Downloaded by VIRGINIA TECH on February 21, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.1010634

JOURNAL OF AEROSPACE INFORMATION SYSTEMS '.)
Vol. 16, No. 1, January 2019 ‘

Check for
updates

Workspace Modeling and Path Planning for Truss Structure
Inspection by Unmanned Aircraft

Arun Das*
Technical University of Munich, 80333 Munich, Germany
and
Craig A. Woolsey"
Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061

DOI: 10.2514/1.1010634

Small unmanned aircraft systems can increase efficiency and reduce risk to humans during the inspection of truss-
supported structures such as steel bridges. This paper describes a method to mathematically represent a truss and
subsequently to plan an efficient collision-free inspection path. The algorithm checks user-defined perspectives for
feasibility and redefines any infeasible perspectives. A deterministic roadmap is then generated as the complete graph
over these perspectives, and some additional nodes are generated near the joints of the structure. A traveling salesman
problem (TSP) is solved to find an efficient inspection path that tours all perspective points, and a local A* path
planner then refines the inspection path to circumvent obstructions. The TSP is re-solved, with an updated cost based
on local detours; and the process iterates until a feasible TSP solution is found. The “lazy” approach to global and local
planning, for which paths are checked for feasibility after the fact and amended if necessary, ensures quick
convergence to an efficient inspection path. Simulation results show the functionality of the algorithm. Comparison
with a probabilistic roadmap method indicates the proposed algorithm’s efficiency.

I. Introduction

ITH continuing improvements in payload capacity, endurance, and reliability, small unmanned aircraft systems (UASs) have become
helpful tools for aerial mapping, event monitoring, and package delivery. Some UAS proponents have proposed using multicopters to
inspect infrastructure, such as railways, tunnels, and buildings. Bridges are an especially important subset of the public infrastructure. In the
United States, bridges must be inspected every two years. Many of these bridges are supported by trusses, which are typically built of steel because
of its strength and resilience; and these trusses feature a large number of welded and bolted connections between beams, girders, and other
structural components that must be routinely examined. The complexity of steel truss bridges and other truss-based structures makes their
inspection time-consuming and expensive because of direct labor and equipment costs and because of indirect costs due to traffic disruptions, for
example. The time, cost, and danger associated with the inspection of truss structures motivate the development of robotic inspection methods.
Previous investigators have proposed various concepts for robotic inspection of steel bridges. These proposals include walking [1], climbing,
and driving robots [2,3] that use magnets, for example, to adhere to the structure. These systems can have difficulty, however, negotiating the
corners, gusset plates, and other structural elements that are peculiar to a truss. We propose the use of a small unmanned aircraft system to inspect
truss-supported structures, such as steel bridges, by flying within the structure and collecting images of user-specified elements.

In preliminary experiments aimed at revealing the challenges associated with aerial robotic bridge inspection, we operated a 3DR Solo
quadcopter under the deck of the George P. Coleman Memorial Bridge in Yorktown, Virginia, in the United States in June 2017; see Figs. 1 and 2.
The Coleman Bridge is a 1140-m-long steel bridge with four lanes for traffic. One span of the bridge is shown in Fig. 1. The deck is supported from
below by a truss structure, which is built up of seven spans. Two spans in the middle can rotate 90 deg, parallel to the York River, thus opening three
lanes for passing ships. The bridge was originally constructed in 1952 and then rebuilt and widened in 1995. Regular inspection and maintenance
is performed by the Virginia Department of Transportation.

The manual flights revealed major challenges for truss inspection with UASs. First, electromagnetic disturbances affected the sensing systems.
The Global Positioning System (GPS) signal was unreliable below the bridge deck, and compass measurements were corrupted by the large
amount of steel. Therefore, the positioning capabilities of the UAS were significantly reduced. Second, the pilot had difficulties with flow
disturbances such as wind gusts and turbulence. These made it difficult to manually maintain the aircraft’s position. Lastly, due to the large number
of beams and girders in the structure, the pilot’s view was highly occluded, which made it impossible to conduct flights beyond a short distance
from the pilot. In addition, poor depth perception and distractions such as noise and vibrations made the manual operation of a small UAS within a
truss structure extremely challenging for a human pilot.

The preliminary experiments described previously motivate one to consider automating aerial robotic inspection, although a host of new
challenges arise. For example, the flight control system must effectively compensate for large, unknown wind disturbances; and the navigation
system must operate with unreliable compass and GPS data. Another key element for autonomous inspections is planning the flight path. The
limited endurance of multirotor UASs requires short and efficient paths. We propose an algorithm to plan an efficient collision-free inspection path
through a truss structure that obtains inspection images from a number of user-defined perspectives. The focus of this paper is on path planning;
and we defer consideration of other concerns, such as robust flight control, structure-relative navigation, and precision path following. We note
that all of these issues are essential, however, to developing an effective aerial robotic system for truss structure inspection.

Path planning in two dimensions is well studied, and the general methods are reviewed in several comprehensive textbooks [4,5]. Planning in
three dimensions has also enjoyed considerable attention, as described in a recent review by Yang et al. [6]. The authors categorized

Received 14 January 2018; revision received 19 September 2018; accepted for publication 29 October 2018; published online 30 November 2018. Copyright
©2018 by Arun Das. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint
should be submitted to CCC at www.copyright.com; employ the ISSN 2327-3097 (online) to initiate your request. See also AIAA Rights and Permissions
www.aiaa.org/randp.

*QGraduate Student, Electrical Engineering; a.das@tum.de.

Professor, Crofton Department of Aerospace and Ocean Engineering; cwoolsey @vt.edu. Associate Fellow AIAA.

37

Downloaded by VIRGINIA TECH on February 21, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.1010634

38 DAS AND WOOLSEY

N AV B 4 5

LA

Fig.1 George P. Coleman Memorial Bridge.

a) Quadcopter inspecting a joint with nine b) The exterior of a swing span rotation mechanism, viewed from a quadcopter
intersecting beams
Fig.2 Images from June 2017 flights at the Coleman Memorial Bridge.

three-dimenisonal (3-D) planning algorithms into five groups: sampling-based, node-based, mathematical model-based, bioinspired, and
multifusion-based algorithms.

Sampling-based algorithms include potential fields, rapidly exploring random trees, probabilistic roadmap algorithms, 3-D Voronoi graphs,
visibility graphs, and corridor maps. These algorithms either produce a path directly or they produce a graph that can be searched for feasible
paths. Sampling-based methods are widely used because they are well suited for a range of planning applications. Potential field methods assign
repulsive potential functions to obstacles (e.g., to structural elements) and attractive potential functions to goal states. Once the potential field is
constructed, its gradient is easily computed to obtain guidance commands that, in principle, will steer the robot away from obstructions and toward
the goal. Due to the large number of beams in a truss structure, however, an artificial potential field is likely to produce local minima. Constructing
a potential field for a truss structure that guides the aircraft through each of the user-specified vantage points is computationally expensive and
ultimately may not produce a feasible path. Rapidly exploring random trees (RRTs) are often used to quickly generate feasible paths, although
they do not produce optimal solutions. Probabilistic roadmap (PRM) approaches are resolution optimal, but a roadmap with a large number of
nodes generally results in large computation times. Results of the RRT and PRM approaches are illustrated in Figs. 3a and 3b, respectively. Both of
these probabilistic approaches (the RRT and the PRM) have difficulty finding paths through narrow passages, which is problematic for operation
in the confined space within a truss structure. In comparison to the PRM approach, planning methods based on Voronoi graphs emphasize path
safety over path length by maximizing the distance to obstacles.

