Heritable plant phenotypes track light and herbivory levels at 1 fine spatial scales 2 3 4 Humphrey P. T.^{1,3,4,#}, Gloss A. D.^{2,3,4,#}, Frazier J.⁴, Nelson–Dittrich, A. C.³, Faries S.⁴, & N. K. Whiteman^{5*} 5 6 7 ¹Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138 ²Ecology and Evolutionary Biology, University of Chicago, Chicago, IL 8 9 ³Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721 ⁴Rocky Mountain Biological Laboratory, Gothic, CO 81224 10 11 ⁵Integrative Biology, University of California, Berkeley, CA 91645 #Equal contribution 12 13 14 *Author for correspondence: N.K.W. e-mail: whiteman@berkeley.edu 15 Telephone: +1 (617) 555-5555 16 Fax: +1 (617) 555-5556 17 18 **Running head:** Habitat-associated divergence in bittercress 19 20 21 **Keywords:** common garden, microgeographic divergence, phenotypic plasticity, 22 shade avoidance syndrome, Brassicaceae 23 24 Plant-animal interactions – Original research

ABSTRACT

25

26 27

28

29

30

31

32

33 34

35

36 37

38

39

40 41

42 43

44

45

46

47

48

53

54

55

56

57

58

59

60

61

62

63

The biotic and the abiotic environment play a major role in shaping plant phenotypes and their geographic distributions. However, little is known about the extent to which plant phenotypes match local patterns of herbivory across finegrained habitat mosaics, despite the strong effect of herbivory on plant fitness. Through a reciprocal transplant-common garden experiment with clonally propagated rhizomes, we tested for local phenotypic differentiation in bittercress (Brassicaceae: Cardamine cordifolia) plants collected across an ecotonal habitat mosaic. We found that bittercress in sunny meadows (high herbivory) and shaded understories (low herbivory) have diverged in heritable growth and herbivore resistance phenotypes. The expression of these differences was habitat dependent. mirroring patterns of adaptive divergence in phenotypic plasticity between plant populations in meadow and understory habitats at broader geographic scales, and showed no evidence for a constraint imposed by growth-defense tradeoffs. Most notably, plants derived from shade habitats exhibited a weaker shade-induced elongation response (i.e., shade avoidance syndrome, SAS) and reduced resistance to herbivory, relative to plants derived from sun habitats, when both were grown in shade common gardens. Greenhouse experiments revealed that divergent SAS phenotypes in shade conditions were expressed in offspring grown from seed as well. Finally, we observed partially non-overlapping flowering phenology between habitat-types in the field, which may be at least one factor that helps to reinforce habitat-specific phenotypic divergence. Altogether, our study illuminates how a native plant may cope with overlapping biotic and abiotic stressors across a finegrained habitat mosaic.

INTRODUCTION

In species distributed across environmental gradients, individuals often exhibit phenotypes that track the local environment (Linhart and Grant 1996; Galloway 2005; Richardson et al. 2014). However, our knowledge regarding the conditions under which these patterns arise and persist has been disproportionately shaped by studies at course-grained rather than fine-grained spatial scales (Richardson et al. 2014). This bias has likely been shaped by the expectation that gene flow among interspersed habitat patches is generally a strong homogenizing force, preventing the establishment of habitat-associated phenotypic and genotypic variation at fine-grained spatial scales (Haldane 1930; Lenormand 2002). Although there is growing evidence that heritable phenotypes track habitat mosaics at fine-grained spatial

scales [i.e. *microgeographic* phenotypic divergence; (Richardson et al. 2014)] we have a limited understanding of the molecular, ecological, and evolutionary processes that facilitate and maintain this variation in nature.

64

65 66

67 68

69

70

71

72 73

74

75

76

77

78

79 80

81 82

83

84 85

86 87

88

89

90 91

92

93

94

95

96 97

98 99

100 101

102

3

Defoliation by insect herbivores exerts strong selection on plant phenotypes (Louda 1984; Prasad et al. 2012; Agrawal et al. 2012). In mustards (Brassicaceae), polymorphisms in genes that modify defensive chemicals underlie adaptation to local herbivore communities (Prasad et al. 2012; Zust et al. 2012), and the magnitude of geographic divergence at such loci is extreme compared to loci across the rest of the genome (Brachi et al. 2015). However, much of the strongest evidence for local adaptation to herbivory is from populations separated by large distances, on the scale of hundreds to thousands of kilometers (km). Although plants were the focus of pioneering research on variation in species distributions (Greig-Smith 1952) and phenotypic and genetic differentiation [reviewed in Linhart (1996)] across finegrained habitat mosaics, relatively little is known about the relationship between anti-herbivore resistance traits and environmental herbivory pressure at microgeographic scales. A few studies have demonstrated that heritable divergence in herbivore resistance or defensive traits can correlate with variation in herbivore pressure at spatial scales ranging from a few km to only 500 m (Galen et al. 1991; Sork et al. 1993; Pellissier et al. 2014; Dostálek et al. 2016; Sato and Kudoh 2017).

The ability to mount strong defensive phenotypes in habitats where herbivores are abundant, either through phenotypic plasticity or through habitat-specific divergence in loci mediating resistance to herbivory, might be impeded by negative phenotypic correlations between defensive traits and those involved in response to other stressors. While the presence of multiple stressors can select for the coordinated expression of multiple inducible plant traits (Boege 2010), the response to selection may be limited by negative phenotypic correlations and insufficient genetic variance (Agrawal et al. 2010). For example, phenotypic investments in herbivore defense reduced stress tolerance in the mustard Boechera stricta, and this negative correlation itself may promote the patchy distribution of plants into habitats that do not impose a fitness cost arising from negative trait correlations (Siemens et al. 2009; Siemens and Haugen 2013; Alsdurf et al. 2013). Negative correlations between growth and defensive traits may impose a particularly strong constraint, and the question of how plants "solve" the dilemma of altering growth to compete for light and resist enemies in the face of growth-defense trade-offs has been the subject of intense study (Herms and Mattson 1992; Cipollini 2004; Züst and Agrawal 2017).

104 105

106107

108

109

110

111112

113

114

115

116

117

118119

120 121

122123

124

125

126

127

128 129

130 131

132133

134

135

136

137138

139

140

141

4

Herbaceous plant species abundant in both open habitats and deeply shaded forest understories, which often face distinct levels of both herbivory (Louda et al. 1987) and light competition (Dudley and Schmitt 1995), present an excellent opportunity for testing if both growth and anti-herbivore resistance phenotypes can diverge across microgeographic habitat mosaics, despite the potential tradeoffs between growth and defense. This is because decades of study have yielded clear expectations of which growth phenotypes are beneficial in high and low light habitats. In open and sunny habitats, plants express altered growth patterns in response to shade from herbaceous competitors. This change in plant growth traits and architecture, termed the shade avoidance syndrome (SAS), manifests as elongation of stems, petioles and hypocotyls, apical dominance, and early flowering (Keuskamp et al. 2010) induced by perception of light with a high far red (λ =700– 800 nm):red (λ =600–700 nm) ratio or low blue light levels (λ =400–500 nm). Variation in SAS within species is an important example of locally adaptive plasticity (Van Kleunen and Fischer 2005; Valladares et al. 2007). Herbaceous plant species adapted to forest understories—where shading by forest canopies cannot be overcome—benefit from reduced SAS expression, while conspecifics adapted to open habitats benefit from their SAS expression in response to neighbor shade because neighbor shade can more easily be overcome (Dudley and Schmitt 1995; Schmitt et al. 1995; Dudley and Schmitt 1996; Donohue et al. 2000; Donohue et al. 2001; Bell and Galloway 2008). When light competition and herbivory are both encountered (e.g. in meadows), expression of SAS due to neighbor shade may attenuate herbivore resistance owing to an underlying trade-off between growth and defense (Uriarte et al. 2002; Cipollini 2004; Valladares et al. 2007). Whether herbivore resistance and SAS co-diverge at microgeographic scales, despite the commonly observed tradeoff between the two traits, remains largely unexplored for native plants. Here, we quantified phenotypic divergence in growth and resistance to herbivory across a microgeographic habitat mosaic in bittercress (Cardamine cordifolia Gray; Brassicaceae), a forb native to montane regions of western North America. Bittercress grows in clumps across ecotonal patches with sharply contrasting selective regimes: high herbivory with high light competition from neighboring forbs in open meadow (sun) habitats, vs. low herbivory and shading from the evergreen tree canopy in nearby deeply shaded (shade) habitats with fewer herbaceous neighbors (Louda 1984; Collinge and Louda 1989; Louda and Rodman 1996; Alexandre et al. 2017). One of the primary herbivores of bittercress is a specialist leaf miner, Scaptomyza nigrita (Drosophilidae) (Collinge and Louda 1989: Gloss et al. 2014: Humphrey et al. 2014: Humphrey et al. 2016: Alexandre et al. 2017). When

given a choice in laboratory experiments, *S. nigrita* prefer to attack shade-derived compared to sun-derived bittercress, but abiotic factors over-ride this preference: *S. nigrita* adults strongly prefer brighter and warmer sunny habitats over darker and colder shade habitats, which largely restricts herbivory by *S. nigrita* to sunny habitats (Alexandre et al. 2017). For bittercress growing in the shade, one consequence of prolonged exposure to enemy-free space and decreased neighbor shade might be habitat-associated divergence in the investment in, and/or expression of, both SAS and inducible herbivore defenses. Thus, bittercress presents an opportunity to test for microgeographic divergence in growth and defensive phenotypes across habitats, in a context where such fine scale divergence might be constrained by growth–defense tradeoffs and homogenized by inter-habitat dispersal and gene flow.

