]. The centroids were directly related to the
five levels of difficulty of the problem. Therefore, each threshold value θi ∈ Γ
corresponded to a different centroid. Figure 3 shows an example for the data
gathered from infant 1. The graph is the representation of the allocation of
the instances to the different clusters found by the algorithm (the blue points
corresponds to the instances in cluster 1, the green points to the instances in
cluster 2, and so on). Furthermore, each cluster is represented by a centroid
that corresponds to a value associated with the level of difficulty (in this case,
Γ = {4.97, 10.81, 17.32, 28.89, 52.56}). In this example, and in most of the par-
ticipants, there is no homogeneous allocation of the instances in the clusters due



Adaptation of the Difficulty in IR Study 77

to the way in which the data are distributed: 47 % (low), 29 % (mid–low), 15 %
(mid), 6% (mid–high), 2% (high) for the infant 1. This means that most instances
are concentrated around low levels of acceleration, since infants reach the highest
peaks of acceleration at specific times.

4.971 (Low)
10.815 (Mid-Low)

17.321 (Mid)

28.895 (Mid-High)

52.568 (High)

A
cc

el
er

at
io

n 
P

ea
ks

Instances

Centroids / Thresholds

Fig. 3. Estimation of thresholds of the infant 1 using K-Means for the discretization
of the accelerations peaks

4.3 Mapping the Threshold Adaptation Problem onto
Reinforcement Learning

In this section, we describe the mapping of the problem of threshold adaptation
of an infant described in Sect. 4.1 onto an RL approach. Such modeling requires
defining all the elements of a Markov Decision Process (MDP): the state and
action spaces and the reward and the transition functions [32]. We consider this
to be an episodic task, where for each episode the infant is evaluated in N steps.

In this work, a state s ∈ S is a tuple in the form sn =< ξn, θn >, where ξn

and θn are respectively the disengagement of the infant and the current threshold
of the system at step n. Feature ξ is a binary feature, i.e., ξ ∈ {0, 1}, where ξ = 0
if the infant is engaged, and ξ = 1 otherwise. Instead, feature θ takes values from
the discrete set Γ = {θ1, θ2, . . . , θq} built by discretizing the acceleration values
of each infant, as described in Sect. 4.2. Therefore, the size of the state space S
is 2 × q.

In state sn, the agent performs an action an ∈ A. We consider the action
space A as being composed of three actions, A = {−1, 0, 1}. These actions are
used to decrease, leave as is, or increase, respectively, the threshold θn of the
current state.
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After performing an action an in state sn, the agent transits to a new state
sn+1 =< ξn+1, θn+1 >. A transition function is required to compute the values
for ξn+1 and θn+1. The value of ξn+1 is computed using Eq. 1:

ξn+1 =

{
1, if countHits < 2.

0, otherwise.
(1)

where countHits is the number of times the infant moves with an acceleration
above or below threshold θn in step n. To compute the value of θn+1, we assume
that θn = θi, i.e., θn at step n corresponds with the i-th threshold in Γ . Then,
we compute θn+1 as in Eq. 2.

θn+1 = θi+an (2)

Therefore, if an = 1, the threshold is increased and θn+1 takes the value of
the (i + 1)-th element in the Γ set, i.e., θn+1 = θi+1. Conversely, if an = −1,
the threshold is decremented and takes the value of the (i − 1)-th element, i.e.,
θn+1 = θi−1. If it is unchanged, then θn+1 = θi.

Finally, when the learning agent performs an action an in a state sn and
moves to a state sn+1, it also receives a reward signal rn. We formulate the
reward function as shown in Eq. 3.

rn =

{
0, if countHits = 0.

avgSuccAcc × (countSuccHits/countHits), otherwise.
(3)

where avgSuccAcc is the average acceleration of the infant’s movements above
threshold θn, countSuccHits is the number of times the infant moves with an
acceleration above the threshold θn, and countHits is the number of times the
infant moves (above or under the threshold θn). The rationale behind the reward
function in Eq. 3 is as follows. If the infant does not move, the reward received
is 0. If the infant moves (countHits > 0), and the threshold θn is exceeded
(countSuccessHits > 0), the reward is greater than 0. If the threshold is easily
exceeded by the infant, the reward is expected to be higher, consistent with a
higher threshold. Conversely, if the threshold is not easily exceeded by the infant,
the reward decreases, since countSuccessHits tends to 0.

