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Abstract

We show that the square Hellinger distance between two Bayesian networks on the same
directed graph, G, is subadditive with respect to the neighborhoods of G. Namely, if P and @ are
the probability distributions defined by two Bayesian networks on the same DAG, our inequality
states that the square Hellinger distance, H?(P,Q), between P and @ is upper bounded by the
sum, »_ H? (Poyur, s Qguyum, ); of the square Hellinger distances between the marginals of P
and @ on every node v and its parents 11, in the DAG. Importantly, our bound does not involve
the conditionals but the marginals of P and (). We derive a similar inequality for more general
Markov Random Fields.

As an application of our inequality, we show that distinguishing whether two Bayesian net-
works P and @ on the same (but potentially unknown) DAG satisfy P = @ vs drv(P, Q) > ¢
can be performed from O(|S[3/4(4+1) . /e2) samples, where d is the maximum in-degree of the
DAG and ¥ the domain of each variable of the Bayesian networks. If P and @) are defined on po-
tentially different and potentially unknown trees, the sample complexity becomes O(|X|*%n/€?),
whose dependence on n, € is optimal up to logarithmic factors. Lastly, if P and @) are product
distributions over {0,1}" and Q is known, the sample complexity becomes O(y/n/e?), which is
optimal up to constant factors.

1 Introduction

At the heart of scientific activity lies the practice of formulating models about observed phenomena,
and developing tools to test the validity of these models. Oftentimes, the models are probabilistic;
for example, one may model the effectiveness of a drug in a population as a truncated Normal, or the
waiting times in a queuing system as exponential random variables. When a model is probabilistic,
testing its validity becomes a distribution testing problem. In our drug example, one would like
to measure the effectiveness of the drug in a sample of the population, and somehow determine
whether these samples are “consistent” with a truncated Normal distribution. As humans delve into
the study of more and more complex phenomena, they quickly face high-dimensional distributions.
The goal of this paper is to advance our understanding of high-dimensional hypothesis testing.
Consider the task of testing whether a high-dimensional distribution P, to which we have sample
access, is identical to some model distribution @ € A(X"), where ¥ is some alphabet and n is the
dimension. A natural goal, which we will call goodness-of-fit testing in the tradition of Statistics, is
to distinguish
P=Q from d(PQ) > e,
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where d(-,-) is some distance between distributions and € > 0 some accuracy parameter. In this
paper, we will take d(-,-) to be the total variation distance, although all our results hold if one
considers Hellinger distance instead.

Sometimes we do not have a model distribution @, but sample access to two distributions
P,Q € A(X"), and we want to determine if they are equal. Again, a natural goal is to distinguish

P=Q from d(PQ)>e.

We will call this latter problem, where both distributions are unknown, identity testing.

As our access to P or to both P and () in the above problems is via samples, we cannot hope
to always solve them correctly. So our goal is actually probabilistic. We want to be correct with
probability at least 1 — ¢, for some parameter 0. For ease of presentation, let us take 6 = 1/3 for
the remainder of this paper. Clearly, this probability can be then boosted to arbitrary §’s at a cost
of a factor of O(log 1/§) in the sample complexity.

Both goodness-of-fit and identity testing have received tremendous attention in Statistics. In
the above formulation of these problems, they have received a fair amount of attention over the
last decade in both Theoretical Computer Science and Information Theory; see e.g. |[BFFT01,
BKRO04, Pan08, VV14, ADK15, CDGR16] and their references. Despite intense research, the
high-dimensional (large n) version of the problems has received much smaller attention |[BFFT01,
AAKT07, RX10, BFRV11, ADK15|, despite its importance for applications. In part, this is due
to the fact that the problem, as stated above, is hopeless for large n. For example, if @) is the
uniform distribution over {0, 1}", it is known that ©(2"/2/¢?) samples are necessary (and sufficient)
for goodness-of-fit testing [BFF101, Pan08, VV14].

Our goal in this paper is to leverage combinatorial structure in the specification of P and @ to
get around these exponential lower bounds. We are motivated by prior work of Daskalakis, Dikkala
and Kamath [DDK16|, which initiated the study of testing problems for structured distributions.
They considered testing problems for Ising models, showing that goodness-of-fit and independence
testing (testing if an Ising model is a product measure over {0,1}") can be solved efficiently from
poly(n/e) samples. Their bounds hold for Ising models defined on arbitrary graphs, and for the
stronger notion of symmetric Kullback-Leibler divergence (which upper bounds (the square of) total
variation distance). In particular, their results are able to side-step the afore-described exponential
lower bounds for a broad and important class of probability distributions.

Motivated by this recent work on the Ising model, in this paper we study testing problems on
Bayesian networks, which is a versatile and widely used probabilistic framework for modeling high-
dimensional distributions with structure. A Bayesian network specifies a probability distribution
in terms of a DAG G whose nodes V' are random variables taking values in some alphabet ». To
describe the probability distribution, one specifies conditional probabilities Py, X1, (xy|zm, ), for all
vertices v in G, and configurations x, € ¥ and zy, € X", where II, represents the set of parents of
v in G, taken to be () if v has no parents. In terms of these conditional probabilities, a probability
distribution over £V is defined as follows:

P(x) = HPXu\Xnv (xy|z1,), for all z € »V.

A special case of a Bayesian network is, of course, a Markov chain, where the graph G is a
directed line graph. But Bayesian networks are much more versatile and are in fact universal. They
can interpolate between product measures and arbitrary distributions over £V as the DAG becomes
denser and denser. Because of their versatility they have found myriad applications in diverse fields
of application and study, ranging from probability theory to engineering, computational biology,



and law. Our goal is to determine whether the basic tasks of goodness-of-fit and identity testing
for these fundamental distributions are actually testable. To achieve this, we develop a deeper
understanding into the statistical distance between Bayesian networks.

