


model should be to find a successful policy. Instead of spend-
ing time searching for the most accurate model, the optimiza-
tion can stop whenever a model that is sufficiently accurate to
find a good policy is identified. Answering this question ex-
actly, however, is difficult, because that would require know-
ing in advance the optimal policy for the real system.

The proposed solution is motivated by a key quality desired
in many robot RL algorithms. To ensure safety, most robot
RL algorithms constrain the changes in the policy between
two iterations to be minimal and gradual. For instance, both
Relative-Entropy Policy Search (REPS) [Peters et al., 2010]

and Trust Region Policy Optimization (TRPO) [Schulman et
al., 2015] algorithms guarantee that the KL divergence be-
tween an updated policy and the one in the previous iteration
is bounded. Therefore, one can in practice use the previous
best policy as a proxy to verify if there is a consensus among
the most likely models on the best policy in the next itera-
tion. This is justified by the fact that the updated policy is not
too different from the previous one. Thus, model identifica-
tion is stopped whenever the most likely models predict al-
most the same value for the previously computed policy, i.e.,
if all the high-probability models predict a similar value for
the previous policy, then any of these models could be used
for searching for the next policy.

Empirical evaluation performed in simulation and on a real
robot show the benefits of the framework. The initial set of
experiments are performed in the OpenAI Gym [Brockman
et al., 2016] with the MuJoCo simulator1. They demonstrate
that the proposed model identification approach is more time-
efficient than alternatives, and it improves the data-efficiency
of policy search algorithms, such as TRPO. The second part
is performed on a real-robot manipulation task. It shows that
learning using a simulator with the identified model can be
more data-efficient than other model-based methods, such as
PILCO, and model-free ones, such as PoWER.

2 Related Work

The proposed method relates to model-based RL, where a dy-
namical system is physically simulated. Model-based learn-
ing involves explicitly learning the unknown dynamics of
the system, and search for an optimal policy accordingly.
Variants have been applied in robotics [Dogar et al., 2012;
Lynch and Mason, 1996; Scholz et al., 2014; Zhou et al.,
2016], where it has been shown that using inaccurate mod-
els can still allow a policy to steer an RC car [Abbeel et
al., 2006]. For general-purpose model-based RL, the Prob-
abilistic Inference for Learning COntrol (PILCO) algorithm
has been shown to be efficient in utilizing a small amount of
data to learn dynamical models and optimal policies [Deisen-
roth et al., 2011]. Replacing the gradient-based optimization
algorithm with a parallel, black-box algorithm (Covariance
Matrix Adaptation (CMA)) [Hansen, 2006], Black-DROPS
can be as data-efficient as PILCO without imposing any con-
straint on the reward function or the policy [Chatzilygeroudis
et al., 2017]. CMA was also used for automatically designing
open-loop reference trajectories [Tan et al., 2016]. Trajectory
optimization was performed in a physical simulator before

1MuJoCo: www.mujoco.org

real-world execution. Real robot trajectories were used to op-
timize the simulator parameters.

The proposed method also relates to learning from sim-
ulation. Utilizing simulation to learn a prior before learn-
ing on the robot is a common way to reduce real-world data
needs for policy search and provides data-efficiency over
PILCO [Cutler and How, 2015]. Policy Improvement with
REsidual Model learning (PI-REM) [Saveriano et al., 2017]

has shown improvement over PILCO by utilizing a simulator
and only modeling the residual dynamics between the sim-
ulator and reality. Similarly, using data from simulation as
the mean function of a Gaussian Process (GP) and combin-
ing with Iterative Linear Quadratic Gaussian Control (ILQG),
GP-ILQG is able to improve incorrect models and generate
robust controllers [Lee et al., 2017].

In addition, the proposed method utilizes Bayesian opti-
mization (BO) to efficiently identify the model. For direct
policy search, a prior can also be selected from a set of can-
didates using BO [Pautrat et al., 2017]. BO can also be used
to optimize the policy while balancing the trade-off between
simulation and real data [Marco et al., 2017], or learn a lo-
cally linear dynamical model, while aiming to maximize con-
trol performance [Bansal et al., 2017].

