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Abstract

This paper presents a method for identifying me-
chanical parameters of robots or objects, such as
their mass and friction coefficients. Key features
are the use of off-the-shelf physics engines and the
adaptation of a Bayesian optimization technique
towards minimizing the number of real-world ex-
periments needed for model-based reinforcement
learning. The proposed framework reproduces in
a physics engine experiments performed on a real
robot and optimizes the model’s mechanical param-
eters so as to match real-world trajectories. The
optimized model is then used for learning a policy
in simulation, before real-world deployment. It is
well understood, however, that it is hard to exactly
reproduce real trajectories in simulation. More-
over, a near-optimal policy can be frequently found
with an imperfect model. Therefore, this work pro-
poses a strategy for identifying a model that is just
good enough to approximate the value of a locally
optimal policy with a certain confidence, instead
of wasting effort on identifying the most accurate
model. Evaluations, performed both in simulation
and on a real robotic manipulation task, indicate
that the proposed strategy results in an overall time-
efficient, integrated model identification and learn-
ing solution, which significantly improves the data-
efficiency of existing policy search algorithms.

1 Introduction

Reinforcement learning (RL) typically requires a lot of train-
ing data before it can provide useful skills in robotics. Learn-
ing in simulation can help reduce the dependence on real-
world data but the learned policy may not work due to model
inaccuracies, also known as the “reality gap”. This paper
presents an approach for model identification by exploiting
the availability of off-the-shelf physics engines [Erez er al.,
2015] for simulating robot and object dynamics in a given
scene. One objective is to achieve data-efficiency for RL by
reducing the need for many real-world robot experiments by
providing better simulated models. It also aims to achieve
time efficiency in the context of model identification by re-
ducing the computational effort of this process.

Predictions according to
most likely models

Good zone (high reward) (I:;drez\z:red)

Bad zone
(low reward)

Figure 1: Example of a stopping criterion for model identification: if
all high-probability models predict a high reward for a given action,
there is no point in identifying a more accurate model.

The accuracy of a physics engine depends on several fac-
tors. The model assumed by the engine, such as Coulomb’s
law of friction, may be limited or the numerical algorithm for
solving the differential equations of motion may introduce er-
rors. Moreover, the robot’s and the objects’ mechanical pa-
rameters, such as mass, friction and elasticity, may be inac-
curate. This work focuses on this last factor and proposes a
method for identifying mechanical parameters used in physi-
cal simulations so as to assist in learning a robotic task.

Given initial real-world trajectories, potentially generated
by randomly initializing a policy and performing roll-outs,
the proposed approach searches for the best model parame-
ters so that the simulated trajectories are as close as possi-
ble to the real ones. This is performed through an anytime
black-box Bayesian optimization, where a belief on the opti-
mal model is dynamically updated. Once a model with a high
probability is identified, a policy search subroutine takes over
the returned model and computes a policy to perform the tar-
get task. The subroutine could be a control method, such as
a linear—quadratic regulator (LQR), or an RL algorithm that
runs on the physics engine with the identified model. The ob-
tained policy is then executed on the real robot and the newly
observed trajectories are fed to the model identification mod-
ule, to repeat the same process.

The question that arises is how accurate the identified



model should be to find a successful policy. Instead of spend-
ing time searching for the most accurate model, the optimiza-
tion can stop whenever a model that is sufficiently accurate to
find a good policy is identified. Answering this question ex-
actly, however, is difficult, because that would require know-
ing in advance the optimal policy for the real system.

The proposed solution is motivated by a key quality desired
in many robot RL algorithms. To ensure safety, most robot
RL algorithms constrain the changes in the policy between
two iterations to be minimal and gradual. For instance, both
Relative-Entropy Policy Search (REPS) [Peters et al., 2010]
and Trust Region Policy Optimization (TRPO) [Schulman et
al., 2015] algorithms guarantee that the KL divergence be-
tween an updated policy and the one in the previous iteration
is bounded. Therefore, one can in practice use the previous
best policy as a proxy to verify if there is a consensus among
the most likely models on the best policy in the next itera-
tion. This is justified by the fact that the updated policy is not
too different from the previous one. Thus, model identifica-
tion is stopped whenever the most likely models predict al-
most the same value for the previously computed policy, i.e.,
if all the high-probability models predict a similar value for
the previous policy, then any of these models could be used
for searching for the next policy.

