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Abstract

We provide algorithms that learn simple auctions whose revenue is approximately optimal in multi-item

multi-bidder settings, for a wide range of bidder valuations including unit-demand, additive, constrained

additive, XOS, and subadditive. We obtain our learning results in two settings. The first is the commonly

studied setting where sample access to the bidders’ distributions over valuations is given, for both regular

distributions and arbitrary distributions with bounded support. Here, our algorithms require polynomially

many samples in the number of items and bidders. The second is a more general max-min learning setting

that we introduce, where we are given “approximate distributions,” and we seek to compute a mechanism

whose revenue is approximately optimal simultaneously for all “true distributions” that are close to the ones

we were given. These results are more general in that they imply the sample-based results, and are also

applicable in settings where we have no sample access to the underlying distributions but have estimated

them indirectly via market research or by observation of bidder behavior in previously run, potentially

non-truthful auctions.

All our results hold for valuation distributions satisfying the standard (and necessary) independence-

across-items property. They also generalize and improve upon recent works of Goldner and Karlin [28]

and Morgenstern and Roughgarden [35], which have provided algorithms that learn approximately optimal

multi-item mechanisms in more restricted settings with additive, subadditive and unit-demand valuations

using sample access to distributions. We generalize these results to the complete unit-demand, additive,

and XOS setting, to i.i.d. subadditive bidders, and to the max-min setting.

Our results are enabled by new uniform convergence bounds for hypotheses classes under product

measures. Our bounds result in exponential savings in sample complexity compared to bounds derived by

bounding the VC dimension, and are of independent interest.

http://arxiv.org/abs/1709.00228v1


1 Introduction

The design of revenue-optimal auctions is a central problem in Economics and Computer Science, which has

found myriad applications in online and offline settings, ranging from sponsored search and online advertising

to selling artwork by auction houses, and public goods such as drilling rights and radio spectrum by govern-

ments. The problem involves a seller who wants to sell one or several items to one or multiple strategic bidders

with private valuation functions, mapping each bundle of items they may receive to how much value they

derive from the bundle. As no meaningful revenue guarantee can possibly be achieved without any informa-

tion about the valuations of the bidders, the problem has been classically studied under Bayesian assumptions,

where a joint distribution from which all bidders’ valuations are drawn is common knowledge, and the goal is

to maximize revenue in expectation with respect to this distribution.

In the single-item setting, Bayesian assumptions have enabled beautiful and influential developments in

auction theory. Already 36 years ago, a breakthrough result by Myerson identified the optimal single-item

auction when bidder values are independent [36], and the ensuing decades saw a great deal of further under-

standing and practical applications of single-item auctions, importantly in online settings.

However, the quest for optimal multi-item auctions has been quite more challenging. It has been recognized

that revenue-optimal multi-item auctions can be really complex, may exhibit counter-intuitive properties, and

be fragile to changes in the underlying distributions; for a discussion and examples see survey [18]. As such,

it is doubtful that there is a crisp characterization of the structure of optimal multi-item auctions, at least not

beyond single-bidder settings [19]. On the other hand, there has been significant recent progress in efficient

computation of revenue-optimal auctions [14, 15, 1, 7, 3, 8, 9, 12, 10, 2, 6, 20]. Importantly, this progress has

enabled identifying simple auctions (mostly variations of sequential posted pricing mechanisms) that achieve

constant factor approximations to the revenue of the optimum [5, 42, 11, 16, 13], under the item-independence

assumption of Definition 1 and Example 1. These auctions are way simpler than the optimum, and have strong

incentive properties: they are dominant strategy truthful, while still competing against the optimal Bayesian

truthful mechanism. The current state-of-the-art is given as Theorem 8, which applies to bidders with valuation

functions from the broad class of fractionally subbaditive (a.k.a. XOS) valuations, which contains submodular.

As our discussion illustrates, studying auctions assuming Bayesian priors has been quite fruitful, enabling

us to identify guiding principles for how to structure auctions to achieve optimal (in single-item settings)

or approximately optimal (in multi-item settings) revenue. To apply this theory to practice, however, one

needs knowledge of the underlying distributions. Typically, one would estimate these distributions via market

research or by observations of bidder behavior in prior auctions, then use the estimated distributions to design

a good auction. However, estimation involves approximation, and the performance of mechanisms can be

quite fragile to errors in the distributions. This motivates studying whether optimal or approximately optimal

auctions can be identified when one has imperfect knowledge of the true distributions.

With this motivation, recent work in Computer Science has studied whether approximately optimal mech-

anisms can be “learned” given sample access to the underlying distributions. This work has lead to an almost

complete picture for the single-item (and the more general single-parameter) setting where Myerson’s theory

applies, showing how near-optimal mechanisms can be learned from polynomially many (in the approximation

and the number of bidders) samples [26, 17, 33, 31, 34, 22, 38, 29].

On the multi-item front, however, where the analogue of Myerson’s theory is elusive, and unlikely, our

understanding is much sparser. Recent work of Morgenstern and Roughgarden [35] has taken a computational

learning theory approach to identify the sample complexity required to optimize over classes of simple auc-

tions. Combined with the afore-described results on the revenue guarantees of simple auctions, their work

leads to algorithms that learn approximately optimal auctions in multi-item settings with multiple unit-demand

bidders, or a single subadditive bidder, from polynomially many samples in the number of items and bid-

ders. These results apply to distributions satisfying the item-independence assumption of Definition 1 and
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Example 1, under which the approximate optimality of simple auctions has been established.

While well-suited for identifying the sample complexity required to optimize over a class of simple mech-

anisms, which is a perfectly reasonable goal to have but not the one in this paper, the approach taken in [35] is

arguably imperfect towards proving polynomial sample bounds for learning approximately optimal auctions in

the settings where simple mechanisms are known to perform well in the first place. This is due to the following

discordance: (i) On the one hand, simple and approximately optimal mechanisms in multi-item settings are

mostly only known under item-independence. (ii) On the other hand, the computational learning techniques

employed in [35], and in particular bounding the pseudo-dimension of a class of auctions, are not fine enough

to discern the difference in sample complexity required to optimize under item-independence and without item-

independence. As such, this technique can only obtain polynomial sample bounds for approximate revenue

optimization if it so happens that a class of mechanisms is both learnable from polynomially-many samples

under arbitrary distributions, and it guarantees approximately optimal revenue under item-independence, or

for some other interesting class of distributions.1

In particular, bounding the pseudo-dimension of classes of auctions as a means to prove polynomial-

sample bounds for approximate revenue optimization hits a barrier even for multiple additive bidders with

independent values for items. In this setting, the approximately optimal auctions that are known are the best of

selling the items separately or running a VCG mechanism with entry fees [42, 11], as described in Section 5.2.

Unfortunately, the latter can easily be seen to have pseudo-dimension that is exponential in the number of

bidders, thus only implying a sufficient exponentially large sample size to optimize over these mechanisms.

Is this exponential sample size really necessary or an artifact of the approach? Recent work of Goldner and

Karlin [28] gives us hope that it is the latter. They show how to learn approximately optimal auctions in the

multi-item multi-bidder setting with additive bidders using only one sample from each bidder’s distribution,

assuming that it is regular and independent across items.

Our results. We show that simple and approximately optimal mechanisms are learnable from polynomially-

many samples for multi-item multi-bidder settings, whenever:

• the bidder valuations are fractionally subadditive (XOS), i.e. we can accommodate additive, unit-

demand, constrained additive, and submodular valuations;

• the distributions over valuations satisfy the standard item-independence assumption of Definition 1 and

Example 1, and their single-item marginals are arbitrary and bounded, or (have arbitrary supports but

are) regular.2

In particular, our results constitute vast extensions of known results on the polynomial learnability of approxi-

mately optimal auctions in multi-item settings [35, 28]. Additionally we show that:

• whenever the valuations are additive and unit-demand, or whenever the bidders are symmetric and have

XOS valuations, our approximately optimal mechanisms can be identified from polynomially many

samples and in polynomial time;

• whenever the bidders are symmetric (i.e. their valuations are independent and identically distributed) and

have subadditive valuations, we can compute from polynomially many samples and in polynomial-time

a simple mechanism whose revenue is a Ω
(

n
max{m,n}

)
-fraction of the optimum, where m and n are

respectively the number of items and bidders. In particular, if the number of bidders is at least a constant

fraction of the number of items, the mechanism is a constant factor approximation; and

1It is known that some restriction needs to be made on the distribution to gain polynomial sample complexity, as otherwise expo-

nential lower bounds are known for learning approximately optimal auctions even for a single unit-demand bidder [24].
2We note again that without the standard item-independence (or some other) restriction on the distributions, we cannot hope to

learn approximately optimal auctions from sub-exponentially many samples, even for a single unit-demand bidder [24].
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• in the setting of the previous bullet, if the item marginals are regular, our mechanism is prior-independent,

i.e. there is a single mechanism, identifiable without any samples from the distributions, providing the

afore-described revenue guarantee.

Finally, the mechanisms learned by our algorithms for XOS bidders are either rationed sequential posted price

mechanisms (RSPMs) or anonymous sequential posted price mechanisms with entry fees (ASPEs) as defined

in Section 6. The mechanisms learned for symmetric subadditive bidders are RSPMs. RSPMs maintain a price

pij for every bidder and item pair and, in some order over bidders i = 1, . . . , n, they give one opportunity to

bidder i to purchase one item j that has not been purchased yet at price pij . ASPEs maintain one price pj for

every item and, in some order over bidders i = 1, . . . , n, they give one opportunity to bidder i to purchase any

subset S′ of the items S that have not been purchased yet as long as he also pays an “entry fee” that depends

on S and the identity of the bidder. See Algorithm 3.

Learning without Samples. Thus far, our algorithms used samples from the valuation distributions to iden-

tify an approximately optimal and simple mechanism under item-independence. However, having sample ac-

cess to the distributions may be impractical. Often we can observe the actions used by bidders in non-truthful

auctions that were previously run, and use these observations to estimate the distributions over valuations using

econometric methods [30, 37, 4]. In fact, it may likely be the case we have never sold all the items together in

the past, and only have observations of bidder behavior in non-truthful auctions selling each item separately.

Econometric methods would achieve better approximations in this case, but only for the item marginals. Fi-

nally, we may want to combine multiple sources of information about the distributions, combining past bidder

behavior in several different auctions and with market research data.

With this motivation in mind, we would like to extend our learnability results beyond the setting where

sample access to the valuation distributions is provided. We propose “learning” approximately optimal multi-

item auctions given distributions that are close to the true distributions under some distribution distance d(·, ·).
In particular, given approximate distributions D̂1, . . . , D̂n over bidder valuations, we are looking to identify a

mechanism M satisfying the following max-min style objective:

∀D1, . . . ,Dn s.t. d(Di, D̂i) ≤ ǫ,∀i : RevM(D1, . . . ,Dn) ≥ Ω(OPT(D1, . . . ,Dn))− poly(ǫ,m, n). (1)

That is, we want to find a mechanism M whose revenue is within a constant multiplicative and a poly(ǫ,m, n)
additive error from optimum, simultaneously in all possible worlds D1, . . . ,Dn, where d(Di, D̂i) ≤ ǫ,∀i. It

is not a priori clear that such a “one-fits-all” mechanism actually exists.

There are several notions of distance d(·, ·) between distributions that we could study in the formulation

of Goal (1), but we opt for an easy one to satisfy. We only require that we know every bidder’s marginal

distributions over single-item values to within ǫ in Kolmogorov distance;3 see Definition 2. All that this

requires is that the cumulative density functions of the approximating distributions over single-item values

is within ǫ in infinity norm from the corresponding cumulative density functions of the corresponding true

distributions. As such, it is an easy property to satisfy. For example, given sample access to any single-item

marginal, the DKW inequality [25] implies that O(log(1/δ)/ǫ2) samples suffice to learn it to within ǫ in

Kolmogorov distance, with probability at least 1 − δ. So achieving Goal (1) directly also implies polynomial

sample learnability of approximately optimal auctions. But a Kolmogorov approximation can also be arrived

at by combining different sources of information about the single-item marginals such as the ones described

above. Regardless of how the approximations were obtained, the max-min goal outlined above guarantees

3Indeed, Goal (1) is achievable only for bounded distributions even in the single-item single-bidder setting. Given any bounded

distribution D̂, create D by moving ǫ probability mass in D̂ to +∞. It is not hard to see that D and D̂ are within ǫ in Kolmogorov

distance, but no single mechanism can satisfy the approximation guarantee for both D and D̂ simultaneously. Using a similar argument,

we can argue that the additive error has to depend on H which is the upper bound on any bidder’s value for a single item. See Section 2

for our formal model.
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robustness of the revenue of the identified mechanism M with respect to all sources of error that came into the

estimation of the single-item marginal distributions.

While Goal (1) is not a priori feasible, we show how to achieve it in multi-item multi-bidder settings with

constrained additive bidders, or symmetric bidders with subadditive valuations, under the standard assumption

of item-independence. Our results are polynomial-time in the same cases as our sample-based results discussed

above.

Roadmap and Technical Ideas. In Section 4, we present a new approach for obtaining uniform convergence

bounds for hypotheses classes under product distributions; see Theorem 2 and Corollary 1. We show that our

approach can significantly improve the sample complexity bound obtained via traditional methods such as

VC theory. In particular, Table 3 compares the sample complexity bounds obtained via our approach to those

obtained by VC theory for different classes of hypotheses.

Our results for mechanisms make use of recent work on the revenue guarantees of simple mechanisms,

which are mainly variants of sequential posted pricing mechanisms [11, 13]. Using our results from Sec-

tion 4, in Section 5, we derive uniform convergence bounds for the revenue of a class of mechanisms shown to

achieve a constant fraction of optimal revenue when all bidders have valuations that are constrained additive

over independent items. These mechanisms are called Sequential Posted Price with Entry Fee Mechanisms,

a.k.a. SPEMs,4. As a corollary of the uniform convergence of SPEMs, we obtain our sample based results

for constrained additive bidders. In fact, we obtain a slightly stronger statement than uniform convergence of

the revenue of SPEMs, which also implies our max-min results for constrained-additive bidders; see Theo-

rems 3 and 4. In particular, Theorem 4 and the DKW inequality imply the polynomial-sample learnability of

approximately revenue-optimal auctions for constrained additive bidders.

Technically speaking, our sample based and max-min approximation results for constrained additive bid-

ders provide a crisp illustration of how we leverage item-independence and our new uniform convergence

bounds for product measures to sidestep the exponential pseudo-dimension of the class of mechanisms that

we are optimizing over. Let us discuss our max-min results which are stronger. Suppose Di = ×jDij is the

true distribution over bidder i’s valuation and D̂i = ×jD̂ij is the approximating distribution, where Dij and

D̂ij are respectively the item j marginals. To argue that the revenue of some anonymous sequential posted

price with entry fees (ASPE) mechanism is similar under D = ×iDi and D̂ = ×iD̂i, we need to couple in

total variation distance the decisions of what sets all bidders buy in the execution of the mechanism under

D and D̂. The issue that we encounter is that there are exponentially many subsets each bidder may buy,

hence the naive use of the Kolmogorov bound ||Dij − D̂ij ||K ≤ ǫ, on each single-item marginal results in

an exponential blow-up in the total variation distance of what subset of items bidder i buys, invalidating our

desired coupling. To circumvent this challenge, we argue in Lemma 4 that the events corresponding to which

subset of items each buyer will buy are single-intersecting, according to Definition 4, when seen as events on

the buyer’s single-item values. Single-intersecting events may be non-convex and have infinite VC dimension.

Nevertheless, because single-item values are independent, our new uniform convergence bounds for product

measures (Lemma 3) imply that the difference in probabilities of any such event under D and D̂ is only a

factor of m, the number of items, larger than the bound ǫ on the Kolmogorov distance between single-item

marginals.

We specialize our results to unit-demand bidders in Section 5.1 to obtain computationally efficient so-

lutions for both max-min and sample-based models. Similarly, Section 5.2 contains our results for additive

bidders. We also generalize our sample-based results for constrained additive bidders to XOS bidders in Sec-

tion 6. Finally, we provide computationally efficient solutions for symmetric XOS and even symmetric sub-

additive bidders in Section 7. These results are based on showing that (i) the right parameters of SPEMs can

be efficiently and approximately identified with sample or max-min access to the distributions; and (ii) that

the revenue guarantees of simple mechanisms can be robustified to accommodate error in the setting of the

4Note that any RSPM or ASPE is an SPEM.
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parameters. In particular, our sample-based result for unit-demand bidders robustifies the ex-ante relaxation

of the revenue maximization problem from [1] and its conversion to a sequential posted pricing mechanism

from [15], and makes use of the extreme-value theorem for regular distributions from [7]. Our sample-based

result for additive bidders shows how to use samples to design mechanisms that approximate the revenue of

Yao’s VCG with entry fees mechanism [42]. Our sample-based results for XOS bidders show how to use

samples to approximate the parameters of the RSPM and ASPE mechanisms of [13], and argue, by re-doing

their duality proofs, that their revenue guarantees are robust to errors in the approximation. Finally, our sam-

ple based result for symmetric subadditive bidders is based on a new, duality based, approximation, showing

how to eliminate the use of ASPEs from the result of [13]. This even allows us to obtain prior-independent

mechanisms when the item marginals are regular.

2 Preliminaries

We focus on revenue maximization in the combinatorial auction with n independent bidders and m heteroge-

nous items. Each bidder has a valuation that is subadditive over independent items (see Definition 1). We

denote bidder i’s type ti as 〈tij〉
m
j=1, where tij is bidder i’s private information about item j. For each i, j,

we assume tij is drawn independently from the distribution Dij . Let Di = ×m
j=1Dij be the distribution of

bidder i’s type and D = ×n
i=1Di be the distribution of the type profile. We use Tij (or Ti, T ) and fij (or fi, f )

to denote the support and density function of Dij (or Di,D). For notational convenience, we let t−i to be

the types of all bidders except i. Similarly, we define D−i, T−i and f−i for the corresponding distributions,

support sets and density functions. When bidder i’s type is ti, her valuation for a set of items S is denoted by

vi(ti, S). Throughout the paper we use OPT to denote the optimal revenue obtainable by any randomized and

Bayesian truthful mechanism.