Results and Techniques. Given sample access to two Bayes nets P and ) on n variables taking
values in some set 3, we would like to decide whether P = @ vs 6(P, Q) > €, where (P, Q) denotes
the total variation distance between P and (). To build our intuition, suppose that P and @) are
defined on the same DAG, and @ is given. Our goal is to test the equality of P and @, with fewer
than O(|X|"/?/€?) samples required by standard methods, by exploiting the structure of the DAG.

A natural way to exploit the structure of the DAG is to try to “localize the distance” between
P and . It is not hard to prove that the total variation distance between P and () can be upper
bounded as follows:

8(P,Q) < 3Py, Qquyum,) + > (P, Qu,),

where, as above, I1,, denotes the parents of v in the DAG, if any. The sub-additivity of total variation
distance with respect to the neighborhoods of the DAG allows us to argue the following:

o If P =@, then Pp,yum, = Quum,, for all v.
o If 6(P,Q) > ¢, then there exists some v such that §(Pp,yurm, , Quyur,) > €/2n.

In particular, we can distinguish between P = @ and §(P, Q) > € by running n tests, distinguishing
Pryon, = Quum, Vs 6(Ppum, , Quuum,) = €/2n, for all v. We output “P = Q" if and only if
all these tests output equality. Importantly the distributions Pp,ym, and Qp.yum, are supported
on [{v} UII,| variables. Hence if our DAG has maximum in-degree d, each of these tests requires
O(|2|(@+1)/2n2 /e2) samples. An extra O(logn) factor in the sample complexity can guarantee that
each test succeeds with probability at least 1 — 1/3n, hence all tests succeed simultaneously with
probability at least 2/3. Unfortunately the quadratic dependence of the sample complexity on n is
sub-optimal.

A natural approach to improve the sample complexity is to consider instead the Kullback-Leibler
divergence between P and Q. Pinsker’s inequality gives us that KL(P||Q) > 26%(P,Q). Hence,
KL(P||Q) = 0, if P = Q, while KL(P||Q) > 2¢2, if §(P,Q) > e. Moreover, we can exploit the chain
rule of the Kullback-Leibler divergence to argue the following:

o If P =@, then Pp,yum, = Qfuum,, for all v.
o If §(P,Q) > ¢, then there exists some v such that KL(Ppyorm, ||Quyum,) > 2€2/n.

Hence, to distinguish P = @ vs §(P,Q) > e it suffices to run n tests, distinguishing Pryon, =
Quyum, vs KL(Ppyum, Qqyum,) = 2¢2/n, for all v. We output “P = Q" if and only if all
these tests output equality. Unfortunately, goodness-of-fit with respect to the Kullback-Leibler
divergence requires infinitely many samples. On the other hand, if every element in the support of

Q{vyum, has probability 2 <|2€2‘+fl>, it follows from the x2-test of [ADK15| that Poyom, = Quyu,

vs KL(Ppyom, [|Qquyum,) > 2€¢2/n can be distinguished from O(]Z\d%ln/ez) samples. An extra
O(logn) factor in the sample complexity can guarantee that each test succeeds with probability at
least 1 —1/3n, hence all tests succeed simultaneously with probability at least 2/3. So we managed
to improve the sample complexity by a factor of n. This requires, however, preprocessing the Bayes-
nets so that there are no low-probability elements in the supports of the marginals. We do not know
how to do this pre-processing unfortunately.



So, to summarize, total variation distance is subadditive in the neighborhoods of the DAG,
resulting in O(n?/e?) sample complexity. Kullback-Leibler is also subadditive and importantly
bounds the square of total variation distance. This is a key to a O(n/e?) sample complexity, but
it requires no low probability elements in the support of the marginals, which we do not know how
to enforce. Looking for a middle ground to address these issues, we study Hellinger distance, which
relates to total variation distance and Kullback-Leibler as follows:

5(P,Q) < V2-H(P,Q) < KL(P||Q).

One of our main technical contributions is to show that the square Hellinger distance between two
Bayesian networks on the same DAG is subadditive on the neighborhoods, namely:

H*(P,Q) <> H*(Pgyom,, Qo )- (1)

The above bound, given as Corollary 2.4, follows from a slightly more general statement given in
Section 2 as Theorem 2.1. Given the sub-additivity of the Hellinger distance and its relation to
total variation, we can follow the same rationale as above to argue the following:

o If P=@Q, then Praun, = Quyum,, for all v.
o If §(P,Q) > €, then there exists some v such that H?(Pp,yom, , Qeyum,) > €/2n.

Hence, to distinguish P = @ vs 0(P,Q) > e it suffices to run n tests, distinguishing Py, =
Qvyum, VS H2(P{U}UHHHQ{U}UHU) > €2/2n, for all v. Importantly goodness-of-fit testing with
respect to the square Hellinger distance can be performed from O(n/e?) samples. This is the key
to our testing results.

While we presented our intuition for goodness-of-fit testing and when the structure of the Bayes-
nets is known, we actually do not need to know the structure and can handle sample access to both
distributions. Our results are summarized below. All results below hold if we replace total variation
with Hellinger distance.

e Given sample access to two Bayes-nets P, () on the same but unknown structure of maximum
in-degree d, O(|%|3/4(d+1) . %) samples suffice to test P = Q vs 6(P, Q) > e. See Theorem 4.2.
The running time is quasi-linear in the sample size times O(n®*1). If the DAG is known, the
running time is quasi-linear in the sample size times O(n).

e Given sample access to two Bayes-nets P, () on possibly different and unknown trees, ON(\Z]“-
%) samples suffice to test P = Q vs 6(P, Q) > €. See Theorem 4.3. The running time is quasi-
linear in the sample size times O(n%). The dependence of our sample complexity on n and
e is optimal up to logarithmic factors, as shown by [DDKI16], even when one of the two
distributions is given explicitly.