Through reciprocal transplant—common garden experiments in the field and greenhouse, we tested if bittercress from deep shade habitats differed in growth phenotypes (including those reflecting SAS) compared to their sun-derived conspecifics. This design allowed us to measure the effect of phenotypic plasticity caused by growth environment (sunny vs. shaded), and whether source habitat impacts the average expression and/or the plasticity of expression of plant growth traits. We coupled these plant growth measurements with herbivore bioassays in which we measured bittercress resistance to *S. nigrita* in the common gardens. Finally, we determined whether flowering phenology differs between habitats in a manner that could facilitate phenotypic divergence by reducing gene flow among habitats.

Altogether, our study illuminates how a native plant may cope with overlapping biotic and abiotic stressors across distinct, fine-grained habitat types. We found that bittercress in sunny and shaded habitats have diverged in heritable growth and herbivore resistance traits. The expression of these differences was habitat dependent and in some cases counter to expected growth—defense tradeoffs. Finally, partially non-overlapping flowering phenology observed between habitat types may be at least one factor that helps to reinforce habitat-specific divergence.

MATERIALS AND METHODS

Common gardens in the field.

- 179 This study was conducted near the Rocky Mountain Biological Laboratory (RMBL)
- in Gothic, Colorado, USA, between 2011–2014. In 2011 at the RMBL, we conducted

a reciprocal transplant-common garden experiment to test if habitat of origin (sun vs. shade) impacted plant phenotypic responses to shading and realized resistance to herbivory. We chose nine sun and nine shade source sites from which to sample bittercress rhizomes for planting in common gardens that were either in meadows (sun) or under evergreen forest canopies (shade) (Fig. S1). At source and common garden sites, we recorded photosynthetically active radiation (PAR) using a light meter (Spectrum Technologies, Inc.), percent canopy cover using a densiometer, diameter at breast height (dbh) of the four largest trees within four meters, and latitude, longitude, and elevation (Garmin GPS) (Fig. S2, Tables S1). Source sites significantly differed in PAR, canopy cover, and dbh (ANOVAs, all P<0.05) but did not differ in elevation (P>0.05; Table S2).

From each source site, we collected rhizome tissue from 30 ramets and stored them at 4–10°C in low ambient light until planting. Using a randomized complete block design, 540 rhizomes—five from each of the 18 source sites (90 in total per garden)—were planted among six common gardens and spaced 16 cm apart to avoid shading from neighboring bittercress. Gardens were watered every 24–48 h with nearby water from a snow melt stream. Plants were shrouded using fine mesh cloth to prevent herbivory throughout the experiment.

After five weeks, we counted the number of leaves >10 mm and harvested and photographed the largest leaf. We measured petiole length and leaf area using ImageJ (Abràmoff et al. 2004) and leaf mass using a Sartorius CPA225D balance (Sartorius AG, Goettingen, Germany) following oven drying at 65°C for 2 d. Subsequently, we transplanted a single S. nigrita larva into the largest remaining leaf. Larvae were collected from mined leaves at Copper Creek, near the RMBL. After 72 h, we removed leaves and measured larval mass as a measure of larval performance (Whiteman et al. 2011; Whiteman et al. 2012), which is an index of realized resistance of the plants. Early instar larvae were excluded to approximately standardize larval developmental stage, but larvae were not weighed in order to minimize their manipulation. We therefore caution that the amount of variance within treatments is likely inflated by variation in initial larval mass. We compared larval mass using two-tailed two-sample t-tests of the larval mass distributions between sun and shade source plants in each of the garden types.

Greenhouse experiment.

- 217 We conducted a simulated shading experiment under greenhouse conditions using
- 218 bittercress grown from seeds collected from sun and shade habitats. In August
- 2012, we collected seeds from bittercress growing in sun and shade habitats near

221222

223

224

225

226

227

228229

230231

232

233

234235

236

237238

239

240

241

242

243

244

245

246

247248

249

250

251

252

253

254

255

256

257258

7

the source sites for the common gardens by tying bags to developing racemes (see Table S3 for collection sites). From the source sites we recorded % canopy cover using a densiometer and latitude, longitude, and elevation of each collection site as above. Seeds were transported to the University of Arizona and surface-sterilized with a solution of 50% bleach and 0.5% Triton-X-100 and stratified on moist filter paper in petri dishes for five weeks at 4°C. Seeds were germinated in the greenhouse in moist filter paper in petri dishes; seedlings were planted in soil in plastic pots as above and randomized to light filter environments to simulate sun or shade habitats. Evergreen forest canopy shade was simulated by growing 14 shadeand 23 sun-source plants under a blue plastic filter (Lee filter 115) that reduces the amount of red light available to plants (elevating the amount of FR:R light) (Runkle and Heins 2001). To simulate sun habitats, 19 shade- and 28 sun-source plants were grown under a control clear filter that does not alter the quality of light (Lee filter 130). When plants reached the 4-leaf stage and the 8-leaf stage, we measured vegetative traits as in the field common gardens. We did not have access to S. nigrita herbivores for the greenhouse experiment at to measure realized resistance in this trial.

We conducted all statistical analyses using R v.3.3 (R Core Team 2013). Source site characteristics were compared using ANOVA or linear mixed models (LMMs) using the *lme4* package (Bates et al. 2014). Hypothesis testing on fixed effects was conducted with conditional F-tests using denominator degrees of freedom (Kenward and Roger 1997) as implemented in R package pbkrtest (Halekoh and Højsgaard 2014). For the field common garden experiment, we modeled garden type, source habitat and interactions as fixed factors and garden number and source site number as random factors. To assess the role of garden and source types on plant phenotypes, we conducted principal component analysis (PCA) on total number of leaves, leaf area, petiole length, and specific leaf area (SLA, cm^2/g). We tested the relationship between garden and source types on PC1 + PC2 using linear discriminant function analysis (DFA) with R package MASS (Venables & Ripley 2002). To examine differences in petiole length among sun and shade-derived plants grown from seed in the greenhouse, we used R package pbkrtest as above to examine LMMs modeling petiole length at the 4- and 8- leaf stages as a function of environment type, source type, and their interaction as a fixed-effects with source site as a random effect. We separately analyzed petiole length at the 8-leaf stage in the FR:R light greenhouse treatment with source type as a fixed effect using the same approach as above. All field common garden data, as well as statistical analysis R scripts, are available on the Dryad digital repository (doi pending).

Field surveys of flowering phenology.

259

260 261

262263

264

265

266

267268

269 270

271

272

273

274275

276

277

278

279

280

281 282 283

284

285

286 287

288 289

290

291

292

293

294

295

296

In 2015, we quantified floral abundance through time in sun and shade habitats in a sample of 240 bittercress plants spread across two sites (401 Trail and Copper Creek). At each site, we designated roughly equal numbers of plants in open sun, intermediate shade, and deep-shade and tracked plant-level flower abundance every 2-3 days for four weeks (between July 8 and August 5 of 2015). From these data, we designated a first, peak, and last flowering Julian day for each stem. In many cases, focal stems flowered before the observation window, and these stems were assigned a Julian date of 1 prior to the first observation day. Plants with no flowers or fruits by the end of the observation window were assigned a no-flowering status and were excluded from the phenology analysis. We also accounted for the presence of developing fruits on each stem, which allow us to designate plants with no observed flowers as having already completed flowering by the first observation date, thus distinguishing this class from those plants that had neither flowered nor fruited during the observation window. Many plants had just begun to flower by the end of the observation widow; the 'peak' and 'last' flowering events for these stems was assigned a Julian date of the last observation day +1. We compared the accumulation of each event across habitats and sites using non-parametric twosample Kolmogorov-Smirnov tests, which calculates the difference between two empirical cumulative distributions; KS test p-values derived from the Kolmogorov distribution (by default) were compared to those obtained by permutation of the identity of the source habitat across data points (1000 replicates).