Empirical evaluation performed in simulation and on a real
robot show the benefits of the framework. The initial set of
experiments are performed in the OpenAl Gym [Brockman
et al., 2016] with the MuJoCo simulator!. T hey demonstrate
that the proposed model identification approach is more time-
efficient than alternatives, and it improves the data-efficiency
of policy search algorithms, such as TRPO. The second part
is performed on a real-robot manipulation task. It shows that
learning using a simulator with the identified model can be
more data-efficient than other model-based methods, such as
PILCO, and model-free ones, such as POWER.

2 Related Work

The proposed method relates to model-based RL, where a dy-
namical system is physically simulated. Model-based learn-
ing involves explicitly learning the unknown dynamics of
the system, and search for an optimal policy accordingly.
Variants have been applied in robotics [Dogar et al., 2012;
Lynch and Mason, 1996; Scholz et al., 2014; Zhou et al.,
2016], where it has been shown that using inaccurate mod-
els can still allow a policy to steer an RC car [Abbeel et
al., 2006]. For general-purpose model-based RL, the Prob-
abilistic Inference for Learning COntrol (PILCO) algorithm
has been shown to be efficient in utilizing a small amount of
data to learn dynamical models and optimal policies [Deisen-
roth et al., 2011]. Replacing the gradient-based optimization
algorithm with a parallel, black-box algorithm (Covariance
Matrix Adaptation (CMA)) [Hansen, 2006], Black-DROPS
can be as data-efficient as PILCO without imposing any con-
straint on the reward function or the policy [Chatzilygeroudis
et al.,2017]. CMA was also used for automatically designing
open-loop reference trajectories [Tan et al., 2016]. Trajectory
optimization was performed in a physical simulator before
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real-world execution. Real robot trajectories were used to op-
timize the simulator parameters.

The proposed method also relates to learning from sim-
ulation. Utilizing simulation to learn a prior before learn-
ing on the robot is a common way to reduce real-world data
needs for policy search and provides data-efficiency over
PILCO [Cutler and How, 2015]. Policy Improvement with
REsidual Model learning (PI-REM) [Saveriano et al., 2017]
has shown improvement over PILCO by utilizing a simulator
and only modeling the residual dynamics between the sim-
ulator and reality. Similarly, using data from simulation as
the mean function of a Gaussian Process (GP) and combin-
ing with Iterative Linear Quadratic Gaussian Control (ILQG),
GP-ILQG is able to improve incorrect models and generate
robust controllers [Lee ef al., 2017].

In addition, the proposed method utilizes Bayesian opti-
mization (BO) to efficiently identify the model. For direct
policy search, a prior can also be selected from a set of can-
didates using BO [Pautrat et al., 2017]. BO can also be used
to optimize the policy while balancing the trade-off between
simulation and real data [Marco et al., 20171, or learn a lo-
cally linear dynamical model, while aiming to maximize con-
trol performance [Bansal et al., 2017].

Traditional system identification builds a dynamics
model by minimizing prediction error (e.g., using least
squares) [Swevers et al., 1997]. There have been attempts
to combine parametric rigid body dynamics model with non-
parametric model learning for approximating the inverse dy-
namics [Nguyen-Tuong and Peters, 2010]. In contrast to
these methods, this work uses a physics engine, and concen-
trates on identifying model parameters instead of learning the
models from scratch. Optimizing the simulated model param-
eters to match actual data collected on the robot can also help
model robot damage [Bongard er al., 2006]. Recent work per-
formed in simulation proposed model identification for pre-
dicting physical parameters, such as mass and friction [Yu et
al., 2017].