Proving this result presents the additional analytical difficulty that two Bayes-nets on different
trees have different factorization, hence it is unclear if their square Hellinger distance can be
localized to subsets of nodes involving a small number of variables. In Section 3, we prove that
given any pair of tree-structured Bayes-nets P and @, there exists a common factorization of
P and @ so that every factor involves up to 6 variables. This implies an useful subadditivity
bound for square Hellinger distance into n subsets of 6 nodes. See Theorem 3.1, and the
underlying combinatorial lemma, Lemma 3.1.



e Finally, our results above were ultimately based on localizing the distance between two Bayes-
nets on neighborhoods of small size, as dictated by the Bayes-net structure. As we have
already mentioned, even if the Bayes-nets are known to be trees, and one of the Bayesnets
is given explicitly, O(n/e?) samples are necessary. Pushing the simplicitly of the problem to
the extreme, we consider the case where both P and () are Bayes-nets on the empty graph,
@ is given, and ¥ = {0, 1}. Using a non-localizing test, we show that the identity of P and
Q can be tested from O(y/n/€?) samples, which is optimal up to constant factors, as shown
by |[DDK16]. See Theorem 4.4.

The proof of this theorem also exploits the subadditivity of the square Hellinger distance.
Suppose pi,...,pn and qi,...,q, are the expectations of the marginals of P and ) on the
different coordinates, and without loss of generality suppose that ¢; < %, for all 7. We use

the subadditivity of square Hellinger to show that, if 6(P, Q) > €, then ), (171;%)2 > €2/2.

02
Noticing that ), % is an identical expression to the y? divergence applied to vectors
(p1,--.,pn) and (qi,...,qn), we reduce the problem to a x?-test, mimicking the approach
of [ADK15]. We only need to be careful that >, p; and ), ¢; do not necessarily equal 1, but

this does not create any issues.

Learning vs Testing. A natural approach to testing the equality between two Bayes-nets P and
Q is to first use samples from P and () to learn Bayes nets P and Q that are respectively close
to P and Q, then compare P and Q offline, i.e. without drawing further samples from P and
(). While this approach has been used successfully for single-dimensional hypothesis testing, see
e.g. [ADK15], it presents analytical and computational difficulties in the high-dimensional regime.
While learning of Bayes nets has been a topic of intense research, including the celebrated Chow-
Liu algorithm for tree-structured Bayes-nets [CL68|, we are aware of no computationally efficient
algorithms that operate with O(n /€?) samples without assumptions. In particular, using net-based
techniques [DLO1, DK14, AJOS14], standard calculations show that any Bayes-net on n variables
and maximum in-degree d can be learned from O(%%‘d) samples, but this algorithm is highly-
inefficient computationally (exponential in n). Our algorithms are both efficient, and beat the
sample complexity of this inefficient algorithm. On the efficient algorithms front, we are only
aware of efficient algorithms that provide guarantees when the number of samples is >> %E‘d or
that place assumptions on the parameters or the structure of the Bayes-net to be able to learn it
(see e.g. [ATHW12, Brel5| and their references), even when the structure is a tree [CL68|. Our

algorithms do not need any assumptions on the parameters or the structure of the Bayes-net.

Roadmap. In Section 2 we present our proof of the square Hellinger subadditivity for a general
Markov structures, as Theorem 2.1. We give corollaries of this theorem to product measures, Markov
Chains, tree structured Bayes-nets, and general Bayes-nets. Section 3 presents our combinatorial
result that two tree-structured Bayes-nets on different graphs always have a common factorization,
whose factors only involve up to 6 variables. Lastly, Section 4 presents all our testing results.

2 Localization Using Hellinger

We first define the Hellinger distance and its square.



Definition 2.1 (Hellinger). For two discrete distributions p = (p1,...,px) and ¢ = (¢1,. .., 9K)
over a domain of size K, their Hellinger distance is defined as

K

1
H(p,q) = —=+| >_(VPr — Var)*.
V2\i=
The squared Hellinger distance is therefore
1 K K
2 _ 2 _
H"(p.q) = 5};(\/19—— V) =1- l;\/pqu-

The Hellinger distance always takes value in [0, 1]. Compared with the total variation distance
d(p,q) = %Zszl |pk — qr|, Hellinger distance satisfies the following inequalities:

H%(p,q) < d(p.q) < V2H(p,q).

We now introduce our main techinical tool in full generality, showing that the squared Hellinger
distance is subadditive across components in the factorization of the distributions into products of
conditional probability distributions.

Theorem 2.1 (Squared Hellinger Subadditivity). Let X = {X,..., X, } be a set of random
variables that is partitioned disjointedly into a set of super random variables Xg,, ..., Xg,, where
Xs, = {Xities,- Suppose that P and Q are joint distributions on the n variables with common
factorization structure

L
P(z) = PXSI (zs,) HPXSI\XHZ (xSL ’xﬂz)v
1=2
L
Q(x) = Qxg, (vs,) [ [ Qg x0n, (w1 |7m),
1=2

where II; C S1U---US;_1 corresponds to the set of variables conditioned on which Xg, is independent
from everything else in the previous super variables. Then

Hz(P’ Q) < Hz(PXsvaXsl) + Hz(PX527Xn2’QXSQ7Xn2) + ot H2(PXSL7XHL7QXSL,XHL)7

where we use P and @ with subscripts to represent their marginalizations onto the corresponding
set of variables.