RESULTS

Effects source habitat and light environment on plant growth.

In the field, we measured plant growth traits in common gardens to investigate the strength of shade-induced growth phenotypes in bittercress genotypes derived from sun and shade habitats. After six weeks of growth in these common gardens, plants in shade gardens were strongly differentiated from those grown in sun gardens in a PCA using total number of leaves, leaf area, SLA, and petiole length (Fig. 1A). Using PC1 and PC2, which together comprised 80% of the variance, linear DFA correctly assigned 99.2% of plants to garden type, while 61.9% could be correctly assigned to source habitat type. Plants from both source habitats had similarly higher specific leaf area in shade gardens ($F_{1,4.24} = 46.7$, P = 0.002; Table 1, Fig. 1B), and plant from both source habitats regrew more leaves by 6 weeks in sun gardens than in shade gardens ($F_{1,4} = 18.16$, P = 0.013; Table 1, Fig. 1C.). Means and

standard errors of all growth traits for each source habitat in each garden are compiled in Table S4.

 In addition to these strong garden type effects, source habitat type affected various individual plant growth phenotypes. Plants derived from shade habitats were smaller than sun source plants in both garden types ($F_{1,15.68} = 15.81$, P = 0.001, Table 1, Fig. 1B). Sun source plants had longer petiole length relative to their plant size in both garden types ($F_{1,18.46} = 10.54$, P = 0.0044). But the increase in size-specific petiole elongation for sun-derived plants from growth in the shade was far stronger than that for shade-derived plants ($F_{1,265.65} = 13.47$, P < 0.001; Table 1, Fig. 1D). This result was recapitulated in the greenhouse, where sun bittercress grown from seed exhibited significantly longer petioles at the eight-leaf stage compared to shade source plants when both were grown under simulated neighbor shade (high FR:R light; z = 3.35, P = 0.0008, Fig. S3). Leaf area exhibited no main source or garden type effects but showed a strong interaction effect, with the changes in size-specific leaf area being comparable in magnitude between garden types for plants from both source habitats ($F_{1,264.34} = 9.5$, P = 0.002; Table 1, Fig. 1E).

Effects of source habitat and light environment on realized herbivore resistance. In the field, we assayed realized plant resistance to S. nigrita larvae by measuring larval mass as a proxy for herbivore performance in bittercress grown in the common gardens. Despite high levels of variation in larval mass across both garden types, shade-derived plants harbored larvae that had a higher average mass after feeding for 24 hours than larvae randomized to any other condition. Specifically, in shade gardens, larval mass was 21.3% higher when S. nigrita leaf-miners were reared on plants from shade-derived compared to sun-derived plants (1.59 mg vs.1.31 mg, two-tailed t-test, P = 0.02, Fig. 2). Within sun gardens, larval mass did not differ between sun- or shade-derived plants (t-test, P = 0.88, Fig. 2).

Effects of source habitat on flowering phenology in the field.

Bittercress phenological progression and floral density curves differed both by sampling site and by habitat type. At the 401 Trail site, plants in all habitats exhibited very similar phenological progressions (K–S tests, all comparisons P>0.05; Fig. 3A). In contrast, at the Copper Creek site, timing of first, peak, and last flowering was significantly delayed for bittercress growing in intermediate shade and deep shade compared to open sun habitats (sun vs. intermediate or deep shade all P<0.05; Fig. 3A). The total density of flowering plants through time strongly

overlapped among habitats at the 401 Trail site, while shade habitats exhibited

DISCUSSION

Heritable divergence in plant growth and resistance traits across a finegrained habitat mosaic

Two notable ecological features reliably distinguish sun and shade habitats for bittercress (Fig. S4), and thus could promote habitat-specific phenotypic divergence. First, herbivory by S. nigrita, a specialist leaf-miner that can heavily defoliate stands of bittercress, is primarily restricted to sun habitats (Collinge and Louda 1989; Louda and Rodman 1996; Alexandre et al. 2017). The enemy free space associated with shade habitats would be expected to favor lower resistance to herbivory in plants growing in shade (Agrawal et al. 2012). Second, the growth form of neighboring plants that filter incoming light, either forbs or canopy trees, differs among habitat types. Conspecific and heterospecific forbs grow at high densities in sun habitats of bittercress, and SAS is frequently observed to be adaptive in this context (Van Kleunen and Fischer 2005). In contrast, large evergreen trees filter the majority of light in shade habitats (Table S1). Canonical SAS phenotypes are typically an ineffective means to compete for light in forest understories, and their expression has been shown to reduce organismal fitness (Dudley and Schmitt 1995; Schmitt et al. 1995; Dudley and Schmitt 1996; Donohue et al. 2000; Donohue et al. 2001; Bell and Galloway 2008). We thus hypothesized that sun and shade plants should diverge in their expression of competitive growth (SAS) and resistance phenotypes.

Our reciprocal transplant/common garden assays revealed that heritable plant growth and resistance phenotypes were distinguishable between plants from the shade and the sun habitats. The directions of these differences were concordant with the hypothesis that light competition and herbivore prevalence drive phenotypic divergence among sun and shade habitats. Notably, some of the traits we measured were shaped by an interaction between light environment and parental habitat. In other words, although these phenotypes were plastic, differences in their expression across light environments (i.e., the degree of plasticity) were heritable.

Plant growth traits.

Resistance traits.

374

375 376

377 378

379

380

381

382 383 384

385

386

387

388 389

390

391

392

393

394 395

396 397

398

399

400

401 402

403 404

405

406 407

408

409

410

411

412

Herbivore resistance is a measure of how well herbivores can exploit a given host resource. We found that S. nigrita larvae feeding on shade-source plants gained more mass than larvae feeding on sun-source plants, but this pattern only emerged in shade common gardens (Fig. 2). This finding is consistent with the hypothesis that shade-derived plants invest less in defense when in their natal habitats, where investment in anti-herbivore defenses is likely costly in the absence of herbivory (Agrawal et al. 2012). More sensitive bioassays, as well as additional biomarkers of basal and inducible herbivore resistance, are required to identify the defense phenotypes responsible for the observed difference.

No evidence that a growth-defense tradeoff constrains habitat-associated phenotypic divergence

Negative phenotypic correlations between growth and defensive traits are widespread in plants (Herms and Mattson 1992; Cipollini 2004; Züst and Agrawal 2017). If these growth-defense tradeoffs are a consequence of resource allocation constraints, and selection on growth traits differs strongly between light habitats, tradeoffs may prevent local adaptation of herbivore resistance across the landscape. Observations from our common gardens suggest that any growth-defense tradeoffs that might exist in bittercress did not pose such a constraint. Plants from sun source sites were more resistant to S. nigrita than plants from shade source sites when both were grown in a common shade environment, even though plants from sun source sites concurrently expressed stronger SAS-related phenotypes under these conditions.

Our results are consistent with emerging evidence that a tradeoff between SAS and defense can be decoupled through mutation and natural selection (Züst and Agrawal 2017). Prolonged exposure to different regimes of herbivore pressure can

herbivory in experimentally evolved plant populations, despite evidence that

415 resource allocation constraints ultimately limit the extent to which both suites of

traits can be co-expressed (Uesugi et al. 2017). Functional genetic studies of

Arabidopsis mutants provide plausible mechanisms for the uncoupling of growth

and defense at the molecular level (Moreno et al. 2009; Robson et al. 2010;

419 Keuskamp et al. 2010; Kazan and Manners 2011; Keller et al. 2011; Cerrudo et al.

420 2012). Intriguingly, differences in the plastic response of bittercress to light habitat

in our common gardens mirror those observed among Arabidopsis lines with

422 mutations introduced to genes involved in light-responsive signaling (see

423 Supplementary Discussion). Future studies could test if habitat-associated

424 divergence in bittercress growth and defense phenotypes has evolved through

genetic or epigenetic mutations to the well-characterized genes that mediate

growth-defense tradeoffs in response to light environment in *Arabidopsis*.

We note, however, that our results do not provide unambiguous evidence for a decoupling of a growth–defense tradeoff in bittercress. Tradeoffs that arise through pleiotropy or resource allocation constraints can be masked when genotypes vary in their efficiency of resource acquisition or use (Agrawal et al. 2010; Züst and Agrawal 2017). Although rhizome size was standardized in our common garden experiment, differences in the quality or quantity of stored resources in rhizomes collected from different habitat sites, combined with habitat-dependent effects of this resource variation on growth and resistance phenotypes, might explain why plants from sun sources exhibited strong SAS without attenuated resistance to *S. nigrita*.