Among sampling-based algorithms, visibility graphs are of particular interest for the application described here. Fig. 3c illustrates path
planning using a visibility graph. Although they are proven to find shortest paths in two dimensions, extending the concept to 3-D produces
connected planes rather than connected lines, resulting in an infinite number of graph nodes. Schgler et al. [7] proposed an alternative extension of
visibility graphs to 3-D by setting multiple nodes along the edges of obstacles with a specified resolution. To preserve the ability to generate
minimum length paths, it would be necessary to set infinitely many nodes along the edges; but, by increasing the resolution, one can trade path
optimality against computation time. Jiang et al. [8] proposed another extension of visibility graphs to 3-D for environments with convex

a) RRTs b) PRM ¢) Visibility graph
Fig.3 Path planning methods in two-dimensional environments with polygonal obstacles. Resulting paths are in red.

Downloaded by VIRGINIA TECH on February 21, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.1010634

DAS AND WOOLSEY 39

polygonal obstacles. To overcome the problem of infinitely many nodes, they set a single node at the midpoint of each obstacle edge to serve as a
path waypoint and then optimized the path by minimizing a cost function, which moved the waypoints along the obstacle edges. To find the
globally optimum path, all possible edge sequences resulting in feasible paths must be computed and compared. Efficiency decreases with
increasing numbers of obstacles, and the number of possible paths grows exponentially; so, the method’s utility for a large truss structure is
limited. Trang et al. [9] proposed an iterative algorithm to compute a shortest path, given a sequence of line segments that might be derived, for
example, using one of the aforementioned methods. Li and Klette [10] analyzed the utility of rubberband algorithms for 3-D path optimization: a
method that can improve grid-based path solutions.

Node-based algorithms are based on graph or map representations, which can be obtained from sampling-based algorithms as described earlier
or by directly interrogating the environment. In three dimensions, cubic grids are commonly used, with the cubic grid cells marked as occupied or
free. These are then searched using algorithms such as Dijkstra’s method, A*, Theta*, D*, etc. [11].

Mathematical model-based algorithms (linear programming, optimal control, etc.) can incorporate kinematic and dynamic constraints in the
path planning process, but these approaches are computationally expensive for complex obstacle-filled environments.

Bioinspired algorithms include genetic algorithms, memetic algorithms, particle swarm optimization, ant colony optimization, and neural
networks. These methods can iteratively improve an initial solution obtained, for example, using a randomized algorithm. Complex, unstructured
constraints can be incorporated into path planning, but the algorithms have long iteration times.

Multifusion based algorithms are composed from more basic planning algorithms, enabling one to leverage their relative strengths. Many
combinations exist, which are often targeted at specialized tasks; see Ref. [6].

Path planning methods targeted toward automated inspection have been proposed for powerlines, railroads, and building exteriors, for example,
but these structures present a relatively simple planning challenge in comparison with a truss structure. Much of the existing work on path planning
for robotic inspection of truss structures has focused on robots that remain in contact with the structure as they traverse a path. Liao et al. [12]
presented a hierarchical planning algorithm for a climbing robot, for example, in which waypoints were clustered by region and a single inspection
path was determined for each region. The paths were then connected to form a single, global inspection path. The order in which points were
visited and, more generally, the order in which regions were visited were determined by a traveling salesman problem (TSP) solver.

This paper addresses the problem of efficiently planning a collision-free three-dimensional path through a complex truss structure that enables a
multirotor aircraft to image each point feature in a user-specified set from a corresponding user-specified perspective. The approach involves
constructing a deterministic roadmap, using a three-dimensional variant of the visibility graph, and then iteratively planning over this map to
minimize cost while preventing collisions.

Alternatively, one may wish to survey a structure in its entirety. This objective leads to the problem of path planning for coverage. Galceran and
Carreras [13] provided a relatively recent survey of coverage planning tasks and approaches. Although much of the paper focused on two-
dimensional planning tasks, one subsection focused on coverage of complex three-dimensional structures, such as the truss structures considered
here. The authors mentioned the work of Englot and Hover [14], for example, who developed an algorithm for ship hull inspection that first
determined points to be visited and then produced a global inspection path. The approach made iterative use of a TSP solver together with an RRT
algorithm. We adopt a similar procedure in the approach described here.

Bircher et al. [15] proposed a method to automatically compute a set of viewpoints for which the union covered the surface of a structure. The
method assumed, or extracted, a triangular mesh representation of the structure and computed a single viewpoint for each triangle. A subset of
viewpoints was then selected and a path was planned that visited every viewpoint. Iterative resampling of the viewpoints decreased the path cost.
The procedure used a combination of RRTs and a TSP solver, and it ensured that path segments were dynamically feasible.

Our goal is to produce paths that can be followed by multirotor UASs to inspect truss structures. The various structural elements pose a collision
hazard as the aircraft maneuvers from point to point to obtain inspection images from user-specified perspectives. The planning method must
ensure a collision-free path. A multirotor aircraft is preferred because the complexity of a truss structure and the need for high-quality imagery
suggests the need to proceed at a deliberate pace, including the ability to hover. For this reason, and to ensure a time-efficient algorithm, we neglect
the aircraft dynamics in planning inspection paths.

To support the planning method, we introduce a novel way of representing a truss structure. Instead of representing the structure with an
occupancy grid or a detailed mathematical description of the obstacles, we construct a model of simple cuboids using four parameter arrays to
represent the elements of the structure. An advantage of this method is that structures can be modeled with different levels of detail, which are
adjusted to the task. Furthermore, computations based on the structure model are efficient because the tessellation contains a relatively small
number of triangles: 12 for each modeled beam. The user-defined perspectives are transformed, if necessary, to guarantee that the aircraft can
obtain an inspection image along the required boresight direction. The proposed method leaves responsibility for picking viewpoints to the
operator, but any chosen perspectives that are not feasible for the aircraft are automatically transformed to feasible perspectives while maintaining
the desired field of view. A roadmap is generated that includes these perspectives along with a collection of “navigation points” that aid path
planning. The computation of these navigation points is based on the novel way of representing truss structures using a composition of cuboids.
The proposed method for generating aroadmap can be interpreted as a new adaptation of visibility graphs to 3-D. The resulting roadmap allows for
fast path planning because the number of nodes is kept small. Moreover, the method computes short paths, and narrow passages do not pose a
problem. The method incorporates an existing path planning algorithm, such as the A* algorithm, to find a local path between two perspectives
and uses a TSP solver to determine the order in which perspectives are visited. Using a lazy approach allows for fast path planning in large truss
structures.

The algorithm is designed to run offline, as the truss structure to be inspected is assumed to be known a priori. However, computation time
remains an important measure of the algorithm’s performance. In current, commercial infrastructure inspection applications such as powerline
inspection, service providers already optimize their operational procedures to minimize the time required to recover and redeploy an aircraft with a
fresh battery. Clearly, “time is money” and the ability to quickly replan an inspection path in the field can provide a competitive advantage. For an
operator conducting bridge inspections, itis necessary to be able to replan a path at the scene. For example, a preliminary inspection flight might be
designed to quickly survey the entire structure. Based on this first flight, an operator may identify a class or collection of truss components that
require further scrutiny. With a fast algorithm, new information can be incorporated at the scene to compute a second inspection path that includes
newly identified problem areas. Our algorithm is optimized to run on the order of minutes rather than days.

The main contributions of this paper are 1) a simplified geometric representation of a truss structure that readily supports path planning; 2) a
strategy for transforming infeasible prescribed perspectives into feasible ones; 3) a procedure for computing deterministic navigation points to
form aroadmap; 4) an efficient, offline truss structure inspection path planner that iteratively employs a TSP solver and the A* algorithm in a lazy
planning strategy; and 5) parametric studies in the context of a specific inspection scenario aimed at evaluating the proposed method’s efficiency
and effectiveness.

