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A B S T R A C T

A topological constraint model is developed to elucidate the coordination environment of alkali tellurite glasses.
The model is derived from temperature-dependent constraint theory and provides a quantitative connection
between the connectivity of the glass network and the compositional dependence of the glass transition tem-
perature (Tg). Our model gives support to the model proposed by Barney et al. [J. Phys. Chem. Lett.4, 2312–2316
(2013)], confirming their model of the coordination environment in alkali tellurites. The model simultaneously
serves as a framework that can be used in binary alkali glass-formers to predict an expected coordination the
network forming cation in an oxide glass.

1. Introduction

Glass formers with the chemical form MO2 have a strong tendency
to form tetrahedrally coordinated units (e.g., SiO2 and GeO2), as can be
seen both in their crystalline and glassy structures [1,2]. In TeO2-based
glasses, the tellurium cation has been assumed to be fourfold co-
ordinated since the crystalline polymorphs of tellurite are all fourfold
coordinated, e.g., as recently measured by NMR [3]. However, Raman
[2], neutron scattering [4], and molecular dynamics simulations [5]
have suggested that the average coordination of tellurium in tellurite
glasses is actually closer to 3.65. Barney et al. [2] published a model
predicting the coordination from Raman as a function of alkali molar
fraction. This model was digitized by the current authors to give an
explicit functional form:
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This lower average coordination number had previously been in-
terpreted in the context of Gupta-Cooper constraint theory [6] to sug-
gest that TeO2 should be a relatively good glass-former [3]. Since ex-
perimentally it is known that pure TeO2 is a relatively difficult glass
former, this lower coordination may be unlikely [3].

Recently, topological constraint theory has been shown to provide
accurate predictions of Tg based on the temperature dependence of the
bond constraints in the glass forming network [7–10]. The relationship
between Tg and the topology of the glass network is provided through

the composition and temperature dependence of the configurational
entropy of the system, as shown below [7,8]:

=
T x
T x

S T x x
S T x x

( )
( )

[ ( ), ]
[ ( ), ]

g

g r

c g r r

c g (2)

where Tg is the glass transition temperature, x is composition, Sc is the
configurational entropy, and xr is a reference composition. According to
the analysis of Naumis [11,12], the configurational entropy is largely
proportional to the topological degrees of freedom, f, present in the
system. With this proportionality, Eq. (2) can be rewritten as [7]:
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where d is the dimensionality of the network (=3 for a three-dimen-
sional system) and n is the average number of rigid constraints per
atom. This framework allows for straightforward calculation of the
change in Tg based on the changes in the connectivity of a glass-forming
network [7–9,13,14].

2. Model

Using Eq. (3), the composition dependence of the average number of
constraints per atom can be expressed as
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given an experimental Tg (x) curve.
To calculate the number of rigid constraints, we must consider all

network-forming species in the system. In the case of alkali tellurite
glasses, the network-forming species are the tellurium cations and the
bridging oxygen anions (non-bridging oxygens can be ignored because
they provide no constraints to the network). To calculate the average
number of constraints in the system, the mole fraction of each species
must be multiplied by the number of rigid constraints associated with
that species,
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in which w0 is the molar fraction of oxygen, wi is the molar fraction of a
given network-forming cation, and ri is the coordination of the asso-
ciated network-forming cation. The three most important types of
constraints in oxide glass-forming systems are: [7].

• α constraints, i.e., the radial constraints between network-forming
cations and bridging oxygens: There are the two linear constraints
per bridging oxygen associated with TeeO bonds.

• β constraints, i.e., the angular constraints associated with OeTeeO,
where the number of independent constraints is expressed as 2r-3.

• γ constraints, i.e., the angular constraints associated with TeeOeTe.
There is one angular constraint per bridging oxygen; however, due
to the low energy needed to break these constraints
(Troom < Tγ < Tg for many systems) they typically do not con-
tribute to the rigidity of the network in the glass transition range.

The summation of these constraints is expressed as:

= − + − + −n T x x q T w wq T r q T w[ ( ), ] 2 ( )[1 ] ( )[2 3] ( )[1 ]g α β γ (6)

where w is the fraction of network-forming cations in the oxide and q(t)
is the temperature onset function as defined by temperature-dependent
constraint theory [9,10]. The first term is the expression for the number
of α constraints, the second term accounts for the β constraints, and the
third term represents the γ constraints. However, since the onset tem-
perature for γ constraints is less than Tg, the last term will be omitted for
further calculations (i.e., the γ constraints are too weak to provide ri-
gidity in the temperature range near Tg). Likewise, if the temperature of
the system were to increase beyond the onset temperature of the β
constraints, those constraints would no longer provide rigidity to the
network. Such a case can be seen in the modeling of Tg for alkali borate
systems [7].