Potential mechanisms underlying microgeographic variation in bittercress

Future studies are needed to discern the mechanisms through which habitatassociated growth and resistance phenotypes are inherited in bittercress. Whether these traits are inherited through genetic or non-genetic mechanisms has implications for the ecological processes that generate the phenotype-habitat matching we observed across the landscape.

Transgenerational effects of parental environment on the phenotypes of clonally propagated offspring (Schwaegerle et al. 2000; Latzel and Klimešová 2010) and seed propagated offspring (Galloway 2005; Galloway and Etterson 2007) have been well documented in plants. These effects can shape offspring resistance against

et al. 2017; Colicchio 2017), and epigenetic variants induced by (and affecting)

resistance phenotypes can persist for multiple generations (Rasmann et al. 2012).

Habitat matching of heritable phenotypes in bittercress could therefore be driven

simply by parental experience, without requiring natural selection to filter locally

unfit genotypes from sun and shade habitats.

If heritable variation in the expression of growth and defense phenotypes has a genetic basis, however, matching of these phenotypes to local habitats would require strong, spatially varying selection to overcome homogenizing effects of gene flow across fine-grained habitat mosaics (Lenormand 2002). There is strong evidence that this filtering process can occur in plants, sometimes at the scale of only a few meters (Waser and Price 1989; Schmitt and Gamble 1990; Antonovics 2006; Schemske and Bierzychudek 2007; Hendrick et al. 2016).

By reducing the frequency of inter-habitat mating events, differences in flowering time among bittercress in sun and shade habitats, coupled with natural selection filtering unfit genotypes in each habitat, could facilitate the buildup of locally adaptive genetic variants or maternal effects (Levin 2009). We quantified flowering time between sun and shade habitats at two sites, and found a marked difference in one of these sites, although the duration of flowering time still overlapped among habitats. The observed phenological differences between sun and shade sites are one of many potential mechanisms that may reinforce divergence between sun and shade habitats in bittercress.

Implications for the ecology and evolution of bittercress–*Scaptomyza* interactions

In a series of seminal field studies in the 1980s and 1990s, Louda and colleagues showed that higher herbivory on bittercress in open sun habitats, including by the abundant specialist herbivore *S. nigrita*, likely drives the distribution of bittercress toward more shaded habitats (Louda et al. 1987; Louda and Rodman 1996). These studies serve as a textbook example (Ricklefs and Miller 2000) of how natural enemies shape the distribution of their hosts across a heterogeneous landscape. However, the ultimate cause of higher herbivory in the sun remained unresolved.

Given that expression of SAS is frequently associated with reduced defenses against herbivory, and shade-derived bittercress exhibit reduced SAS relative to sunderived bittercress in their source habitats, one possibility is that herbivory is higher in the sun because bittercress plants in the sun are more palatable. The fact that shade source plants are less resistant than sun source plants to *S. nigrita* larval herbivory does not support this interpretation. Instead, our results further support the conclusion, emerging from other recent work (Alexandre et al. 2017), that a preference of *S. nigrita* for sun-exposed habitats is likely sufficient to explain higher herbivory on bittercress in the sun. Thus, this textbook example of how natural enemies shape the distribution of their hosts is ultimately driven by the effect of an extrinsic habitat characteristic (light) on the behavior of an herbivore, not by the herbivore's behavioral response to intrinsic differences in host plant quality across environments.

Conclusion

We found that bittercress offspring, whether produced clonally or from seed, exhibit growth and defense phenotypes that match their parental habitat across a fine-grained (i.e., microgeographic) habitat mosaic. If this process leads offspring to have higher viability or fecundity in their natal habitats, it could be an important mechanism that reduces rates of inter-habitat recruitment and gene flow, in turn facilitating the maintenance of genetic and epigenetic variation within populations (Felsenstein 1976; Hedrick 2006). The ecological, physiological, and evolutionary mechanisms underlying phenotype-habitat matching in bittercress—and their generality across plant systems—await future study.

ACKNOWLEDGMENTS

We acknowledge Ian Billick (RMBL), Jennifer Reithel (RMBL), Kailen Mooney (UC-Irvine), and Carol Boggs (University of South Carolina) for advice during the design and data collection phases of this project. Financial support was provided to N.K.W. by the RMBL (Research Fellowships 2010–2013), the National Science Foundation Division of Environmental Biology (NSF DEB-1256758), the John Templeton Foundation (41855) and the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R35GM119816; to P.T.H. by RMBL Graduate Fellowships (2011–2013), the University of Arizona Center for Insect Science, and the NSF (DEB-1309493); to A.D.G. by the NSF (NSF DEB-1405966), an NSF Graduate Research Fellowship, and an RMBL Graduate Fellowship (2011); and to J.F. and S.F. by RMBL undergraduate research awards.

REFERENCES

- 530 Abràmoff MD, Magalhães PJ, Ram SJ (2004). Image processing with ImageJ.
- 531 Biophoton Int 11:36-42 doi:10.1002/9780470089941.eta03cs9.
- 533 Agrawal AA, Hastings AP, Johnson MT, Maron JL, Salminen J (2012). Insect
- herbivores drive real-time ecological and evolutionary change in plant populations.
- 535 Science 338:113-116 doi: 10.1126/science.1225977
- 537 Agrawal AA, Conner JK, Rasmann S (2010). Tradeoffs and negative correlations in
- evolutionary ecology. In: M.A. Bell, W.F. Eanes, D.J. Futuyma, and J.S. Levinton,
- eds. Evolution After Darwin: the First 150 Years. Sinauer Associates, Sunderland,
- 540 MA.

528

529

532

536

541

544

548

552

556

559

562

- 542 Agrawal AA (2001). Transgenerational consequences of plant responses to
- 543 herbivory: An adaptive maternal effect? Am Nat 157:555-569 doi: 10.1086/319932
- Alexandre NM, Humphrey PT, Frazier J, Gloss AD, Lee J, Affeldt HA, Whiteman
- NK (2017). Habitat preference of an herbivore shapes the habitat distribution of its
- 547 host plant. bioRxiv:156240 doi: 10.1101/156240
- 549 Alsdurf JD, Ripley TJ, Matzner SL, Siemens DH (2013). Drought-induced trans-
- 550 generational tradeoff between stress tolerance and defence: Consequences for range
- 551 limits? AoB Plants 5: plt038 doi: 10.1093/aobpla/plt038
- Antonovics J (2006). Evolution in closely adjacent plant populations X: Long-term
- persistence of prereproductive isolation at a mine boundary. Heredity 97:33 doi:
- 555 10.1038/sj.hdy.6800835
- Bates D, Maechler M, Bolker B, Walker S (2014). *lme4*: Linear mixed-effects models
- using Eigen and S4. R package v1.7: 1-23
- Bell DL, Galloway LF (2008). Population differentiation for plasticity to light in an
- annual herb: Adaptation and cost. Am J Bot 95:59-65 doi: 10.3732/ajb.95.1.59
- Boege K (2010). Induced responses to competition and herbivory: Natural selection
- on multi-trait phenotypic plasticity. Ecology 91:2628-2637

- Brachi B, Meyer CG, Villoutreix R, Platt A, Morton TC, Roux F, Bergelson J (2015).
- 567 Coselected genes determine adaptive variation in herbivore resistance throughout
- the native range of arabidopsis thaliana. Proc Natl Acad Sci U S A 112:4032-4037
- 569 doi: 10.1073/pnas.1421416112
- 571 Cerrudo I, Keller MM, Cargnel MD, Demkura PV, de Wit M, Patitucci MS, Pierik R,
- 572 Pieterse CM, Ballare CL (2012). Low red/far-red ratios reduce Arabidopsis
- 573 resistance to *Botrytis cinerea* and jasmonate responses via a COI1-JAZ10-dependent,
- 574 salicylic acid-independent mechanism. Plant Physiol 158:2042-2052 doi:
- 575 10.1104/pp.112.193359