Traditional system identification builds a dynamics
model by minimizing prediction error (e.g., using least
squares) [Swevers et al., 1997]. There have been attempts
to combine parametric rigid body dynamics model with non-
parametric model learning for approximating the inverse dy-
namics [Nguyen-Tuong and Peters, 2010]. In contrast to
these methods, this work uses a physics engine, and concen-
trates on identifying model parameters instead of learning the
models from scratch. Optimizing the simulated model param-
eters to match actual data collected on the robot can also help
model robot damage [Bongard et al., 2006]. Recent work per-
formed in simulation proposed model identification for pre-
dicting physical parameters, such as mass and friction [Yu et
al., 2017].

Different from model-based methods, model-free methods
search for a policy that best solves the task without explic-
itly learning the system’s dynamics [Sutton and Barto, 1998;
Kober et al., 2013]. They have been shown effective in
robotic tasks [Peters et al., 2010]. Policy learning by Weight-
ing Exploration with the Returns (PoWER) [Kober and Pe-
ters, 2009] is a model-free policy search approach widely
used for learning motor skills. The TRPO algorithm [Schul-
man et al., 2015] has been demonstrated in some MuJoCo
simulator environments. End-to-end learning is an increas-
ingly popular framework [Agrawal et al., 2016; Wu et al.,
2015; Byravan and Fox, 2017; Finn and Levine, ], which in-
volves successful demonstrations of physical interaction and
learning a direct mapping of the sensing input to controls.
These approaches usually require many physical experiments
to effectively learn. Overall, model-free methods tend to re-
quire a lot of training data and can jeopardize robot safety.

A contribution of this work is to link model identification
with policy search. It does not search for the most accurate
model within a time budget but for an accurate enough model,
given an easily computable criterion, i.e., predicting a pol-
icy’s value function that is not too different from the searched



policy. This idea can be used with many policy search algo-
rithms that allow for smooth changes during learning.

3 Proposed Approach

This section provides first a system overview and then the
main algorithm, focusing on model identification.

3.1 System Overview and Notations

The focus is on identifying physical properties of robots or
objects, e.g. mass and friction, using a simulator. These phys-
ical properties are concatenated in a single vector and repre-
sented as a D-dimensional vector θ ∈Θ, where Θ is the space
of possible physical parameters. Θ is discretized with a regu-
lar grid resolution. The proposed approach returns a distribu-
tion P on a discretized Θ instead of a single point θ ∈Θ given
the challenge of perfect model identification. In other terms,
there may be multiple models that can explain an observed
movement of the robot with similar accuracy. The approach
is to preserve all possible explanations and their probabilities.

The online model identification takes as input a prior
distribution Pt , for time-step t ≥ 0, on the discretized
parameter space Θ. Pt is calculated based on the
initial distribution P0 and a sequence of observations
(x0,µ0,x1,µ1, . . . ,xt−1,µt−1,xt). For instance, xt can be the
state of the robot at time t and µt is a vector describing a
vector of torques applied to the robot at time t. Applying µt

results in changing the robot’s state from xt to xt+1. The al-
gorithm returns a distribution Pt+1 on the models Θ.

The robot’s task is specified by a reward function R that
maps state-actions (x,µ) into real numbers. A policy π re-
turns an action µ = π(x) for state x. The value V π(θ) of

policy π given model θ is defined as V π(θ) = ∑
H
t=0 R(xt ,µt),

where H is a fixed horizon, x0 is a given starting state, and
xt+1 = f (xt ,µt ,θ) is the predicted state at time t + 1 after
simulating action µt in state xt given parameters θ . For sim-
plicity, the focus is on systems with deterministic dynamics.

3.2 Main Algorithm

Given a reward function R and a simulator with model pa-
rameters θ , there are many ways to search for a policy π that
maximizes value V π(θ). For example, one can use Differen-
tial Dynamic Programming (DDP), Monte Carlo (MC) meth-
ods, or if a good policy cannot be found with alternatives,
execute a model-free RL algorithm on the simulator. The
choice of a particular policy search method is open and de-
pends on the task. The main loop of the system is presented
in Algorithm 1. This meta-algorithm consists in repeating
three main steps: (1) data collection using the real robot, (2)
model identification using a simulator, and (3) policy search
in simulation using the best identified model.