The description of the algorithm in Sec. II through Sec. V is followed by simulation results, which are described in Sec. VI. The paper closes
with concluding remarks in Sec. VIIL.

Downloaded by VIRGINIA TECH on February 21, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.1010634

40 DAS AND WOOLSEY

Structure Reference
Matrices Perspectives
Ja, Ji, Ba, Bi PR
Path Planning Algorithm !
| | Compute Replace Colliding E
i | Structure Compute Path Segments :
: »| Amended | with Feasible
Perspectives Path (A*) :
: A\ 4 (APs) ;
Obtain the ,
! Inflate L > Roadmap | Solve
| Structure by Connecting ” TSP !
all APs and NPs !
: Compute
' 3 Nawgatlon
! Points :
i (NPs) '
Inspection Path,
Visiti Il AP:
L e e isiting al S y
RS RS R
Representing the Building the Searching for the
Structure Roadmap Inspection Path

Fig. 4 Block diagram of the path planning algorithm with its three phases.

II. Overview of the Path Planning Algorithm

Our algorithm, which was briefly described in Ref. [16], is based on a new method of representing truss structures for path planning. For this
representation, all components of the truss are enclosed by cuboids. A small set of input parameters is required for the algorithm to compute the
representation of the structure. In addition to these input parameters, which characterize the truss structure geometry, an operator may define
reference perspectives (RPs) that represent UAS configurations (specifying the position and camera boresight direction) at which the aircraft
should obtain images. The algorithm ensures the feasibility of the RPs and relocates them along the specified boresight direction if necessary,
resulting in a set of feasible, completely defined amended perspectives (APs).

A deterministic roadmap is then generated using these APs. Additional nodes, called navigation points (NPs), are introduced near the joints of
the structure that can be adopted as waypoints for local detours to circumvent obstructions along a path between two APs. The use of NPs to aid
path planning is reminiscent of the visibility graph method. The order in which to visit the APs is determined by solving the TSP using a lazy
method that first ignores the possibility that the resulting path might intersect the structure. Thus, initially, the roadmap is the complete graph
defined by all APs and NPs, and the TSP is solved to find an optimal tour that visits every AP. Path segments are then checked for collisions. Those
segments that collide with the structure are removed from the roadmap, and a local A* graph search algorithm computes an alternative local path,
resulting in a modified inspection path and a new traversal cost associated with each local detour between APs. The global TSP is then re-solved
using this modified inspection path as the initial guess and using the modified cost information.

Figure 4 shows a flowchart for the algorithm that proceeds in three major phases, described in Secs. III through V, respectively.

III. Phase 1: Representing the Structure

In the first phase, the structure is defined within the computational environment, as indicated in Fig. 5a for a simple example. We introduce a
method to mathematically represent a truss structure. The method enables one to compute occupied and free regions within the environment from
a small set of input parameters that describe the geometry of the structure. A truss structure is constructed from many different parts including
beams, braces, girders, stiffeners, pillars, cables, sway bars, etc. In modeling for path planning, every such element is enclosed by a cuboid.
Multiple elements that are densely packed within a volume may be grouped together and enclosed in a single cuboid. It is not necessary to
distinguish the individual properties of different components; we treat the cuboids as standardized objects that represent obstructions within the
workspace. We refer to these cuboids as beams and we call the junctions where beams connect joints. Although a given cuboid will often enclose a
true beam within the structure, it might also enclose some other element, such as a cable or a walkway.

Because the planning algorithm assumes that the UAS is a particle, we expand the volume that is inaccessible to the aircraft by artificially
increasing the size of the cuboids defining the structure through a process called inflation; see Fig. 5Sb. The risk of collisions can be further reduced
(to account for position uncertainty or ambient disturbances, for example) by inflating the structure even further. Upon completion of this step, the
workspace is divided into occupied regions and their complement, which are regions that are freely accessible to the aircraft.

A. Coordinate Frames

To model the truss structure, we define two types of reference frame: a single, arbitrary world frame (subscript 0) and a beam frame (subscript b)
for each beam in the structure. The beam frames are needed to parameterize the truss structure in order to compute paths. The origin O,, of a given
beam frame is located at one of the beam’s joints, known as the “start joint,” and the z axis of the frame points toward the other joint, known as the
“end joint.” This definition is illustrated in Fig. 6, in which pg, and p.,q define the position of the beam’s start and end joints, respectively. The x
axis is defined by taking the cross product of the unit vectors defining the z axis of the world frame and the z axis of the beam frame, according to
Eq. (2). In case the cross product is zero, x,, is chosen equal to the unit vector y. To obtain a right-handed coordinate system, y, is determined as in
Eq. 3):

£h = (pend - pslan)/”pend - pstart“ (1)

Downloaded by VIRGINIA TECH on February 21, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.1010634

DAS AND WOOLSEY 41

=

a) Define structure b) Inflate structure ¢) Compute APs (green)

el

d) Compute NPs (blue) e) Solve TSP for global path (red) f) Replan infeasible path segments
Fig.5 Steps of the path planning algorithm.

v A/\'l2 V3
1
Xb
A\ LA Vs YSize
i pend
péart/_ —_— - Zb __________________ - V7
Ve
- v
YOfgset , Vs Xsize
Vs

Fig. 6 Beam with corresponding parameters and vertices.

o Jzoxzp)/llzo X zpll if zgXzp #0
X, = . ()
Yo otherwise
Yo = (zp xx3) /125 X x| (3)

B. Algorithm Inputs: Representing the Structure

The positions of the joints and other parameters of the beams must be provided as input to the structure-modeling algorithm. The joints are
defined by their Cartesian coordinates given in the world frame. For beams, which are simple cuboids, six parameters are necessary: the indices of
the start joint 714, ;. and end joint n¢,q ., the beam’s cross-sectional dimensions X, and Y, ., and possibly offsets X & and Yoffser - The cross-
sectional dimensions xg;,. 5 and y,. , must be greater than zero. The offset, specified in the beam frame, allows for the case in which the centerline
of a beam does not pass through the start and end joints.

Beyond the geometric parameters introduced earlier, we define a binary classification of joints and beams as either active or inactive. Some
beams are unlikely to affect path planning. A beam at the workspace boundary with no nearby RPs, for example, is unlikely to impede the
inspection of other parts of the structure, although it does obstruct the workspace. Classifying a component as inactive prevents the algorithm from
populating the roadmap with NPs associated with this component, thereby reducing computation time.

Table 1 lists four arrays labeled J,, J;, B,, and B;, which contain the geometric information needed to represent the truss structure in support of
path planning. Each of these arrays contains a number of elements that define the essential features of the structure.

C. Algorithm Inputs: Representing the Reference Perspectives

RPs specify the desired configurations from which the UAS should obtain images. The mth RP is defined by a position pgp ,, in the world frame,
and possibly a corresponding boresight direction vgp ,,, along which the imaging sensor should be aligned. RPs are provided to the algorithm in a
fifth input array Pgp.

When inspecting a bridge, for example, an inspector typically knows in advance about potential problem areas that require attention. Therefore,
itis left to the inspector to manually set the RPs, including the viewing angle and the distance to the structure for a desired image. These RPs need
not be chosen in obstacle-free space; the algorithm transforms infeasible RPs into APs. Note that the input array Prp could also be provided by an
automated algorithm (e.g., to obtain complete surface coverage).