Definition 1. [40] For every bidder i, whose type ti is drawn from a product distribution Fi = ×jFij , her

distribution, Vi, over valuation functions vi(ti, ·) is subadditive over independent items if:

- vi(·, ·) has no externalities, i.e., for each ti ∈ Ti and S ⊆ [m], vi(ti, S) only depends on 〈tij〉j∈S , formally,

for any t′i ∈ Ti such that t′ij = tij for all j ∈ S, vi(t
′
i, S) = vi(ti, S).

- vi(·, ·) is monotone, i.e., for all ti ∈ Ti and U ⊆ V ⊆ [m], vi(ti, U) ≤ vi(ti, V ).

- vi(·, ·) is subadditive, i.e., for all ti ∈ Ti and U , V ⊆ [m], vi(ti, U ∪ V ) ≤ vi(ti, U) + vi(ti, V ).

We use Vi(tij) to denote vi(ti, {j}), as it only depends on tij . When vi(ti, ·) is XOS (or constrained

additive) for all i and ti ∈ Ti, we say Vi is XOS (or constrained additive) over independent items.

Example 1. [40] We may instantiate Definition 1 to define restricted families of subadditive valuations as

follows. In all cases, suppose t = {tj}j∈[m] is drawn from ×jDj . To define a valuation function that is:

- unit-demand, we can take tj to be the value of item j, and set v(t, S) = maxj∈S tj .

- additive, we can take tj to be the value of item j, and set v(t, S) =
∑

j∈S tj .

- constrained additive, we can take tj to be the value of item j, and set v(t, S) = maxR⊆S,R∈I
∑

j∈R tj , for

some downward closed set system I ⊆ 2[m].

- XOS (a.k.a. fractionally subadditive), we can take tj = {t
(k)
j }k∈[K] to encode all possible values associated

with item j, and take v(t, S) = maxk∈[K]

∑
j∈S t

(k)
j .

Note that constrained additive valuations contain additive and unit-demand valuations as special cases,

and are contained in XOS valuations.

Distribution Access Models

We consider the following three different models to access the distributions.
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• Sample access to bounded distributions. We assume that for any buyer i and any type ti ∈ Ti, her

value Vi(tij) for any single item j lies in [0,H].

• Sample access to regular distributions. We assume that for any buyer i and any type ti ∈ Ti, the

distribution of her value Vi(tij) for any item j is regular.

• Direct access to approximate distributions. We assume that we have direct access to a distribution

D̂ = ×i∈[n],j∈[m]D̂ij , for example we can query the pdf, cdf of D̂ and take samples from D̂. Moreover,

for any buyer i and any type ti ∈ Ti, the distributions of the random variable Vi(tij) when tij is sampled

from D̂ij or Dij are within ǫ in Kolmogorov distance, and both distributions are supported on [0,H].

Definition 2. The Kolmogorov distance between two distributions P and Q over R, denoted ||P − Q||K , is

defined as supx∈R |PrX∼P [X ≤ x] − PrX∼Q[X ≤ x]|. The total variation distance between two probability

measures P and Q on a sigma-algebra F of subsets of some sample space Ω, denoted ||P −Q||TV , is defined

as supE∈F |P (E) −Q(E)|.

3 Summary of Our Results

We summarize our results in the following two tables. Table 1 contains all sample-based results and Table 2

contains all results under the max-min learning model.

Valuations # bidders Distributions Approximation Sample Complexity

additive [28] n regular Ω(OPT) 1
additive n arbitrary [0,H] Ω(OPT)− ǫ ·H poly(n,m, 1/ǫ)

unit-demand [35] n arbitrary [0,H] Ω(OPT)− ǫ ·H poly(n,m, 1/ǫ)
unit-demand n regular Ω(OPT) poly(n,m)

constrained additive n arbitrary [0,H] Ω(OPT)− ǫ ·H poly(n,m, 1/ǫ)
constrained additive n regular Ω(OPT) poly(n,m)

XOS n arbitrary [0,H] Ω(OPT)− ǫ ·H poly(n,m, 1/ǫ)
XOS n regular Ω(OPT) poly(n,m)

subadditive [35] 1 arbitrary [0,H] Ω(OPT)− ǫ ·H poly(m, 1/ǫ)

subadditive n i.i.d. arbitrary [0,H] Ω
(

n
max{n,m}

)
· OPT − ǫ ·H poly(n,m, 1/ǫ)

subadditive n i.i.d. regular Ω
(

n
max{n,m}

)
· OPT prior-independent

Table 1: Summary of Our Sample-based Results.

4 Uniform Convergence under Product Measures

In this section, we develop machinery for obtaining uniform convergence bounds for hypotheses over product

measures. Our goal is to save on the sample complexity implied by VC dimension bounds, as summarized

in Table 3. Indeed, we obtain low sample complexity bounds for indicators over single-intersecting sets (see
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Valuations # bidders Distributions Approximation

additive n arbitrary [0,H] Ω(OPT)−O(ǫ · n ·m ·H)

unit-demand n arbitrary [0,H] Ω(OPT)−O(ǫ · n ·m ·H)

constrained additive n arbitrary [0,H] Ω(OPT)−O(ǫ · n ·m2 ·H)

subadditive n i.i.d. arbitrary [0,H] Ω
(

n
max{n,m}

)
· OPT −O(ǫ · n ·m ·H)

Table 2: Summary of Our Max-min Learning Results.

Definition 4), which play a key role in proving our results for learning approximately revenue-optimal auctions.

Our main results of this section are Theorem 2 for general functions, and Corollary 1 for sets.

We first define what type of uniform convergence bounds we seek to prove.

Definition 3 ((ǫ, δ)-uniform convergence with respect to proxy measure). A hypothesis class H of functions

mapping domain set X to R has (ǫ, δ)-uniform convergence with sample complexity s(ǫ, δ) iff, for all ǫ, δ > 0,

there exists a processing P : X s(ǫ,δ) → ∆(X ) such that for any distribution D ∈ ∆(X ) when k = s(ǫ, δ):

Pr
z1,··· ,zk∼D

[
sup
g∈H

∣∣Ez∼P(z1,··· ,zk)[g(z)] − Ez∼D[g(z)]
∣∣ ≤ ǫ

]
≥ 1− δ.

When X is the Cartesian product of a collection of sets X1, . . . ,Xk, i.e. X = ×iXi, we say that a hypothesis

class H as above has (ǫ, δ)-p.m. uniform convergence with sample complexity s(ǫ, δ) if the above holds for

all D that are product measures over X .

Next we provide a simple lemma, which leads to a simple version of our main result stated as Theorem 1.

Our main result, stated as Theorem 2, follows.

Lemma 1. Let X1, . . . ,Xd be d domain sets and H be a hypothesis class with functions mapping from the

product space ×d
i=1Xi to R. For all i ∈ [d], let Hi be the projected hypothesis class of H on Xi, that is,

Hi = {g | ∃f ∈ H ∃ a−i ∈ ×j 6=iXj ∀ xi ∈ Xi, g(xi) = f(xi, a−i)}. For every i ∈ [d], let Di and D̂i be two

distributions supported on Xi. Suppose for all i ∈ [d],

sup
g∈Hi

∣∣∣Ex∼Di
[g(x)] − Ex∼D̂i

[g(x)]
∣∣∣ ≤ ǫ,

then

sup
f∈H

∣∣∣Ex∼×d
i=1Di

[f(x)]− E
x∼×d

i=1D̂i
[f(x)]

∣∣∣ ≤ d · ǫ.

Proof. Let Fi and F̂i be the probability measure function for Di and D̂i respectively. We will prove the

statement using a hybrid argument. We create a sequence of product distributions {D(j)}j≤d, where D(j) =

D̂1 × · · · × D̂j ×Dj+1 × · · · × Dd, and D(0) = D, D(d) = D̂. To prove our claim, it suffices to show that for

any integer j ∈ [d],
|Ex∼D(j−1) [f(x)]− Ex∼D(j) [f(x)]| ≤ ǫ.
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Next, we show how to derive this inequality.

|Ex∼D(j−1) [f(x)]− Ex∼D(j) [f(x)]|

=

∣∣∣∣∣

∫

×i6=jXi

(∫

Xj

f(xj, x−j)dFj(xj)

)
dF̂1(x1) · · · dF̂j−1(xj−1)dFj+1(xj+1) · · · dFd(xd)

−

∫

×i6=jXi

(∫

Xj

f(xj , x−j)dF̂j(xj)

)
dF̂1(x1) · · · dF̂j−1(xj−1)dFj+1(xj+1) · · · dFd(xd)

∣∣∣∣∣

=

∣∣∣∣∣

∫

×i6=jXi

(
Exj∼Dj

[f(xj , x−j)]− Exj∼D̂j
[f(xj, x−j)]

)
dF̂1(x1) · · · dF̂j−1(xj−1)dFj+1(xj+1) · · · dFd(xd)

∣∣∣∣∣

≤ǫ ·

∫

×i6=jXi

dF̂1(x1) · · · dF̂j−1(xj−1)dFj+1(xj+1) · · · dFd(xd)

=ǫ

Theorem 1. Let X1, . . . ,Xd be d domain sets and H a hypothesis class of functions mapping from the product

space ×d
i=1Xi to R. For all i ∈ [d], let Hi be the projected hypothesis class of H on Xi, that is Hi =

{g | ∃f ∈ H ∃ a−i ∈ ×j 6=iXj ∀ xi ∈ Xi, g(xi) = f(xi, a−i)}.

Suppose that, for all i ∈ [d], Hi has (ǫ, δ)-uniform convergence with sample complexity si(ǫ, δ). Then H
has (ǫ, δ)-p.m. uniform convergence with sample complexity s(ǫ, δ) = maxi∈[d] si(ǫ/d, δ/d).

In particular, let z(1), . . . ,z(ℓ) be a sample of size ℓ = s(ǫ, δ) from a product measure ×i∈[d]Di. Define

D̂i = Pi(z
(1)
i , . . . , z

(ℓ)
i ), for all i ∈ [d], where z

(j)
i is the i-th entry of sample z(j) and Pi is the processing

corresponding to Hi’s uniform convergence. Then

Pr
z(1),...,z(ℓ)

[
sup
f∈H

∣∣∣Ez∼×i∈[d]D̂i
[f(z)]− Ez∼×i∈[d]Di

[f(z)]
∣∣∣ ≤ ǫ

]
≥ 1− δ.

Proof of Theorem 1: Since ℓ ≥ si(ǫ/d, δ/d), Pr
[
supg∈Hi

∣∣∣Ez∼D̂i
[g(z)] − Ez∼Di

[g(z)]
∣∣∣ ≤ ǫ/d

]
≥ 1−δ/d for

all i ∈ [d]. By the union bound, with probability at least 1 − δ, supg∈Hi

∣∣∣Ez∼D̂i
[g(z)] − Ez∼Di

[g(z)]
∣∣∣ ≤ ǫ/d

for all i ∈ [d]. According to Lemma 1, supf∈H

∣∣∣Ez∼×i∈[d]D̂i
[f(z)]− Ez∼×i∈[d]Di

[f(z)]
∣∣∣ ≤ ǫ with probability

at least 1− δ. ✷

Theorem 2. Let X1, . . . ,Xd be d domain sets and H a hypothesis class of functions mapping from the product

space ×d
i=1Xi to R. For all T ⊆ [d], let HT be the projected hypothesis class of H on XT ≡ ×i∈TXi, that is,

HT =
{
g | ∃f ∈ H ∃ a−T ∈ ×j /∈TXj ∀ xT ∈ XT , g(xT ) = f(xT , a−T )

}
. Suppose that, for all T ⊆ [d], HT

has (ǫ, δ)-p.m. uniform convergence with sample complexity sT (ǫ, δ), and define

s(ǫ, δ) = min
k, partitions

T1⊔T2⊔. . .⊔Tk = [d]

max
i=1,...,k

sTi
(ǫ/k, δ/k). (2)

Then H has (ǫ, δ)-p.m. uniform convergence with sample complexity s(ǫ, δ).
In particular, let z(1), . . . ,z(ℓ) be a sample of size ℓ = s(ǫ, δ) from a product measure ×i∈[d]Di. Sup-

pose that the optimum of (2) is attained at k = k̃ for partition T̃1 ⊔ T̃2 ⊔ . . . ⊔ T̃k̃ = [d]. Define D̂T̃i
=
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PT̃i
(z

(1)

T̃i
, . . . ,z

(ℓ)

T̃i
), for all i ∈ [d], where z

(j)

T̃i
contains the entries of sample z(j) in coordinates T̃i and PT̃i

is

the processing corresponding to HT̃i
’s uniform convergence. Then

Pr
z(1),...,z(ℓ)

[
sup
f∈H

∣∣∣∣Ez∼×
i∈[k̃]D̂T̃i

[f(z)]− Ez∼×i∈[d]Di
[f(z)]

∣∣∣∣ ≤ ǫ

]
≥ 1− δ.

Proof of Theorem 2: For every possible partition use Theorem 1. ✷

Nest, we specialize Theorem 2 to indicator functions over sets.

Corollary 1. We use the same notation as in Theorem 2. Suppose that all functions in H map ×d
i=1Xi to

{0, 1}, i.e. they are indicators over sets. Suppose also that the VC dimension of HT (viewed as a collection of

sets) is VT . Define

Vmax = min
k, partitions

T1⊔T2⊔. . .⊔Tk = [d]

{
k2 · max

i=1,...,k
VTi

}
. (3)

Assume that the optimum of (3) is attained at k = k̃ for partition T̃1 ⊔ T̃2 ⊔ . . . ⊔ T̃k̃ = [d].

Then ℓ = O
(
Vmax
ǫ2

· ln k̃
ǫ +

k̃2

ǫ2
· ln k̃

δ

)
samples from ×i∈[d]Di suffice to obtain (ǫ, δ)-p.m. uniform conver-

gence for H. Formally,

Pr
z(1),...,z(ℓ)

[
sup
f∈H

∣∣∣∣Ez∼×
i∈[k̃]D̂T̃i

[f(z)]− Ez∼×i∈[d]Di
[f(z)]

∣∣∣∣ ≤ ǫ

]
≥ 1− δ,

where for a given sample z(1), . . . ,z(ℓ) from a product distribution ×i∈[d]Di the distributions D̂T̃i
are defined

to be uniform over z
(1)

T̃i
, . . . ,z

(ℓ)

T̃i
, where z

(j)

T̃i
contains the entries of sample z(j) in coordinates T̃i.

Table 3 compares the sample complexity for uniform convergence implied by Theorem 2 and Corollary 1

to that implied by VC theory, when the underlying measures are product. Suppose H contains the indicator

functions of all convex sets in R
d. VC theory does not provide any finite sample bound for uniform conver-

gence, as the VC dimension of H is ∞. Do our results provide a finite bound? Notice that, for all i, Hi

simply contains all intervals in R. Hence, Vi = 2 and Corollary 1 implies that ℓ = O(d
2

ǫ2
·
(
log d

δ + log d
ǫ

)
)

samples suffice to obtain (ǫ, δ)-p.m. uniform convergence for H . In fact, our sample complexity bound can

be improved to O
(
d2

ǫ2 · log d
δ

)
, as O

(
log 1

δ

ǫ2

)
samples suffice to guarantee (ǫ, δ)-uniform convergence for all

intervals in R due to the DKW inequality [25].

In the next a few sections, we apply our uniform convergence results to learn a mechanism with approxi-

mately optimal revenue. A type of events called single-intersecting (see Definition 4) plays a key role in our

analysis. These events are defined based on the geometric shape of the corresponding sets. For example, balls,

rectangles and all convex sets are single-intersecting, but this definition includes some non-convex sets as well,

for example, “cross-shaped” sets. It turns out that being able to handle these non-convex sets is crucial for our

results, as many events we care about are not convex but nonetheless are single-intersecting.

Definition 4 (Single-intersecting Events). For any event E in R
ℓ, E is single-intersecting if the intersec-

tion of E and any line that is parallel to one of the axes is an interval. More formally, for any i ∈ [ℓ]
and any line Li =

{
x ∈ R

ℓ | x−i = a−i

}
, where a−i ∈ R

ℓ−1, the intersection of Li and E is of the form{
x ∈ R

ℓ | x−i = a−i, xi ∈ [
¯
a, ā]

}
where

¯
a ≤ ā. In particular, we allow

¯
a to be −∞ and ā to be +∞.
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We establish a uniform convergence bound for single-intersecting events by combing the DKW inequality and

Theorem 1.

Lemma 2. For any integer ℓ, let H be the hypothesis class that contains all indicator functions for single-

intersecting events in R
ℓ. Then H has (ǫ, δ)-p.m. uniform convergence with sample complexity O

(
ℓ2

ǫ2
· log ℓ

δ

)
.

Proof. As the projected hypothesis class for the i-th coordinate simply contains all intervals in R, the sample

complexity for (ǫ, δ)-uniform convergence is O( 1
ǫ2
· log 1

δ ) due to the DKW inequality. The claim follows from

Theorem 1.

Next, we show a slightly stronger statement, which is a type of uniform convergence bound when access

to approximate distributions is given. More specifically, we argue that for any single-intersecting event, the

difference in the probability of this event under two product distributions D = ×i∈[ℓ]Di and D̂ = ×i∈[ℓ]D̂i is

at most 2ξ · ℓ, if ||Di − D̂i||K ≤ ξ for all i. It is not hard to see that Lemma 3 and the DKW inequality imply

Lemma 2.