3.3 Value-Guided Model Identification

The process, explained in Algorithm 2, consists of simulating
the effects of actions µi on the robot in states xi under various
values of parameters θ and observing the resulting states x̂i+1,
for i = 0, . . . , t. The goal is to identify the model parameters
that make the outcomes of the simulation as close as possible

t← 0;
Initialize distribution P over Θ to a uniform distribution;
Initialize policy π;
repeat

Execute policy π for H iterations on the real robot, and
collect new state-action-state data {(xi,µi,xi+1)} for
i = t, . . . , t +H−1;

t← t +H;
Run Algorithm 2 with collected state-action-state data
and reference policy π for updating distribution P;

Initialize a policy search algorithm (e.g. TRPO) with π
and run the algorithm in the simulator with the model
argmaxθ∈Θ P(θ) to find an improved policy π ′;
π ← π ′;

until Timeout;

Algorithm 1: Main Loop

to the real observed outcomes. In other terms, the following
black-box optimization problem is solved:

θ ∗ = argmin
θ∈Θ

E(θ)
de f
=

t

∑
i=0

‖xi+1− f (xi,µi,θ)‖2, (1)

wherein xi and xi+1 are the observed states of the robot at
times i and i+ 1, µi is the action that moved the robot from
xi to xi+1, and f (xi,µi,θ) = x̂i+1, the predicted state at time
i+1 after simulating action µi in state xi using θ .

High-fidelity simulations are computationally expensive. It
is therefore important to minimize the number of simulations,
i.e., evaluations of function E, while searching for the opti-
mal parameters that solve Eq. 1. This is solved by using the
Entropy Search technique [Hennig and Schuler, 2012]. This
method is well-suited because it explicitly maintains a belief
on the optimal parameters. This is unlike other Bayesian op-
timization methods, such as Expected Improvement, which
only maintain a belief on the objective function. The follow-
ing description explains how this technique is adapted, and
shows why keeping a distribution on all models is needed for
deciding when to stop the optimization.

The error function E does not have an analytical form, it
is gradually learned from a sequence of simulations with a
small number of parameters θk ∈ Θ. To choose these pa-
rameters efficiently in a way that quickly leads to accurate
parameter estimation, a belief about the actual error function
is maintained. This belief is a probability measure over the
space of all functions E : RD → R, and is represented by
a Gaussian Process (GP) [Rasmussen and Williams, 2005]

with mean vector m and covariance matrix K. The mean
m and covariance K of the GP are learned from data points
{
(

θ0,E(θ0)
)

, . . . ,

(

θk,E(θk)
)

}, where θk is a selected vector
of physical properties of the robot, and E(θk) is the accumu-
lated distance between actual observed states and states that
are obtained from simulation using θk.

The probability distribution P on the identity of the best
physical model θ ∗, returned by the algorithm, is computed



Input: state-action-state data {(xi,µi,xi+1)} for i = 0, . . . , t
a discretized space of possible values of physical
properties Θ,
a reference policy π ,
minimum and maximum number of evaluated
models kmin,kmax,
model confidence threshold η ,
value error threshold ε ;

Output: probability distribution P over Θ;
Sample θ0 ∼ Uniform(Θ); L← /0; k← 0; stop← f alse;
repeat

// Calculating the accuracy of model θk

lk← 0;
for i = 0 to t do

Simulate {(xi,µi)} using a physics engine with
physical parameters θk and get the predicted next
state x̂i+1 = f (xi,µi,θk) ;

lk← lk +‖x̂i+1− xi+1‖2;

end
L← L∪{(θk, lk)};
Calculate GP(m,K) on error function E, where

E(θ) = l, using data (θ , l) ∈ L;
// Monte Carlo sampling

Sample E1,E2, . . . ,En ∼ GP(m,K) in Θ;
foreach θ ∈Θ do

P(θ)≈
1

n

n

∑
j=0

1θ=argminθ ′∈Θ E j(θ ′) (2)

end
// Selecting the next model to evaluate

θk+1 = argminθ∈Θ P(θ) log
(

P(θ)
)