The fraction of each network forming species is given by the ex-
pression:
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Combining Eqs. (6) and (7) (leaving out the last term of Eq. (6)
because the temperature onset function for γ constraints is assumed to
be less than Tg), we obtain a single function expressing the degrees of
freedom of a given oxide glass former with coordination r:
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This expression allows for the calculation of Tg from the coordina-
tion of an oxide glass-forming composition,
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Another goal of this research is to translate the experimentally de-
rived changes in Tg into an approximation of the mean coordination. To

do this, one must solve for r in Eq. (8):
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Eq. (10) allows one to go from the known structure and find the
changes in coordination purely based on the change in Tg, as long as the
α constraints do not break and the γ constraints stay broken. The ex-
pression in Eq. (10) is plotted in Fig. 1, along with cases considering
either just β constraints as rigid or all three constraints together rigid
(purely for the purpose of comparison).

3. Materials and methods

Roughly 1–1.5 g of tellurium dioxide from Sigma Aldrich Company
(reagent grade) was measured in a platinum crucible. The sample of
pure TeO2 was then heated at 1000 °C for ten minutes. After 10min of
heating, the sample was moved in a circular motion, with a 20-cm
diameter, until the liquid in the crucible reached a dark orange color.
Once the sample reached this color, the crucible was moved in a smaller
circular motion of 10 cm until the color reached yellow-orange. Then
the bottom of the crucible was quickly dipped into a 1-liter beaker filled
with water at approximately 23 °C. The water-quenching procedure was
repeated with a five-minute heating at 1000 °C until the sample was
glassy.

Vitreous M2O-TeO2 samples were made up to 20mol% M2O
(M=Na, Li, K). These were all made with 6-g samples in platinum
crucibles and heated two times at 800 °C for 10min, measuring the
weight loss of the sample between the first and second heating steps. All
samples of M2O-TeO2 were roller-quenched in a stainless-steel roller-
quencher.

Immediately after being formed, Raman spectroscopy was per-
formed as well as differential scanning calorimetry (Perkin Elmer DSC
7). Raman spectra were measured with an objective lens UMPLFL ×20
for two exposures of thirty seconds each. The sample was ground into a
fine powder and put into an aluminum pan for measurement with a
differential scanning calorimeter at a ramp rate of 40 °C per minute up
to 550 °C. The onset method [15] was used to determine Tg (Table 1).

4. Results

The experimentally measured Tg data showed good agreement with
literature values [16–18]. A reference point of x=0.20 is chosen for
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Fig. 1. The plotted expressions for each constraint possibility (All three con-
straints) [α β γ] (as observed at room temperature), the constraints relevant to
Tg [α β] (also seen in SiO2 and B2O3), and just the angular constraint about
network forming cation [β] (as seen in GeeSe systems). The y-axis is terminated
at two because anything with coordination less than two does not count as a
network former.
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model comparison purposes, since for this composition the two models
of Barney et al. [2] and Garanga et al. [3] are in agreement regarding
the slope of the Te coordination with respect to changing alkali content.
Experimental values were taken with the previously defined algorithm
and applied to the Barney et al. model [2] to compare the measured Tg
values with those reported. Fig. 2 shows that the error at pure TeO2

(x=0) is the calculated Tg within experimental error of Barney et al.'s
proposed coordination [2].

In order to confirm the model with both Tg and coordination, the

expression for degrees of freedom was used to calculate the expected
coordination of tellurium based on experimentally observed Tg values.
The results are shown in Fig. 3.

5. Discussion

The main conclusion from this analysis is to offer a constraint theory
view of tellurium coordination in alkali tellurite glasses. We found that
going from experimental Tg values to coordination and vice-versa both
show fairly good agreement with the extremes of the model as reported
by Barney et al. [2] Even though our endpoint gives very good agree-
ment with the proposed model, there is a difference in the slope of the
predicted Tg curve.

The original constraint theory analysis by Garanga et al. [3] states
that the TeO2 glass configuration at a coordination of 3.75 gives 0
degrees of freedom in Cooper-Gupta constraint theory; thus, samples
relatively close to that composition should easily form glasses and is
often cited as a reason why 3.65 coordination is not a likely solution.

However, this differentiation of the degrees of freedom as related to
the glass forming capability only predicts the cooling rate at which a
glass sample needs to be quenched, while the nucleation relationship is
only qualitatively defined in constraint theory. This lack of a quanti-
tative relationship with nucleation, combined with the experimental
findings that if one merely keeps the molten glass swirling in a crucible
as it cools it can quite readily form glass even at relatively slow
quenching speeds, implies that the degrees of freedom alone is not a
good indicator of generalized glass forming capability in TeO2.