Different from model-based methods, model-free methods
search for a policy that best solves the task without explic-
itly learning the system’s dynamics [Sutton and Barto, 1998;
Kober et al., 2013]. They have been shown effective in
robotic tasks [Peters et al., 2010]. Policy learning by Weight-
ing Exploration with the Returns (PoWER) [Kober and Pe-
ters, 2009] is a model-free policy search approach widely
used for learning motor skills. The TRPO algorithm [Schul-
man et al., 2015] has been demonstrated in some MuJoCo
simulator environments. End-to-end learning is an increas-
ingly popular framework [Agrawal er al., 2016; Wu et al.,
2015; Byravan and Fox, 2017; Finn and Levine, |, which in-
volves successful demonstrations of physical interaction and
learning a direct mapping of the sensing input to controls.
These approaches usually require many physical experiments
to effectively learn. Overall, model-free methods tend to re-
quire a lot of training data and can jeopardize robot safety.

A contribution of this work is to link model identification
with policy search. It does not search for the most accurate
model within a time budget but for an accurate enough model,
given an easily computable criterion, i.e., predicting a pol-
icy’s value function that is not too different from the searched



policy. This idea can be used with many policy search algo-
rithms that allow for smooth changes during learning.

3 Proposed Approach

This section provides first a system overview and then the
main algorithm, focusing on model identification.

3.1 System Overview and Notations

The focus is on identifying physical properties of robots or
objects, e.g. mass and friction, using a simulator. These phys-
ical properties are concatenated in a single vector and repre-
sented as a D-dimensional vector 6 € ®, where O is the space
of possible physical parameters. ® is discretized with a regu-
lar grid resolution. The proposed approach returns a distribu-
tion P on a discretized O instead of a single point 0 € © given
the challenge of perfect model identification. In other terms,
there may be multiple models that can explain an observed
movement of the robot with similar accuracy. The approach
is to preserve all possible explanations and their probabilities.

The online model identification takes as input a prior
distribution P, for time-step ¢ > 0, on the discretized
parameter space ©. B is calculated based on the
initial distribution Py and a sequence of observations
(x0, MO, X1 5 M1y« Xe—1, He—1,% ). For instance, x; can be the
state of the robot at time ¢ and y, is a vector describing a
vector of torques applied to the robot at time t. Applying u,
results in changing the robot’s state from x; to x;41. The al-
gorithm returns a distribution 7,1 on the models ©®.

The robot’s task is specified by a reward function R that
maps state-actions (x, (1) into real numbers. A policy 7 re-
turns an action u = m(x) for state x. The value V*(6) of
policy 7 given model 0 is defined as V*(8) = Y12, R(x;, i),
where H is a fixed horizon, x¢ is a given starting state, and
X1 = f(x¢, e, 0) is the predicted state at time z + 1 after
simulating action [, in state x; given parameters 8. For sim-
plicity, the focus is on systems with deterministic dynamics.

3.2 Main Algorithm

Given a reward function R and a simulator with model pa-
rameters 0, there are many ways to search for a policy 7 that
maximizes value V7 (6). For example, one can use Differen-
tial Dynamic Programming (DDP), Monte Carlo (MC) meth-
ods, or if a good policy cannot be found with alternatives,
execute a model-free RL algorithm on the simulator. The
choice of a particular policy search method is open and de-
pends on the task. The main loop of the system is presented
in Algorithm 1. This meta-algorithm consists in repeating
three main steps: (1) data collection using the real robot, (2)
model identification using a simulator, and (3) policy search
in simulation using the best identified model.

3.3 Value-Guided Model Identification

The process, explained in Algorithm 2, consists of simulating
the effects of actions y; on the robot in states x; under various
values of parameters 6 and observing the resulting states £,
fori =0,...,¢. The goal is to identify the model parameters
that make the outcomes of the simulation as close as possible

t<+0;

Initialize distribution P over ® to a uniform distribution;

Initialize policy 7;

repeat

Execute policy 7 for H iterations on the real robot, and
collect new state-action-state data { (x;, t;, x;+1)} for
i=t,....,t+H—1;

t+—t+H,;

Run Algorithm 2 with collected state-action-state data
and reference policy 7 for updating distribution P;