Lemma 3. For any integer ℓ, let D = ×ℓ
i=1Di and D̂ = ×ℓ

i=1D̂i, where Di and D̂i are both supported on R

for any i ∈ [ℓ]. If ||Di − D̂i||K ≤ ξ,
∣∣PrD[E ]− PrD̂[E ]

∣∣ ≤ 2ξ · ℓ for any single-intersecting event E .

Proof. Let H = {1x∈E : E is single-intersecting}. By the definition of single-intersecting events, Hi is the set

of the indicator functions of all intervals in R for any i ∈ [ℓ]. Since ||Di − D̂i||K ≤ ξ,

sup
g∈Hi

∣∣∣Ex∼Di
[g(x)] − Ex∼D̂i

[g(x)]
∣∣∣ ≤ 2ξ.

By Lemma 1,

sup
f∈H

∣∣Ex∼D [f(x)]− E
x∼D̂ [f(x)]

∣∣ ≤ 2ξ · ℓ.

The following table (Table 3) summarizes some uniform convergence bounds implied by our results in this

section.

Hypotheses Class VC Bound Bounds from Theorem 2 and Corollary 1

axis-aligned rectangles in R
d Õ(d/ǫ2) Õ(d/ǫ2)

polytopes with k facets in R
d Õ(dk/ǫ2) Õ(d ·min{d, k}/ǫ2)

arbitrary convex sets in R
d ∞ Õ(d2/ǫ2)

single-intersecting sets in R
d ∞ Õ(d2/ǫ2)

Table 3: Number of samples required for (ǫ,Θ(1))-p.m. uniform convergence for different H’s.

5 Constrained Additive Bidders: Uniform Convergence of the Revenue of Se-

quential Posted Price with Entry Fee Mechanisms

We consider a specific class of mechanisms, namely Sequential Posted Price with Entry fee Mechanisms, a.k.a.

SPEMs; see Algorithm 1 for details. Cai and Zhao [13] recently showed that if the bidders’ valuations are XOS
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over independent items, the best SPEM achieves a constant fraction of the optimal revenue. 5 This section

has two goals. The first is to show that, when bidders have constrained additive valuations over independent

items, polynomially many samples suffice to guarantee uniform convergence for the revenue of all SPEMs,

and hence our ability to select a near-optimal SPEM from polynomially many samples. This can be proven by

applying our uniform convergence result for single-intersecting events (Lemma 2). The second (and stronger

goal) is to show that we can learn a near-optimal SPEM under the max-min learning model (Theorem 4). We

show that the revenue of any SPEM changes no more than O(ǫ · m2 · n ·H) under the true and approximate

valuation distributions (Theorem 3), where ǫ is an upper bound of the Kolmogorov distance between the true

and approximate distributions for every item marginal of every bidder. It is, of course, not hard to see that

Theorem 3 and the DKW inequality imply uniform convergence of the revenue of all SPEMS. To establish

Theorem 3, we need to apply Lemma 3 instead of Lemma 2.

Algorithm 1 Sequential Posted Price with Entry Fee Mechanism (SPEM)

Require: A collection of prices {pij}i∈[n],j∈[m] and a collection of entry fee functions {δi(·)}i∈[n] where

δi : 2
[m] 7→ R is bidder i’s entry fee function.

1: S ← [m]
2: for i ∈ [n] do

3: Show bidder i the set of available items S and set the entry fee for bidder i to be δi(S).
4: if Bidder i pays the entry fee δi(S) then

5: i receives her favorite bundle S∗
i and pays

∑
j∈S∗

i
pij .

6: S ← S\S∗
i .

7: else

8: i gets nothing and pays 0.

9: end if

10: end for

We first establish a technical lemma, which states that, for any set of items S, any set of prices {pj}j∈[m]

and entry fee δ, the distribution over the set of items purchased by a constrained additive bidder whose valuation

is drawn from D = ×j∈[m]Dj and D̂ = ×j∈[m]D̂j has total variation distance at most 2mξ, if ||Dj−D̂j ||K ≤ ξ
for every item j ∈ [m]. This is quite surprising. Given that, for each set of items S′ ⊆ S, the difference in

the probability that the buyer will purchase this particular set S′ under D and D̂ could already be as large as

Θ(mξ), and the distribution has an exponentially large support size, a trivial argument would give a bound of

2m · Θ(mξ). To overcome this analytical difficulty, we argue instead that for any collection of sets of items,

the event that the buyer’s favorite set lies in this collection is single-intersecting. Then our result follows from

Lemma 3. Notice that it is crucial that Lemma 3 holds for all events that are single-intersecting, as the event

we consider here is clearly non-convex in general.

Lemma 4. For any set S ⊆ [m], any prices {pj}j∈[m] and entry fee δ(S), let L and L̂ be the distributions

over the set of items purchased from S by a constrained additive bidder under prices {pj}j∈[m] and entry fee

δ when her type is drawn from D = ×j∈[m]Dj and D̂ = ×j∈[m]D̂j respectively. If ||Dj − D̂j ||K ≤ ξ for all

item j, ||L − L̂||TV ≤ 2mξ.

Proof. For any set R ⊆ S, let ER be the event that the bidder purchases set R. Proving that the total vari-

ation distance between L and L̂ is no more than 2m · ξ is the same as proving that for any K ≤ 2|S|,∣∣∣ PrD
[
t ∈

⋃K
ℓ=1 ERℓ

]
− PrD̂

[
t ∈

⋃K
ℓ=1 ERℓ

]∣∣∣ ≤ 2m · ξ where R1, · · ·RK are arbitrary distinct subsets of

5Cai and Zhao [13] showed that the best ASPE or RSPM achieves a constant fraction of the optimal revenue. Clearly, any ASPE is

also a SPEM, and any RSPM is simply a SPEM if we force the bidders to be unit-demand by only allowing each of them to purchase

at most one item.
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S. Since the dimension of the bidder’s type space is m, if we can prove that
⋃K

ℓ=1 ERℓ
is always single-

intersecting, our claim follows from Lemma 3.

For any j ∈ [m] and a−j ∈ R
m−1
≥0 , let Lj(a−j) = {(tj, a−j) |tj ∈ R≥0}. We claim that Lj(a−j) intersects

with at most two different EU and EV where U and V are subsets of S. WLOG, we assume that (0, a−j) ∈ EU .

• If U = ∅, that means the utility of the favorite set for type (0, a−j) is smaller than the entry fee δ(S). If

we increase the value of tj , two cases could happen: (1) the utility of the favorite set is still lower than

the entry fee; (2) the utility of the favorite set is higher than the entry fee. In case (1), (tj , a−j) ∈ E∅.

In case (2), the bidder pays the entry fee and purchases her favorite set V . Then item j must be in

V , because otherwise the utility for set V does not change from type (0, a−j) to type (tj , a−j). If we

keep increasing tj , bidder i’s favorite set remains to be V and she keeps accepting the entry fee and

purchasing V . Hence, Lj(a−j) can intersect with at most one event ER where R is non-empty.

• If U 6= ∅, that means U is the favorite set of type (0, a−j) and the utility for winning set U is higher than

the entry fee. If we increase the value of tj , two cases could happen: (1) U remains the favorite set; (2)

a different set V becomes the new favorite set. In case (1), (tj , a−j) ∈ EU . In case (2), item j must lie in

V but not in U , otherwise how could U be better than V for type (0, a−j) but worse for type (tj , a−j).
If we keep increasing tj , the bidder’s favorite set remains to be V and she keeps accepting the entry fee

and purchasing V . Hence, Lj(a−j) can intersect at most two different events.

It is not hard to see that any event ER is an intersection of halfspaces, so the intersection of Lj(a−j) with

any event ER is an interval. Also, notice that any type t ∈ R
m
≥0 must lie in an event ER for some set R ⊆ S.

If Lj(a−j) intersects with two different events EU and EV , the two intersected intervals must lie back to back

on Lj(a−j). Otherwise, Lj(a−j) intersects with at least three different events. Contradiction. Since Lj(a−j)
intersects with at most two different events, no matter which of these events are in {ERℓ

}ℓ∈[K], the intersection

of Lj(a−j) and
⋃K

ℓ=1 ERℓ
is either empty or an interval meaning

⋃K
ℓ=1 ERℓ

is single-intersecting. Now our

claim simply follows from Lemma 3.

Theorem 3. Suppose all bidders’ valuations are constrained additive over independent items. For any SPEM,

let REV and R̂EV be its expected revenue under D and D̂ respectively. If Dij and D̂ij are both supported on

[0,H], and ||Dij − D̂ij ||K ≤ ξ for all i ∈ [n] and j ∈ [m],

∣∣∣REV − R̂EV

∣∣∣ ≤ 2nmξ · (mH + OPT) .

Proof. We use a hybrid argument. Consider a sequence of distributions {D(i)}i≤n, where D(i) = D̂1 × · · · ×
D̂i×Di+1×· · ·×Dn, and D(0) = D, D(n) = D̂. We use REV

(i) to denote the expected revenue of the SPEM

under D(i). To prove our claim, it suffices to argue that

∣∣∣REV
(i−1) − REV

(i)
∣∣∣ ≤ 2ξm · (m ·H + OPT) . We

denote by Sk and S ′
k the random set of items that remain available after visiting the first k bidders under D(i−1)

and D(i). Clearly, for k ≤ i − 1, ||Sk − S ′
k||TV = 0, so the expected revenue collected from the first i − 1

bidders under D(i−1) and D(i) is the same. According to Lemma 4, ||Si − S ′
i||TV ≤ 2m · ξ. The total amount

of money bidder i spends can never be higher than her value for receiving all the items which is at most m ·H .

So the difference in the expected revenue collected from bidder i under D(i−1) and D(i) is at most 2ξ ·m2H .

Suppose R is the set of remaining items after visiting the first i bidders, then the expected revenue collected

from the last n − i bidders is the same under D(i−1) and D(i), as these bidders have the same distributions.

Moreover, this expected revenue is no more than OPT, since the optimal mechanism can simply just sell R
to the last n − i bidders using the same prices and entry fee as in the SPEM we consider. Of course, for any

fixed R, the probabilities that Si = R and S ′
i = R are different, but since for any R the expected revenue from

the last n− i bidders is at most OPT, the difference in the expected revenue from the last n− i bidders under
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D(i−1) and D(i) is at most ||Si − S ′
i||TV · OPT ≤ 2ξ ·mOPT. Hence, the total difference between REV

(i−1)

and REV
(i) is at most 2ξm · (mH + OPT).

Theorem 4. (Max-min Learning for Constrained Additive Bidders) When all bidders’ valuations are con-

strained additive over independent items and for any bidder i and any item j, Dij and D̂ij are supported on

[0,H] and ||Dij − D̂ij||K ≤ ǫ for some ǫ = O( 1
nm ), then with only access to D̂ = ×i,jD̂ij , our algorithm can

learn an RSPM or ASPE whose revenue is at least OPT
c − ǫ ·O(m2nH), where OPT is the optimal revenue by

any BIC mechanism under D = ×i,jDij . c > 1 is an absolute constant.

Clearly, Theorem 4 also implies a polynomial sample complexity bound for learning an approximately

revenue-optimal mechanism. A better sample complexity bound can be obtained directly, i.e. without invoking

the uniform convergence of the revenue of SPEMs, and is stated as Theorem 9 for the broader class of XOS

valuations. Similarly, when bidders have simpler valuations, i.e., additive or unit-demand valuations, we can

sharpen our results and achieve polynomial-time learnability of the approximately optimal mechanism using

more specialized techniques. See Sections 5.1 and 5.2 for details.

5.1 Unit-demand Valuations: Polynomial-Time Learning

In this section, we consider bidders with unit-demand valuations, sharpening our results to show how to learn

approximately revenue-optimal mechanisms in polynomial time. It is shown in a sequence of works [15, 32,

11] that there exists a sequential posted price mechanism (SPM see Algorithm 2 for details) that achieves at

least 1
24 of the optimal revenue when bidders are unit-demand. We show that under all three distribution access

models of Section 2 there exists a polynomial-time algorithm that learns a sequential posted price mechanism

whose revenue approximates the optimal revenue. We only sketch the proof here and postpone the details to

Appendix B.

Theorem 5. When all bidders have unit-demand valuations and

• Dij is supported on [0,H] for all bidder i and item j, there exists a polynomial time algorithm that learns

an SPM whose revenue is at least OPT
144 −ǫH with probability 1−δ given O

((
1
ǫ

)2 (
m2n log n

ǫ + log 1
δ

))

samples from D; or

• Dij is a regular distribution for all bidder i and item j, there exists a polynomial time algorithm that

learns a randomized SPM whose revenue is at least OPT
33 with probability 1−δ given O(max{m,n}2m2n2·

log nm
δ ) samples from D; or

• we are only given access to D̂ij where ||D̂ij−Dij ||K ≤ ǫ for all bidder i and item j, there is a polynomial

time algorithm that constructs a randomized SPM whose revenue under D is at least
(
1
4 − (n+m) · ǫ

)
·(

OPT
8 − 2ǫ ·mnH

)
6.

Sample Access to Bounded Distributions: the result is due to Morgenstern and Roughgarden [35].

Direct Access to Approximate Distributions: we first consider a convex program based on D (see Figure 1)

which is usually referred to as the ex-ante relaxation of the revenue maximization problem [1], and use its

optimum as a proxy for OPT. Next, we consider a similar convex program based on D̂ (see Figure 2) and

show that the optima of the two convex programs are close to each other. Finally, we use techniques developed

by Chawla et al. [15] to convert the optimal solution of the second convex program into a randomized SPM.

We can show that the constructed randomized SPM achieves a revenue that approximates the optimum of the

second convex program under D, which implies that the mechanism’s revenue also approximates the OPT. As

6If we set ǫ to be O( 1
m+n

), this is the max-min guarantee we want to achieve.
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we are given D̂, we can solve the second convex program and convert its optimal solution into a randomized

SPM in polynomial time. See Theorem 10 in Appendix B.1 for further details.

Sample Access to Regular Distributions: we use a similar convex program relaxation based approach as

in the previous case. The main difference is that regular distributions could be unbounded and thus ruin the

approximation guarantee. We show how to use the Extreme Value theorem in [7] to truncate the distributions

without hurting the revenue by much. See Theorem 12 in Appendix B.3 for further details.

5.2 Additive Valuations: Polynomial-Time Learning

In this section, we consider bidders with additive valuations, again sharpening our results to show polynomial-

time learnability. It is known that the better of the following two mechanisms achieves at least 1
8 of the optimal

revenue when all bidders have additive valuations [42, 11]:

Selling Separately: the mechanism sells each item separately using Myerson’s optimal auction.

VCG with Entry Fee: the mechanism solicits bids b = (b1, · · · , bn) from the bidders, then offers each

bidder i the option to participate for an entry fee ei(b−i,Di), which is the median of the random variable∑
j∈[m](tij −maxk 6=i bkj)

+, where ti ∼ Di
7. This random variable is exactly bidder i’s utility when her type

is ti and the other bidders’ are b−i. If bidder i chooses to participate, she pays the entry fee and can take any

item j at price maxk 6=i bkj . Notice that the mechanism never over allocate any item, as only the highest bidder

for an item can afford it.

Indeed, only counting the revenue from the entry fee in the second mechanism and the optimal revenue

from selling the items separately already suffices to provide an 8-approximation [42, 11].

Theorem 6 ([11]). Let SREV be the optimal revenue for selling the items separately and BREV be the expected

entry fee collected from the VCG with entry fee mechanism. Then OPT ≤ 6 · SREV + 2 · BREV.

Goldner and Karlin [28] showed that one sample suffices to learn a mechanism that achieves a constant

fraction of the optimal revenue when Dij is regular for all i ∈ [n] and j ∈ [m]. We show how to learn an

approximately optimal mechanism in the other two models.

Theorem 7. When the bidders have additive valuations and

• Dij is supported on [0,H] for all bidder i and item j, we can learn in polynomial time a mechanism

whose expected revenue is at least OPT
32 −ǫ·H with probability 1−δ given O

((
m
ǫ

)2
·
(
n log n log 1

ǫ + log 1
δ

))

samples from D; or

• we are only given access to distributions D̂ij where ||D̂ij −Dij||K ≤ ǫ for all bidder i and item j, there

is a polynomial time algorithm that constructs a mechanism whose expected revenue under D is at least
OPT
266 − 96ǫ ·mnH when ǫ ≤ 1

16max{m,n} .

Sample Access to Bounded Distributions: Goldner and Karlin’s proof [28] can be directly applied to the

bounded distributions to show a single sample suffices to learn a mechanism whose expected revenue approx-

imates the BREV. Then as SREV is the revenue of m separate single-item auctions, we can use the result

in [35] to approximate it. See Theorem 13 in Appendix C.1 for further details.

Direct Access to Approximate Distributions: for each single item, we apply Theorem 5 to learn an individual

auction, then run these learned auctions in parallel. Clearly, the combined auction’s revenue approximates

7The entry fee function defined in [42, 11] is slightly different. They showed that there exists an entry fee Xi, such that bidder

i accepts the entry fee with probability at least 1/2. Then they argued that extracting Xi/2 as the revenue in the VCG with entry

fee mechanism is enough to obtain a factor 8 approximation. It is not hard to observe that our entry fee is accepted with probability

exactly 1/2, thus our entry fee is at least as large as Xi. So our mechanism also suffices to provide a factor 8 approximation.
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SREV. For BREV, we show that for every bidder i and every bid profile b−i of the other bidders, the event that

corresponds to bidder i accepting any entry fee is single-intersecting (see Definition 4). This implies that the

probability for a bidder to accept an entry fee under D̂ and D is close (Lemma 3). So we can essentially use

the median of
∑

j∈[m](tij −maxk 6=i bkj)
+ with ti ∼ D̂i as the entry fee. See Theorem 14 in Appendix C.2 for

further details.

6 XOS Valuations

In this section we go beyond constained additive valuations to show learnability of approximately revenue-

optimal auctions from polynomially many samples. The better of the following two mechanisms is known to

achieve a constant fraction of the optimal revenue, when bidders have valuations that are XOS over independent

items [13].