;

k← k+1;
// Checking the stopping condition

if k ≥ kmin then
θ∗← argmaxθ∈Θ P(θ);
Calculate the values V π (θ) with all models θ that have a

probability P(θ)≥ η by using the physics engine for
simulating trajectories with models θ ;

if ∑θ ,∀P(θ)≥η P(θ)|V π (θ)−V π (θ∗)| ≤ ε then

stop← true;
end

end
if k = kmax then

stop← true;
end

until stop = true;

Algorithm 2: Value-Guided Model Identification

from the learned GP as

P(θ)
de f
= P

(

θ = arg min
θ ′∈Θ

E(θ ′)
)

=
∫

E:RD→R

pm,K(E)Πθ ′∈Θ−{θ}H
(

E(θ ′)−E(θ)
)

dE

(3)

where H is the Heaviside step function, i.e., H
(

E(θ ′)−

E(θ)
)

= 1 if E(θ ′) ≥ E(θ) and H
(

E(θ ′)−E(θ)
)

= 0 oth-
erwise, and pm,K(E) is the probability of E according to the

learned GP mean m and covariance K. Intuitively, P(θ) is the
expected number of times that θ happens to be the minimizer
of E when E is a function distributed according to the GP.

The distribution P from Eq. 3 does not have a closed-
form expression. Therefore, Monte Carlo (MC) sampling
is employed for estimating P. The process samples vectors
[E(θ ′)]θ ′∈Θ containing values that E could take, according to
the learned GP, in the discretized space Θ. Then P(θ) is esti-
mated by counting the ratio of sampled vectors of the values
of simulation error E where θ happens to make the lowest
error, as indicated in Eq. 2 in Alg. 2.

Finally, the computed distribution P is used to select the
next vector θk+1 to use as a physical model in the simula-
tor. This process is repeated until the entropy of P drops
below a certain threshold, or until the algorithm runs out
of the allocated time budget. The entropy of P is given as

∑θ∈Θ−Pmin(θ) log
(

Pmin(θ)
)

. When the entropy of P is close
to zero, the mass of distribution P is concentrated around a
single vector θ , corresponding to the physical model that best
explains the observations. Hence, next θk+1 should be se-
lected so that the entropy of P would decrease after adding the
data point

(

θk+1,E(θk+1)
)

} to train the GP and re-estimate P
using the new mean m and covariance K in Eq. 3.

Entropy Search methods follow this reasoning and use MC
again to sample, for each potential choice of θk+1, a number
of values that E(θk+1) could take according to the GP in or-
der to estimate the expected change in the entropy of P and
choose the parameter vector θk+1 that is expected to decrease
the entropy of P the most. The existence of a secondary
nested process of MC sampling makes this method imprac-
tical for online optimization. Instead, this work presents a
simple heuristic for choosing the next θk+1. In this method,
called Greedy Entropy Search, the next θk+1 is chosen as the
point that contributes the most to the entropy of P,

θk+1 = argmax
θ∈Θ
−P(θ) log

(

P(θ)
)

. (4)

This selection criterion is greedy because it does not antici-
pate how the output of the simulation using θk+1 would affect
the entropy of P. Nevertheless, this criterion selects the point
that is causing the entropy of P to be high. That is a point θk+1

with a good chance P(θk+1) of being the real model, but also

with a high uncertainty P(θk+1) log
(

1
P(θk+1)

)

. Initial experi-

ments suggested that this heuristic version of Entropy Search
is more practical than the original Entropy Search method be-
cause of the computationally expensive nested MC sampling
loops used in the original method. The actual sampled values
are not restricted to lie on the discretized grid. Once a grid
value is selected as the candidate with the highest entropy, a
local optimization process using L-BFGS takes place to fur-
ther optimize the parameter value.

The stopping condition of Alg. 2 depends on the predicted
value of a reference policy π . The reference policy is one
that will be used in the main algorithm (Alg. 1) as a starting
point in the policy search with the identified model. That is
also the policy executed in the previous round of the main al-
gorithm. Many policy search algorithms (such as REPS and
TRPO) guarantee that the KL divergence between consecu-
tive policies π and π ′ is minimal. Therefore, if the difference
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