D. Defining the Structure from Input Parameters

With the input parameters described previously, the algorithm is able to compute the eight vertices v; fori € {1, 2, ..., 8} for each beam with
respect to the beam frame. Figure 6 shows a beam with its beam frame, parameters, and vertices. The coordinates of the first vertex v, with respect
to the beam frame are

Table 1 Structure inputs for the algorithm

Array Description Elements of Given Array

J. Positions of active joints Pactiveloint,i

Ji Positions of inactive joints Pinactiveloint,j

Ba Parameters for active beams Ngtart k> nend,ka Xsize ks ysize,ka xnffse[,k: yoffsel,k
Bi Parameters fOI‘ Inactive beams nstan,lv ncnd,la xsizc,la ysizc,la xoffscl,la yoffscl,l

Downloaded by VIRGINIA TECH on February 21, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.1010634

42 DAS AND WOOLSEY

1
— 5 Xsize + Xoffset
— 1
v = 2 Ysize + Yoffset (4)
0

The remaining three vertices adjacent to the beam’s starting joint are computed analogously to the first. The vertices adjacent to the beam’s end
point (on the right side in Fig. 6) are computed similarly, but they have the z value || pepg — Pstartl-

After computing the vertices with respect to the beam frame, they are transformed into the world frame by applying the homogeneous
transformation:

OTy(v)) =X, Jp 210 + Potan ()

Given the computed vertices, an object for each beam is created in the world frame. The structure is obtained by aggregating all
such objects.

E. Inflating the Structure

AUAS is exposed to a wide variety of uncertain effects while flying. These include uncertainties in position estimates as well as unpredictable
wind gusts and turbulence. To limit the risk of collisions with the structure due to these uncertainties, the UAS should maintain a certain distance
dyufier from the structure. The chosen distance dy,., might depend on the wind strength, the aircraft performance capabilities, or the operator’s
disposition toward risk, for example. Furthermore, the planning algorithm assumes the UAS to be a point. To account for the physical dimensions
of the UAS, the particle representing the aircraft must maintain some additional distance from the truss structure: at least half the diameter dysg of
the smallest sphere that can enclose the vehicle.

To guarantee that the planned path always keeps the required distance from the structure, the algorithm inflates [17] the structure in all
dimensions by the inflation size di,q,0n. This procedure is also known as dilation [18], or growing the obstacles [19]. For the application
considered here, we define the inflation size:

1
dinflaion = doufrer + EdUAS (6)

Inflation is usually done by building the Minkowski sum [20] of the obstacles with a sphere with radius d;,ai0n- In this approach, inflation
transforms a cuboid obstacle into a sphere, which is not especially useful in the given application. In our algorithm, to maintain a cuboid
representation of obstacles, we adopt another inflation approach that is also more computationally efficient. We increase the dimensions of every
beam as follows:

Xsize.new — Xsize + 2'dinﬂation (7)

Ysize.new = Ysize + 2dinﬂati0n (8)

The vertices of the inflated beams are computed and objects are constructed, which is similar to the procedure in Sec. IIL.D.

Beams are not inflated in the z direction. Noting this, there is at least one case of special concern: the cantilever beam. Cantilever beams are
uncommon in the truss structures of interest. Assuming there are reasonably few such elements, an operator can manually account for them when
defining the inflated structure.

To summarize, the truss structure geometry is provided to the algorithm in the form of matrices containing the joint locations, beam dimensions,
and offsets. The algorithm artificially inflates the size of each beam and then defines its vertices in a reference frame fixed in that beam. Offset
displacements perpendicular to the beam’s centerline are also incorporated, if needed. The beam coordinates are then transformed into the world
frame, resulting in a collection of cuboids that represent the occupied volume within the workspace.

IV. Phase 2: Building the Roadmap

After the inflated structure is obtained, the roadmap can be built. Recall that the operator planning the inspection requests images from a number
of perspectives called reference perspectives. The definition of these RPs is flexible; a RP can even be chosen inside the structure, and a boresight
direction for the image need not be specified. The RPs are then converted into amended perspectives that are guaranteed to lie outside the inflated
structure (Fig. 5¢) and to include a boresight direction for the requested image.

Next, anumber of navigation points are set around joints (Fig. 5d) in a manner that depends on the details of the structure. Both APs and NPs are
taken as nodes for the roadmap. Although APs represent points that the inspection path must visit, NPs provide intermediate waypoints that may or
may not be used in order to circumnavigate obstructions.

A. Amended Perspectives

Four cases for RPs must be distinguished: a RP can be given with or without an associated camera boresight direction, and the given position
might lie within or outside the inflated structure. If a RP is given without a boresight direction, this direction must be determined by the algorithm.
If the RP lies within the inflated structure, the position must be moved to the outside of this inaccessible volume. The computation of APs depicted
in Fig. 7 is described in the following.

To obtain a camera boresight direction for a RP, if none is given, it is assumed that the nearest part of the truss structure must be inspected. Thus,
itis necessary to find the nearest point on the surface of the truss structure to the given RP. This is accomplished by searching for the nearest point
on every beam and selecting the one for which the distance to the RP is minimum. The boresight direction is then defined by the line connecting
this point to the RP.

In case a RP lies exactly on the surface of the truss structure and is given without a direction, the normal to the surface of the structure at the
position of the RP is taken as the boresight direction.

Downloaded by VIRGINIA TECH on February 21, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.1010634

DAS AND WOOLSEY 43

Move RP outside Amended
the inflated 3 perspective

structure in the =moved RP +

Yes Yes indicated direction direction

inside
the inflated
tructure?

direction
given?

Reference
perspectives

No | Find nearest point on No Amended
|—) the bridge structure — l » perspective
and compute direction = RP + direction

Fig.7 Block diagram for the computation of amended perspectives.

[linflated Truss Structure
® Navigation Points

® Intersection Point 2500
2000
2500
£ 1500
2000 § 1000
z 1500 < 500 _
3 1000 0 ° g 500
z _ y g 0
~ 500 -500 < 500
N
0 2000
-500 500
2000 1000
500 1000 y (Width) ¢ Pyt 2000 y (Width)
_ -500 x (Length) 0
y (Width) x (Length)
a) Right-angled beams b) Rotated beams ¢) Beams in the same direction

Fig. 8 Navigation point examples for different combinations of beams.

Collision checks are performed to determine if RPs lie inside or outside the inflated structure. If the RP lies outside the structure, it can directly
be taken as an AP. Otherwise, if the RP lies inside the inflated structure, it must be moved into the accessible workspace. A straightforward method
would be to find the nearest point to the RP on the inflated structure and define this as an AP. The RP would be moved in some direction that
depends on its relative position to the truss structure. If the RP is moved off of the boresight axis, one cannot guarantee the desired component will
remain in the field of view. To avoid this issue, the RP may only move along the boresight axis until it emerges from the inflated structure. This
ensures that the perspective angle and the center of the field of view for the resulting image remain unchanged. Furthermore, if the camera has a
zoom capability, the original field of view can be restored, although other issues could adversely affect image quality, such as platform motion or
lighting conditions.

B. Navigation Points

NPs are computed relative to the joints connecting beams; only active joints and beams are considered in this step. The essential idea is to
identify the “corner” between intersecting beams and to set NPs at both sides of this corner as shown in Fig. 8a.

Note that, if a beam is rotated about its centerline, NPs do not need to lie on the surface of the inflated structure; see Fig. 8b. This is in contrast to
visibility graphs, for which waypoints always lie on the surface of an obstacle. Another special case that the algorithm accommodates is that of
abutted beams with differing cross sections, as shown in Fig. 8c. The computation of NPs is described further in the Appendix.