Initialize a policy search algorithm (e.g. TRPO) with &
and run the algorithm in the simulator with the model
argmaxgee P(0) to find an improved policy 7’;
T+ 7

until 7imeout;

Algorithm 1: Main Loop

to the real observed outcomes. In other terms, the following
black-box optimization problem is solved:

t
« . d
6* = argminE(0) < Y [lxi1 — £ 11, 0) 2, (1)
0c0 =

wherein x; and x;| are the observed states of the robot at
times i and i+ 1, y; is the action that moved the robot from
x; to x;41, and f(x;, Wi, 0) = %11, the predicted state at time
i+ 1 after simulating action y; in state x; using 6.

High-fidelity simulations are computationally expensive. It
is therefore important to minimize the number of simulations,
i.e., evaluations of function E, while searching for the opti-
mal parameters that solve Eq. 1. This is solved by using the
Entropy Search technique [Hennig and Schuler, 2012]. This
method is well-suited because it explicitly maintains a belief
on the optimal parameters. This is unlike other Bayesian op-
timization methods, such as Expected Improvement, which
only maintain a belief on the objective function. The follow-
ing description explains how this technique is adapted, and
shows why keeping a distribution on all models is needed for
deciding when to stop the optimization.

The error function E does not have an analytical form, it
is gradually learned from a sequence of simulations with a
small number of parameters 6, € ®. To choose these pa-
rameters efficiently in a way that quickly leads to accurate
parameter estimation, a belief about the actual error function
is maintained. This belief is a probability measure over the
space of all functions E : RP? — R, and is represented by
a Gaussian Process (GP) [Rasmussen and Williams, 2005]
with mean vector m and covariance matrix K. The mean
m and covariance K of the GP are learned from data points
{(60,E(60)),--., (6, E(6k))}, where 6 is a selected vector
of physical properties of the robot, and E(6;) is the accumu-
lated distance between actual observed states and states that
are obtained from simulation using 6.

The probability distribution P on the identity of the best
physical model 6%, returned by the algorithm, is computed



Input: state-action-state data {(x;, W;,x;+1)} fori =0,....¢
a discretized space of possible values of physical
properties ©,

a reference policy 7,

minimum and maximum number of evaluated
models Kpin, kimaxs

model confidence threshold 7,

value error threshold € ;

Output: probability distribution P over ©;

Sample 6y ~ Uniform(®); L < 0; k < 0; stop < false;

repeat

// Calculating the accuracy of model 6

I, + 0;

fori=0tot do

Simulate {(x;, 1t;)} using a physics engine with
physical parameters 6; and get the predicted next
state £;41 = f(xi, i, Ok) 5

I = B+ (| Rivr = xiga |23

end

L LU{(6), k)

Calculate GP(m,K) on error function E, where

E(6) =1, using data (6,1) € L;

// Monte Carlo sampling

Sample E|,E;,...,E, ~ GP(m,K) in ©;

foreach 6 € ® do

1 &
P(e) ~ ; Z 19:argmin9/€®Ej(9’) 2
j=0

end

// Selecting the next model to evaluate
Bi1 = argmingee P(0)log (P(6)) ;

k+—k+1;

// Checking the stopping condition

if k > k;;in, then

0* < argmaxgce P(0);

Calculate the values V" (6) with all models 6 that have a
probability P(6) > n by using the physics engine for
simulating trajectories with models 0 ;

if o vp(0)=n P(6)|V(6) —V7(8")| < ¢ then
| stop < true;

end

end
if k = kj;;qr then
| stop < true;
end
until stop = true;

Algorithm 2: Value-Guided Model Identification

from the learned GP as

def ) ,
P(6) po = E(0
(6)'= P(6 =argmin £(6"))

3)

= ik (ENgco_ranH(E(8') —E(0))dE
o n P k(Elgco_(oyH(E(0")—E(8))

where H is the Heaviside step function, i.e., H(E(6') —
E(6)) =1if E(6') > E(6) and H(E(6") — E(8)) = 0 oth-
erwise, and p,, x(E) is the probability of E according to the

learned GP mean m and covariance K. Intuitively, P(0) is the
expected number of times that 6 happens to be the minimizer
of E when E is a function distributed according to the GP.