576

579

582

586

591

596

600

- 577 Cipollini D (2004). Stretching the limits of plasticity: Can a plant defend against
- 578 both competitors and herbivores? Ecology 85:28-37 doi: 10.1890/02-0615
- 580 Colicchio J (2017). Transgenerational effects alter plant defence and resistance in
- 581 nature. J Evol Biol 30:664-680 doi: 10.1111/jeb.13042
- 583 Collinge SK, Louda SM (1989). Scaptomyza nigrita Wheeler (diptera: Drosophilidae),
- a leaf miner of the native crucifer, Cardamine cordifolia A. gray (bittercress). J.
- 585 Kans. Entomol. Soc. 62:1-10
- Donohue K, Hammond Pyle E, Messiqua D, Shane Heschel M, Schmitt J (2001).
- 588 Adaptive divergence in plasticity in natural populations of *Impatiens capensis* and
- its consequences for performance in novel habitats. Evolution 55:692-702 doi:
- 590 10.1554/0014-3820(2001)055[0692:ADIPIN]2.0.CO;2
- 592 Donohue K, Messiqua D, Pyle EH, Heschel MS, Schmitt J (2000). Evidence of
- 593 adaptive divergence in plasticity: Density- and site-dependent selection on shade-
- avoidance responses in *Impatiens capensis*. Evolution 54:1956-1968 doi:
- 595 10.1111/j.0014-3820.2000.tb01240.x
- 597 Dostálek T, Rokaya MB, Maršík P, Rezek J, Skuhrovec J, Pavela R, Münzbergová Z
- 598 (2016). Trade-off among different anti-herbivore defence strategies along an
- altitudinal gradient. AoB Plants 8: plw026 doi: 10.1093/aobpla/plw026
- Dudley S, Schmitt J (1995). Genetic differentiation in morphological responses to
- simulated foliage shade between populations of *Impatiens capensis* from open and
- 603 woodland sites. Funct Ecol 9:655-666 doi: 10.2307/2390158

605 Dudley SA, Schmitt J (1996). Testing the adaptive plasticity hypothesis: Density-

dependent selection on manipulated stem length in *Impatiens capensis*. Am Nat

- 607 147:445-465 doi: 10.1086/285860
- 609 Felsenstein J (1976). The theoretical population genetics of variable selection and
- 610 migration. Annu Rev Genet 10:253-280 doi: 10.1146/annurev.ge.10.120176.001345
- 612 Galen C, Shore JS, Deyoe H (1991). Ecotypic divergence in alpine *Polemonium*
- 613 *viscosum*: Genetic structure, quantitative variation, and local adaptation. Evolution
- 614 45:1218-1228

606

608

611

615

619

622

628

633

637

- 616 Galloway LF (2005). Maternal effects provide phenotypic adaptation to local
- environmental conditions. New Phytol 166:93-100 doi: 10.1111/j.1469-
- 618 8137.2004.01314.x
- 620 Galloway LF, Etterson JR (2007). Transgenerational plasticity is adaptive in the
- 621 wild. Science 318:1134-1136 doi: 10.1126/science.1148766
- 623 Gloss AD, Vassao DG, Hailey AL, Nelson Dittrich AC, Schramm K, Reichelt M,
- Rast TJ, Weichsel A, Cravens MG, Gershenzon J, Montfort WR, Whiteman NK
- 625 (2014). Evolution in an ancient detoxification pathway is coupled with a transition
- 626 to herbivory in the Drosophilidae. Mol Biol Evol 31:2441-2456 doi:
- 627 10.1093/molbev/msu201
- 629 González APR, Dumalasová V, Rosenthal J, Skuhrovec J, Latzel V (2017). The role
- of transgenerational effects in adaptation of clonal offspring of white clover
- 631 (*Trifolium repens*) to drought and herbivory. Evol Ecol 31:345-361 doi:
- 632 10.1007/s10682-016-9844-5
- 634 Greig-Smith P (1952). The use of random and contiguous quadrats in the study of
- 635 the structure of plant communities. Annals of Botany 16:293-316 doi:
- 636 10.1093/oxfordjournals.aob.a083317
- 638 Haldane JBS (1930). A mathematical theory of natural and artificial selection (part
- VI, isolation). Proceedings of the Cambridge Philosophical Society 26:220-230 doi:
- 640 10.1017/S0305004100015450

- 642 HalekohU, Højsgaard S (2014). A Kenward-Roger approximation and parametric
- 643 bootstrap methods for tests in linear mixed models—the R package pbkrtest. Journal
- of Statistical Software 59: 1-32 doi: 10.18637/jss.v059.i09.
- 646 Hedrick PW (2006). Genetic polymorphism in heterogeneous environments: The age
- of genomics. Annu Rev Ecol Evol Syst 37:67-93 DOI
- 648 10.1146/annurev.ecolsys.37.091305.110132

649

654

657

662

666

669

672

- 650 Hendrick MF, Finseth FR, Mathiasson ME, Palmer KA, Broder EM, Breigenzer P,
- 651 Fishman L (2016). The genetics of extreme microgeographic adaptation: An
- 652 integrated approach identifies a major gene underlying leaf trichome divergence in
- 653 Yellowstone *Mimulus guttatus*. Mol Ecol 25:5647-5662 doi: 10.1111/mec.13753
- 655 Herms DA, Mattson WJ (1992). The dilemma of plants: To grow or defend. Q Rev
- 656 Biol 67:283-335 doi: 10.1086/417659
- 658 Humphrey PT, Gloss AD, Alexandre NM, Villalobos MM, Fremgen MR, Groen SC,
- 659 Meihls LN, Jander G, Whiteman NK (2016). Aversion and attraction to harmful
- plant secondary compounds jointly shape the foraging ecology of a specialist
- 661 herbivore. Ecology and evolution 6:3256-3268 doi: 10.1002/ece3.2082
- 663 Humphrey PT, Nguyen TT, Villalobos MM, Whiteman NK (2014). Diversity and
- abundance of phyllosphere bacteria are linked to insect herbivory. Mol Ecol
- 665 23:1497-1515 doi: 10.1111/mec.12657
- 667 Kazan K, Manners JM (2011). The interplay between light and jasmonate signalling
- during defence and development. J Exp Bot 62:4087-4100 doi: 10.1093/jxb/err142
- 670 Kenward MG, Roger JH (1997). Small sample inference for fixed effects from
- 671 restricted maximum likelihood. Biometrics 53:983-997 doi: 0.2307/2533558.
- 673 Keller MM, Jaillais Y, Pedmale UV, Moreno JE, Chory J, Ballaré CL (2011).
- 674 Cryptochrome 1 and phytochrome B control shade-avoidance responses in
- 675 Arabidopsis via partially independent hormonal cascades. The Plant Journal
- 676 67:195-207 doi: 10.1111/j.1365-313X.2011.04598.x
- 678 Keuskamp DH, Sasidharan R, Pierik R (2010). Physiological regulation and
- 679 functional significance of shade avoidance responses to neighbors. Plant Signaling
- 680 & Behavior 5:655-662 doi: 10.4161/psb.5.6.11401

681 Latzel V, Klimešová J (2010). Transgenerational plasticity in clonal plants. 682 683 Evolutionary Ecology 24: 1537-1543 doi: 10.1007/s10682-010-9385-2 684 685 Lenormand T (2002). Gene flow and the limits to natural selection. Trends in Ecology & Evolution 17:183-189 doi: 10.1016/S0169-5347(02)02497-7 686 687 688 Levin DA (2009). Flowering-time plasticity facilitates niche shifts in adjacent populations. New Phytol 183:661-666 doi: 10.1111/j.1469-8137.2009.02889.x 689 690 Linhart YB, Grant MC (1996). Evolutionary significance of local genetic 691 692 differentiation in plants. Annu Rev Ecol Syst 27:237-277 doi: 693 10.1146/annurev.ecolsys.27.1.237 694 695 Louda SM, Rodman JE (1996). Insect herbivory as a major factor in the shade 696 distribution of a native crucifer (Cardamine cordifolia A. Gray, bittercress). J Ecol 697 84:229-237 doi: 10.2307/2261358 698 699 Louda SM (1984). Herbivore effect on stature, fruiting, and leaf dynamics of a 700 native crucifer. Ecology 65:1379-1386 doi: 10.2307/1939118 701 702 Louda SM, Dixon PM, Huntly NJ (1987). Herbivory in sun versus shade at a 703 natural meadow-woodland ecotone in the Rocky Mountains. Plant Ecol 72:141-149 704 Moreno JE, Tao Y, Chory J, Ballare CL (2009). Ecological modulation of plant 705 defense via phytochrome control of jasmonate sensitivity. Proc Natl Acad Sci U S A 706 707 106:4935-4940 doi: 10.1073/pnas.0900701106 708 709 Pellissier L, Roger A, Bilat J, Rasmann S (2014). High elevation Plantago lanceolata plants are less resistant to herbivory than their low elevation 710 711 conspecifics: Is it just temperature? Ecography 37:950-959 doi: 10.1111/ecog.00833 712 Prasad KV, Song BH, Olson-Manning C, Anderson JT, Lee CR, Schranz ME, 713 Windsor AJ, Clauss MJ, Manzaneda AJ, Nagvi I, Reichelt M, Gershenzon J, 714 Rupasinghe SG, Schuler MA, Mitchell-Olds T (2012). A gain-of-function 715 716 polymorphism controlling complex traits and fitness in nature. Science 337:1081-