After computing all NPs for each pair of active beams at each active joint, a collision check is performed for all computed NPs to determine if
they lie inside or outside the inflated structure. Points inside the structure are deleted; only those points in the free workspace are incorporated into
the roadmap. Figure 9 illustrates the resulting NPs for an example joint with four beams.

V. Phase 3: Planning the Path

The requirement that the inspection path efficiently visit every AP leads to a TSP. The search for the inspection path proceeds iteratively in two
stages. First, a global path planner solves a TSP to determine a tour that visits every AP (Fig. 5e). A local path planner then generates a detour
around obstructions where the global path intersects the inflated structure (Fig. 5f). Each infeasible path segment is removed from the roadmap, the
cost of the corresponding detour is tabulated, and the two stages are repeated. The iterative process stops once a TSP solution without collisions is
found. This approach, in which a path is first obtained and then checked for collisions, is often referred to as a lazy method [21].

A. Planning the Global Path

The initial roadmap is defined as the complete graph over all APs and NPs, without performing any collision checks. Our objective is to
minimize the distance traveled by the UAS, rather than to reduce risk, energy, or time, although one could easily accommodate alternative
optimization criteria. Accordingly, the weights of the edges within the roadmap are initialized with the Euclidean distances between the nodes. An

Downloaded by VIRGINIA TECH on February 21, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.1010634

44 DAS AND WOOLSEY

>

7

o]

Fig. 9 NPs for a joint with multiple beams.

Initialize cost
APs —>| matrix C with «|Solve TSP based NO _ Inspection path,
direct d onC visiting all APs

connections

yes

Update cost Local path planning

matrix C with new [€«— to replace colliding
distances edges

Fig. 10 Block diagram of the global path planning.

initial cost matrix C associated with the TSP is set up containing the distance between every pair of APs [22]. Based on the cost matrix C, a TSP
solver determines the order in which the APs should be visited to minimize the total path length.

We use the Lin—Kernighan—-Helsgaun (LKH) heuristic [22] as the TSP solver. Although the solution is not guaranteed to be optimal, the solver
generates a feasible path in reasonable time, even for large numbers of APs. The inspection path determined in this way is then checked for
collisions with the inflated structure. For each path segment that collides with the inflated structure, a local path planner described in the next
subsection generates a feasible, local, alternative path that incorporates NPs as waypoints. Because the length of this detour differs from the length
of the infeasible segment, the cost matrix C is updated and a revised TSP is solved. This iterative process is run until the TSP solver returns a
feasible inspection path. The process is depicted in the block diagram in Fig. 10. A similar method for the global path planner was used by Englot
and Hover [14] for ship hull inspections.

Path segments that have already been verified as feasible, including local detours generated in response to collisions, are not rechecked for
feasibility in later iterations. Moreover, a prior solution is available to the LKH solver in subsequent iterations, which further accelerates solution
of the modified TSPs.

Remark: Rather than define a single, required perspective for each inspection point, one may prescribe a set of acceptable perspectives from
which a single perspective may be selected, as is convenient. Such a set might include all the perspectives from which a given structural feature of
interest is visible. In solving a generalized TSP (GTSP), one perspective from each set is chosen so that the resulting inspection path is as short as
possible [23]. Although the additional planning freedom may be helpful, the problem requires a modified solution method. Smith and Imeson [24]
proposed a GTSP solver called Generalized Large Neighborhood Search (GLNS), for example. We assume, however, that every user-specified
perspective must be visited, and we apply the more efficient LKH solver to the resulting TSP.

B. Planning Local Paths

The local path planner provides a feasible alternative path connecting two APs in cases in which the straight connecting path collides with the
inflated structure. NPs are used as waypoints to circumvent the obstruction.

An implementation of the A* graph search algorithm serves as the local path planner. The algorithm searches the roadmap, which is initially
built by assuming that every edge in the complete graph is feasible and which is amended as infeasible segments are identified within proposed
paths. A block diagram of the process is shown in Fig. 11.

connecting path

roadmap, A* graph
between AP
APgtart, APgoql search e sltart
goal
update roadmap: yes
delete colliding
edges

Fig. 11 Block diagram of the local path planning.

Downloaded by VIRGINIA TECH on February 21, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.1010634

DAS AND WOOLSEY 45

VI. Simulations

This section describes simulation results for a half-span of the Coleman Bridge shown in Fig. 1. All simulations were conducted on a computer
with an Intel Core 17-6500U 2.5 GHz processor running Windows 10. The algorithm was implemented in MATLAB. It should be noted that the
algorithm was not yet optimized in terms of runtime. An optimized implementation in a low-level programming language, possibly using
multithreading, would undoubtedly yield a significant increase in performance.

A. Model of the Coleman Memorial Bridge

Referring to Fig. 1, one can see that the Coleman Bridge exhibits a repeating pattern of structural assemblies so that, for path planning purposes,
it is not necessary to model the entire structure. The red box in Fig. 1 indicates the assembly that was modeled here, as shown in Fig. 12.

Referring to Sec. 11, the model comprises 33 active joints, 18 inactive joints, 104 active beams, and 4 inactive beams. The joints atx = —11,000
and x = 66,000 are inactive, and so no NPs are set there. Furthermore, the pillar, the deck, and the catwalks are modeled using inactive joints and
inactive beams. For this model, the algorithm automatically sets 694 NPs in the structure, which are visualized on the inflated structure in Fig. 12.
Despite this rather simplistic modeling of the assembly, the representation enables accurate planning of collision-free paths through the structure.

Joints are of particular interest during inspections because they are regions of concentrated stress in which corrosion or cracks are of particular
concern. Accordingly, we defined the RPs around the joints of the structure. Each joint is inspected from at least two sides. Joints where inner cross
bracing is connected are inspected from three different angles. This results in a total of 82 defined RPs, of which 28 include no specified boresight
direction. For an inflation size of d;,f,40, = 1000 mm, the resulting path through the noninflated structure is shown in Fig. 13.

B. Dependence on Inflation Size

The inflation size parameter may be adjusted by the operator to allow for a larger or smaller aircraft, to accommodate operations in stronger or
weaker disturbances, etc. It is consequently of interest to know how the computation time and path length vary with inflation size.

The computation times and path lengths for simulations with different inflation sizes are summarized in Table 2 and in Fig. 14. Table 2 also
contains the numbers of solved TSPs, planned local paths, and executed collision checks. The maximum applied inflation size is 2000 mm.
For values larger than this, the inner cross bracing in the middle of the span inflates into a solid obstruction and some RPs become
unreachable.

In general, Fig. 14 suggests that an increasing inflation size corresponds to an increase in computation time and path length. The trend is not
monotonic, however. For example, although the algorithm runs for 472 s for an inflation size of 750 mm, it only takes 419 s when the structure is
inflated by 1000 mm. Although the trend in path length appears more consistent, the inspection path for the 2000 mm inflated bridge is 6% shorter than
itis for a 1500 mm inflation size. This observation likely relates to the fact that the accessible volume within the structure (i.e., the available workspace)
decreases with larger inflation sizes. Thus, APs within the bridge structure will lie closer together, resulting in a shorter inspection path length.

20,000
15,000
__ 10,000

5000

[inflated Truss Structure
® Navigation Points

z (Height

0

-5000

-5000
0

5000
10,000
y (Width) 15,000

20,000 e "i/’ .
- —— Ay VA N
3 ; A 7
15,000 — R /) 57%
S 2= o W
10,000 — A !
) z ey
‘© 5000
=)
N 0
@ Amended Perspectives
-5000 ~——== Perspective Direction
7
0
10,000 1
y (Width) 20,000 A 0 x (Length)

Fig. 13 Coleman Bridge model with a computed path in red (axis units are in millimeters).