Rationed Sequential Posted Price Mechanism (RSPM): the mechanism is almost the same as SPM in Al-

gorithm 2, except there is an extra constraint that every bidder can purchase at most one item.

Anonymous Sequential Posted Price with Entry Fee Mechanism (ASPE): every buyer faces the same

collection of item prices {pj}j∈[m]. The seller visits the bidders sequentially. For every bidder, the seller

shows her all the available items (i.e. items that have not yet been purchased) and the associated price for

each item, then asks her to pay a personalized entry fee which depends on her type distribution and the set of

available items. If the bidder accepts the entry fee, she can proceed to purchase any available item at the given

price; if she rejects the entry fee, she neither receives nor pays anything. See Algorithm 3 for details.

Theorem 8. [13] There exists a collection of prices {p∗j}j∈[m], such that if we set the entry fee function

δ∗i (S) to be the median of bidder i’s utility for set S, either the ASPE(p∗, δ∗) or the best RSPM achieves at

least a constant fraction of the optimal revenue when bidders’ valuations are XOS over independent items.

More formally, let u∗i (ti, S) = maxS∗⊆S vi(ti, S
∗) −

∑
j∈S∗ p∗j be bidder i’s utility for the set of items S

when her type is ti. We define δ∗i (S) to be the median of the random variable u∗i (ti, S) (with ti ∼ Di) for

any set S ⊆ [m]. Moreover, the price p∗j for any item j is no larger than 2G, where G = maxi,j Gij and

Gij := supx

{
Prtij∼Dij

[Vi(tij) ≥ x] ≥ 1
5max{m,n}

}
.

Our goal next is to bound the sample complexity for learning a near-optimal RSPM and the ASPE described

in Theorem 8 under XOS valuations.

We consider first the task of learning a near-optimal RSPM. In a RSPM, all bidders are restricted to be

unit-demand, so the revenue of the best RSPM is upper bounded by the optimal revenue in the corresponding

unit-demand setting. In Section 5.1, we have shown how to learn an approximately optimal mechanism for

unit-demand bidders, and those algorithms can be used to approximate the best RSPM.

So, for the rest of this section, it suffices to focus on learning an ASPE whose revenue approximates the

revenue of the ASPE described in Theorem 8. We will do this in Section 6.1. Before that, we need a robust

version of Theorem 8. In the next Lemma, we argue that if we use a collection of prices {p′j}j∈[m] sufficiently

close to {p∗j}j∈[m] and entry fee δ′i(S) sufficiently close to the median of the utility for every bidder i and

subset S, the better of the corresponding ASPE and the best RSPM still approximates the optimal revenue. We

postpone the proof to Appendix D.

Lemma 5. For any ǫ > 0 and µ ∈ [0, 14 ], let {p′j}j∈[m] be a collection of prices such that |p′j − p∗j | ≤ ǫ
for all j ∈ [m], where {p∗j}j∈[m] is the collection of prices in Theorem 8. Let δ′i(S) be bidder i’s entry fee

function such that Prti∼Di
[u′i(ti, S) ≥ δ′i(S)] ∈ [1/2 − µ, 1/2 + µ] for any set S ⊆ [m], where u′i(ti, S) =

maxS∗⊆S vi(ti, S
∗) −

∑
j∈S∗ p′j . Then, either the ASPE(p′, δ′) or the best RSPM achieves revenue at least

OPT
C1(µ)

− C2(µ) · (m + n) · ǫ when bidders’ valuations are XOS over independent items. Both C1(·) and C2(·)
are monotonically increasing functions that only depend on µ.
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Definition 5. We say a collection of prices {pj}j∈[m] is in the B-bounded ǫ-net if pj is a multiple of ǫ and

no larger than B for any item j. For any collection of prices {pj}j∈[m], we say the entry fee functions are µ-

balanced if for every bidder i and every set S ⊆ [m], her entry fee δi(S) satisfies Prti∼Di
[ui(ti, S) ≥ δi(S)] ∈

[1/2 − µ, 1/2 + µ], where ui(ti, S) = maxS∗⊆S vi(ti, S
∗)−

∑
j∈S∗ pj .

Corollary 2. For bidders with valuations that are XOS over independent items and any ǫ > 0, there exists

a collection of prices {pj}j∈[m] in the 2G-bounded ǫ-net such that for any µ-balanced entry fee functions

{δi(·)}i∈[n] with µ ∈ [0, 14 ], either the ASPE(p, δ) or the best RSPM achieves revenue at least OPT
C1(µ)

− C2(µ) ·

(m+ n) · ǫ.

6.1 XOS Valuations: sample access to bounded and regular distributions

In this section, we consider how to learn an ASPE with high revenue given sample access to D. Our learning

algorithm is a two-step procedure. In the first step, we take a few samples from D and use these samples to

set the entry fee for every collection of prices {pj}j∈[m] in the ǫ-net. More specifically, to decide δi(S) we

compute the utility of bidder i for set S under {pj}j∈[m] over all the samples and take the empirical median

among all these utilities to be δi(S). With a polynomial number of samples, we can guarantee that for any

{pj}j∈[m] in the ǫ-net the computed entry fee functions {δi(·)}i∈[n] are µ-balanced. Now, we have created

an ASPE for every {pj}j∈[m] in the ǫ-net. In the second step, we take some fresh samples from D and use

them to estimate the revenue for each of the ASPEs we created in the first step, then pick the one that has the

highest empirical revenue. It is not hard to argue that with a polynomial number of samples the mechanism

we pick has high revenue with probability almost 1. Combining our algorithm with Theorem 5, we obtain the

following theorem.

Theorem 9. When all bidders’ valuations are XOS over independent items and

• the random variable Vi(tij) is supported on [0,H] for each bidder i and item j, we can learn an RSPM

and an ASPE such that with probability at least 1 − δ the better of the two mechanisms has revenue at

least OPT
c1

− ξ ·H for some absolute constant c1 > 1 given O
(
(mn

ξ )2 · (m · log m+n
ξ + log 1

δ )
)

samples

from D;

• the random variable Vi(tij) is regular for each bidder i and item j, we can learn an RSPM and an ASPE

such that with probability at least 1 − δ the better of the two mechanisms has revenue at least OPT
c2

for

some absolute constant c2 > 1 given O
(
max{m,n}2m2n2

(
m log(m+ n) + log 1

δ

))
samples from D.

The bounded case is proved as Theorem 15 in Appendix D.1. The regular case is proved as Theorem 16 in

Appendix D.1.

7 Symmetric Bidders

In this section, we consider symmetric bidders (Di = Di′ for all i and i′ ∈ [n]) with XOS and subadditive

valuations. For XOS valuations, our goal is to improve our algorithms from Section 6 to be computation-

ally efficient under bidder symmetry. For subadditive valuations, our goal is to establish the learnability of

approximately optimal mechanisms whose revenue improves as the number of bidders becomes comparable

to the number of items. We only describe the results here and postpone the formal statements and proofs to

Appendix E.

• XOS valuations: we can learn in polynomial time an approximately optimal mechanism with a polyno-

mial number of samples when the valuations are XOS over independent items. Our algorithm essentially
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estimates all the parameters needed to run the RSPM and ASPE used in [13]. In general, it is not clear

how to estimate these parameters efficiently. But when the bidders are symmetric, one only needs to

consider “symmetric parameters” which greatly simplifies the search space and allows us to estimate all

the parameters in polynomial time. See Appendix E.2 for details.

• subadditive valuations: when the valuations are subadditive over independent items, the optimal rev-

enue is at most O
(

n
max{m,n}

)
times larger than the highest revenue obtainable by an RSPM. In other

words, if the number of items is within a constant times the number of bidders, an RSPM suffices to

extract a constant fraction of the optimal revenue. Applying our results for unit-demand bidders in Sec-

tion 5.1, we can learn a nearly-optimal RSPM, which is also a good approximation to OPT. In fact, when

the distribution for random variable Vi(tij) is regular for every bidder i and item j, we can design a prior-

independent mechanism that achieves a constant fraction of the optimal revenue. See Appendix E.3 for

details.

Appendix

A Our Mechanisms

Here are the detailed description of the two major mechanisms we use: Sequential Posted Price Mechanism

(SPM) and Anonymous Sequential Posted Price with Entry Fee Mechanism (ASPE). We also use the Rationed

Sequential Posted Price Mechanism (RSPM) when bidders are not unit-demand. RSPM is almost identical to

SPM except that there is an extra constraint saying that no bidder can purchase more than one item.

Algorithm 2 Sequential Posted Price Mechanism (SPM)

Require: Pij is the price for bidder i to purchase item j.

1: S ← [m]
2: for i ∈ [n] do

3: Show bidder i the set of available items S.

4: i purchases her favorite bundle S∗
i ∈ maxS′⊆S vi(ti, S

′)−
∑

j∈S′ Pij and pays
∑

j∈S∗
i
Pij .

5: S ← S\S∗
i .

6: end for

Algorithm 3 Anonymous Sequential Posted Price with Entry Fee Mechanism (ASPE)

Require: A collection of prices {pj}j∈[m] and a collection of entry fee functions {δi(·)}i∈[n] where δi :

2[m] 7→ R is bidder i’s entry fee function.

1: S ← [m]
2: for i ∈ [n] do

3: Show bidder i the set of available items S and set the entry fee for bidder i to be δi(S).
4: if Bidder i pays the entry fee δi(S) then

5: i receives her favorite bundle S∗
i and pays

∑
j∈S∗

i
pj .

6: S ← S\S∗
i .

7: else

8: i gets nothing and pays 0.

9: end if

10: end for
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B Missing Details from Section 5.1

B.1 Unit-demand Valuations: direct access to approximate distributions

We first consider the model where we only have access to an approximate distribution D̂. The following

definition is crucial for proving our result.

Definition 6. For any single dimensional distribution D with cdf F , we define its revenue curve RD : [0, 1] 7→
R≥0 as

RD(q) =maxx ·
¯
q · F−1(1−

¯
q) + (1− x) · q̄ · F−1(1− q̄)

s.t. x ·
¯
q + (1− x) · q̄ = q

x,
¯
q, q̄ ∈ [0, 1]

where F−1(1− p) = sup{x ∈ R : Prv∼D[v ≥ x] ≥ p}.

Lemma 6 (Folklore). Let ϕij(·) and ϕ̂ij(·) be the ironed virtual value function for distribution Dij and D̂ij

respectively, then for any q ∈ [0, 1], RDij
(q) =

∫H
F−1
ij (1−q) ϕ(x)dF (x) and RD̂ij

(q) =
∫H
F̂−1
ij (1−q) ϕ̂(x)dF (x).

Since the ironed virtual value function is monotonically non-decreasing, RDij
(·) and RD̂ij

(·) are concave

functions.

We provide an upper bound of the optimal revenue using RDij
in the next Lemma. To do that, we first

need the definition of the Single-Dimensional Copies Setting.

Single-Dimensional Copies Setting: In the analysis for unit-demand bidders in [15, 11], the optimal revenue

is upper bounded by the optimal revenue in the single-dimensional copies setting defined in [15]. We use the

same technique. We construct nm agents, where agent (i, j) has value Vi(tij) of being served with tij ∼ Dij ,

and we are only allow to use matchings, that is, for each i at most one agent (i, k) is served and for each j
at most one agent (k, j) is served8. Notice that this is a single-dimensional setting, as each agent’s type is

specified by a single number. Let OPTCOPIES-UD be the optimal BIC revenue in this copies setting.

Lemma 7. For unit-demand bidders, there exists a collection of non-negative numbers {qij}i∈[n],j∈[m] satis-

fying
∑

i qij ≤ 1 for all j ∈ [m] and
∑

j qij ≤ 1 for all i ∈ [n], such that the optimal revenue

OPT ≤ 4 ·
∑

i,j

RDij
(qij).

Proof. As shown in [11], OPT ≤ 4OPTCOPIES-UD. Let qij be the ex-ante probability that agent (i, j) is

served in the optimal mechanism for the copies setting. Chawla et al. [15] showed that OPTCOPIES-UD ≤∑
i,j RDij

(qij). Our statement follows from the two inequalities above.

Next, we consider a convex program (Figure 1) and argue that the value of the optimal solution of this

program is at least 1
8 of the optimal revenue.

Lemma 8. The optimal solution of convex program in Figure 1 is at least OPT
8 .

8This is exactly the copies setting used in [15], if every bidder i is unit-demand and has value Vi(tij) with type ti. Notice that this

unit-demand multi-dimensional setting is equivalent as adding an extra constraint, each buyer can purchase at most one item, to the

original setting with subadditive bidders.
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max
∑

i,j

RDij
(qij)

s.t.
∑

i

qij ≤
1

2
for all j ∈ [m]

∑

j

qij ≤
1

2
for all i ∈ [n]

qij ≥ 0 for all i ∈ [n] and j ∈ [m]

Figure 1: A Convex Program for Unit-demand Bidders with Exact Distributions.

Proof. Let {q′ij} be the collection of nonnegative numbers in Lemma 7. Clearly,
{

q′ij
2

}
is a set of feasible

solution for the convex program. Since RDij
(·) is concave, RDij

(
q′ij
2

)
≥

RDij
(q′ij)

2 +
RDij

(0)

2 =
RDij

(q′ij)

2 .

Therefore,
∑

i,j

RDij

(
q′ij
2

)
≥

1

2
·
∑

i,j

RDij
(q′ij) ≥

OPT

8
.

If we know all Fij exactly, we can solve the convex program (Figure 1) and use the optimal solution to

construct an SPM via an approach provided in [15, 11]. The constructed sequential posted mechanism has

revenue at least 1
4 of the optimal value of the convex program, which is at least OPT

32 . Next, we show that

with only access to F̂ij , we can essentially carry out the same approach. Consider a different convex program

(Figure 2).

max
∑

i,j

RD̂ij
(qij)

s.t.
∑

i

qij ≤
1

2
+ n · ǫ for all j ∈ [m]

∑

j

qij ≤
1

2
+m · ǫ for all i ∈ [n]

qij ≥ 0 for all i ∈ [n] and j ∈ [m]

Figure 2: A Convex Program for Unit-demand Bidders with Approximate Distributions.

Not that if the support size for all D̂ij is upper bounded by some finite number s, the convex program

above can be rewritten as a linear program with size poly(n,m, s). In the following Lemma, we prove that the

optimal values of the two convex programs above are close.

Lemma 9. Let {q∗ij}i∈[n],j∈[m] and {q̂ij}i∈[n],j∈[m] be the optimal solution of the convex program in Figure 1

and 2 respectively. ∑

i,j

RD̂ij
(q̂ij) ≥

∑

i,j

RDij
(q∗ij)− ǫ ·mnH.

Proof. We first fix some notations. For any bidder i and item j, let
¯
q∗ij, q̄

∗
ij and xij ∈ [0, 1] be the numbers

satisfy that xij ·
¯
q∗ij ·Fij

−1(1−
¯
q∗ij)+(1−xij)· q̄

∗
ij ·Fij

−1(1− q̄∗ij) = RDij
(q∗ij) and xij ·

¯
q∗ij+(1−xij)· q̄

∗
ij = q∗ij .
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Let
¯
pij = Fij

−1(1−
¯
q∗ij), p̄ij = Fij

−1(1− q̄∗ij), and q′ij = xij ·
(
1− F̂ij(

¯
pij)

)
+ (1− xij) ·

(
1− F̂ij(p̄ij)

)
.

By the definition of RD̂ij
(·),

RD̂ij
(q′ij) ≥ xij ·

(
1− F̂ij(

¯
pij)

)
·
¯
pij + (1− xij) ·

(
1− F̂ij(p̄ij)

)
· p̄ij (4)

Since ||D̂ij −Dij ||K ≤ ǫ, F̂ij(
¯
pij) ∈ [1−

¯
q∗ij − ǫ, 1−

¯
q∗ij + ǫ] and F̂ij(p̄ij) ∈ [1− q̄∗ij − ǫ, 1− q̄∗ij + ǫ]. Hence,

the RHS of inequality (4) is greater than RDij
(q∗ij)− ǫ ·H . Therefore, RD̂ij

(q′ij) ≥ RDij
(q∗ij)− ǫ ·H .

Next, we argue that {q′ij}i∈[n],j∈[m] is a feasible solution for the convex program in Figure 2. Since 1 −

F̂ij(
¯
pij) ≤

¯
q∗ij + ǫ and 1− F̂ij(p̄ij) ≤ q̄∗ij + ǫ, q′ij ≤ q∗ij + ǫ. Thus,

∑
i q

′
ij ≤

∑
i q

∗
ij + n · ǫ ≤ 1

2 + n · ǫ for all

j ∈ [m]. Similarly, we can prove
∑

j q
′
ij ≤

1
2 +m · ǫ for all i ∈ [n]. As {q̂ij}i∈[n],j∈[m] is the optimal solution

for the second convex program,
∑

i,j RD̂ij
(q̂ij) ≥

∑
i,j RD̂ij

(q′ij) ≥
∑

i,j RDij
(q∗ij)− ǫ ·mnH .

Finally, we show how to use the optimal solution of the convex program in Figure 2 to construct an

SPM that approximates the optimal revenue well. We first provide a general transformation that turns any

approximately feasible solution of convex program in Figure 1 to an SPM mechanism.

Lemma 10. For any distribution D = ×i∈[n],j∈[m]Dij , given a collection of independent random variables

{pij}i∈[n],j∈[m] such that

∑

i∈[n]

Pr
pij ,tij∼Dij

[tij ≥ pij] ≤ 1− η1, for all j ∈ [m]

and ∑

j∈[m]

Pr
pij ,tij∼Dij

[tij ≥ pij] ≤ 1− η2, for all i ∈ [n],

we can construct in polynomial time a randomized SPM such that the revenue under D is at least

η1η2 ·
∑

i,j

Epij

[
pij · Pr

tij∼Dij

[tij ≥ pij ]

]
.