1084 10.1126/science.1221636

- 719 R Core Team (2013). R: A language and environment for statistical computing. R
- 720 Foundation for Statistical Computing, Vienna, Austria. v3.3. URL http://www.R-
- 721 project.org/

726

730

732

737

740

744

748

752

- Rasmann S, De Vos M, Casteel CL, Tian D, Halitschke R, Sun JY, Agrawal AA,
- 724 Felton GW, Jander G (2012). Herbivory in the previous generation primes plants for
- 725 enhanced insect resistance. Plant Physiol 158:854-863 doi 10.1104/pp.111.187831
- 727 Richardson JL, Urban MC, Bolnick DI, Skelly DK (2014). Microgeographic
- 728 adaptation and the spatial scale of evolution. Trends in Ecology & Evolution 29:165-
- 729 176 doi: 10.1016/j.tree.2014.01.002
- Ricklefs R, Miller G (2000). Ecology, 4th edn. W.H. Freeman, New York
- Robson F, Okamoto H, Patrick E, Harris SR, Wasternack C, Brearley C, Turner JG
- 734 (2010). Jasmonate and phytochrome A signaling in *Arabidopsis* wound and shade
- responses are integrated through JAZ1 stability. Plant Cell 22:1143-1160 doi
- 736 10.1105/tpc.109.067728
- Runkle ES, Heins RD (2001). Specific functions of red, far red, and blue light in
- 739 flowering and stem extension of long-day plants. J Am Soc Hort Sci 126:275-282
- 741 Sato Y, Kudoh H (2017). Fine-scale frequency differentiation along a herbivory
- 742 gradient in the trichome dimorphism of a wild *Arabidopsis*. Ecology and evolution
- 743 7:2133-2141 doi: 10.1002/ece3.2830
- 745 Schemske DW, Bierzychudek P (2007). Spatial differentiation for flower color in the
- 746 desert annual linanthus parryae: Was wright right? Evolution 61:2528-2543 doi:
- 747 10.1111/j.1558-5646.2007.00219.x
- 749 Schmitt J, McCormac AC, Smith H (1995). A test of the adaptive plasticity
- 750 hypothesis using transgenic and mutant plants disabled in phytochrome-mediated
- 751 elongation responses to neighbors. Am Nat 146:937-953 doi: 10.1086/285832
- 753 Schmitt J. Gamble SE (1990). The effect of distance from the parental site on
- offspring performance and inbreeding depression in *Impatiens capensis*: A test of
- 755 the local adaptation hypothesis. Evolution 44:2022-2030 doi: 10.1111/j.1558-
- 756 5646.1990.tb04308.x

- 758 Schwaegerle KE, McIntyre H, Swingley C (2000). Quantitative genetics and the
- 759 persistence of environmental effects in clonally propagated organisms. Evolution
- 760 54:452-461 doi: 10.1111/j.0014-3820.2000.tb00048.x
- 762 Siemens DH, Haugen R (2013). Plant chemical defense allocation constrains
- 763 evolution of tolerance to community change across a range boundary. Ecology and
- 764 Evolution 3:4339-4347 doi: 10.1002/ece3.657
- 766 Siemens DH, Haugen R, Matzner S, Vanasma N (2009). Plant chemical defence
- 767 allocation constrains evolution of local range. Mol Ecol 18:4974-4983 doi:
- 768 10.1111/j.1365-294X.2009.04389.x

765

769

773

776

780

784

787

791

- 770 Sork VL, Stowe KA, Hochwender C (1993). Evidence for local adaptation in closely
- adjacent subpopulations of northern red oak (Quercus rubra L.) expressed as
- 772 resistance to leaf herbivores. Am Nat 142:928-936 doi: 10.1086/285581
- 774 Steets JA, Ashman T (2010). Maternal effects of herbivory in *Impatiens capensis*.
- 775 Int J Plant Sci 171:509-518 doi: 10.1086/651944
- 777 Uesugi A, Connallon T, Kessler A, Monro K (2017). Relaxation of herbivore-
- 778 mediated selection drives the evolution of genetic covariances between plant
- 779 competitive and defense traits. Evolution 71:1700-1709 doi: 10.1111/evo.13247
- 781 Uriarte M, Canham CD, Root RB (2002). A model of simultaneous evolution of
- 782 competitive ability and herbivore resistance in a perennial plant. Ecology 83:2649-
- 783 2663 doi: 10.2307/3072004
- Valladares F, Gianoli E, Gómez JM (2007). Ecological limits to plant phenotypic
- 786 plasticity. New Phytol 176:749-763 doi: 10.1111/j.1469-8137.2007.02275.x
- 788 Van Kleunen M, Fischer M (2005). Constraints on the evolution of adaptive
- 789 phenotypic plasticity in plants. New Phytol 166:49-60 doi: 10.1111/j.1469-
- 790 8137.2004.01296.x
- 792 Venables WN, Ripley BD (2002). Modern Applied Statistics with S. 4th edn.
- 793 Springer, New York
- 795 Waser NM, Price MV (1989). Optimal outcrossing in *Ipomopsis aggregata*: seed set
- 796 and offspring fitness. Evolution 43:1097-1109 doi: 10.2307/2409589

797 Whiteman NK, Gloss AD, Sackton TB, Groen SC, Humphrey PT, Lapoint RT, 798 799 Sonderby IE, Halkier BA, Kocks C, Ausubel FM, Pierce NE (2012). Genes involved in the evolution of herbivory by a leaf-mining, drosophilid fly. Genome Biol Evol 800 4:900-916 doi: 10.1093/gbe/evs063 801 802 Whiteman NK, Groen SC, Chevasco D, Bear A, Beckwith N, Gregory TR, Denoux C, 803 Mammarella N, Ausubel FM, Pierce NE (2011). Mining the plant-herbivore 804 interface with a leafmining *Drosophila* of *Arabidopsis*. Mol Ecol 20:995-1014 doi: 805 806 10.1111/j.1365-294X.2010.04901.x 807 808 Züst T, Agrawal AA (2017). Trade-offs between plant growth and defense against 809 insect herbivory: An emerging mechanistic synthesis. Annual Review of Plant Biology 68:513-534 doi: 10.1146/annurev-arplant-042916-040856 810 811 812 Züst T, Heichinger C, Grossniklaus U, Harrington R, Kliebenstein DJ, Turnbull LA 813 (2012). Natural enemies drive geographic variation in plant defenses. Science

338:116-119 doi 10.1126/science.1226397

815 Fig. 1. Light environment and source habitat distinguish growth

phenotypes of bittercress grown from rhizomes in common gardens. (A)

- Principle components analysis (PCA) of five growth phenotypes (see Methods)
- 818 reveals distinct phenotypic clusters based on garden type. (B-E) Plant traits
- exhibited a garden type main effect (B, C), source habitat main effect (C, D), and
- interactions between garden type and source habitat (\mathbf{D} , \mathbf{E}). Error bars indicate \pm
- standard error. 'ns' = P > 0.05, *0.05 > P > 0.01, **0.01 > P > 0.001, ***P < 0.001.
- Fig. 2. Realized plant resistance to Scaptomyza nigrita larvae differed by
- 824 **source habitat in shade but not sun common gardens.** S. nigrita larval mass
- was higher on average after feeding for 72 h on shade-derived plants than on sun-
- derived plants in shade common gardens, while larval mass was indistinguishable
- between plants from both sources in sun exposed common gardens. Larvae were
- 828 initially of the same developmental instar but were not pre-weighted (see *Methods*).
- 829 'ns' = P > 0.05, *P < 0.05.
- 831 Fig. 3. Phenological progression and flowering curves indicate site-specific
- 832 differences in phenology between open sun and shaded habitats. (A.)
- 833 Phenological progression through first, peak, and last flowering depicted as
- empirical cumulative distributions indicate faster flowering for sun plants at
- 835 Copper Creek but not 401 Trail site, as indicated by pairwise two-sample and two-
- tailed Kolmogorov–Smirnov (K–S) tests. (B.) Pooled average flower density through
- time shows delayed flowering peak in shade habitats at Copper Creek but not 401
- 838 Trail site.