The distribution P from Eq. 3 does not have a closed-
form expression. Therefore, Monte Carlo (MC) sampling
is employed for estimating P. The process samples vectors
[E(0")]grc@ containing values that E could take, according to
the learned GP, in the discretized space ®. Then P() is esti-
mated by counting the ratio of sampled vectors of the values
of simulation error £ where 6 happens to make the lowest
error, as indicated in Eq. 2 in Alg. 2.

Finally, the computed distribution P is used to select the
next vector 6, to use as a physical model in the simula-
tor. This process is repeated until the entropy of P drops
below a certain threshold, or until the algorithm runs out
of the allocated time budget. The entropy of P is given as
Y 6c0 —Puin(0)10g (Pyin(60)). When the entropy of P is close
to zero, the mass of distribution P is concentrated around a
single vector 68, corresponding to the physical model that best
explains the observations. Hence, next 6,1 should be se-
lected so that the entropy of P would decrease after adding the
data point (61, (6k:1))} to train the GP and re-estimate P
using the new mean m and covariance K in Eq. 3.

Entropy Search methods follow this reasoning and use MC
again to sample, for each potential choice of 6y, a number
of values that E(6;. 1) could take according to the GP in or-
der to estimate the expected change in the entropy of P and
choose the parameter vector 6y, that is expected to decrease
the entropy of P the most. The existence of a secondary
nested process of MC sampling makes this method imprac-
tical for online optimization. Instead, this work presents a
simple heuristic for choosing the next 6. In this method,
called Greedy Entropy Search, the next 6y is chosen as the
point that contributes the most to the entropy of P,

01 = arg max —P(0)log (P(0)). 4)

This selection criterion is greedy because it does not antici-
pate how the output of the simulation using 6y would affect
the entropy of P. Nevertheless, this criterion selects the point
that is causing the entropy of P to be high. That is a point 6
with a good chance P(6y. ) of being the real model, but also
with a high uncertainty P(6y.1)log (m). Initial experi-
ments suggested that this heuristic version of Entropy Search
is more practical than the original Entropy Search method be-
cause of the computationally expensive nested MC sampling
loops used in the original method. The actual sampled values
are not restricted to lie on the discretized grid. Once a grid
value is selected as the candidate with the highest entropy, a
local optimization process using L-BFGS takes place to fur-
ther optimize the parameter value.

The stopping condition of Alg. 2 depends on the predicted
value of a reference policy m. The reference policy is one
that will be used in the main algorithm (Alg. 1) as a starting
point in the policy search with the identified model. That is
also the policy executed in the previous round of the main al-
gorithm. Many policy search algorithms (such as REPS and
TRPO) guarantee that the KL divergence between consecu-
tive policies 7 and 7’ is minimal. Therefore, if the difference
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Figure 2: Average reward as a function of total time, including both model identification and policy search. (Best viewed in color.)
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Figure 3: The error in predicting the value of the next policy (|V™ (8) —V* (6*)]) as a function of the time spent in the model identification
process. When VGMI decides to stop (green line), the actual value error is indeed always below threshold used in its stopping criterion.

[VT(6) —V7T(6*)| for two given models 6 and 6* is smaller

than a threshold €, then the difference |V () — VT (6%)|
should also be smaller than a threshold that is a function
of € and KL(x||7'). A full proof of this conjecture is the
subject of an upcoming work. In practice, this means that
if 6 and 6* are two models with high probabilities, and
[V®(6) — V*(6*)| < € then there is no point in continuing
the optimization to find out which one of the two models is
actually the most accurate because both models will result
in similar policies. The same argument could be used when
there are more than two models with high probabilities.

4 Experimental Results

VGMI is evaluated both in simulation and on a real robot.

4.1 Experiments on RL Benchmarks in Simulation

Setup: The simulation experiments are performed in Ope-
nAI Gym with the MuJoCo simulator. The space of unknown
physical models 8 is:

Inverted Pendulum (IP): A pendulum is connected to a cart,
which moves linearly. The dimensionality of ® is two, one
for the mass of the pendulum and one for the cart.
Swimmer: The swimmer is a 3-link planar robot. ® has three
dimensions, one for the mass of each link.