Proof. Consider a randomized SPM that sells item j to bidder i at price pij . Notice that bidder i purchases

exactly item j if all of the following three conditions hold: (i) for all bidders ℓ 6= i, tℓj is smaller than the

corresponding price pℓj , (ii) for all items k 6= j, tik is smaller than the corresponding price pik, and (iii) tij
is greater than the corresponding price pij . These three conditions are independent from each other. The first

condition holds with probability at least 1 −
∑

ℓ 6=i Prpℓj ,tℓj∼Dℓj
[tℓj ≥ pℓj] ≥ η1. The second condition holds

with probability at least 1−
∑

k 6=j Prpik,tik∼Dik
[tik ≥ pik] ≥ η2. When the first two conditions hold, bidder i

purchases item j whenever she can afford it. Her expected payment is Epij

[
pij · Prtij∼Dij

[tij ≥ pij]
]
. Hence,

the expected revenue for selling item j to bidder i is at least η1η2 ·Epij

[
pij · Prtij∼Dij

[tij ≥ pij]
]

and the total

expected revenue is at least η1η2 ·
∑

i,j Epij

[
pij · Prtij∼Dij

[tij ≥ pij ]
]
.

Lemma 11. Given any feasible solution {qij}i∈[n],j∈[m] of the convex program in Figure 2, we can con-

struct a (randomized) SPM in polynomial time such that its revenue under D is at least
(
1
4 − (n+m) · ǫ

)
·(∑

i,j RD̂ij
(qij)− ǫ · nmH

)
.

Proof. We first fix some notations. For any bidder i and item j, let
¯
qij, q̄ij and xij ∈ [0, 1] be the numbers

satisfying xij ·
¯
qij · F̂

−1
ij (1−

¯
qij)+(1−xij) · q̄ij · F̂

−1
ij (1− q̄ij) = RD̂ij

(qij) and xij ·
¯
qij +(1−xij) · q̄ij = qij .
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We use pij to denote a random variable that is
¯
pij = F̂−1

ij (1−
¯
qij) with probability xij and p̄ij = F̂−1

ij (1− q̄ij)
with probability 1− xij .

Next, we construct a randomized SPM based on {pij}i∈[n],j∈[m] according to Lemma 10. Note that

∑

i∈[n]

Pr
pij ,tij∼Dij

[tij ≥ pij] ≤
∑

i∈[n]

(
Pr

pij ,tij∼D̂ij

[tij ≥ pij ] + ǫ

)
=

∑

i∈[n]

qij + nǫ ≤
1

2
+ 2nǫ

for all item j, and

∑

j∈[m]

Pr
pij ,tij∼Dij

[tij ≥ pij] ≤
∑

j∈[m]

(
Pr

pij ,tij∼D̂ij

[tij ≥ pij ] + ǫ

)
=

∑

i∈[m]

qij +mǫ ≤
1

2
+ 2mǫ

for all bidder i. Hence, we can construct in polynomial time a randomized SPM with revenue at least

(
1

2
− 2nǫ

)(
1

2
− 2mǫ

)
·
∑

i,j

Epij

[
pij · Pr

tij∼Dij

[tij ≥ pij]

]

≥

(
1

4
− (n+m)ǫ

)∑

i,j

Epij

[
pij ·

(
Pr

tij∼D̂ij

[tij ≥ pij]− ǫ

)]

≥

(
1

4
− (n+m)ǫ

)∑

i,j

(
RD̂ij

(qij)− ǫ · nmH
)

The first inequality is because

∣∣∣
∣∣∣Dij − D̂ij

∣∣∣
∣∣∣
K

≤ ǫ, and the second inequality is because pij is upper bounded

by H and Epij

[
pij · Prtij∼D̂ij

[tij ≥ pij]
]
= RD̂ij

(qij) by the definition of pij .

Theorem 10. For unit-demand bidders, given distributions D̂ij where

∣∣∣
∣∣∣D̂ij −Dij

∣∣∣
∣∣∣
K

≤ ǫ for all i ∈ [n] and

j ∈ [m], there is a polynomial time algorithm that constructs a randomized SPM whose revenue under D is at

least
(
1
4 − (n +m) · ǫ

)
·
(

OPT
8 − 2ǫ ·mnH

)
.

Proof. Our algorithm first computes the optimal solution {q̂ij}i∈[n],j∈[m] for the convex program in Figure 2,

then constructs a randomized SPM based on {q̂ij}i∈[n],j∈[m] using Lemma 11. It is not hard to see that our

algorithm runs in polynomial time. By chaining the inequalities in Lemma 8, 9 and 11, we can argue that the

revenue of our mechanism is at least
(
1
4 − (n+m) · ǫ

)
·
(

OPT
8 − 2ǫ ·mnH

)
.

B.2 Unit-demand Valuations: sample access to bounded distributions

When the distributions Dij are all bounded, the following theorem provides the sample complexity.

Theorem 11. [35] When Dij is supported on [0,H] for all bidder i and item j, the sample complexity for (ǫ, δ)-

uniformly learning the revenue of SPMs for unit-demand bidders is O
((

1
ǫ

)2 (
m2n log n log 1

ǫ + log 1
δ

))
. That

is, with probability 1 − δ, the empirical revenue based on the samples for any SPM is within ǫ ·H of its true

expected revenue. Moreover, with the same number of samples, there is a polynomial time algorithm that

learns an SPM whose revenue is at least OPT
144 − ǫH with probability 1− δ.
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B.3 Unit-demand Valuations: sample access to regular distributions

In this section, we show there exists a polynomial time algorithm that learns an SPM whose revenue is at least a

constant fraction of the optimal revenue with polynomial in n and m samples. Note that unlike in the previous

two models, the error of our learning algorithm is only multiplicative when the distributions are regular. First,

we present a Lemma regarding the revenue curve function for regular distributions.

Lemma 12. [7] For any regular distribution F , let RF (·) be the corresponding revenue curve. For any

0 < q′ ≤ q ≤ p < 1,

(1− p) ·RF (q
′) ≤ RF (q).

Throughout this section, we use Z to denote max{m,n} and C to be a constant that will be specified later.

Using Lemma 12, we show in the next Lemma that restricting qij to be at least 1
CZ does not affect the objective

value of the convex program in Figure 1 by too much.

Lemma 13. Suppose {q∗ij}i∈[n],j∈[m] is the optimal solution of the convex program in Figure 1. Let q′ij =

max{ 1
CZ , q

∗
ij}, then

∑
i,j RDij

(q′ij) ≥
(
1− 1

CZ

)
·
∑

i,j RDij
(q∗ij) ≥

(
1− 1

CZ

)
· OPT

8 .

Proof. According to Lemma 8,
∑

i,j RDij
(q∗ij) ≥ OPT

8 . So to prove the statement, it suffices to argue that

for any i and j, RDij
(q′ij) ≥

(
1− 1

CZ

)
· RDij

(q∗ij). If q∗ij = q′ij , this inequality clearly holds. If q∗ij 6= q′ij ,

q∗ij ≤ q′ij =
1

CZ . Since Fij is regular, we can apply Lemma 12 to q′ij and q∗ij and obtain inequality RDij
(q′ij) ≥(

1− 1
CZ

)
·RDij

(q∗ij).

Using Lemma 13, we argue how to compute in polynomial time an approximately optimal SPM. Suppose

D′
ij is the distribution that we obtain after truncating Dij at a threshold Hij

9, and we have direct access to a

discrete distribution D̂′
ij such that

∣∣∣
∣∣∣D̂′

ij −D′
ij

∣∣∣
∣∣∣
K

≤ ǫ for all i and j. We show in the following Lemma that

the optimal solution of a convex program similar to the one in Figure 2 but for {D̂′
ij}i∈[n],j∈[m] can guide us to

design an approximately optimal SPM under D in polynomial time. As we have sample access to D, we will

argue later that a polynomial number of samples suffices to generate {D̂′
ij}i∈[n],j∈[m].

Lemma 14. Let {Hij}i∈[n],j∈[m] be a collection of positive numbers satisfying Fij(Hij) ∈ [1− 1
C·Z , 1−

1
3C·Z ]

for all i ∈ [n] and j ∈ [m]. Let D′
ij be the distribution of the random variable min{tij,Hij} where tij ∼ Dij ,

and D̂′
ij be a discrete distribution such that

∣∣∣
∣∣∣D̂′

ij −D′
ij

∣∣∣
∣∣∣
K

≤ ǫ for all i ∈ [n] and j ∈ [m]. Suppose

s is an upper bound of the support size for any distribution D̂′
ij , then given direct access to D̂′

ij , we can

compute in time polynomial in n, m and s a randomized SPM that achieves revenue at least
(
1
2 − 1

C − 2nǫ
)
·(

1
2 −

1
C − 2mǫ

)
·
((
1− 1

CZ

)
· OPT

8 − 2ǫ · nmH
)

under D, where H = maxi,j Hij .

Proof. Consider the following convex program:

max
∑

i,j

RD̂′
ij
(qij)

s.t.
∑

i

qij ≤
1

2
+

1

C
+ n · ǫ for all j ∈ [m]

∑

j

qij ≤
1

2
+

1

C
+m · ǫ for all i ∈ [n]

qij ≥ 0 for all i ∈ [n] and j ∈ [m]

9Let tij ∼ Dij , then min{tij ,Hij} is the corresponding truncated random variable drawn from D′
ij .
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Let {q∗ij}i∈[n],j∈[m] be the optimal solution of the convex program in Figure 1 and q′ij = max{ 1
C·Z , q

∗
ij}.

For every i and j, let p′ij = F−1
ij (1− q′ij) and q̃ij = Prtij∼D̂′

ij

[
tij ≥ p′ij

]
. By the definition of Hij , p

′
ij ≤ Hij ,

so

p′ij q̃ij ≥ p′ij

(
Pr

tij∼D′
ij

[
tij ≥ p′ij

]
− ǫ

)
≥ p′ijq

′
ij − ǫ ·Hij = RDij

(q′ij)− ǫ ·Hij. (5)

p′ijq
′
ij equals to RDij

(q′ij) because Dij is a regular distribution.

Next, we argue that {q̃ij}i∈[n],j∈[m] is a feasible solution of the convex program above. Observe that

∑

i

q̃ij ≤
∑

i

q′ij + nǫ ≤
∑

i

(
q∗ij +

1

CZ

)
+ nǫ ≤

1

2
+

1

C
+ nǫ

for all item j ∈ [m] and

∑

j

q̃ij ≤
∑

j

q′ij + nǫ ≤
∑

j

(
q∗ij +

1

CZ

)
+mǫ ≤

1

2
+

1

C
+mǫ

for all bidder i ∈ [n].

Let ÔPT be the optimal solution of the convex program above. As {q̃ij}i∈[n],j∈[m] is a feasible solution,

ÔPT ≥
∑

i,j

RD̂′
ij
(q̃ij) ≥

∑

i,j

p′ij q̃ij ≥
∑

i,j

RDij
(q′ij)− ǫ · nmH ≥

(
1−

1

CZ

)
·

OPT

8
− ǫ · nmH.

The second last inequality is due to inequality (5) and the last inequality is due to Lemma 13.

So far, we have argued that the optimal solution of our convex program has value close to the OPT. We will

show in the second part of the proof that using the optimal solution of our convex program, we can construct

an SPM whose revenue under D is close to ÔPT. Let q̂ij be the optimal solution of the convex program

above and p̂ij be the corresponding random price, that is, Prp̂ij ,tij∼D̂′
ij
[tij ≥ p̂ij] = q̂ij and RD̂′

ij
(q̂ij) =

Ep̂ij

[
p̂ij · Prtij∼D̂′

ij
[tij ≥ p̂ij ]

]
. As p̂ij ≤ Hij ,

Pr
p̂ij ,tij∼Dij

[tij ≥ p̂ij] = Pr
p̂ij ,tij∼D′

ij

[tij ≥ p̂ij ] ∈ [q̂ij − ǫ, q̂ij + ǫ].

Therefore, for all item j

∑

i

Pr
p̂ij ,tij∼Dij

[tij ≥ p̂ij ] ≤
∑

i

Pr
p̂ij ,tij∼D̂′

ij

[tij ≥ p̂ij] + nǫ =
∑

i

q̂ij + nǫ ≤
1

2
+

1

C
+ 2nǫ

and for all bidder i

∑

j

Pr
p̂ij ,tij∼Dij

[tij ≥ p̂ij] ≤
∑

j

Pr
p̂ij ,tij∼D̂′

ij

[tij ≥ p̂ij] +mǫ =
∑

j

q̂ij +mǫ ≤
1

2
+

1

C
+ 2mǫ.

According to Lemma 10, we can construct a randomized SPM with {p̂ij}i∈[n],j∈[m] whose revenue is at least(
1
2 −

1
C − 2nǫ

)
·
(
1
2 −

1
C − 2mǫ

)
·
∑

i,j Ep̂ij

[
p̂ij · Prtij∼Dij

[tij ≥ p̂ij ]
]

under D. Clearly,

Ep̂ij

[
p̂ij · Pr

tij∼Dij

[tij ≥ p̂ij]

]
≥ Ep̂ij

[
p̂ij ·

(
Pr

tij∼D̂′
ij

[tij ≥ p̂ij ]− ǫ

)]
≥ RD̂′

ij
(q̂ij)− ǫ ·Hij .
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Therefore, the revenue of the constructed randomized SPM under D is at least

(
1

2
−

1

C
− 2nǫ

)
·

(
1

2
−

1

C
− 2mǫ

)
·
(

ÔPT − ǫ · nmH
)

≥

(
1

2
−

1

C
− 2nǫ

)
·

(
1

2
−

1

C
− 2mǫ

)
·

((
1−

1

CZ

)
·

OPT

8
− 2ǫ · nmH

)
.

It is not hard to see that both {q̂ij}i∈[n],j∈[m] and {p̂ij}i∈[n],j∈[m] can be computed in time polynomial in n, m
and s.

When ǫ is small enough, the additive error in Lemma 14 can be converted into a multiplicative error. Next,

we argue that with a polynomial number of samples, we can learn {Hij}i∈[n],j∈[m] and {D̂′
ij}i∈[n],j∈[m] with

enough accuracy.

Theorem 12. If for all bidder i and item j, Dij is a regular distribution, we can learn in polynomial time

with probability 1 − δ a randomized SPM whose revenue is at least OPT
33 with O

(
Z2m2n2 · log nm

δ

)
(Z =

max{m,n}) samples.

Proof. First, if we take O
(
C2 · Z2 · log nm

δ

)
samples from each Dij , we can find an Hij such that Fij(Hij)

lies in[1 − 1
CZ , 1 − 1

3CZ ] with probability 1 − δ
2nm . By the union bound, the probability that all Hij satisfy

the requirement is at least 1 − δ
2 . From now on, we assume Fij(Hij) ∈ [1 − 1

C·Z , 1 − 1
3C·Z ] for all i and j.

Observe that OPT ≥ maxi,j Hij ·
1

3C·Z , as the expected revenue for selling item j to bidder i at price Hij

is at least
Hij

3C·Z . Therefore, there exists sufficiently large constant d and C , if ǫ = 1
d·Znm the randomized

SPM learned in Lemma 14 has revenue at least OPT
33 . According to the Dvoretzky-Kiefer-Wolfowitz (DKW)

inequality [25], if we take O
(
d2Z2n2m2 · log nm

δ

)
samples from D′

ij (we can take samples from Dij then cap

the samples at Hij) and let D̂′
ij be the uniform distribution over the samples,

∣∣∣
∣∣∣D′

ij − D̂′
ij

∣∣∣
∣∣∣
K

≤ 1
d·Znm with

probability 1− δ
2nm . By the union bound,

∣∣∣
∣∣∣D′

ij − D̂′
ij

∣∣∣
∣∣∣
K

≤ 1
d·Znm for all i ∈ [n] and j ∈ [m] with probability

at least 1 − δ/2. Finally, by another union bound, the Hij and D̂′
ij we learned from O

(
Z2n2m2 · log nm

δ

)

samples satisfy Fij(Hij) ∈ [1− 1
C·Z , 1−

1
3C·Z ] and

∣∣∣
∣∣∣D′

ij − D̂′
ij

∣∣∣
∣∣∣
K

≤ 1
d·Znm for all i and j with probability

at least 1− δ. In other words, we can learn a randomized SPM whose revenue is at least OPT
33 with probability

at least 1 − δ using O
(
Z2n2m2 · log nm

δ

)
samples. Furthermore, the support size of any D̂′

ij is at most

O
(
Z2n2m2 · log nm

δ

)
samples, so our learning algorithm runs in time polynomial in n and m.

C Missing Details from Section 5.2

C.1 Additive Valuations: sample access to bounded distributions

As shown by Goldner and Karlin [28], one sample suffices to design a mechanism that approximates BREV.

The idea is to use the VCG with entry fee mechanism but replace the entry fee ei(b−i,Di) for bidder i with

ei(b−i, si) =
∑

j∈[m](sij −maxk 6=i bkj)
+, where si is a sample drawn from Di. It is easy to argue that for any

b−i, over the randomness of the sample si and bidder i’s real type ti, the event that ei(b−i, si) ≥ ei(b−i,Di)
and bidder i accepts the entry fee ei(b−i, si) happens with probability at least 1

8 . As 1
2 ·
∑

i∈[n] Et[ei(t−i,Di)] =
BREV, the expected revenue (over the randomness of the types and the samples) from their mechanism is at

least 1
8 ·

∑
i∈[n] Et[ei(t−i,Di)] =

BREV

4 . Next, we show how to learn a mechanism that approximates SREV.
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Lemma 15. When Dij is supported on [0,H] for all bidder i and item j, the sample complexity for (ǫ, δ)-

uniformly learning the revenue of SPMs for additive bidders is O
((

1
ǫ

)2 (
m2n log n log 1

ǫ + log 1
δ

))
. More-

over, we can learn in polynomial time an SPM whose revenue is at least SREV

4 − 3ǫ
2 ·H with probability 1− δ

given the same number of samples.