816

822

FIGURES

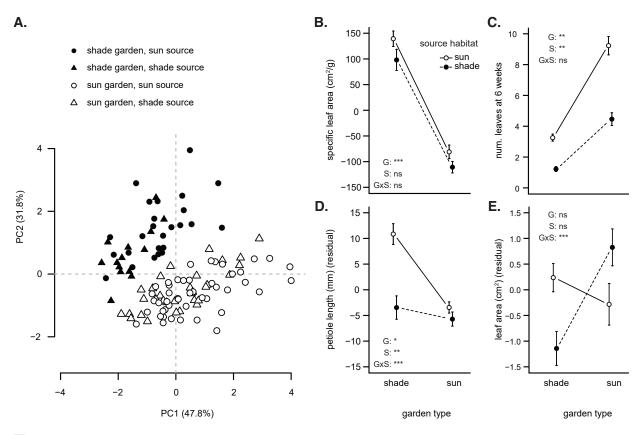
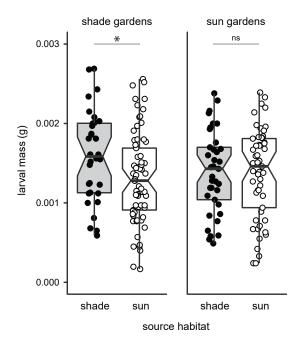
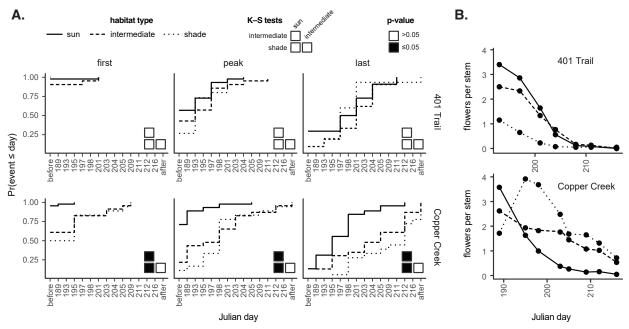




Fig. 1

Fig. 2

Fig. 3

TABLES

848849850

851

852

853

854 855

856

857

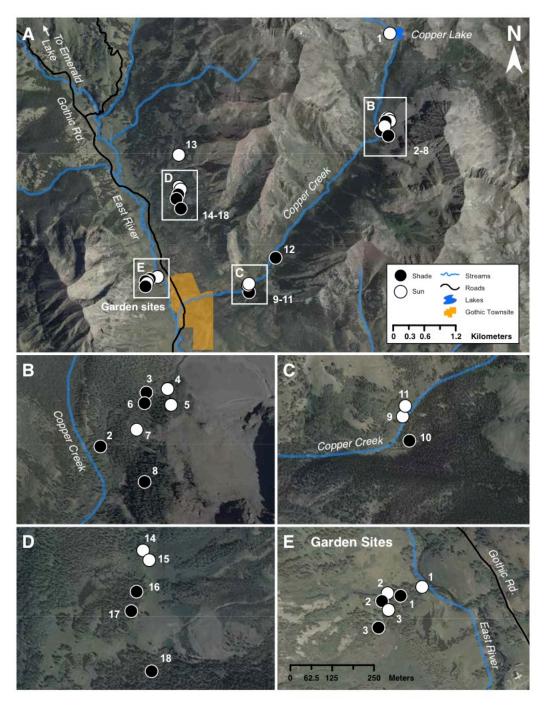
Table 1. Model results for plant growth traits in sun and shade common gardens.

	Response variables								
Predictor variables	Model statistic	Num. Leaves *	Leaf Area (cm2)†,1	Specific Leaf Area (cm²/g)¹	Petiole Length (mm)*,1				
	MS^a	6.68	8.4	3.40E+05	5.923				
Garden Type	denDF tt	4	4.7	4.24	4.22				
Garden Type	F	18.16	0.92	46.67	4.56				
	P^b	0.013	0.383	0.002	0.096				
	MS^a	5.977	0.31	3098	11.034				
Ω <i>π</i>	denDF	15.68	17.35	16.84	18.45853				
Source Type	F	15.81	0	0.42	10.54				
	P	0.001	0.853	0.527	0.004				
	MS	0.665	81.08	16921	13.236				
Garden Type X Source	denDF	324.37	264.34	260.99	265.6573				
Туре	F	1.77	9.49	2.29	13.47				
	P	0.182	0.002	0.131	0.0003				
	MS	-	392.99	83500	42.23				
O : 4	denDF	-	239.9	243.08	182.03				
Covariate	F	-	38.57	4.51	32.26				
	P	-	0	0.0356	1.00E-07				
	Var	0.0321	0.0167	17781	0.18922				
O + V O 1 M	X2	5.207	0.735	5.3697	3.194				
Genet X Garden Type	df	3	3	3	3				
	$\stackrel{\cdot}{P}$	0.157	0.865	0.147	0.363				

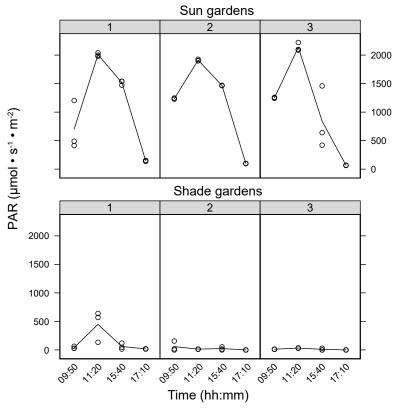
^{*-} model results for square root transformed data

- 1 modeled using leaf number as covariate
- 2 modeled using SLA as covariate

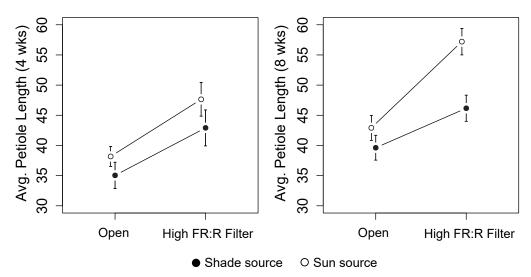
^{†-} model results for *ln*-transformed data


^{†† -} denominator degrees of freedom

a - MS from reduced model after testing for fixed and random interactions but retaining fixed interaction term if P<0.1


b - F and P values from Kendall-Rogers correction for denominator d.f. (see methods)

ELECTRONIC SUPPLEMENTARY MATERIAL


Supplementary Figures.

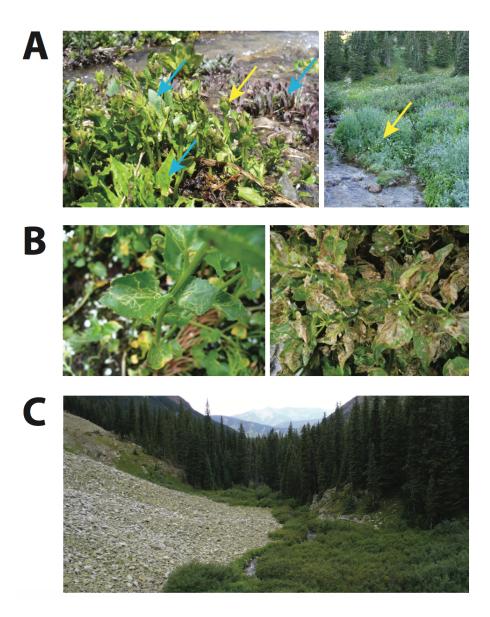

Fig. S1. Map of source and garden sites used in the field common garden study in the East River Valley and Copper Creek drainages, near the RMBL in Gothic, CO. (A). Base map showing all sites within region (1:48,000). (B–E). Maps showing detail of site locations (all same scale, 1:7,500). Scale bar in E applies to B–E.

Fig. S2. PAR measurements for the six common garden sites showing daily natural variation in light abundance. Line depicts mean of three measurements per time point per garden.

Fig. S3. Petiole length of shade and sun source bittercress re-grown from seed under neutral ("Open") or light filters ("High FR:R Filter") to simulate neighbor shading in the greenhouse. \pm indicates standard error.

Fig. S4. Photographs illustrating characteristics of open sun habitats for bittercress near RMBL. (**A**) Bittecress densely interspersed among heterospecific forbs early (left) and later (right) in the growing season. Yellow arrows: bittercress (with white flowers in the image to the right); blue arrows: other forbs. (**B**) Leaf mines from *S. nigrita* early (left) and later (right) in the growing season. (**C**) An alpine stream providing a patch of sunny habitat for bittercress at the base of a talus slope, before flowing into a shaded evergreen forest.

Table S1. Attributes of sites used as sources for bittercress genets for common gardens.