Downloaded by VIRGINIA TECH on February 21, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.1010634

46 DAS AND WOOLSEY

Table 2 Path planning algorithm results for different inflation sizes d;; tjation

Inflation size d;,faion, MM
2 250 500 750 1,000 1,500 2,000

No. of solved TSP instances 5 5 7 10 9 10 34
No. of local path plannings 88 95 120 134 141 178 276
No. of line collision checks 3,813 6,562 11,668 14,565 13,571 18,965 44,958
Computation time, s 125 182 371 472 419 785 2,965
Path length, m 360 396 443 489 526 650 613

C. Computation Time Distribution

Figure 15 shows the distribution of computation time among the different steps of the algorithm. The distribution that is presented is
averaged among all the inflation sizes d;,f0, listed in Table 2. The initial computations to obtain the bridge structure, APs, and NPs account
for less than 1% of the algorithm’s total runtime. More than 99% of the runtime is spent searching for the inspection path. When searching for
the inspection path, planning local paths is the costliest task (79% of total runtime), followed by the collision checks for global and local paths
(18% of total runtime). This observation justifies our effort to keep the number of NPs small, thus reducing the size of the roadmap. Also, the
advantage of lazy approaches for global and local path planning is evident. Without lazy path planning, more local path plannings (up to 3321
local paths for the 82 APs) with more collision checks would be required in order to reduce the global path planning effort to a single solution of
the TSP.

Given the computational time spent on local path planning, a reasonable objective for future efforts would be to increase the efficiency of this
step. Algorithms like the D* algorithm can handle changes in the roadmap without the need to start over when an edge is removed from the graph
due to a detected collision.

If the local path planner’s efficiency can be significantly increased, the iterative procedure would no longer be necessary. In this case, every local
path between APs could be computed in advance and one would only need to solve a single TSP. The question of which method is more efficient
would depend on the performance of the local path planner as well as that of the TSP solver.

D. Development over Iterations

In the third phase, the algorithm plans the inspection path. This is done iteratively where, in each iteration, a TSP is solved, collision checks are
performed, and local paths are planned. Solving the first TSP instance and finding local paths in the first iteration of the routine take the most time.
From the second iteration on, the TSP solver takes the previous solution as the initial tour, which speeds up the solution process. Also, the number
of planned local paths decreases so that, in general, subsequent iterations will take significantly less time as compared with the first iteration.
Iterations end when a TSP solution without collisions is found. Figure 16 shows the improvements in path length as compared to the previous
iteration (top plot) and the time for the iterations (bottom plot). The improvements are given in percentages compared with the prior iteration. The
plots start at the second iteration because no prior value exists for comparison at the first iteration.

The average improvement in path length made in a single iteration is 0.73% with a standard deviation of 1.45%. The mean computation time per
iteration is 29 s with a standard deviation of 45 s. Again, only a general and imperfect trend can be observed, suggesting that later iterations take

€ 1000
£
2 8001]
Q
| o=
£ 600r e
©
o
= 400; _ - @]
2 —w— Algorithm Runtime
QE) 200 -0~ Inspection Path Length
g
o 0 L L I
0 500 1000 1500 2000

Inflation Size [mm]
Fig. 14 Algorithm runtime (blue) and inspection path length (red) versus on the inflation size.

i Collision Checking
Computing NP

17.57 %
0.02 %
Solving TSP
Computing AP se—0/ " 2.51%
o
i Searching
Inspection Path
99.18 %
Inflating and Computing U il e
Structure 0 T .oo-cestTTTTT Planning Local Paths
)
0.06 % 79.10 %

Fig. 15 Time distribution among the steps of the algorithm, averaged for inflation sizes between 2 and 2000 mm.

Downloaded by VIRGINIA TECH on February 21, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.1010634

DAS AND WOOLSEY 47

5 —
T c
T = e /\
TR O
29
S
5 <
ES
- _5 1 1 1 1 1 1 1
2 3 4 5 6 7 8 9
_ Number of the Iteration
2 300 r Inflation Size
S —0
®©
5 200 - - 250
= 500
2 -~ 750
5 100 1000
K] §
- N \ 1500
£ 9 T P— E—
= 2 3 4 5 6 7 8 9

Number of the Iteration
Fig. 16 Improvements in path length over the iterations (top) with the corresponding computation time for the iterations (bottom).

less time. On average, the firstiteration takes more than seven times longer than the mean of the subsequent iterations. This is aresult of solving the
TSP without benefit of an initial solution, as well as a large number of local path plannings required in the first iteration.

As can be seen in the top plot in Fig. 16, some iterations show negative improvements, indicating a longer inspection path than the one obtained
in the previous iteration. This increase in path length is caused by the local paths, which are computed after solving the TSP. The TSP finds the
shortest inspection path, but this path can contain path segments that intersect the inflated structure. After replacing these path segments with
solutions obtained by the local path planner, the inspection path may become longer than it was after the previous iteration. In the next iteration, the
TSP considers the updated costs and may determine a new tour that avoids the expensive local paths.

At the end of every iteration, a feasible inspection path is obtained. If an operator does not have the time to wait until all iterations are done, the
algorithm can be interrupted after any iteration. If the algorithm is stopped before all iterations are done, the resulting path will not be the shortest
possible. Thus, by interrupting the algorithm’s execution, one may trade the path length and computation time.

The total improvement in path length, starting from the second iteration, is shown in Fig. 17. Improvements increase with increasing inflation
size, suggesting the method has greater value for more restricted workspaces.

E. Dependence on Reference Perspectives

To evaluate the algorithm performance with different numbers of perspectives, we varied the number of RPs. In additional to the 82 perspectives
around joints, we added 43 perspectives around beams. Besides arun with all 125 RPs, we ran the algorithm with random subsets of 25, 50, 75, and
100 RPs. The inflation size was set to 1000 mm for all runs. The dependence of the computation time and the path length on the number of RPs is
shown in Fig. 18. The runtime and path length increase roughly linearly with the number of reference perspectives.

40 T T T

30

10t 1

Improvement in Path Length [%]

0 500 1000 1500 2000
Inflation Size [mm]
Fig. 17 Total improvement made by iterative path search.

700 T T T T T T
_ o

~ E 600+ o 1
DES] _-
2.5 -
é’ § 500f .
S c
& T 4001)
€ —*- Algorithm Runtime
£.8 300f -o- Inspection Path Length|
58
< g 2001 1

100

0 20 40 60 80 100 120

Number of Perspectives
Fig. 18 Algorithm runtime and inspection path length versus the number of perspectives.

Downloaded by VIRGINIA TECH on February 21, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.1010634

48 DAS AND WOOLSEY

Table 3 Results with PRM approach for different inflation sizes d;,1ation

Inflation size d;pfaion, MM

2 250 500 750 1,000
No. of solved TSP instances 14 14 18 17 23
No. of local path plannings 124 193 235 254 265
No. of line collision checks 1,525 6,791 10,982 16,518 25,215
Computation time, s 182 1,499 2,773 4,849 9,644
Path length, m 515 720 750 765 762

Table4 Excess of PRM results

Inflation size d;pfaion, MM

2 250 500 750 1000
Excess of computation time, % 46 724 647 927 2202
Excess of path length, % 43 82 69 56 49

F. Comparison with PRM Approach

A deterministic algorithm such as the one proposed here is especially appropriate for the proposed scenario, in which the environment is
described by static geometric obstructions and the vehicle dynamics are ignored. Although comparison with another deterministic planner might
be more fair, we obtain an initial benchmark of the proposed algorithm’s efficiency by comparing with a PRM approach. Alternative comparisons
are left for future investigation.