Proof. The first half of the Lemma was proved by Morgenstern and Roughgarden [35]. We show how to

prove the second half of the claim. Let OPTj be the optimal revenue for selling item j. By the prophet

inequality [41], there exists an SPM for selling item j with a collection of prices {pij}i∈[n] that achieves

revenue at least OPTj/2. As the bidders are additive, if we run the SPMs for selling each item simultaneously,

the expected revenue is exactly the sum of the revenue of the SPM mechanisms for auctioning a single item.

Note that the simultaneous SPM is indeed a SPM for selling all items. Hence, there exists an SPM that

achieves revenue at least OPT/2. Since the sample complexity for (ǫ, δ)-uniformly learning the revenue of

SPMs is O
((

m
ǫ

)2 (
n log n log 1

ǫ + log 1
δ

))
, the empirical revenue induced by the samples is within ǫ · H of

the true expected revenue with probability 1− δ for any SPM.

We use ERopt to denote the optimal empirical revenue obtained by any SPM. If we apply the prophet

inequality to the empirical distribution, we can construct an SPM whose empirical revenue ER is at least

ERopt/2. Notice that ERopt is at most ǫ · H less than the optimal true expected revenue obtained by any

SPM, which is at least OPT/2. Combining the two inequalities above, we have ER ≥ OPT/4− ǫ/2 ·H with

probability 1 − δ. Also, the true expected revenue of our SPM is at least ER − ǫ · H , so our SPM achieves

expected revenue at least OPT
4 − 3ǫ

2 ·H with probability 1− δ.

Now we are ready to prove our Theorem for additive bidders when their valuations are bounded.

Theorem 13. When the bidders have additive valuations and Dij is supported on [0,H] for all bidder i and

item j, we can learn in polynomial time a mechanism whose expected revenue is at least OPT
32 − ǫ · H with

probability 1− δ given

O

((m
ǫ

)2
·

(
n log n log

1

ǫ
+ log

1

δ

))

samples from D.

Proof. According to Lemma 15, we can learn a mechanism whose revenue is at least SREV

4 − ǫ
24 · H with

probability 1− δ given O
((

m
ǫ

)2
·
(
n log n log 1

ǫ + log 1
δ

))
samples. As we explained in the beginning of this

section, with one sample from the distribution we can construct a randomized mechanism whose expected

revenue is at least BREV

4 . Therefore, the better of our two mechanisms has expected revenue at least OPT
32 − ǫ ·H

with probability 1− δ.

C.2 Additive Valuations: direct access to approximate distributions

In this section, we discuss how to learn an approximately optimal mechanism for additive bidders when we are

given direct access to approximate value distributions. Again, we first show how to learn a mechanism whose

revenue approximates SREV then we provide another mechanism whose revenue approximates BREV.

Lemma 16. For additive bidders, given distributions D̂ij where

∣∣∣
∣∣∣D̂ij −Dij

∣∣∣
∣∣∣
K

≤ ǫ for all i ∈ [n] and

j ∈ [m], there is a polynomial time algorithm that constructs a randomized SPM whose revenue under D is at

least
(
1
4 − ǫ · n

)
·
(

SREV

8 − 2ǫ ·mnH
)
.

Proof. Let OPTj be the optimal revenue for selling item j. As the bidders are additive, if we can construct

a randomized SPM Mj for every item j such that its expected revenue under D is at least
(
1
4 − ǫ · n

)
·
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(
OPTj

8 − 2ǫ · nH
)

, running these m randomized SPMs in parallel generates expected revenue at least

∑

j∈[m]

(
1

4
− ǫ · n

)
·

(
OPTj

8
− 2ǫ · nH

)
=

(
1

4
− ǫ · n

)
·

(
SREV

8
− 2ǫ ·mnH

)

under D. Due to Theorem 10, we can construct in polynomial time such a randomized SPM Mj for each item

j based on ×i∈[n]D̂ij .

Next, we show how to choose the entry fee based on D̂ = ×i,jD̂ij , so that the VCG with entry fee

mechanism has revenue that approximates BREV under the true distribution D. More specifically, we use

the median of i’s utility under D̂i = ×j∈[m]D̂ij as bidder i’s entry fee. We prove the result in two steps.

We first show that if we can use an entry fee function such that every bidder i accepts her entry fee with

probability between [1/2 − η, 1/2] for any possible bid profiles b−i of the other bidders, the expected revenue

is at least (1/2 − η) · BREV. Second, we show how to compute in polynomial time such entry fee functions

with η = O(mǫ) based on D̂.

Lemma 17. Suppose for every bidder i, di(·) : T−i 7→ R is a randomized entry fee function such that for any

bid profile b−i ∈ T−i of the other bidders

Pr
ti∼Di


 ∑

j∈[m]

(
tij −max

k 6=i
bkj

)+

≥ di(b−i)


 ∈

[
1

2
− η,

1

2

]

with probability at least 1 − δ. Then if we use di(·) as the entry fee function in the VCG with entry fee

mechanism, the expected revenue is at least (1− δ − 2η) · BREV.

Proof. When Prti∼Di

[∑
j∈[m] (tij −maxk 6=i bkj)

+ ≥ di(b−i)
]
∈
[
1
2 − η, 12

]
, di(b−i) is no less than the orig-

inal entry fee ei(b−i,Di) for any bid profile b−i of the other bidders. The expected revenue under the new entry

fee functions is at least ((1− δ) ·
(
1
2 − η

)
·
∑

i∈[n] Eb−i∼D−i
[ei(b−i,Di)] ≥ (1− δ − 2η) · BREV.

Lemma 18. For any bidder i and any bid profile b−i from the other bidders, let Fi,b−i
and F̂i,b−i

be the distri-

butions for the random variable
∑

j∈[m] (tij −maxk 6=i bkj)
+

when ti is drawn from Di and D̂i respectively.

If

∣∣∣
∣∣∣Dij − D̂ij

∣∣∣
∣∣∣
K

≤ ǫ for all bidder i and item j,

∣∣∣
∣∣∣Fi,b−i

− F̂i,b−i

∣∣∣
∣∣∣
K

≤ 2mǫ for all i and b−i. Moreover,

when mǫ ≤ 1/16, we can compute a randomized mechanism whose expected revenue is at least BREV

5 .

Proof. For any real number x, consider event Ei,b−i,x =
{
ti

∣∣∣
∑

j∈[m] (tij −maxk 6=i bkj)
+ ≥ x

}
. It is easy

to see that Ei,b−i,x is single-intersecting for any any i, b−i and x. According to Lemma 3,
∣∣∣∣ Pr
ti∼Di

[
Ei,b−i,x

]
− Pr

ti∼D̂i

[
Ei,b−i,x

]∣∣∣∣ ≤ 2mǫ

for any i, b−i and x. Hence,

∣∣∣
∣∣∣Fi,b−i

− F̂i,b−i

∣∣∣
∣∣∣
K

≤ 2mǫ.

Next, we argue how to construct a randomized entry fee di(b−i) in polynomial time with only sample ac-

cess of F̂i,b−i
. Suppose we take k samples from F̂i,b−i

and sort them in descending order s1 ≥ s2 ≥ · · · ≥ sk.

Let the entry fee di(b−i) to be s⌈5k
16 ⌉

. By the Chernoff bound, with probability at least 1− exp(−k/128) (over

the randomness of the samples) Prti∼D̂i

[∑
j∈[m] (tij −maxk 6=i bkj)

+ ≥ di(b−i)
]
= Prti∼D̂i

[
Ei,b−i,di(b−i)

]

lies in
[
1
4 ,

3
8

]
. Since Prti∼Di

[
Ei,b−i,di(b−i)

]
= Prti∼D̂i

[
Ei,b−i,di(b−i)

]
± 2mǫ,

Pr
ti∼Di

[
Ei,b−i,di(b−i)

]
∈ [

1

8
,
1

2
],
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if mǫ ≤ 1/16. According to Lemma 17, the expected revenue under our entry fee di(b−i) is at least(
1
4 − exp(−k/128)

)
· BREV ≥ BREV

5 if we choose k to be larger than some absolute constant. Clearly,

the procedure above can be completed in polynomial time with access to D̂.

Combining Lemma 16 and 18, we are ready to prove our main result of this section.

Theorem 14. If all bidders have additive valuations, given distributions D̂ij where

∣∣∣
∣∣∣D̂ij −Dij

∣∣∣
∣∣∣
K

≤ ǫ for

all i ∈ [n] and j ∈ [m], there is a polynomial time algorithm that constructs a mechanism whose expected

revenue under D is at least OPT
266 − 96ǫ ·mnH when ǫ ≤ 1

16max{m,n} .

Proof. Since ǫ ≤ 1
16max{m,n} , we can learn in polynomial time a randomized SPM whose revenue is at

least 3
16 ·

(
SREV

8 − 2ǫ ·mnH
)

and a VCG with entry fee mechanism whose revenue is at least BREV/5. As

OPT ≤ 6 · SREV + 2BREV (Theorem 6), the better of the two mechanisms we can learn in polynomial time

has revenue at least OPT
266 − 96ǫ ·mnH .

D Missing Details from Section 6

Proof of Lemma 5: We only sketch the proof here. Let POSTREV denote the highest revenue obtainable

by any RSPM. In [13], Cai and Zhao constructed an upper bound of the optimal revenue using duality and

separated the upper bound into three components: SINGLE, TAIL and CORE. Both SINGLE and TAIL are

within constant times the POSTREV, and the ASPE(p∗, δ∗) is used to bound the CORE. It turns out one

can use essentially the same proof as in [13] to prove that the mechanism ASPE(p′, δ′) has revenue at least

a1(µ) · CORE − a2(µ) · POSTREV − a3(µ) · (n + m) · ǫ where a1(µ), a2(µ) and a3(µ) are functions that

map µ to positive numbers. In other words, we can replace ASPE(p∗, δ∗) with ASPE(p′, δ′) and still obtain a

constant factor approximation. ✷

D.1 Missing Proofs from Section 6.1

We formalize the first step of our algorithm in the following lemma.

Lemma 19. For any B > 0, ǫ > 0, η ∈ [0, 1] and µ ∈ [0, 14 ], suppose we take K = O

(
log 1

η
+logn+m log B

ǫ

µ2

)

samples t(1), · · · , t(K) from D. For any collection of prices {pj}j∈[m] in the B-bounded ǫ-net, define the

entry fee δ
(p)
i (S) of bidder i for set S under {pj}j∈[m] to be the median of ui(t

(1)
i , S), · · · , ui(t

(K)
i , S), where

ui(ti, S) = maxS∗⊆S vi(ti, S
∗)−

∑
j∈S∗ pj . Then with probability 1−η, for any collection of prices {pj}j∈[m]

in the B-bounded ǫ-net,
{
δ
(p)
i (·)

}
i∈[n]

is a collection of µ-balanced entry fee functions.

Proof. For any fixed {pj}j∈[m], fixed bidder i and fixed set S, it is easy to argue that the probability for

Prti∼Di
[ui(ti, S) ≥ δ

(p)
i (S)] to be larger than 1

2 + µ or smaller than 1
2 − µ is at most 2exp(−2Kµ2) due to

the Chernoff bound. Next, we take a union bound over all {pj}j∈[m] in the ǫ-net, all bidders and all possible

subsets of [m], so the probability that for any collection of prices {pj}j∈[m] in the ǫ-net {δ
(p)
i (·)}i∈[n] is a

collection of µ-balanced entry fee functions is at least 1− 2 exp(−2Kµ2) ·
(
B
ǫ

)m
· 2m · n. If we take K to be

at least
log 1

η
+logn+m log B

ǫ

µ2 , the success probability is at least 1− η.

Next, we formalize the second step of our learning algorithm.
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Lemma 20. For any B ≥ 2G, ǫ, ǫ′ > 0, η ∈ [0, 1] and µ ∈ [0, 14 ], suppose for every collection of

prices {pj}j∈[m] in the B-bounded ǫ-net, {δ
(p)
i (·)}i∈[n] is a collection of µ-balanced entry fee functions.

We use S to denote the set that contains ASPE(p, δ(p)) for every p in the B-bounded ǫ-net. If we take

K = O

(
log 1

η
+m log B

ǫ

ǫ′2

)
samples t(1), · · · , t(K) from D and let ASPE(p′, δ(p

′)) be the mechanism that has

the highest revenue in S . Then with probability at least 1− η, the better of ASPE(p′, δ(p
′)) and the best RSPM

achieves revenue at least OPT
C1(µ)

− C2(µ) · (m+ n) · ǫ− 2mnB · ǫ′.

Proof. For any {pj}j∈[m] in the ǫ-net, define REV(p) to be the expected revenue of ASPE(p, δ(p)) and R̂EV(p)

be the average revenue of ASPE(p, δ(p)) among the K samples. First, we argue that R̂EV(p) is a random

variable that lies between [0,mnB]. The revenue from selling the items can be at most mB as there are only

m items and pj ≤ B for all j ∈ [m]. How about the entry fee? For any bidder i,

Pr
ti∼Di

[vi(ti, [m]) ≥ mG] ≤
∑

j∈[m]

Pr
tij∼Dij

[Vi(tij) ≥ G] ≤
m

5max{m,n}
≤

1

5
.

The first inequality is because vi(ti, ·) is a subadditive function for every type ti ∈ Ti, so for vi(ti, [m]) to

be greater than mG, there must exist a item j such that Vi(tij) ≥ G. The second inequality follows from the

definition of G in Theorem 8.

If there exists a set S ⊆ [m] such that δ
(p)
i (S) > mG, we have

Pr
ti∼Di

[vi(ti, [m]) ≥ mG] ≥ Pr
ti∼Di

[
vi(ti, [m]) ≥ δ

(p)
i (S)

]
≥

1

2
− µ ≥

1

4
.

Contradiction. Note that the second inequality is because δ
(p)
i (·) is µ-balanced. Hence, the entry fee is always

upper bounded by mG and R̂EV(p) is at most mnG + mB ≤ mnB. Also, notice that the expectation of

R̂EV(p) is exactly REV(p). By the Chernoff bound,

Pr
[∣∣∣REV(p)− R̂EV(p)

∣∣∣ ≤ mnB · ǫ′
]
≥ 1− 2 exp(−2K · ǫ′2)

for any fixed {pj}j∈[m]. By the union bound, the probability that for all {pj}j∈[m] in the ǫ-net

∣∣∣REV(p)− R̂EV(p)
∣∣∣ ≤ mnB · ǫ′

is at least 1− 2 exp(−2K · ǫ′2) ·
(
B
ǫ

)m
, which is lower bounded by 1− η due to our choice of K . When this

happens, the expected revenue of ASPE(p′, δ(p
′)) is at most 2mnB · ǫ′ less than the highest expected revenue

achievable by any of these mechanisms, because

REV(p′) ≥ R̂EV(p′)−mnB · ǫ′ ≥ R̂EV(p)−mnB · ǫ′ ≥ REV(p)− 2mnB · ǫ′

for any p in the ǫ-net. Combining this inequality with Corollary 2 completes our proof.

Note that Lemma 19 and 20 hold for all distributions D. The reason we require D to be bounded or regular

is because without these restrictions, we do not know how to approximate the best RSPM. In the following

Theorem, we combine Lemma 19, 20 and Theorem 11 to obtain the sample complexity of our learning

algorithm for bounded distributions.

Theorem 15. When all bidders’ valuations are XOS over independent items and the random variable Vi(tij)

is supported on [0,H] for any bidder i and any item j, with O

((
mn
ξ

)2
·
(
m · log m+n

ξ + log 1
δ

))
samples

from D, we can learn an RSPM and an ASPE such that with probability at least 1 − δ the better of the two

mechanisms has revenue at least OPT
c − ξ ·H for some absolute constant c > 1.
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Proof. With O

((
1
ξ

)2 (
m2n log n log 1

ξ + log 1
δ

))
samples, we can obtain an RSPM whose revenue is at

least 1
24 of the revenue of the best RSPM minus ξ

2 · H with probability 1 − δ/2 according to Theorem 11.

Let µ be some fixed constant in [0, 14 ], B = 2H , ǫ = ξ·H
6C2(µ)(m+n) and ǫ′ = ξ

12mn . According to Lemma 19,

given O
(
log 1

δ + log n+m log m+n
ξ

)
samples, we can construct an entry fee function for each price vector

in the B-bounded ǫ-net, such that all these entry fee functions are µ-balanced with probability at least 1− δ/4.

According to Lemma 20, we can learn an ASPE with O

((
mn
ξ

)2
·
(
m · log m+n

ξ + log 1
δ

))
fresh samples

from D, such that the better of the ASPE we learned and the best RSPM has revenue of at least OPT
C1(µ)

− ξ
2 ·H

with probability 1 − δ/4. Combining the statements above, we can learn with probability 1− δ a mechanism

whose revenue is at least OPT
c − ξ ·H with O

((
mn
ξ

)2
·
(
m · log m+n

ξ + log 1
δ

))
samples.

In the next Theorem, we combine Lemma 19, 20 and Theorem 12 to obtain the sample complexity of our

learning algorithm for regular distributions.

Theorem 16. When all bidders’ valuations are XOS over independent items and the random variable Vi(tij)
is regular for each item j ∈ [m] and bidder i ∈ [n], with O

(
Z2m2n2 ·

(
m · log(m+ n) + log 1

δ

))
(Z =

max{m,n}) samples from D, we can learn an RSPM and an ASPE such that with probability at least 1 − δ
the better of the two mechanisms has revenue at least OPT

c for some absolute constant c > 1.

Proof. According to Theorem 12, we can learn with probability 1 − δ/2 a randomized RSPM whose revenue

is at least 1
33 of the optimal RSPM with O

(
Z2m2n2 · log nm

δ

)
samples. Next, we learn an ASPE with high

revenue. With O
(
Z2 · log nm

δ

)
samples from each Dij , we can estimate Wij such that

Pr
tij∼Dij

[Vi(tij) ≥ Wij] ∈

[
1

6Z
,
1

5Z

]

with probability 1 − δ
4nm . By the union bound, the probability that all Wij satisfy the requirement is at least

1− δ
4 . So with probability at least 1− δ

4 , Wij ≥ Gij for all i ∈ [n] and j ∈ [m].