Hopper: The hopper is a 4-link planar mono-pod robot.
Thus, the dimensionality of ® is four.

Walker2D: The walker is a 7-link planar biped robot. Thus,
the dimensionality of ® is seven.

HalfCheetah: The halfcheetah is a 7-link planar cheetah



robot. The dimensionality of the space © is seven.

For each environment, the simulator is initiated with the
ground truth mass, which is only used for rollouts to gener-
ate data for model identification. To create inaccurate simu-
lators as prior models, the mass was randomly increased or
decreased by ten to fifty percent. All the policies are trained
with TRPO implemented in rllab [Duan et al., 2016]. The
policy network has 2 hidden layers with 32 neurons each.

VGMI is compared against a) Covariance Matrix Adapta-
tion Evolution Strategy (CMA-ES) [Tan er al., 2016] and b)
Least Square (LS) optimization using L-BFGS-B algorithm
[Swevers et al., 1997]. All of them optimize the objective
function of Eq. 1.

The number of iterations for policy search varies on prob-
lem difficulty. The main loop in Alg. 1 is executed for 20
iterations for IP, 100 iterations for Swimmer, 100 iterations
for Hopper, 200 iterations for Walker2D and 400 iterations
for HalfCheetah. VGMI follows Alg. 2 and is executed every
10 iterations, i.e., H = 10 in Alg. 1. The same iterations are
used for CMA and LS and they are also given the same time
budget for model identification. All the results are the mean
and stand deviation of 20 independent trials.

Results: Performance is reported for total training time, i.e.,
including both model identification and policy search.

Fig. 2 shows the cumulative reward per trajectory on the
ground truth system as a function of the total time. VGMI al-
ways achieves the highest reward across 5 benchmarks and
earlier than CMA and LS. CMA performs better than LS,
though relies on a large number of trajectories that needs to
be physically simulated.

Fig. 3 shows that VGMI automatically stops the process
without manually setting a time budget. The red line is the
error threshold € in the predicted value function of VGMI.
The green line is where VGMI stops based on € and Algo-
rithm’s 2 criterion. The same algorithm was also executed
with increasing pre-set time budgets (x-axis). The reality gap
in predicting the value of the best policy was empirically es-
timated using the best-identified and the ground truth model.
This ensures that VGMI does not stop prematurely. When it
stops (green line), the error |V7 () — V™ (6*)| (blue curve)
is indeed below the predefined threshold &, i.e., further tuning
the identified model quickly does not provide many benefits
past the stopping point.

Fig. 4 shows that the adaptive stopping criterion of VGMI
performs better than different fixed time budgets for model
identification. Thus, VGMI with the proposed stopping crite-
rion effectively balances the trade-off between model identi-
fication and policy search.

Fig. 5 demonstrates that Greedy Entropy Search (GES) in
the context of VGMI results in improved convergence relative
to the original Entropy Search approach.

4.2 Real Robot Pushing Experiments

Setup: Consider Figs. 6 and 7, where the (Motoman) robot
assists (Baxter) to pick up a bottle. The object is known but
can be reached only by Motoman and not by Baxter. The in-
tersection of the robots’ reachable workspace is empty and
Motoman must learn an action to push the bottle Im away in-
side Baxter’s reachability region. If the robot simply executes

Swimmer

eward
S o B
o o o

o
(=}

(=}

2s

*5s

15s

= 20s

® VGMI (9.3s)

500 1000 1500 2000 2500 3000
Time in seconds

Hopper

Average R
JS D

N
-~ o

o 5s
15s
- 20s
0 ® VGMI (10.3s)
0 500 1000 1500 2000 2500 3000 3500 4000
Time in seconds

Figure 4: For a fixed total time budget for both model identification

and policy search, VGMI perfoms better than manully selected time
budgets for model identification. (Best viewed in color.)