The implementation of the PRM approach differs in the selection of NPs, which are not computed deterministically as in Sec. VL.B but are set
randomly within the free space around the structure. Searching the inspection path is then done with the method described in Sec. V based on a
roadmap with APs and random NPs.

Because the NPs are selected randomly within the workspace, a larger number of NPs is needed in comparison with the deterministically
computed NPs used by the proposed method. For the Coleman Bridge, 3000 random NPs are selected within the structure. This number of NPs
keeps the computation times reasonably low while providing sufficient resolution to enable short paths and paths that can traverse narrow
passages. This comparison illustrates the relative efficiency of the deterministic approach for setting NPs.

The results of the simulations with probabilistic NPs are given in Table 3. For an easier comparison, Table 4 provides the excess in computation
time and path length using the PRM approach. The higher the inflation size is, the more efficient is our algorithm as compared to the PRM
approach. Also, the inspection paths computed by our algorithm are 60% shorter on average than those obtained using the PRM approach.

VII. Conclusions

The use of small unmanned aircraft to inspect civil infrastructure promises to reduce the cost and risk associated with this important activity.
Motivated by the challenge of efficiently inspecting a steel truss bridge using a small UAS, a path planning algorithm is proposed that ensures the
aircraft will visit every one of the perspective points specified by an operator, obtaining an inspection image at each point. Before addressing the
path planning problem, a method is first developed to construct a model of a truss structure based on a small number of geometric parameters
provided by the operator. In this method, every truss component is enclosed within a cuboid, referred to as a beam; these beams intersect at joints.
Once the model of the structure is constructed, the user-specified perspective points are supplemented with a number of navigation points, defined
around the joints, to aid in path planning. Defining an initial roadmap as the complete graph on these perspective and navigation points, the path
planning algorithm proceeds as an iterative sequence of global path planning and local replanning to ensure an efficient, feasible inspection path.

Simulations in which the algorithm was applied to a span of the Coleman Memorial Bridge in Yorktown, Virginia, in the United States illustrate
the algorithm’s functionality. These simulations were used to assess the algorithm’s performance in relation to an operator-defined parameter that
adjusted the buffer distance between the aircraft and the structure. The method was also compared with a probabilistic roadmap approach,
illustrating the efficiency of the proposed algorithm, which consistently computed shorter paths in significantly less time.

Future work will include the optimization of the local path planner as well as collision checking. The functionality of the proposed algorithm
might also be expanded by enabling the automatic computation of perspective points to ensure complete surface coverage; however, any such
effort must incorporate subject matter expertise in infrastructure inspection. Another useful extension would enable the algorithm to create the
structural model used for path planning from available data, such as digitized engineering drawings. Beyond improvements to the planning
algorithm, there is a great need for efficient but robust flight control strategies and for structure-relative guidance and navigation schemes to enable
autonomous flight in highly disturbed infrastructural environments such as steel truss bridges.

Appendix: Computation of Navigation Points

In the following, the mathematical computation of NPs is described. The computation is based on two beams connected at a joint. To compute
all NPs for a given structure, the computation is performed for every active joint and for every combination of two active beams at the joint.

In the first step, the plane defined by the centerlines of the two intersecting beams is computed. This plane is also defined by the position of the
current joint pjiy and the plane’s normal vector 7., which are obtained in Eq. (A3). The vectors Wy, and W, represent the direction of the
beams’ centerlines and point away from the current joint. The direction w,, is equal to the z axis Z,, of the beam’s frame if the current joint is the
beam’s start joint, and it is equal to —z,, if the current joint is the beam’s end joint. Figure A1 shows the connection of two beams in viewing the
direction perpendicular to the beams. The vectors and lengths used for the computation are indicated.

In the next step, the vectors #;,; and @;, in Fig. Al are obtained:

ﬁhl = ﬁ)hl X ﬁplane (A])

Downloaded by VIRGINIA TECH on February 21, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.1010634

DAS AND WOOLSEY 49

Beam 2 Beam 1

Cu‘rrénf Joint

Fig. A1 Vectors and variables for the computation of NPs, with the plane cutting the two beams with variables for computing the intersection point p;,,.

ﬁbz = 'i)bZ X ﬁp]ane (A2)
where
pane = Wy X W) (A3)
If their dot product with w from the other beam is negative, the vectors obtained from Egs. (A1) and (A2) must be inverted to ensure that#,, and
i, point in the direction shown in Fig. Al.
To obtain the point p;, at which the two beams intersect, the lateral and longitudinal lengths iy, liong1> lar2> and jgpgo from Fig. A1 must be
found. To do so, the lateral lengths /i, and /;,, are first computed, and then a linear equation is solved for /o1 and /jgngr -
The length /,, of abeam is defined as the distance of a tangent, which is perpendicular to the search direction #,, and the beam direction w,,. This
is shown in Fig. A2. In Eq. (A4), the search direction &, is decomposed into the vectors X, and y,,, which are the frame vectors of the beam’s frame:

ﬁh = a.f?h + bj}b (A4)

The signs of the scaling coefficients a and b determine the direction of the next vertex so that the vector d,. ., is obtained by Eq. (AS):

A~ Xsiz A Vsiz
dverlex = sgn(a)xb(2e + Sgn(a)xoﬂ'sel) + Sgn(b)yb(sze + Sgn(b)YOffsel) (AS)

The length [, is then given in Eq. (A6):
ha = | yeriex | €08(B) = dyertex * Uy (A6)
The longitudinal lengths /oy, and /4y, are computed by solving
hat 1 + long1 Wp1 = Doty 4 long2 Wpo (A7)
After solving this linear equation, the intersection point p;,, is obtained by Eq. (AS8):
Pint = Pioint + hattp1 + liong1 Wp1 (A8)
Usually, two NPs are set for every pair of beams. The NPs are set on the line of intersection, which is defined by the intersection point p;,, and the

plane’s normal vector 72,y The position along the line is chosen so that the NPs lie on the sides of the beams. This enables one to plan paths along
the beams. Therefore, the NPs are set based on the maximal extension of the beams in the two directions 7 plane and —ﬁpl,m. These extensions are

Fig. A2 Vectors and variables for the computation of NPs: Cross-sectional area of a beam and variables for the computation of the extension in
direction u,,.

Downloaded by VIRGINIA TECH on February 21, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.1010634

50 DAS AND WOOLSEY

denoted as g , and gey —, for the first beam and Igq4e, , and [gqe5 -, for the second beam, and again determine the distance of a tangent. The
extensions are obtained in the same way as [, but, this time, in the search directions 7,n. and —#pjae. The NPs are then given by

PNpl = Pine t+ ﬁplane max(lsidel.nﬂ lsideZ.n) (A19)

Pnp2 = Pine — ﬁplane max(lsidel.—nv lsideZ.—n) (AZO)

In case the two beams have the same direction (w;; and W, are not linearly independent), the plane in which the beams’ centerlines lie is not
well defined. Therefore, a special treatment is necessary and four NPs are computed as shown in Fig. 8c. These NPs are set at the outer edges of
the beams.

In the first step, the extensions of the beams are obtained by searching both beams for the tangent distance in the directions X, ¥51, —Xp1,
and —y,,, by the previously described method. The vectors X, and y,,; are the frame vectors of the first beam. Afterward, the maximum values of
both beams are determined for each of the four directions and the NPs can easily be computed.