Site#	Date Collected	Lat.	Long.	Elevation (m)	Soil Moisture	Light Env.	PAR (μmol·s· m-1) ¹	% Canopy Open	Average DBH (cm)
1	10-Jul-11	39.0050602776535	-106.943317166893	3461	Very Wet	Sun	1980	99.84	0
2	10-Jul-11	38.9885304491745	-106.945774321867	3218	Moist Loamy	Shade	300	6.76	10
3	11-Jul-11	38.9900162385746	-106.944210201638	3240	Moist Loamy	Shade	130	8.06	121.75
4	11-Jul-11	38.9900829890862	-106.943450029132	3253	Very Wet	Sun	2030	82.94	0
5	11-Jul-11	38.9896982273227	-106.9432894133	3261	Very Wet	Sun	2034	95.42	0
6	11-Jul-11	38.9897805369006	-106.94429611421	3244	Moist Loamy	Shade	130	4.16	83.25
7	11-Jul-11	38.9890385630266	-106.944483622637	3220	Very Wet	Sun	2134	99.84	0
8	11-Jul-11	38.9876108211294	-106.944190554921	3250	Moist Loamy	Shade	28	3.38	81.75
9	12-Jul-11	38.9607056556777	-106.973679741745	3023	Very Wet	Sun	2026	88.14	0
10	12-Jul-11	38.9600423351315	-106.973476684125	3013	Wet Loamy	Shade	35	5.72	72.25
11	12-Jul-11	38.9609507737634	-106.973571138078	3994	Very Wet	Sun	1933	86.84	0
12	12-Jul-11	38.9655594715881	-106.968516958823	3994	Very Wet	Shade	32	3.9	101
13	13-Jul-11	38.9828665210329	-106.989822099201	4058	Very Wet	Sun	1780	96.2	0
14	13-Jul-11	38.9774145794955	-106.98986568487	4082	Very Wet	Sun	1870	88.4	0
15	13-Jul-11	38.9771831850899	-106.989697600334	4057	Very Wet	Sun	1850	99.84	0
16	13-Jul-11	38.976356744414	-106.990078474138	4052	Very Wet	Shade	54	4.68	98
17	13-Jul-11	38.975757817399	-106.990327194402	4046	Moist Loamy	Shade	60	4.16	140.5
18	13-Jul-11	38.974195183581	-106.989498527449	4051	Very Wet	Shade	40	7.28	78.75

¹Light meter was positioned above the center of each source collection plot, at times without cloud cover between 1:00 pm and 3:00 pm during the week of July 17, 2011.

	Sun Sites $(N = 9)$		Shade sit	tes (N = 9)	ANOVA		
Attribute	μ	se	μ	se	F	P	
PAR $(\mu mol \bullet s^{-1} \bullet m^{-2})$	1959.7	37.0	89.0	29.4	1564	<10-10	
% Canopy Open	93.1	2.2	5.3	0.6	1527	<10-10	
DBH(cm)	0.00	0.00	87.5	12.2	51.77	<10-10	
Elevation (m)	3601	146	3568	150	0.025	0.875	

Table S3. Source site attributes for plants from which seeds were collected and regrown for use in greenhouse common garden experiment.

Site #1	Lat.	Long.	Elevation (m)	Light Env.	% Canopy Open
9	38.977203215	-106.992257330	3050	Shade	32.24
8	38.977172541	-106.992202530	3049	Shade	13.52
11	38.977208673	-106.991636863	3049	Shade	9.36
19	38.960075121	-106.973484675	3007	Shade	32.24
20	38.959999897	-106.973505522	3005	Shade	18.72
12	38.974598748	-106.990864137	3044	Sun	96.72
13	38.974504757	-106.990819289	3045	Sun	84.24
26	39.007275416	-107.040268306	3181	Sun	100

¹Site numbers for plant from which seeds were collected differ from site numbers listed above in Table A1.

	Shade gardens						Sun	Sun gardens						
	Shad	le source	habitats	Sun s	Sun source habitats			Shade source habitats			Sun source habitats			
Variable	N	μ	se^1	N	μ	se	N	μ	se	N	μ	se		
Num. leaves	103	1.36	0.17	108	3.68	0.23	113	4.84	0.44	114	9.98	0.61		
Petiole length (mm)	41	32.22	2.27	76	47.04	2.06	62	31.94	1.5	90	35.59	1.18		
Leaf area (cm²)	41	3.18	0.33	76	5.04	0.3	62	6.82	0.46	90	7.03	0.44		
Leaf mass (mg)	41	4.74	0.4	76	7.49	0.41	62	19.38	1.39	90	21.66	1.4		
Specific leaf area (cm²/g)	41	659.9	19.1	76	677.8	15.1	62	362.8	7.7	90	337.5	8.0		
Larval mass (mg)	31	1.62	0.1	68	1.3	0.07	34	1.4	0.09	53	1.39	0.07		

¹Standard error

Supplementary Discussion.

Functional genetic studies of *Arabidopsis* mutants provide plausible, although speculative, mechanisms for the uncoupling of growth and defense at the molecular level in bittercress. Recall that bittercress from shade source habitats expressed relatively reduced SAS as well as reduced herbivore resistance when grown in shade gardens. This pattern was found in the SAS-deficient *A. thaliana* mutant *sav3-2*, which exhibits an attenuated defense phenotype but no SAS expression under high FR:R light (Moreno et al. 2009; Cerrudo et al. 2012). It is possible that bittercress in evergreen forest canopy understories do not *express* SAS but continue to express attenuated resistance to herbivores through a pleiotropic effect associated with detection of high FR:R light. In sun gardens, shade-derived bittercress resisted herbivores to the same degree as plants from sun source. Decoupling of shade detection from SAS expression would allow plants adapted to evergreen forest canopy shade to continue to resist herbivores in sun habitats while reducing the expression of SAS following shade detection under evergreen forest canopy shade, where its expression is unnecessary.

In contrast, plants from sun habitats could activate SAS upon detection of high FR:R light but may have decoupled the resistance attenuation that typically results from detection of neighbor shade (Robson et al. 2010; Kazan and Manners 2011). This could occur via modification of the physiological basis of shade detection. In A. thaliana, SAS is also induced by depletion of blue (B) light, which is detected by cryptochrome 1 (CRY1) (Keuskamp et al. 2010; Keller et al. 2011). Mutant A. thaliana with inactivated CRY1 constitutively express features of SAS but without attenuation of JA-dependent defenses. The same phenotype is produced in wild-type A. thaliana grown under B-depleted light (Cerrudo et al. 2012), suggesting that alternate light-sensing pathways may interact to determine the consequences of shade detection for plant defense against herbivores.

Mutations that reduce the ecological costs of negative correlations may be favored under particular combinations of selective agents, such as those faced by bittercress in sun habitats. Novel and habitat-specific genotypes may emerge that reveal novel insights into the genetic architecture of phenotypic plasticity. Extensive quantitative genetic variation has been found for SAS expression among *A. thaliana* accessions (Filiault and Maloof 2012), and testing for correlations between SAS and defense-related genetic variation coupled to shading and herbivory experiments may be one promising avenue of future research.

References.

Cerrudo I., M. M. Keller, M. D. Cargnel, P. V. Demkura, M. de Wit, M. S. Patitucci, R. Pierik, C. M. Pieterse, and C. L. Ballare. 2012. Low red/far-red ratios reduce *Arabidopsis* resistance to *Botrytis cinerea* and jasmonate responses via a COI1-JAZ10-dependent, salicylic acid-independent mechanism. Plant Physiol. 158:2042-2052.

Filiault D. L., and J. N. Maloof. 2012. A genome-wide association study identifies variants underlying the *Arabidopsis thaliana* shade avoidance response. PLoS Genetics 8:e1002589.

Kazan K., and J. M. Manners. 2011. The interplay between light and jasmonate signalling during defence and development. J. Exp. Bot. 62:4087-4100.

Keller M. M., Y. Jaillais, U. V. Pedmale, J. E. Moreno, J. Chory, and C. L. Ballaré. 2011. Cryptochrome 1 and phytochrome B control shade-avoidance responses in *Arabidopsis* via partially independent hormonal cascades. The Plant Journal 67:195-207.

Keuskamp D. H., R. Sasidharan, and R. Pierik. 2010. Physiological regulation and functional significance of shade avoidance responses to neighbors. Plant signaling & behavior 5:655-662.

Moreno J. E., Y. Tao, J. Chory, and C. L. Ballare. 2009. Ecological modulation of plant defense via phytochrome control of jasmonate sensitivity. Proc. Natl. Acad. Sci. U. S. A. 106:4935-4940.

Robson F., H. Okamoto, E. Patrick, S. R. Harris, C. Wasternack, C. Brearley, and J. G. Turner. 2010. Jasmonate and phytochrome A signaling in *Arabidopsis* wound and shade responses are integrated through JAZ1 stability. Plant Cell 22:1143-1160.