Inverted Pendulum

15
n
S
()
E
s
i
2
S05¢
[4]
ko)
g
=
0 ‘ ‘ J
0 5 10 15 20
Time (seconds)
Hopper
gm —Entropy Search
‘ﬂE‘a 9 —Greedy Entropy Search
5 °
w7
2
26
[ %)
Q
L5
-
4

0 5 10 15 20
Time (seconds)

Figure 5: Model identification in Inverted Pendulum and Hopper
environment using two variants of Entropy Search.

the maximum velocity push on the object, the object falls off
the table. Similarly, if the object is rolled too slowly, it can
get stuck in the region between the two robots’ workspaces.



Figure 6: Experiment where the Moroman pushes the object into Baxter’s workspace after identifying the problem’s physical parameters.

e
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Figure 7: Baxter needs to pick up the bottle but cannot reach it, while
the Motoman can. Motoman gently pushes the object locally with-
out losing it and identifies the object’s parameters from observed
motions and a physics engine. The object is then pushed to Baxter
using a policy learned in simulation with the identified parameters.

Both outcomes are undesirable as they would require human
intervention to reset the scene.

The goal is to find an optimal policy with parameter 7 rep-

resenting the robot hand’s pushing velocity. The pushing di-
rection is towards the target and the hand pushes the object
at its geometric center. No human effort was needed to re-
set the scene since the velocity and pushing direction were
controlled so the object is always in Motoman’s workspace.
Specifically, a pushing velocity limit is set. The approach it-
eratively searches for the best n by uniformly sampling 20
different velocities in simulation, and identifies the object
model parameters 6* (the mass and friction coefficient) us-
ing trajectories from rollouts by running VGMI as in Alg. 2.
VGMI is executed after each rollout, i.e., H = 1 in Alg. 1.
The method is compared to POWER [Kober and Peters, 2009]
and PILCO [Deisenroth et al., 2011]. For PoWER, the re-
ward function is r = e~ where dist is the distance between
the object position after pushing and the desired target. For
PILCO, the state space is the 3D object position.
Results: Two metrics are used for evaluating performance:
1) The distance between the final object location after being
pushed and the desired goal location; 2) The number of times
the object falls off the table. A video of these experiments
can be found on https://goo.gl/Rv4CDa.

Fig. 8 shows that in the real-world experiments the method
achieves both lower final object location error and fewer num-
ber of object drops. The reduction in object drops is impor-

tant for autonomous robot learning as it minimizes human
effort. The model-free approach POWER results in higher
location error and more object drops. PILCO performs bet-
ter than POWER as it also learns a dynamical model together
with the policy but the model is not as accurate as the VGMI
one. Since simple policy search is used for VGMI, the perfor-
mance is expected to be better is more advanced policy search
methods, such as combining POWER with VGMI.

n
°
1)

—PoWER —PoWER
~——PILCO 0% —PILCO
1 w—Qurs 0.4 w—Qurs

Location Error (meters)
# of Times Object
Falls Off the Table

5 10 15 20 25 30 5 10 15 20 25 30
Number of trials Number of trials

Figure 8: Pushing policy optimization results using a Motoman
robot. VGMI achieves both lower final object location error and
fewer object drops comparing to alternatives. (Best viewed in color)

5 Conclusion

This paper presents a practical approach that integrates
physics engines and Bayesian optimization for model identi-
fication to increase data efficiency of RL. It identifies a model
that is good enough to predict a policy’s value function that
is similar to the current optimal policy. The approach can be
used with any policy search algorithm that guarantees smooth
changes in the learned policy. It can also help the real-world
applicability of motion planners that reason over dynamics
and operate with physics engines [Bekris and Kavraki, 2008;
Li et al., 2016; Littlefield et al., 2017]. Both simulated and
real robot experiments show that VGMI can decrease the
number of rollouts needed to learn an optimal policy. Fu-
ture work includes analyzing the properties of the method,
such as expressing the conditions under which the inclusion
of the model identification reduces the need for physical roll-
outs and the speed-up in convergence in terms of physical
rollouts. It is also interesting to apply the method to alterna-
tive physical tasks.
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