Let B = 2 ·maxi,j Wij , µ be some fixed constant in [0, 14 ], ǫ =
ξ·B

C2(µ)Z(m+n) and ǫ′ = ξ
2mnZ for some small

constant ξ, which will be specified later. We know that given O
(
log 1

δ + log n+m log(m+ n)
)

samples, we

can construct µ-balanced entry fee functions for all price vectors in the B-bounded ǫ-net with probability

1− δ/8 due to Lemma 19. According to Lemma 20, we can learn an ASPE with

O

(
Z2m2n2 ·

(
m · log(m+ n) + log

1

δ

))

fresh samples from D, such that the better of the ASPE we learned and the best RSPM has revenue of at least
OPT
C1(µ)

− 2ξ·B
Z with probability 1 − δ/8. Note that there exists a bidder i and an item j such that Wij = B/2,

so OPT ≥ B
2 · 1

6Z and for sufficiently small ξ, OPT
C1(µ)

− 2ξ·B
Z ≥ OPT

2C1(µ)
. Combining the statements above, we

can learn with probability 1− δ a mechanism whose revenue is at least OPT
c for some absolute constant c with

O
(
Z2m2n2 ·

(
m · log(m+ n) + log 1

δ

))
samples.
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E Learning Algorithms for Symmetric Bidders

E.1 An Upper Bound of the Optimal Revenue for Symmetric Bidders

In this section, we introduce an upper bound to OPT based on duality [13], which is crucial for us to prove

the approximation ratios of our learning algorithms. We first fix some notation. Let POSTREV be the highest

revenue obtainable by any RSPM. As the bidders are symmetric, we drop the subscript i when there is no

confusion. In particular, we use V (tij) to denote bidder i’s value for winning item j if her private information

for item j is tij , and v(ti, S) to denote bidder i’s value for set S when her type is ti. We use Dj to denote the

distribution of the private information about item j. Let σiS(t) be the interim probability for bidder i to receive

exactly set S ⊆ [m] when her type is t.
In [13], an upper bound of the optimal revenue is derived using duality theory. Their upper bound applies

to asymmetric bidders with valuations that are subadditive over independent items. When the bidders are

symmetric, we can simplify their upper bound. First, we need the definition of b-balanced thresholds.

Definition 7 (b-balanced Thresholds). For any constant b ∈ (0, 1), a collection of positive real numbers

{βj}j∈[m] is b-balanced if for all i ∈ [n] and j ∈ [m], Prtij∼Dj
[V (tij) ≥ βj ] ∈ [ bn ,

b
n−1 ].

Note that when bidders are asymmetric, b-balanced thresholds are not guaranteed to exist, as there may not

exist any βj that satisfies Prtij∼Dj
[V (tij) ≥ βj ] ∈ [ bn ,

b
n−1 ] for all bidder i simultaneously. Next, we define

the COREη(β) which will be crucial for upper bounding the optimal revenue.10

Definition 8 (CORE). Given any collection of thresholds {βj}j∈[n] and a nonnegative constant η ≤ 1
4 ,

• if
∑

j∈[m]Prtj∼Dj
[V (tj) ≥ βj ] ≤

1
2 − η, let cη(β) be 0;

• otherwise, let cη(β) be a nonnegative number such that
∑

j∈[m]Prtj∼Dj
[V (tj) ≥ βj + cη(β)] ∈

[
1
2 − η, 12

]
.

For every type t, let Cη(t) = {j | V (tj) < βj + cη(β)}. Then,

COREη(β) = max
σ∈P (D)

∑

i∈[n]

∑

ti∈Ti

f(ti) ·
∑

S⊆[m]

σiS(ti) · v (ti, S ∩ Cη(ti)) ,

where P (D) is the set of all feasible interim allocation rules. That is, COREη(β) is the maximum welfare a

mechanism can extract out of the allocation of items whose individual value for the bidder they are allocated

to is lower than the adjusted thresholds.

It was shown in [13] that every collection of thresholds induces an upper bound to the optimal revenue. In

particular, for any choice of thresholds {βj}j∈[m] and η11, the revenue REV(M) of any BIC mechanism M is

upper bounded by

2 · SINGLE(M,β) + 4 · TAILη(M,β) + 4 · COREη(M,β) (Adapted from Theorem 2 in [13]).

These terms depend on the choice of {βj}j∈[m], η as well as the mechanism M . We refer interested readers

to [13] for the definitions of these terms. To obtain a benchmark/upper bound of the optimal revenue, one can

simply replace the above expression with

2 ·max
M

SINGLE(M,β) + 4 ·max
M

TAILη(M,β) + 4 ·max
M

COREη(M,β).

10For readers that are familiar with the definition of the CORE in [13], COREη(β) is essentially the same term but adapted for

symmetric bidders.
11In [13], the thresholds are allowed to depend on the identity of the bidder. More specifically, for any i ∈ [n] and j ∈ [m], there

is an associated threshold βij . Their upper bound applies to asymmetric thresholds as well. Indeed, when the bidders are asymmetric,

their upper bound is induced by a set of asymmetric thresholds. As we only discuss symmetric bidders in this section, we focus on

symmetric thresholds for simplicity. Regarding η, Cai and Zhao only considered the case when η = 0, but their analysis can be easily

modified to accommodate any η ≤ 1/4. See Theorem 17 for the modified upper bound.
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It is not hard to see that this benchmark may be impossible to approximate for certain choices of the thresholds.

Just imagine the case when the thresholds are extremely high, then maxM COREη(M,β) becomes the optimal

social welfare which can be arbitrarily large comparing to the optimal revenue. What Cai and Zhao [13]

showed was that when the thresholds are b-balanced, this upper bound can indeed be approximated by the

revenue of an RSPM and an ASPE. From now on, we only consider b-balanced thresholds.

Using results in [13], we can further simplify the benchmark. In particular, maxM SINGLE(M,β) is less

than 6 · POSTREV for all choices of {βj}j∈[n] and maxM TAILη(M,β) is less than 2
1−b · POSTREV for any

choice of η and b-balanced thresholds {βj}j∈[n]. Moreover, maxM COREη(M,β) ≤ COREη(β). Combining

the inequalities above, we obtain the following Theorem.

Theorem 17 (Adapted from [13]). When the bidders are symmetric and have valuations that are subadditive

over independent items, for any constant b ∈ (0, 1), η ≤ 1
4 and a collection of b-balanced thresholds {βj}j∈[m],

OPT ≤

(
12 +

8

1− b

)
· POSTREV + 4 · COREη(β).

E.2 Symmetric Bidders with XOS Valuations

In this section, we show how to learn in polynomial time an approximately optimal mechanism for symmetric

bidders with XOS valuations given sample access to the distributions. According to Theorem 17, we only need

to learn a mechanism that approximates POSTREV and COREη(β). From Section 5.1, we know how to ap-

proximated POSTREV in polynomial time, so we focus on learning a mechanism whose revenue approximates

COREη(β).
First, we need a crucial property about XOS valuations.

Lemma 21 (Supporting Prices [23]). If v(t, ·) is an XOS function, for any subset S ⊆ [m] there exists a

collection of supporting prices
{
θSj (t)

}
j∈S

for v(t, S) such that

1. v(t, S′) ≥
∑

j∈S′ θSj (t) for all S′ ⊆ S and

2.
∑

j∈S θSj (t) = v(t, S).

Let v′(ti, S) = v (ti, S ∩ Cη(ti)) and Fi be the distribution of the valuation v′(ti, S). As the bidders are

symmetric, Fi = Fi′ for any i and i′. The COREη(β) is exactly the maximum expected social welfare if

every bidder i’s valuation is drawn independently from Fi. Cai and Zhao [13] showed how to use an ASPE to

approximate this term. In the next Lemma, we construct the prices used in their ASPE and show its relation to

COREη(β).

Lemma 22. (Adapted from [13]) Let every bidder i’s valuation be v′(ti, S) = v (ti, S ∩ Cη(ti)) when her type

is ti and σ∗ be a symmetric allocation that achieves α-fraction of the optimal social welfare with respect to

v′(·, ·). For every item j ∈ [m], let

Qη,j =
1

2
·
∑

i∈[n]

∑

ti∈Ti

f(ti) ·
∑

S:j∈S

σ∗
iS(ti) · θ

S∩Cη(ti)
j (ti),

where
{
θ
S∩Cη(ti)
j (ti)

}
j∈S∩Cη(ti)

is the supporting prices for v (ti, S ∩ Cη(ti)). Let

u∗(t, S) = max
S∗⊆S

v(t, S∗)−
∑

j∈S∗

Qη,j
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be a bidder’s utility for the set of items S when her type is t. We define δ∗(S) to be the median of the random

variable u∗(t, S) (with t ∼ ×j∈[m]Dj) for any set S ⊆ [m]. The revenue of ASPE
(
{Qη,j}j∈[m], δ

∗
)

is at least

α · COREη(β)

2
− C(b, η) · POSTREV,

where C(b, η) is a function that only depends on b and η.

Proof. We can essentially use the same proof in [13] to prove that the expected revenue of the ASPE is at least

∑

j∈[m]

Qη,j − C(b, η) · POSTREV.

For readers that are familiar with that proof, the only thing we need to make sure is that our choice of σ∗ and

{βj}j∈[m] satisfy Lemma 5 in [13]. Since σ∗ is symmetric and {βj}j∈[m] is b-balanced, for all bidder i and

item j ∑

k 6=i

Pr
tkj∼Dj

[V (tkj) ≥ βj ] ≤
b

n− 1
· (n − 1) = b,

and

Pr
tij∼Dj

[V (tij) ≥ βj ] /b ≥ 1/n ≥ ·
∑

ti∈Ti

fi(ti) ·
∑

S:j∈S

σ∗
iS(ti).

Next, we argue
∑

j∈[m]Qη,j ≥
α·COREη(β)

2 . Observe that

∑

j∈[m]

Qη,j =
1

2
·
∑

i∈[n]

∑

ti∈Ti

f(ti) ·
∑

S

σ∗
iS(ti) · v

′(ti, S) ≥ α · COREη(β).

The last inequality is because COREη(β) is the maximum social welfare under v′(·, ·) and σ∗ achieves α
fraction of that.

Lemma 23. For any ǫ > 0 and µ ∈ [0, 14 ], let {Qj}j∈[m] be a collection of prices such that |Qj −Qη,j | ≤ ǫ
for all j ∈ [m]. Let δ(S) be the entry fee function such that Prt∼×j∈[m]Dj

[u(t, S) ≥ δ(S)] ∈ [1/2−µ, 1/2+µ]
for any set S ⊆ [m], where u(t, S) = maxS∗⊆S v(t, S∗)−

∑
j∈S∗ Qj . Then, the ASPE(Q, δ) achieves at least

α·COREη(β)
B1(µ)

− B2(b, η, µ) · POSTREV − B3(µ) · (m + n) · ǫ revenue when bidders’ valuations are XOS over

independent item. Both B1(µ) and B3(µ) are functions that only depend on µ and B2(b, η, µ) is a function that

only depends on µ, b and η.

Proof. It turns out the proof in [13] is robust enough to accommodate the error ǫ and µ. We can prove the

claim by following essentially the same analysis as in [13]. We do not include the details here.

E.2.1 Leaning the ASPE in Polynomial Time

We first show how to learn a collection of b-balanced thresholds and the corresponding cη(β).

Lemma 24. For any positive constant b < 1 and η ≤ 1
4 , there is a polynomial time algorithm that computes a

collection of b-balanced thresholds {βj}j∈[m] and cη(β) with probability 1−δ using O
(
m2n4 log m

δ

)
samples

from distribution ×j∈[m]Dj .
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Proof. Given K = O
(
m2n4

(
logm+ log 1

δ

))
samples t

(1)
j , . . . , t

(K)
j from distribution Dj , we construct Fj as

the uniform distribution over V
(
t
(1)
j

)
, . . . , V

(
t
(K)
j

)
. According to the DKW Theorem [25], with probability

at least 1− δ/m, ∣∣∣∣ Pr
tj∼Dj

[V (tj) ≥ x]− Pr
vj∼Fj

[vj ≥ x]

∣∣∣∣ ≤
1

c ·mn2
for all x (6)

where c is a constant that will be specified later. From now on, we assume that Inequality (6) holds for every

j, which happens with probability 1− δ.

As 1/K ≤ b
3n2 ≤ b

n−1−
b

3n2 −
b
n−

b
3n2 , there must exist a sample t

(ℓ)
j such that Prvj∼Fj

[
vj ≥ V

(
t
(ℓ)
j

)]
∈

[
b
n + b

3n2 ,
b

n−1 −
b

3n2

]
. Let βj = V

(
t
(ℓ)
j

)
. Note that

Pr
tj∼Dj

[V (tj) ≥ βj ] ∈

[
Pr

vj∼Fj

[vj ≥ βj ]−
1

c ·mn2
, Pr
vj∼Fj

[vj ≥ βj ] +
1

c ·mn2

]
.

If c is less than b
3 , Prtj∼Dj

[V (tj) ≥ βj] ∈
[
b
n ,

b
n−1

]
. Thus, βj is b-balanced for all item j.

Next, we argue how to learn cη(β). If
∑

j∈[m]Prvj∼Fj
[vj ≥ βj ] ≤

1
2 − η

2 , let cη(β) = 0. This is a

valid choice, as
∑

j Prtj∼Dj
[V (tj) ≥ βj ] is at most 1

2 − η
2 + 1

cn2 ≤ 1
2 according to inequality (6). Sup-

pose
∑

j∈[m]Prvj∼Fj
[vj ≥ βj ] >

1
2 − η

2 , as m/K < η
4 , there must exist some item k ∈ [m] and a sam-

ple V
(
t
(ℓ)
k

)
≥ βk such that

∑
j∈[m]Prvj∼Fj

[
vj ≥ βj + V

(
t
(ℓ)
k

)
− βk

]
∈

[
1
2 − η

4 ,
1
2 −

η
2

]
. Let cη(β) =

V
(
t
(ℓ)
k

)
− βk. According to inequality (6),

∑

j∈[m]

Pr
tj∼Dj

[V (tj) ≥ βj + cη(β)] ∈

[
1

2
−

η

4
−

1

cn2
,
1

2
−

η

2
+

1

cn2

]
.

For sufficiently large c,
∑

j Prtj∼Dj
[V (tj) ≥ βj + cη(β)] ∈

[
1
2 − η, 12

]
.

Finding each βj takes O(K logK) time and finding the cη(β) takes O(mK) time. So we can learn

in polynomial time a collection of b-balanced thresholds {βj}j∈[m] and cη(β) with probability 1 − δ using

O
(
m2n4 log m

δ

)
samples.

Next, we show how to learn the prices of the ASPE. As showed by Feige [27], there exists a polynomial

time algorithm that achieves 1− 1
e fraction of the optimal social welfare when bidders have XOS valuations. We

let σ∗ be the interim allocation rule induced by Feige’s algorithm and estimate the prices by running Feige’s

algorithm on sampled valuation profiles. To run Feige’s algorithm, we need a demand oracle for bidder’s

valuations. In the following Lemma, we argue that v′(t, ·) is an XOS function for any type t, and given a value

(or demand, XOS) oracle for v(t, ·), we can construct in polynomial time the corresponding oracle for v′(t, ·).
First, we define these oracles formally.

Definition 9. We consider the following three oracles for a bidder’s valuation function v(t, ·):

• Value oracle: takes a set S ⊆ [m] as the input and returns v(t, S).

• Demand oracle: takes a collection of prices {pj}j∈[m] as an input and returns the favorite set under

these prices, that is, S∗ ∈ argmaxS∈[m] v(t, S)−
∑

j∈S pj .

• XOS oracle (only when v(t, ·) is XOS): takes a set S ⊆ [m] as the input and returns the supporting

prices {θSj (t)}j∈S for v(t, S).
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Lemma 25. Given a collection of thresholds {βj}j∈[m] and cη(β). For any set S ⊆ [m], let v′(t, S) =
v(t, S ∩ Cη(t)). If v(t, ·) is an XOS function, v′(t, ·) is also an XOS function. Given a value (or demand, XOS)

oracle for v(t, ·), we can construct in polynomial time a value (or demand, XOS) oracle for v′(t, ·).

Proof. If v(t, ·) is an XOS function, v(t, ·) can be represented as the max of a collection of additive functions.

Observe that if we change the values for items in Cη(t) to 0 in each of these additive functions, v′(t, ·) equals

to the max of this new collection of additive functions. Hence, v′(t, ·) is also an XOS function.

If we are given a value oracle for v(t, ·), it is straightforward to construct a value oracle for v′(t, ·). If

we are given a demand oracle for v(t, ·), here is how to construct a demand oracle for v′(t, ·). For every

queried price vector {pj}j∈[m], we change the price for each item outside Cη(t) to 2v(t, [m]) and keep the

prices for the items in Cη(t). Let this new price vector be p′. We query the demand oracle of v(t, ·) on p′.
The output set should also be the demand set for v′(t, ·) under prices p, as the bidder can only afford items

in Cη(t) and v′(t, S) = v(t, S) for any set S ⊆ Cη(t). Finally, we consider the XOS oracle. For any set S,

let
{
θ
S∩Cη(t)
j (t)

}
j∈S∩Cη(t)

be the supporting prices for v(t, S ∩ Cη(t)). Let γSj (t) = θ
S∩Cη(t)
j for all item j in

Cη(t) ∩ S and γSj (t) = 0 for all item j in S − Cη(t). According to the definition of v′(t, ·), {γSj (t)}j∈S is the

supporting price for v′(t, S). So given an XOS oracle for v(t, ·), we can compute the supporting price of any

set S for v′(t, ·) in polynomial time.