Proof. We first prove a simple case. Suppose P and @ are joint distributions on (X,Y,Z) with
Markov structure X — Y — Z, so that

P(z,y,2) = Px(z) Py x (y|7) Pz)y (2]y),
Q(r,y,2) = Qx()Qy|x (y|z)Qzy (2]y)-

Then we have
H*(P,Q) < H*(Px.y,Qxy) + H*(Py.z,Qy.2).

To show this, consider the following chain of (in)equalities (where we suppressed subscripts when
it is clear):

Hz(Pv Q) =1- Z \/P(x,y,z)Q(x,y,z)

w7y7z




—1- Y VP PG 1))
—1— i VP, 9)Q(,y) Z VP(y)Q(2ly)
-1-% Plowy) + Q) zm
+Z( @2 OEY) /PG 5)Q6y) > VPRI
. Z s z VPEIQGTY)

Z (m;c,y) Q@) Y. VPEWQGE)
<1 by Cauchy Schwarz

<1- Y VPORW Y VECREN + Y 5 (VPG - VA )
Y z Ty
:1_2 P(y7Z)Q(y7Z)+%Z<\/P(ZE,y)—\/Q(l‘,y))2

=1-(1-H*(Pyz Qvz) + H*(Pxy,Qxy)
= H*(Pxy,Qxy) + H*(Py.z,Qv.z).

Proving the theorem for general P and (Q entails applying the simple case repeatedly. First
consider the three-node Markov chain

{Xitie(sivus, o\, — X1, — Xs, -
We apply the simple case to get
2 2 2
H*(P,Q) < H*(Pxg,,..xs, ,»@xs,,..Xs, ,) +H (Pxs, xu,  @xs, ,Xu, )
Next consider the three-node Markov chain
{X"}ie(SlU“-USsz)\HLq = X, , = Xs, -
We can similarly get
2 2
H(Pxs,,..xs, +Qxs,..xs, ) S H (Pxg...Xs, Qx5 .. X5, ,)
2
+H (PXSLA gy QXSLA gy )’

If we continue this process and assemble everything at the end, we obtain

Hz(P’ Q) < H2(PX51 ) QXsl) + Hz(PX527Xn2’QXSQ7Xn2) + ot H2(PXSL7XHL7QXSL,XHL)7
proving the general case. [ |

The subadditivity of the squared Hellinger distance across components immediately allows us
to localize the discrepancy onto one component, a result that is crucial to our efficient identity tests
for structured high-dimensional distributions in Section 4.



Theorem 2.2 (Localization). Using the same notation as in Theorem 2.1, if P and Q satisfy
H?(P,Q) > ¢, then there exists some | such that

€

Hz(PXSl,XHlaQXSVXHl) 2 E

In the rest of this section, we state several interesting special cases of our results. We first
consider when P and @) are product distributions, recovering the well-known result that squared
Hellinger is subadditive across individual variables.

Corollary 2.1 (Product). Suppose P and Q are joint distributions on X = {Xy,...,X,} that
factorize completely:

P(z) = HPXz (@i), Qz) = HQXz(xl)
i=1 1=1

Then
H*(P,Q) < H*(Px,,Qx,) + -+ H*(Px,,Qx,).

In particular, if H*(P,Q) > ¢, then there exists some i such that
€

Next, we consider when P and () have a common Markov chain structure, or a common tree
graphical model structure, for which we can localize the discrepancy onto an edge.

Corollary 2.2 (Markov Chain). Suppose P and @ are joint distributions on the Markov chain
X=X1—->Xo— - = X,

n
P(z) = Px, (z1) H Py x,, (wilwiz1),
i=2

Q(z) = Qx, (1) H Qx,1x,_, (ilwi—1).

1=2

Then

H*(P,Q) < H*(Px,,Qx,) + H*(Px,x,Qx1.x:) +  + H*(Px,_y %0 QX0 1,X)-

In particular, if H*(P,Q) > ¢, then there exists some i such that
2 €
H (PXi—leinXi—l,Xi) > ;

Corollary 2.3 (Tree). Suppose P and Q are joint distributions on X = {X1,...,X,} with a
common tree structure:

P(z) = Px, (21) HPXZ-\XM. (zilzm),
i=2

Q) = Qx, (21) [ [ @x.1x,,, (wils,),
=2

where we assume without loss of generality that the tree is rooted at X1 and the nodes are ordered
in a breadth first search manner away from the root, with X, being the parent of X;. Then



H*(P,Q) < H*(Px,,Qx,) + H*(Pxyx,,:Qxo.x,,) + -+ + H(Px, X, Qx,.xn,)-

In particular, if H*(P,Q) > ¢, then there exists some i such that

H2(PX27X7\'1 Y Q-XZ7X7\'Z) Z

Sl

Moreover, we have the more general case of Bayesian network.

Corollary 2.4 (Bayes-net). Suppose P and Q are joint distributions on X = {Xq,..., X, } with
a common Bayes-net structure:

n
P(z) = Px, (1) H Py, xy, (wil7m,),
i=2

Q(x) = Qx, (x1) [ [ @x,xm, (@il em,),

i=2
where we assume the nodes are topologically ordered, and Xy, is the set of parents of X;. Then
Hz(P’Q) < H2(PX1’QX1) + Hz(PX%XnQ’QX%XnQ) + o Hz(PXn,XnanXn,Xnn)'

In particular, if H*(P,Q) > ¢, then there exists some i such that

H?(Px, x> @x,,%,) >

Sl

Observe that if the Bayes-net structure has in-degree at most d, then we can localize the dis-
crepancy onto a subset of at most d + 1 variables.