Acknowledgments

The authors are grateful for support from Virginia Tech's Institute for Critical Technology and Applied Science; from the National Science
Foundation (NSF) under grant number I1S-1840044; and from the Center for Unmanned Aircraft Systems, which is an NSF Industry/University
Cooperative Research Center, under grant nos. IIP-1539975 and CNS-1650465. The authors also gratefully acknowledge the constructive
criticism of the anonymous reviewers.

References

[1] Mazumdar, A., and Asada, H. H., “Mag-Foot: A Steel Bridge Inspection Robot,” 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE Publ., Piscataway, NJ, 2009, pp. 1691-1696.
doi:10.1109/IROS.2009.5354599

[2] Wang,R., and Kawamura, Y., “Development of Climbing Robot for Steel Bridge Inspection,” Industrial Robot: An International Journal, Vol. 43, No. 4, 2016,
pp. 429-447.
doi:10.1108/IR-09-2015-0186

[3] Pham, N. H., and La, H. M., “Design and Implementation of an Autonomous Robot for Steel Bridge Inspection,” 2016 54th Annual Allerton Conference on

Communication, Control, and Computing (Allerton), IEEE Publ., Piscataway, NJ, 2016, pp. 556-562.

doi:10.1109/ALLERTON.2016.7852280

Latombe, J., Robot Motion Planning, Kluwer Academic, Norwell, MA, 1991.

doi:10.1007/978-1-4615-4022-9

LaValle, S. M., Planning Algorithms, Cambridge Univ. Press, Cambridge, England, U.K., 2006.

doi:10.1017/CB0O9780511546877

Yang, L., Qi, J., Song, D., Xiao, J., Han, J., and Xia, Y., “Survey of Robot 3-D Path Planning Algorithms,” Journal of Control Science and Engineering,

Vol. 2016, 2016, Paper 7426913.

doi:10.1155/2016/7426913

[4

flna

[5

=

[6

=

[7] Schgler, F., la Cour-Harbo, A., and Bisgaard, M., “Configuration Space and Visibility Graph Generation from Geometric Workspaces for UAVs,” AIAA
Guidance, Navigation, and Control Conference, AIAA Paper 2011-6416, Aug. 2011.
[8] Jiang, K., Seneviratne, L. S., and Earles, S. W. E., “Finding the 3-D Shortest Path with Visibility Graph and Minimum Potential Energy,” Proceedings of the

1993 IEEE/RSJ International Conference on Intelligent Robots and Systems ‘93, IROS ‘93, Vol. 1, IEEE Publ., Piscataway, NJ, 1993, pp. 679-684.

doi:10.1109/IROS.1993.583190

Trang, L. H., Truong, Q. C., and Dang, T. K., “An Iterative Algorithm for Computing Shortest Paths Through Line Segments in 3-D,” Future Data and Security

Engineering, Springer International, Cham, Switzerland, 2017, pp. 73-84.

doi:10.1007/978-3-319-70004-5_5

[10] Li, F, and Klette, R., “Rubberband Algorithms for Solving Various 2D or 3-D Shortest Path Problems,” International Conference on Computing: Theory and
Applications, 2007. ICCTA ‘07, IEEE Publ., Piscataway, NJ, 2007, pp. 9-19.
doi:10.1109/ICCTA.2007.113

[11] DeFilippis, L., Guglieri, G., and Quagliotti, F., “Path Planning Strategies for UAVS in 3-D Environments,” Journal of Intelligent and Robotic Systems, Vol. 65,
No. 1, 2012, pp. 247-264.
doi:10.1007/s10846-011-9568-2

[12] Liao, E., Liu, C., and Jiang, L., “Hierarchical Detecting Points Path Planning Algorithm for Climbing Robot in Spatial Trusses,” 2017 International
Conference on Robotics and Automation Sciences (ICRAS), IEEE Publ., Piscataway, NJ, 2017, pp. 25-29.
doi:10.1109/ICRAS.2017.8071910

[13] Galceran, E., and Carreras, M., “A Survey on Coverage Path Planning for Robotics,” Robotics and Autonomous Systems, Vol. 61, No. 12, 2013,
pp. 1258-1276.
doi:10.1016/j.robot.2013.09.004

[14] Englot, B., and Hover, F. S., “Sampling-Based Sweep Planning to Exploit Local Planarity in the Inspection of Complex 3-D Structures,” 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IEEE Publ., Piscataway, NJ, 2012, pp. 4456—4463.
doi:10.1109/IROS.2012.6386126

[15] Bircher, A., Alexis, K., Burri, M., Oettershagen, P., Omari, S., Mantel, T., and Siegwart, R., “Structural Inspection Path Planning via Iterative Viewpoint
Resampling with Application to Aerial Robotics,” 2015 IEEE International Conference on Robotics and Automation (ICRA), IEEE Publ., Piscataway, NJ,
2015, pp. 6423-6430.

[16] Das, A.,and Woolsey, C. A., “Modeling and Roadmap Generation for Truss Inspection by Small UAS,” 2018 European Control Conference (ECC), Limassol,
Cyprus, June 2018.

[17] Corke, P., Robotics, Vision and Control: Fundamental Algorithms in MATLAB, Vol. 73, Springer, New York, 2011, pp. 130-133.
doi:10.1007/978-3-319-54413-7

[18] Hexmoor, H., “Essential Principles for Autonomous Robotics,” Synthesis Lectures on Artificial Intelligence and Machine Learning, Vol. 7, No. 2, 2013,
pp. 67-68
doi:10.2200/S00506ED1V01Y201305AIMO021

[19] Pignon, P., Hasegawa, T., and Laumond, J. P., “Optimal Obstacle Growing in Motion Planning for Mobile Robots,” IEEE/RSJ International Workshop on
Intelligent Robots and Systems ‘91, Vol. 2, IEEE Publ., Piscataway, NJ, 1991, pp. 602-607.
doi:10.1109/IROS.1991.174542

[9

—

Downloaded by VIRGINIA TECH on February 21, 2019 | http://arc.aiaa.org | DOI: 10.2514/1.1010634

[20]

[21]

[22]

(23]

[24]

DAS AND WOOLSEY 51

Hartquist, E. E., Menon, J., Suresh, K., Voelcker, H. B., and Zagajac, J., “A Computing Strategy for Applications Involving Offsets, Sweeps, and Minkowski
Operations,” Computer-Aided Design, Vol. 31, No. 3, 1999, pp. 175-183.

doi:10.1016/S0010-4485(99)00014-7

Bohlin, R., and Kavraki, L. E., “Path Planning Using Lazy PRM,” Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on
Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), Vol. 1, IEEE Publ., Piscataway, NJ, 2000, pp. 521-528.
doi:10.1109/ROBOT.2000.844107

Helsgaun, K., “An Effective Implementation of the Lin—Kernighan Traveling Salesman Heuristic,” European Journal of Operational Research, Vol. 126,
No. 1, 2000, pp. 106-130.

doi:10.1016/S0377-2217(99)00284-2

Tokekar, P., Hook, J. V., Mulla, D., and Isler, V., “Sensor Planning for a Symbiotic UAV and UGV System for Precision Agriculture,” IEEE Transactions on
Robotics, Vol. 32, No. 6, 2016, pp. 1498-1511.

doi:10.1109/TRO.2016.2603528

Smith, S. L., and Imeson, E., “GLNS: An Effective Large Neighborhood Search Heuristic for the Generalized Traveling Salesman Problem,” Computers and
Operations Research, Vol. 87, Suppl. C, Nov. 2017, pp. 1-19.

doi:10.1016/j.cor.2017.05.010

H. Choi
Associate Editor