Lemma 25 shows that v′(t, ·) is also an XOS function for any type t and with access to a demand oracle

for v(t, ·) we can construct a demand oracle for v′(t, ·) in polynomial time. So we can indeed run Feige’s

algorithm on v′. In the next Lemma, we show how to learn a collection of prices {Qj}j∈[m] and entry fee

function δ(·, ·) such that the corresponding ASPE has high revenue.

Lemma 26. Given a collection of b-balanced thresholds {βj}j∈[m] and cη(β), and access to value, demand

and XOS oracles for valuation v(t, ·) for every type t, there is a polynomial time algorithm that learns an

ASPE({Qj}j∈[m], δ) whose revenue is at least
COREη(β)

K1
− g(b, η) · POSTREV −K2 · ξ · OPT with probability

at least 1− ζ using O
(
n3(m+ n)2 log m

ζ

)
samples from ×j∈[m]Dj , where K1 and K2 are positive absolute

constants, and g(b, η) is a function that only depends on b and η.

Proof. According to Lemma 25, we can construct value, demand and XOS oracles for valuation v′(t, ·) given

access to the corresponding oracles for v(t, ·). We use {γSj (t)}j∈S to denote the output of the XOS oracle for

v′(t, ·) on set S. In particular, γSj (t) = 0 for all j ∈ S − Cη(t) and γSj (t) = θ
S∩Cη(t)
j (t) for all j ∈ S ∩ Cη(t),

where {θ
S∩Cη(t)
j (t)}j∈S∩Cη(t) is the supporting prices for v(t, S ∩ Cη(t)). Let A(t) be the allocation computed

by Feige’s algorithm on the valuation profile (v′(t1, ·), . . . , v
′(tn, ·)), where Ai(t) denotes the set of items that

bidder i receives. Let σ∗ be the interim allocation rule induced by A(·) when bidders types are all drawn from

×j∈[m]Dj independently. That is, σ∗
iS(ti) = Prt−i

[Ai(t) = S]. We use the same definition for Qη,j as in

Lemma 22. In other words, Qη,j is the contribution of item j to the social welfare under allocation rule σ∗, so

we can rewrite it as

1

2
· Et


∑

i∈[n]

1 [j ∈ Ai(t)] · γ
Ai(t)
j (ti)


 .

Let t(1), . . . , t(K) be K sampled type profiles, and q(ℓ) = 1
2

∑
i∈[n] 1

[
j ∈ Ai(t

(ℓ))
]
· γ

Ai(t(ℓ))
j (t

(ℓ)
i ). We

set Qj to be 1
K ·

∑
ℓ∈[K] q

(ℓ). Since γSj (t) ≤ βj + cη(β) for any j, S and t, Qj ≤ βj + cη(β). By the Chernoff

bound,

Pr [|Qj −Qη,j | ≤ ǫ · (βj + cη(β))] ≥ 1− 2 exp(−2K · ǫ2).
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As {βj}j∈[m] is a collection of b-balanced thresholds, we can obtain revenue βj · b
n by only selling

item j to one bidder at price βj . Hence, βj ≤ n·OPT
b . Now, consider a posted price mechanism that

sells item j at price βj + cη(β). A single bidder will purchase at least one item with probability at least∑
j Prtj∼Dj

[V (tj) ≥ βj + cη(β)] which is no less than 1
2 − η if cη(β) > 0. Hence, the revenue of this mech-

anism is at least cη(β) ·
(
1
2 − η

)
. As η ≤ 1

4 , cη(β) ≤ 4OPT. If we let ǫ = ξ
(m+n)·(n/b+4) for some small

constant ξ which will be specified later and K =
log 4m

ζ

2ǫ2 , we have Pr
[
|Qj −Qη,j| ≤

ξ
m+n · OPT

]
≥ 1− ζ

2m .

In other words, with O
(
n3(m+ n)2 log m

ζ

)
samples from ×j∈[m]Dj (as each tℓ costs n samples), we can

learn in polynomial time a collection of prices {Qj}j∈[m] such that |Qj −Qη,j | ≤
ξ

m+n · OPT for all item j
with probability 1− ζ/2.

Next, we consider the entry fee function. We use essentially the same argument as in Lemma 19. Suppose

we take L samples t(1), · · · , t(L) from ×j∈[m]Dj . Define the entry fee δ(S) for set S under {Qj}j∈[m] to be

the median of u(t(1), S), · · · , u(t(L), S), where u(t, S) = maxS∗⊆S v(t, S
∗)−

∑
j∈S∗ pj . Given any constant

µ ∈ [0, 1/4], for any fixed set S, it is easy to argue that the probability for Prt∼×j∈[m]Dj
[u(t, S) ≥ δ(S)] to

be larger than 1
2 + µ or less than 1

2 − µ is at most 2 exp(−2Lµ2) due to the Chernoff bound. If we let L to be

a · m+log 1/ζ
µ2 for a sufficiently large constant a, the probability that δ(·) is a µ-balanced entry fee function is at

least 1− ζ/2 by the union bound.

Hence, with O
(
n3(m+ n)2 log m

ζ

)
samples from ×j∈[m]Dj , we can compute in polynomial time a col-

lection of prices {Qj}j∈[m] and a entry fee function δ(·) such that the revenue of the ASPE
(
{Qj}j∈[m], δ(·)

)

is at least
(1−1/e)·COREη(β)

B1(µ)
−B2(b, η, µ) ·POSTREV − ξ · B3(µ) ·OPT with probability 1− ζ due to Lemma 23.

Our claim follows by fixing the value of µ to be some constant.

Theorem 18. For symmetric bidders with valuations that are XOS over independent items,

1. when V (tj) is upper bounded by H for any j ∈ [m] and any tj , with

O

(
(
n5 +m2n4

)
· log

m

δ
+

(
1

ǫ

)2(
m2n log n log

1

ǫ
+ log

1

δ

))

samples from ×j∈[m]Dj , we can learn in polynomial time with probability 1 − δ a mechanism whose

revenue is at least c1 · OPT − ǫ ·H for some absolute constant c1;

2. when the distribution of random variable V (tj) with tj ∼ Dj is regular for all item j ∈ [m], with

O
(
n5 · log

m

δ
+max{m,n}2m2n2 · log

nm

δ

)

samples from ×j∈[m]Dj , we can learn in polynomial time with probability 1 − δ a mechanism whose

revenue is at least c2 · OPT for some absolute constant c2.

Proof of Theorem 18: Combining Lemma 24, Lemma 26 and Theorem 17, we know how to compute in

polynomial time an ASPE whose revenue is at least a1 · OPT − a2 · POSTREV with probability 1 − δ/2 for

some absolute constant a1, a2, and we only need O
((
n5 +m2n4

)
· log m

δ

)
samples from ×j∈[m]Dj . When the

distributions are bounded, we can learn in polynomial time an RSPM whose revenue is at least POSTREV

144 − ξH

with probability 1− δ/2 using O

((
1
ξ

)2 (
m2n log n log 1

ǫ + log 1
δ

))
samples (Theorem 11). By choosing the

ratio between ξ and ǫ to be the right constant, we can show the first part of our claim. When V (tj) is a regular

random variable for every item j, we can learn in polynomial time an RSPM whose revenue is at least POSTREV

33
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with probability 1 − δ/2 using O
(
max{m,n}2m2n2 · log nm

δ

)
samples (Theorem 12). Therefore, we can

learn a mechanism in polynomial time such that with probability 1 − δ whose revenue is at least a constant

fraction of the OPT. This proves the second part of our claim.✷

E.3 Symmetric Bidders with Subadditive Valuations

In this section, we argue that if the bidders are symmetric and m = O(n), there exists a collection of b-
balanced thresholds {βj}j∈[m] for a fixed constant b, such that POSTREV is within a constant fraction of the

benchmark. Note that this argument only applies to symmetric bidders, as b-balanced thresholds may not even

exist for asymmetric bidders.

We set η = 0 for this section and drop the subscript η when there is no confusion. We show how to

upper bound CORE(β) with POSTREV by choosing a particular collection of b-balanced thresholds. Let Z =
max{m,n} and b = n

3Z . It is not hard to see that n
3Z -balanced thresholds exist, as we can choose βj such that

Prtj∼Dj
[V (tj) ≥ βj ] =

1
3Z .

Lemma 27. Let {βj}j∈[m] be a collection of n
3Z -balanced thresholds, then CORE(β) ≤

∑
j∈[m] βj .

Proof. As {βj}j∈[m] are n
3Z -balanced, Prtij∼Dj

[V (tij) ≥ βj ] ≤
n

(n−1)·3Z ≤ 1
2Z . Therefore,

∑

j∈[m]

Pr
tj∼Dj

[V (tj) ≥ βj ] ≤
1

2
,

so c(β) = 0. Next, we upper bound CORE(β) by
∑

j∈[m] βj .

CORE(β) = max
σ∈P (D)

∑

i∈[n]

∑

ti∈Ti

f(ti) ·
∑

S⊆[m]

σiS(ti) · v(ti, S ∩ C(ti))

≤ max
σ∈P (D)

∑

i∈[n]

∑

ti∈Ti

f(ti) ·


 ∑

S⊆[m]

σiS(ti) ·
∑

j∈S

βj




= max
σ∈P (D)

∑

i∈[n]

∑

j∈[m]

βj ·


∑

ti∈Ti

f(ti) ·
∑

S:j∈S

σiS(ti)




= max
σ∈P (D)

∑

j

βj ·


∑

i∈[n]

∑

ti∈Ti

fi(ti) ·
∑

S:j∈S

σiS(ti)




≤
∑

j

βj

The first inequality is because v(ti, ·) is a subadditive function, so

v(ti, S ∩ Ci(ti)) ≤
∑

j∈S∩Ci(ti)

V (tij) ≤
∑

j∈S∩Ci(ti)

βj ≤
∑

j∈S

βj .

The last inequality is because
∑

i∈[n]

∑
ti∈Ti

fi(ti) ·
∑

S:j∈S σiS(ti) ≤ 1 is the ex-ante probability for bidder

i to receive item j, and for any feasible interim allocation σ, the sum of all bidders’ ex-ante probabilities for

receiving item j should not exceed 1.

In the following Lemma, we demonstrate that
∑

j∈[m] βj is upper bounded by 9Z
n · POSTREV.

36



Lemma 28. Let {βj}j∈[m] be a collection of n
3Z -balanced thresholds, POSTREV ≥ n

9Z ·
∑

j∈[m] βj .

Proof. Let us consider an RSPM where the price for selling item j to bidder i is βj . Bidder i purchases item

j if that is the only item she can afford and no one else can afford item j. As {βj}j∈[m] are n
3Z -balanced, the

probability that no one else can afford item j is at least


1−

∑

k 6=i

Pr
tkj∼Dj

[V (tkj) ≥ βj]


 ≥ (1 −

n

3Z
) ≥

2

3
.

Also, the probability that i cannot afford any item other than j is at least


1−

∑

ℓ 6=j

Pr
tiℓ∼Dℓ

[V (tiℓ) ≥ βℓ]


 ≥ 1−

n(m− 1)

3Z(n− 1)
≥

1

2
.

Therefore, bidder i purchases item j with probability at least 1
3 Prtij∼Dj

[V (tij ≥ βj)] ≥
1
9Z . Whenever this

event happens, it contributes βj to the revenue. So the total revenue is at least
∑

j

∑
i
βj

9Z = n
9Z ·

∑
j βj .

Combining Theorem 17, Lemma 27 and 28, we obtain the following Theorem.

Theorem 19. For symmetric bidders with valuations that are subadditive over independent items,

OPT ≤

(
24 +

36max{n,m}

n

)
· POSTREV.

Proof. Combining Lemma 27 and 28, we have POSTREV ≥ n
9max{n,m} ·CORE(β) if {βj}j∈[m] is a collection

of n
3max{n,m} -balanced thresholds. By setting b to be n

3max{n,m} and replacing CORE(β) with
9max{n,m}

n ·
POSTREV in Theorem 17, we have

OPT ≤

(
12 +

8

1− n
3max{n,m}

+
36max{n,m}

n

)
· POSTREV.

As n
3max{n,m} ≤ 1/3,

OPT ≤

(
24 +

36max{n,m}

n

)
· POSTREV.

E.3.1 Learning an Approximately Optimal Mechanism for Symmetric Subadditive Bidders

With Theorem 19, we only need to learn a mechanism that approximates the optimal revenue obtainable by

any RSPM. The next Lemma connects RSPMs with SPMs in an induced unit-demand setting.

Lemma 29. Consider n symmetric bidders whose types are drawn independently from ×m
j=1Dj . Let Fj be

the distribution for random variable V (tj) where tj ∼ Dj . We define an induced unit-demand setting with n
symmetric unit-demand bidders whose values for item j are drawn independently from Fj . For any collection

of prices {pij}i∈[n],j∈[m], the revenue of the RSPM with these prices in the original setting is exactly the same

as the revenue of the SPM with these prices in the induced unit-demand setting.

Proof. As in an RSPM bidders can purchase at most one item, bidders behave exactly the same as in the

induced unit-demand setting. Since the prices in the SPM and RSPM are the same, bidders purchase exactly

the same items. Hence, the revenue is the same.
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Corollary 3. For symmetric bidders with valuations that are subadditive over independent items,

OPTUD ≥ Ω
( n

Z

)
· OPT,

where Z = max{m,n} and OPTUD is the optimal revenue for the induced unit-demand setting.

Proof. Combine Theorem 19 and Lemma 29.

Lemma 29 implies that learning an approximately optimal RSPM is equivalent as learning an approxi-

mately optimal SPM in the induced unit-demand setting. Next, we apply our results in Section 5.1 to the

induced unit-demand setting to learn an RSMP that approximates the optimal revenue in the original setting.

In the next Theorem, we show that even though the bidders’ valuations could be complex set functions, e.g.,

submodular, XOS and subadditive, as long as m = O(n), the approximate distributions for the bidders’ values

for winning any single item provides sufficient information to learn an approximately optimal mechanism.

Theorem 20. For symmetric bidders with valuations that are subadditive over independent items, let Fj be

the distribution of V (tj) where tj ∼ Dj . If Fj is supported on [0,H] for all j ∈ [m], given distributions F̂j

where

∣∣∣
∣∣∣F̂j −Fj

∣∣∣
∣∣∣
K

≤ ǫ for all j ∈ [m], there is a polynomial time algorithm that constructs a randomized

RSPM whose revenue under the true distribution D is at least
(
1

4
− (n+m) · ǫ

)
·

(
Ω

(
n

max{m,n}

)
· OPT − 2ǫ ·mnH

)
.

Proof. Let Z = max{m,n}. According to Corollary 3, OPTUD = Ω
(
n
Z

)
· OPT. Since ||F̂j − Fj ||K ≤ ǫ

for all j ∈ [m], we can learn a randomized SPM in the induced unit-demand setting whose revenue under the

true distribution is at least
(
1
4 − (n+m) · ǫ

)
·
(

OPTUD

8 − 2ǫ ·mnH
)

based on Theorem 10. By Lemma 29,

we can construct an RSPM with the same collection of (randomized) prices and achieve revenue
(
1

4
− (n+m) · ǫ

)
·
(
Ω
( n

Z

)
· OPT − 2ǫ ·mnH

)

in the original setting.

If we are given sample access to bounded distributions, we show in the following Theorem that a polyno-

mial number of samples suffices to learn an approximately optimal mechanism, when m = O(n).

Theorem 21. For symmetric bidders with valuations that are subadditive over independent items, let Fj be

the distribution of V (tj) where tj ∼ Dj . If Fj is supported on [0,H] for all j ∈ [m], there is a polynomial

time algorithm that learns an RSPM whose revenue is Ω
(

n
max{m,n}

)
·OPT− ǫH with probability 1− δ using

O

((
1

ǫ

)2

·

(
m2n log n log

1

ǫ
+ log

1

δ

))

samples.

Proof. According to Corollary 3, OPTUD = Ω
(

n
max{m,n}

)
· OPT. Due to Theorem 11,

O

((
1

ǫ

)2

·

(
m2n log n log

1

ǫ
+ log

1

δ

))

samples suffices to learn in polynomial time with probability 1−δ an SPM with revenue at least Ω(OPTUD)−
ǫ ·H for the induced unit-demand setting. By Lemma 29, we can construct an RSPM with the same collection

of prices and achieve revenue Ω
(

n
max{m,n}

)
· OPT − ǫH in the original setting.
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Finally, if the distribution of the random variable V (tj) with tj ∼ Dj is regular for all item j ∈ [m], we

prove in the next theorem that there exists a prior-independent mechanism that achieves a constant fraction

of the optimal revenue if m = O(n). Note that approximately optimal prior-independent mechanisms for

symmetric unit-demand bidders are known due to the work by Devanur et al. [21] and Roughgarden et al. [39].

Our result is obtained by combining Theorem 19 and the afore-mentioned prior independent mechanisms.

Theorem 22. For symmetric bidders with valuations that are subadditive over independent items, let Fj be the

distribution of V (tj) where tj ∼ Dj . If Fj is regular for all j ∈ [m], there is a prior-independent mechanism

with revenue at least Ω
(

n
max{m,n}

)
· OPT. Moreover, the mechanism can be implemented efficiently.

Proof. The mechanism in [21] or [39] provides an approximately optimal prior-independent mechanism in

the induced unit-demand setting. Let us use M to denote this mechanism. Suppose we restrict every bidder

to purchase at most one item in the original setting and then run mechanism M . The expected revenue is

the same as M ’s expected revenue in the induced setting. Since M ’s expected revenue is Ω(OPTUD) and

OPTUD = Ω
(

n
max{m,n}

)
·OPT, the mechanism we constructed has revenue Ω

(
n

max{m,n}

)
·OPT. Since M can

be implemented efficiently for unit-demand bidders, our mechanism can also be implemented efficiently.
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