Finally, we have the important case in which both P and () have tree structure, but with respect
to different trees. Surprisingly, in this case we still can localize the discrepancy onto a subset of
constant size. This will help us design efficient identity tests when the underlying tree structures
are unknown and distinct. For this, we need to take a combinatorial detour.

3 Ordering Nodes For Two Trees

The main goal in this section is a combinatorial lemma stating that given any two trees on the same
set of nodes, there is a way to order the nodes so that each node is "dependent" on only constantly
many previous nodes, with respect to both trees. We start with a definition.

Definition 3.1 (Dependent Set). Suppose we have a tree 7 and an ordering of its nodes
X1,...,Xp. Let Dy(X;), the Dependent Set of node X; with respect to 7, be the set of nodes
X, k < i, such that the (shortest) path between X; and X} in 7 does not pass through any other
X, with j <.

Notice that D7 (X;) separates X; from all the other nodes coming before it. If we regard the
nodes as variables, and 7 as the underlying tree graphical model, then, conditioning on Dy (X;),
X, is independent from all the other variables coming before it. We want those conditioning sets to
be small, which motivates the following lemma.

Lemma 3.1 (Ordering). Given two trees Tp and Tg on a set X of n nodes, we can order the
nodes into X1, ..., X, so that Dy, (X;) U D, (X;) has cardinality at most 5, for all i.



Proof. We make an auxiliary definition: Given a tree 7 on X, and any S C X, T \ S consists
of a set of connected components (subtrees, in fact). For each such component 77, we define its
boundary to be the set of nodes in S adjacent to it.

First, we root 7p and 7¢, independently and arbitrarily. We then pick the nodes one by one,
maintaining the following key invariant after each step i: Each component 7}/ of Tp \ {X1,..., X;}
and Té of To \ {Xi,...,X;} has boundary size at most 2, apart from one exception (aggregated
across both Tp and 7g), whose boundary size can be 3.

If this invariant is indeed maintained throughout the picking process, then the lemma is correct.
To see why, for each 4, suppose that X;i lies in the component T/ of 7Tp \ {Xi,...,X;}, and in
the component 7/ of 7o \ {X1,...,X;}. Then, D7, (X;41) is exactly the boundary of 7p, and
D7, (Xi+1) is exactly the boundary of 7). Therefore, D7, (X;t+1) U D7, (Xi+1) has size at most 5.

So we only need to show that the invariant can always be maintained. This can be done
inductively. Suppose the invariant holds after picking X, ..., X;. WLOG, suppose that component
Tp5 of Tp\ {X1,...,X;} is the single exception with boundary size allowed up to 3 (if there is no
exception, then just pick 75 to be any component).

Apart possibly from the parent (in 7p) of the root of 77, each node in the boundary of 77 must
be a child of some node in 7. Consider the number of such nodes. If there is none, then we can
pick X; 41 to be any node in 75. If there is one, then we pick X;11 to be its parent. If there are two,
then we pick X;y1 to be their lowest common ancestor. Finally, if there are three, consider their
pairwise lowest common ancestors. We pick X1 to be the lowest of those. In each case, 77 will be
turned into one or more components each with boundary size at most 2, while the other components
of Tp \ {X1,...,X;} are undisturbed in passing to 7Tp \ {X1,..., X;+1}. Moreover, there will be at

most one component of boundary size 3 of Tg \ {Xi,...,Xi41} (spawned from the component of
To \ {X1,...,X;} containing X ;). Thus, the invariant is maintained, and the proof of the lemma
is complete. |

Using Lemma 3.1, we can prove our discrepancy localization result when the two tree-structured
distributions have distinct underlying trees.

Corollary 3.1 (Two Trees). Suppose P and Q are tree-structured joint distributions on a set X
of n wariables, with possibly distinct underlying trees. Then there exists an ordering of the nodes
into X1,..., Xy, and sets II; C {1,...,i — 1} of cardinality at most 5 for all i, such that P and Q
have the common factorization

P(z) = Px, (z1) HPXZ-\XHZ. (zilrn,),
i=2

Q(x) = Qx, (x1) [ [ @x,xn, (wilm,).

i=2
Consequently,
H2(P7Q) < H2(PX17QX1) + H2(PX27X1'[27QX27X1'[2) + o+ H2(PXn,XnnaQXn,Xnn)’

In particular, if H*(P,Q) > ¢, then there exists some i such that

H2(PX2'7XHZ- ) QszXni) >

S

In other words, we can localize the discrepancy onto a subset of at most 6 variables.

10



Proof. Let Tp and Tg be the underlying tree structures of P and @Q, respectively. We adopt the
node ordering obtained from Lemma 3.1, and choose II; to be set of indices corresponding to the
nodes in D7, (X;) U D7, (X;), which has cardinality at most 5 for all i.

For each i, the nodes Dy, (X;) separate X; from {X1,...,X;_1}\ D7, (X;) in Tp. Consequently,
conditioning on D7, (X;), X; is independent from {X1, ..., X;_1 }\ D75 (X;) for distribution P. Since
X1, O D7, (X;), we also have that conditioning on Xiy,, X, is independent from { X1, ..., X;_1 }\ X,
for P. Since this is true for all ¢, P has the desired factorization into a product of conditionals. The
argument for @) is completely symmetric.

The rest of the Corollary follows from Theorem 2.1 and Theorem 2.2. |

4 Applications to Identity Testing

In this section, we use the tools developed in Sections 2 and 3 to construct efficient identity tests
for structured high-dimensional distributions. Even though we are ultimately interested in total
variation distance, the bulk of our manipulations, as well as the tests administered after localization,
are in (squared) Hellinger distance. So we first recall a test for (squared) Hellinger distance.