Finally, the reward function in Eq. 3 is different from the reward the robot
provides to the infant. The former is used to learn a policy by RL to regulate
the threshold θ that best fits the infant, while the latter is used to motivate the
infant every time the infant exceeds the current threshold.

5 Simulation Evaluation of the Model

This section describes the evaluation of the model from Sect. 4. The objective
is to extensively test the model prior to a study with infants by using the data
from the first part of the contingency study described in Sect. 3. In a real sce-
nario, the discretization of the acceleration values would be done individually
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from the data of the past sessions of each of the infants. To train the model,
the peaks of infant movement acceleration were simulated and used as input to
the RL model. Acceleration peaks of the participants typically followed an expo-
nential distribution where there was a higher concentration of instances at low
accelerations and fewer at high accelerations, as can be shown in Fig. 4. From
the calculated distributions of each of the infants, the system generates random
acceleration values that follow this distributions. In this way, it can be said that
the behavior of every infant was being imitated, in terms of acceleration, based
on their past experiences.

The objective of this simulation evaluation was to test the behavior of the
model with two completely different infants: infant 5 and infant 7. According
to Fig. 1, infant 5 obtained an average peak acceleration of 5.956 with a max-
imum value of 38.101, while infant 7 obtained an average peak acceleration
of 18.56 with a maximum value of 94.92. Although they were very different,
both followed an exponential distribution, as can be seen in Fig. 4. After apply-
ing the discretization described in Sect. 4.2, the set of thresholds for infant
5 were Γ = {3.41, 4.97, 7.88, 12.21, 20.87} while the those for infant 7 were
Γ = {3.82, 7.58, 16.55, 31.77, 56.99}. Both sets presented different values in line
with the outcomes of each infant.

USER 05 USER 07

Fig. 4. Graphs of the distributions of the acceleration peaks of infants 5 and 7.

The simulation followed the approach presented in Fig. 2, in which the phase
of contingency was divided into steps. Every step was an experience for the
model, in which the values of acceleration peaks were created from the distribu-
tion of each infant, see Fig. 4.

For each infant, we simulated 50 episodes of 20 steps as described in Sect. 4.3.
We used Q-Learning, and ε-greedy as exploration-exploitation strategy [32].
Table 2 shows the resulted Q-tables for infants 05 and 07 at the end of the
learning process. Between state S0 and state S4 are the states when the infant
was engaged with the task, i.e., ξ = 0, while from state S5 to state S9, the infant
was disengaged, i.e., ξ = 1.

Significant differences can be seen between the Q-tables. The values of infant
7 are higher than those of infant 5, since the episodes generated with the first one
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contributed with greater rewards than those of the second. Looking at the highest
value of each row, the policy learned can be found for each participant. For infant
5, the resulting policy considers more adequate to stay in a low threshold. For
instance, if we consider that the infant starts in state S0, the best action is to stay
in this state (the action stay is the action with the highest Q-value). However,
if the infant starts in state S3 and is never disengaged, the policy decides to
transit firs to S2, then to S1 and, finally, to S0, the state with the threshold
that best suits the infant. As a last example, if we consider the infant starting in
state S4, the system could transit to state S8 (i.e., system transits from a state
with a high threshold to a state with a mid-high threshold, although the infant
has disengaged). In S8, the best action is to reduce the threshold, so that the
system could move to S2 (if we assume the infant is engaged again), then to S1,
and finally to S0. Finally, it is important to note that the rows for the states S5
and S6 are all 0. This is intuitive since the infant is never disengaged when the
system is in low or mid-low threshold values and, hence, the states S5 and S6
would be never visited.