Lemma 4.1 (Hellinger Test [DK16]|). Suppose we have sample access to unknown distributions P
and Q over the same set of size D. Then, from O (min (D2/3/68/3, D3/4/62)) samples from each, we
can distinguish between P = Q vs. H%(p,q) > € with error probability at most 1/3. This probability
can be made an arbitrary n at a cost of an additional factor of O(log1/n) in the sample complezity.

We now have everything ready for our identity tests. Recall that § denotes the total variation
distance.

Theorem 4.2 (Identity-Testing for Bayes-nets). Suppose we have sample access to unknown
joint distributions P and @ on variables X = {Xy,..., X, } with a known and common Bayes-net
structure:

n
P(z) = Px,(z1) HPXZ-|XH1. (x|, ),
i=2

Q(x) = Qx, (x1) [ [ @x,xm, (wilem,),

1=2

where we assume the nodes are topologically ordered, X, is the set of parents of X;, and every
variable takes values in some alphabet 32 of size K. Suppose each 11; has size at most d. Then, from
O(K3/4(d+1) . %) samples and in O(K3/4(d+1) . 2—22) time, we can distinguish between P = @ wvs.
d(P,Q) > € with error probability at most %

Similarly, suppose that we are given sample access to unknown joint distributions P and @
on a common but unknown Bayes-net structure whose maximum in-degree d is known. From
O(K3/4(d+1) . %) samples and in O(K3/4(d+1) g) time, we can distinguish between P = @Q
vs. 0(P,Q) > € with error probability at most %

Proof. We first prove the first part of the theorem, where the shared structure of the Bayes-nets is
known. For each i = 1,...,n, we run the Hellinger test to distinguish between

62

2
P, xn, = Qxixn, v H(Px; xn,» @xixn,) 2 o

11



We return “P = Q" if and only if each of those n subtests returns equality.

Note that the domain size for each subtest is at most K%+, With the right choice of O(logn)
factor in our sample complexity, Lemma 4.1 implies that each of the n sub-tests has error probability
at most % Consequently, with probability at least %, all those subtests give correct answers (when
H?(Px,, Xn,» @x;,xn,) 18 strictly between 0 and %, either answer is deemed correct). It suffices to
show that our test is correct in this situation.

If P=Q, then Px, x; = Qx,; xy for every i. So every subtest will return equality, and we will
return “P = Q". ' '

If 6(P,Q) > ¢, then H(P,Q) > -%, and so H?(P,Q) > é By Corollary 2.4, there exists some

i such that H? (Px; X1, QX x01.) = 5 Consequently, the ith subtest will not return equality, and
we will return “0(P, Q)Z >

The running time bound follows from the fact that we perform n Hellinger tests, each of which
takes time quasi-linear in the sample size.

SI

The second part of our theorem follows similarly. From the argumentation above it follows that,
if §(P, Q) > e, then there exists some set S of variables of size |S| = d+1 such that H?(Px,, Qxg) >
%. On the other hand, it is obvious that, if P = @, then for all sets S: Px, = (x4. So we can
run the Hellinger test on every set S of d 4 1 variables to distinguish between:

62

¢ =Qxg Vs HZ(PXS,QXS) > o
We return “P = @7 if and only if all of these tests return equality. Since we are running O(n+1)
Hellinger tests, we want that each has success probability 1 — n{~(4) to do a union bound. This
results in an extra factor of O(d) in the sample complexity compared to the known structure case
analyzed above, where we only performed n Hellinger tests. The running time bound follows because
we run O(n®t1) tests, each of which takes quasi-linear time in the sample. |

Theorem 4.3 (Identity-Testing for Tree Structured Bayes-nets). Suppose we have sample access
to unknown Bayes-nets P and Q on variables X = {Xy,...,X,} with unknown, and possibly
distinct, tree structures. Suppose that every variable takes values in some alphabet 3 of size K.
Then, from O(K*®. %) samples and in O(K*5. n 2) time, we can distinguish between P = @ vs.
(P, Q) > € with error probability at most 1. The dependence of the sample complexity on n and €
18 tight up to logarithmic factors.

Proof. For each subset Xg of at most 6 variables, we run the Hellinger test to distinguish between

2
PXS = QXS VS. H (PXsaQXs) >

N[
Y|

We return “P = Q" if and only if each of those ©(n®) subtests returns equality.

Note that the domain size for each subtest is at most K% With the right choice of O(logn)
factor in our sample complexity, Lemma 4.1 implies that each of the sub-tests has error probability
at most 5 5. Consequently, with probability at least 2 5, all those subtests give correct answers. It
suffices to show that our test is correct in this situation.

If P=Q, then Px, = Qx4 for every Xg. So every subtest will return equality, and we will
return “P = Q".

If 6(P,Q) > ¢, then H(P,Q) > -, and so H*(P,Q) > 2. By Corollary 3.1, there exists some

Xg of size at most 6 such that H2(PXS, Qxs) > 5 < This will be detected by one of the subtests,
and we will return “0(P, Q) > €"

12



The running time bound follows from the fact that we perform ©(n%) Hellinger tests, each of
which takes time quasi-linear in the sample size.

The tightness of the sample complexity follows directly from Theorem 18 and Remark 2 of [DDK16].
They show that, given sample access to a ferromagnetic Ising model P, which is known to have a
tree structure, one needs 2(n/e?) samples to distinguish whether P equals the uniform distribution
over {0,1}"™ vs P being e-far in total variation distance from the uniform distribution. Since Ising
models on trees and Bayes-nets on trees with binary alphabets are equivalent, the lower bound
follows. |

Theorem 4.4 (Goodness-of-fit for Product Distributions over the Hypercube). Suppose P
and Q are product distributions over {0,1}"™. We are given sample access to P, while Q is known

exactly. Then, from O (g) samples and in O ( > time, we can distinguish between P = Q wvs.
d(P,Q) > € with error probability at most % The sample complezity is optimal up to O(1) factors.

Proof of Theorem 4.4: We start with a useful lemma:

Lemma 4.5. If X and Y are Bernoulli random variables with expectations p and q, then

_ \2
Hz(X,Y) S (p ZQ) (1 +T1q>

Proof of Lemma 4.5: Suppose p = q + x for some x. From the definition of Hellinger distance we
have that:

HYX,Y)=1-q (g+z)—/1—q)-1—-q—2)

=1—g¢q- \/:— 1—q \/7

<1l-gq- <1+%—%>—( —q)- (1 2(1:C_q)_2(117_2q)2>
2 2 22 (1 1

“Stamg e a )

The inequality in the above derivation follows from the following lemma, whose simple proof is
omitted, and the realization that the constraints p,q € [0,1] and p = ¢ + « imply that % > —1 and

- > -1

Lemma 4.6. For allt > —1: \/1+1t >1+———.
[ |

Now let us turn to the proof of Theorem 4.4. Suppose distribution P samples a collection
X = (X1,...,X,) of mutually independent binary random variables, and @ samples a collection
Y = (Y1,...,Y,) of mutually independent binary random variables. Suppose that E[X;] = p; and
E[Y;] = ¢;. It follows from Corollary 2.1 and Lemma 4.5

Next, we can assume without loss of generality that for all i: ¢; € [5,1/2], for some large
enough constant ¢ to be chosen later. Indeed:

13



e Suppose that some i satisfies ¢; > 1/2. Then we can define distributions P’ and @’ that sample
(X1, 0, Xi1, 1 - X, X, ..o, X)) and (Yq, ..., Y1, 1-Y;, Y14, ..., Y,) respectively where
X ~ Pand Y ~ @Q, and test the identity of P’ with @'. This suffices since §(P, Q) = 6(P',Q’).
As this can be done for all coordinates 7 such that ¢; > 1/2, without affecting the total variation
distance, we can assume without loss of generality that @ satisfies ¢; € [0,1/2] for all i.

e Now, suppose that some i satisfies ¢; < <. We can define distributions P’ and @’ that sample
(X1 Z1,...,.X,® Z,) and (Y1 @ Wh,....Y, @ W,), where X ~ P, Y ~ Q, Z1,...,Z,
are mutually independent Bernoullis that are independent of X, Wi,..., W,, are mutually
independent Bernoullis that are independent of Y, and @ is the XOR operation between
bits. For all 4, if ¢; < £, both Z; and W; are sampled from Bernoulli(Z), otherwise they
are sampled from Bernoulli(0). Clearly, both P’ and @’ remain product distributions over
{0,1}". Moreover, for all i, E[Y; & W;] > £ (as long as 2 < 1, which we will assume
for large enough ¢). Moreover, it is clear that, if P = @, then P’ = @Q'. It is also easy
to see that 0(P, P') < £ and 0(Q, Q") < <. To show that §(P,P') < £ we need to exhibit
a coupling between vectors X ~ P and X’ ~ P’ such that the probability that X # X’
under the coupling is at most ¢. This is trivial to obtain and, in fact, we have already given
it. Suppose that X ~ P, Zq,...,Z, are Bernoulli random variables defined as above, and
X' =X19 21,...,X,® Z,). Clearly, in the event that Z; = ..., Z, = 0, which happens
with probability at least 1 — £, X = X', proving that under our coupling the probability that
X # X' is at most £ and establishing 0(P, P") < £. We can similarly show that 6(Q, Q") < £.
From these and the triangle inequality, it follows that if §(P, Q) > €, then §(P', Q') > € — %
Hence to distinguish between P = @ and §(P,Q) > e, it suffices to be able to distinguish
between P’ = Q" and §(P', Q') > ¢ — 2—; =(1- %)e So making the assumption ¢; > =, only
degrades by a constant factor the total variation distance between the distributions we need
to distinguish.

Now let us get to the core of our proof. Under our assumption that ¢; < 1/2 for all i, Eq (3)
implies that:

H2(P, Q) < Z (pi ;iQi)2 ) (3)

It follows from the above that:

. ifP:Q,thenzi(pi;%F:o;

o if 6(P,Q)) > ¢, then ), (191;7:11-)2 > €2/2 (where we used that v2H(P,Q) > 6(P,Q)).

Observation: Notice that, if Y. p; =1 and ), ¢; = 1, we could interpret p1,...,p, as a distri-
bution p sampling i € {1,...,n} with probability p; and we could similarly define distribution ¢ to
sample ¢ € {1,...,n} with probability ¢;. Then >, (pi;%y = x?(p,q). Inspired by this observa-
tion, our analysis will mimick the analysis of [ADK15]|, who provided algorithms for distinguishing
whether \2(p, ) < €2/c1 vs X2(p,G) > €2/ca, for constants ¢y, co (under the assumption ¢; > €/cn,
for some constant ¢). Their algorithm uses O(y/n/e?) samples, which is our goal here.

Inspired by our observation, our algorithm is the following. For m > CIE‘Q/E, we draw M; ~
Poisson(m) independently for all i. Using max; M; many samples from P, we can obtain M;
independent samples from the i-th coordinate of P. Let N; denote how many out of these M; samples
are 1. The way we have set up our sampling guarantees that, for all ¢, N; ~ Poisson(m - p;), and
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moreover the variables Ny, ..., N, are mutually independent. Finally, by the strong concentration

2ec’ /m
of the Poisson distribution, max; M; < 2em, with probability at least 1—3- (%) <. (If max; M; >
2em, we can have our test output a random guess to avoid asking more than 2em samples from P.