Table 2. Results of Q tables of the simulated experiments of infants 05 and 07.

USER 05 USER 07
UP STAY DOWN UP STAY DOWN (deng/th)

S0 86.34 88.98 0 337.42 335.97 0 (0/Low)

Engaged

S1 84.09 87.76 89.30 350.06 348.44 345.34 (0/Mid-Low)
S2 80.27 85.77 87.05 330.02 335.30 341.83 (0/Mid)
S3 73.27 75.74 86.03 300.29 322.43 342.31 (0/Mid-High)
S4 0 0 32.22 0 301.57 318.51 (0/High)
S5 0 0 0 0 0 0 (1/Low) Disengaged

S6 0 0 0 0 0 0 (1/Mid-Low)
S7 0 61.03 0 0 0 0 (1/Mid)
S8 68.47 78.44 83.34 0 0 0 (1/Mid-High)
S9 0 70.93 78.50 0 275.99 313.25 (1/High)

Instead, infant 7 was able to get higher acceleration values between mid–low
to mid thresholds, since s/he had higher accelerated movements in past sessions.
Following the same reasoning as in the other Q-table, if we consider the infant
that starts in state S0 and is never disengaged, the system first transits to S1,
and then to S2. Then, a loop occurs: in S3 it decides to reduce the threshold
and transits to S2. Therefore, the threshold that best suits this infant is between
the states S2 and S1. Finally, as in the previous case, the rows for states S5 to
S8 are 0, as these states are never visited; this infant does not disengaged until
reaching a high threshold value in state S9.
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6 Conclusion

This paper presented an approach for using a personalized reinforcement learning
algorithm for infants learning to reach target leg movement acceleration. The RL-
based model was able to determine the best threshold configuration in terms of
peak acceleration. The results of the simulation were very promising; the model
was sensitive to the high variance among the infant study participants. The
policy learned for each participant indicated the thresholds that would reach
higher rewards values. Since the reward function was related to the average of
the acceleration peaks and the number of peaks detected, maintaining these
thresholds in a session would help to maximize these two variables.

In a real infant-robot interaction scenario, higher difficulty levels would offer
better rewards from the robot. Thus, the ultimate goal of this study is to deter-
mine whether the robot is able to encourage the infant to reach higher acceler-
ations from their movements to get better rewards from the robot. This work
validates the proof-of-concept of the model, making it ready for implementation
in our upcoming contingency study of infant-robot interaction.

This novel work in socially assistive robotics for infant movement therapy
is the basis for the upcoming studies that will extend the presented results.
We plan to explore new reward functions that reinforce other aspects of the
movement or allow the dissociation of one limb from the other. Additionally, we
intend to integrate this socially assistive robot system into the next infant-robot
contingency study to determine if the model helps with the adaptation of the
infants achieving better results than with approaches based on fixed activation
thresholds.

References

1. Gibson, E.J., Pick, A.D.: An Ecological Approach to Perceptual Learning and
Development. Oxford University Press, Oxford (2000)

2. Thelen, E., Smith, L.: A Dynamic Systems Approach to the Development of Cog-
nition and Action. The MIT Press, Cambridge (1994)

3. Smith, B., Vanderbilt, D.L., Applequist, B., Kyvelidou, A.: Sample entropy identi-
fies differences in spontaneous leg movement behavior between infants with typical
development and infants at risk of developmental delay 5, 55 (2017)

4. Kouwaki, M., Yokochi, M., Kamiya, T., Yokochi, K.: Spontaneous movements in
the supine position of preterm infants with intellectual disability. Brain Dev. 36(7),
572–577 (2014)

5. Rademacher, N., Black, D.P., Ulrich, B.D.: Early spontaneous leg movements in
infants born with and without myelomeningocele. Pediatric Phys. Ther. 20(2),
137–145 (2008)

6. Smith, B.A., Teulier, C., Sansom, J., Stergiou, N., Ulrich, B.D.: Approximate
entropy values demonstrate impaired neuromotor control of spontaneous leg activ-
ity in infants with myelomeningocele. Pediatr. Phys. Ther. 23(3), 241–247 (2008)