As we are shooting for error probability 1/3 we can accommodate this.)

Let us now form the following statistic, mimicking [ADKI15]: Z = )", (Ni%w. It was shown

in [ADK15|, that E[Z] =m ), (pi;ifi)z. It can easily be checked that this equality is unaffected by
the values of ). p; and ), ¢;. Hence:

o if P =(Q), then E[Z] =0;
o if §(P,Q) > ¢, then E[Z] > me?/2.
It was also shown in [ADK15]|, that
2
Var[Z] < 4n + 9vnE[Z] + gnl/‘*E[Z]?’/?
This bound holds as long as m > ¢/\/n/e? and ¢; > €/cn, for all i, and ¢, ¢ are large enough. Again,

the above bound remains true even if ) . p; and ), ¢; do not equal 1. Hence:

o if P = (), then E[Z] =0, hence Var[Z] < 4n < C%mze‘l;

o if 6(P,Q) > ¢, then E[Z] > me2/2 > “Y% hence Var[Z] < 1SE[Z)2 + BE[Z]? + 5?ng[212.

The theorem follows from the above via an application of Chebyshev’s inequality, and choosing ¢/
large enough.

The tightness of our sample complexity follows directly from Theorem 17 and Remark 2 of [DDK16|.
|

References

[AAKT07] Noga Alon, Alexandr Andoni, Tali Kaufman, Kevin Matulef, Ronitt Rubinfeld, and
Ning Xie. Testing k-wise and almost k-wise independence. In Proceedings of the thirty-
ninth annual ACM symposium on Theory of computing (STOC), 2007.

[ADK15|] Jayadev Acharya, Constantinos Daskalakis, and Gautam Kamath. Optimal testing for
properties of distributions. In Advances in Neural Information Processing Systems 28,
NIPS ’15, pages 3577-3598. Curran Associates, Inc., 2015.

[AJOS14] Jayadev Acharya, Ashkan Jafarpour, Alon Orlitsky, and Ananda Theertha Suresh. Sort-
ing with adversarial comparators and application to density estimation. In Proceedings
of the 2014 IEEE International Symposium on Information Theory, ISIT 14, pages
1682-1686, Washington, DC, USA, 2014. IEEE Computer Society.

[ATHW12| Animashree Anandkumar, Vincent YF Tan, Furong Huang, and Alan S Willsky. High-
dimensional structure estimation in ising models: Local separation criterion. The Annals
of Statistics, pages 1346-1375, 2012.

[BEFT01] Tugkan Batu, Eldar Fischer, Lance Fortnow, Ravi Kumar, Ronitt Rubinfeld, and
Patrick White. Testing random variables for independence and identity. In Proceedings
of FOCS, 2001.

15



[BFRV11]

[BKROA]

[Brel5|

[CDGR16]

[CL68]|

[DDK16]

[DK14]

[DK16]

IDLO1]

[Pan08|

[RX10]

[VV14]

Arnab Bhattacharyya, Eldar Fischer, Ronitt Rubinfeld, and Paul Valiant. Testing
monotonicity of distributions over general partial orders. In Innovations in Computer

Science (1CS), 2011.

Tugkan Batu, Ravi Kumar, and Ronitt Rubinfeld. Sublinear algorithms for testing
monotone and unimodal distributions. In Proceedings of the 36th Annual ACM Sympo-
sium on the Theory of Computing, STOC ’04, New York, NY, USA, 2004. ACM.

Guy Bresler. Efficiently learning ising models on arbitrary graphs. In Proceedings of the
Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 15, pages
771-782, New York, NY, USA, 2015. ACM.

Clément Canonne, Ilias Diakonikolas, Themistoklis Gouleakis, and Ronitt Rubinfeld.
Testing Shape Restrictions of Discrete Distributions. In the 33rd International Sympo-
stum on Theoretical Aspects of Computer Science (STACS), 2016.

CK Chow and CN Liu. Approximating discrete probability distributions with depen-
dence trees. Information Theory, IEEE Transactions on, 14(3):462-467, 1968.

Constantinos Daskalakis, Nishanth Dikkala, and Gautam Kamath. Testing Ising Models.
arXiv, 2016.

Constantinos Daskalakis and Gautam Kamath. Faster and sample near-optimal algo-
rithms for proper learning mixtures of Gaussians. In Proceedings of the 27th Annual
Conference on Learning Theory, COLT 14, pages 1183-1213, 2014.

Ilias Diakonikolas and Daniel M. Kane. A new approach for testing properties of discrete
distributions. ArXiV, abs/1601.05557, January 2016.

Luc Devroye and Gabor Lugosi. Combinatorial methods in density estimation. Springer,
2001.

Liam Paninski. A coincidence-based test for uniformity given very sparsely sampled
discrete data. Information Theory, IEEE Transactions on, 54(10):4750-4755, 2008.

Ronitt Rubinfeld and Ning Xie. Testing non-uniform k-wise independent distributions
over product spaces. In the 37th International Colloquium on Automata, Languages and

Programming (ICALP), 2010.

Gregory Valiant and Paul Valiant. An automatic inequality prover and instance optimal
identity testing. In Proceedings of the 55th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 14, pages 51-60, Washington, DC, USA, 2014. IEEE
Computer Society.

16



	1 Introduction
	2 Localization Using Hellinger
	3 Ordering Nodes For Two Trees
	4 Applications to Identity Testing