7. McKay, S.M., Angulo-Barroso, R.M.: Longitudinal assessment of leg motor activity
and sleep patterns in infants with and without down syndrome. Infant Behav. Dev.
29(2), 153–168 (2006)



82 J. C. Pulido et al.

8. Geerdink, J.J., Hopkins, B., Beek, W.J., Heriza, C.B.: The organization of leg
movements in preterm and full-term infants after term age. Dev. Psychobiol. 29(4),
335–351 (1996)

9. Kermoian, R., Campos, J.: Locomotor experience: a facilitor of spatial cognitive
development. Child Dev. 59, 908–917 (1998)

10. Oudgenoeg-Paz, O., Volman, M.: Attainment of sitting and walking predicts devel-
opment of productive vocabulary between ages 16 and 28 months. Infant Behav.
Dev. 35, 733–736 (1998)

11. Goldfield, E.C., Kay, B.A., Warren, W.H.: Infant bouncing: the assembly and tun-
ing of action systems. Child Dev. 64(4), 1128–1142 (1993)

12. Rovee-Collier, C.K., Gekoski, M.J.: The economics of infancy: a review of conjugate
reinforcement. In: Advances in Child Development and Behavior, vol. 13, pp. 195–
255. Elsevier (1979)

13. Watanabe, H., Taga, G.: General to specific development of movement patterns
and memory for contingency between actions and events in young infants. Infant
Behav. Dev. 29(3), 402–422 (2006)

14. Heathcock, J.C., Bhat, A.N., Lobo, M.A., Galloway, J.: The performance of infants
born preterm and full-term in the mobile paradigm: learning and memory. Phys.
Ther. 84(9), 808–821 (2004)

15. Lobo, M.A., Galloway, J.C.: Assessment and stability of early learning abilities in
preterm and full-term infants across the first two years of life. Res. Dev. Disabil.
34(5), 1721–1730 (2013)

16. Angulo-Kinzler, R.M., Ulrich, B., Thelen, E.: Three-month-old infants can select
specific leg motor solutions. Motor Control 6(1), 52–68 (2002)

17. Thelen, E.: Three-month-old infants can learn task-specific patterns of interlimb
coordination. Psychol. Sci. 5(5), 280–285 (1994)

18. Angulo-Kinzler, R.M.: Exploration and selection of intralimb coordination patterns
in 3-month-old infants. J. Motor Behav. 33(4), 363–376 (2001)

19. Chen, Y.-P., Fetters, L., Holt, K.G., Saltzman, E.: Making the mobile move: con-
straining task and environment. Infant Behav. Dev. 25(2), 195–220 (2002)

20. Sargent, B., Schweighofer, N., Kubo, M., Fetters, L.: Infant exploratory learning:
influence on leg joint coordination. PLoS ONE 9(3), e91500 (2014)

21. Rosenberg, S.A., Robinson, C.C., Shaw, E.F., Ellison, M.C.: Part c early interven-
tion for infants and toddlers: percentage eligible versus served. Pediatrics 131(1),
38–46 (2013)

22. Roberts, G., Howard, K., Spittle, A.J., Brown, N.C., Anderson, P.J., Doyle, L.W.:
Rates of early intervention services in very preterm children with developmental
disabilities at age 2 years. J. Paediatr. Child Health 44(5), 276–280 (2008)

23. Tang, B.G., Feldman, H.M., Huffman, L.C., Kagawa, K.J., Gould, J.B.: Missed
opportunities in the referral of high-risk infants to early intervention. In: Pediatrics
peds–2011 (2012)

24. Holt, R.L., Mikati, M.A.: Care for child development: basic science rationale and
effects of interventions. Pediatr. Neurol. 44(4), 239–253 (2011)

25. Bottari, C., Dassa, C., Rainville, C., Dutil, E.: The IADL profile: development,
content validity, intra- and interrater agreement. Can. J. Occup. Ther. 77(2), 345–
356 (2009)
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