This is further emphasized when one considers atomic constraint
counting [20], which is mathematically equivalent to Gupta-Cooper
constraint theory [10]. Specifically, for the case of B2O3 vs TeO2 in the
temperature region of Tg (Tβ > Tg > Tγ), borate glass would have 0.6
degrees of freedom per atom; tellurite has either 0 (for 4-coordinated
Te) or 0.18 degrees of freedom (for 3.65-coordinated Te). One would
then assume, based on constraint theory, that tellurium dioxide will
always be a good glass former. However, experimentally it is easy to
form borate glass, but specialized techniques are needed to make pure
TeO2 glass. Unfortunately, there is currently no general theory to ac-
curately predict nucleation and crystallization in glasses.

6. Conclusions

This paper has introduced a model to calculate the coordination of a
glass-forming cation in a binary alkali tellurite glass. The proposed
model was tested by finding the relative coordination changes of TeO2

and confirmed by arriving at a coordination that is within 0.02 of that
predicted by the Barney et al. [2] model (within their experimental
error). Simultaneously, the Barney et al. model lent evidence to the
validity of constraint counting method, and using just Tg values, con-
straint theory lends evidence for the coordination of Te in TeO2 glass as
3.65.

Acknowledgments

The authors are very thankful to Arron R. Potter and Rebecca Welch
for insightful conversations.

References

[1] E.R. Barney, A.C. Hannon, D. Holland, Short-range order and dynamics in crystal-
line α-TeO2, J. Phys. Chem. C 116 (2012) 3707–3718.

[2] E.R. Barney, et al., Terminal Oxygens in Amorphous TeO2, J. Phys. Chem. Lett. 4
(2013) 2312–2316.

[3] M.N. Garaga, et al., On the Short-Range Structure of TeO2 Glass, J. Phys. Chem. C
121 (2017) 28117–28124.

[4] E.R. Barney, et al., Alkali environments in tellurite glasses, J. Non-Cryst. Solids 414
(2015) 33–41.

[5] A. Gulenko, et al., Atomistic simulations of TeO2-based glasses: interatomic po-
tentials and molecular dynamics, Phys. Chem. Chem. Phys. 16 (1415)

Table 1
Collected experimental Tg values.

Fraction of akali oxide Potassium Tg (°C) Lithium Tg (°C) Sodium Tg (°C)

0 304.3 304.3 304.3
0.01 302.94 NA NA
0.02 301.98 NA NA
0.03 300.46 NA NA
0.05 297.03 293.23 295.77
0.1 281.76 282.44 281.9
0.15 261.49 270.37 268.01
0.2 239.8 263.37 252.05

230

240

250

260

270

280

290

300

310

320

0 0.05 0.1 0.15 0.2 0.25

(
erutarep

meT
noitisnarTssal

G
°C

 )

Molar Fraction of Alkali Oxide

Potassium Lithium Sodium Barney model of coordination

Fig. 2. Tg vs molar fraction of alkali dopant for model as well as measured Tg

values. The fit of Tg values are close to that predicted from the Barney model
[2] of coordination. We calculated the expected degrees of freedom and then
used the average value of Tg at x= 0.2 to find the ratio. The final calculated
result is in black and appears a bit sharp but at x=0, the Tg values reported
and expected are within a few degrees of each other. All other data points are
experimentally observed.

3.55

3.57

3.59

3.61

3.63

3.65

0 0.05 0.1 0.15 0.2 0.25

noitanidroo
C

detalucla
C

Fraction of Akali Oxide
Potassium Lithium Sodium Barney model of coordination

Fig. 3. Expected coordination of tellurium vs the molar fraction of alkali ad-
ditions. We find that the model prediction gives excellent agreement with the
values that are reported [2,4,19] close to 3.65 for pure TeO2. The calculation at
pure TeO2 matches the model of Barney et al. [2] However in the predicted
coordination there is a linear decrease with alkali content rather than an in-
itially flat coordination as predicted by Barney. Despite this difference, there is
close agreement between the constraint model and that of Barney et al.

C.J. Wilkinson et al. Journal of Non-Crystalline Solids 502 (2018) 172–175

174

http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0005
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0005
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0010
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0010
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0015
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0015
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0020
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0020
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0025
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0025


14150–14160.
[6] P.K. Gupta, A.R. Cooper, Topologically disordered networks of rigid polytopes, J.

Non-Cryst. Solids (1990), https://doi.org/10.1016/0022-3093(90)90768-H.
[7] J.C. Mauro, P.K. Gupta, R.J. Loucks, Composition dependence of glass transition

temperature and fragility. II. a topological model of alkali borate liquids, J. Chem.
Phys. 130 (2009) 234503.

[8] P.K. Gupta, J.C. Mauro, Composition dependence of glass transition temperature
and fragility. I. a topological model incorporating temperature-dependent con-
straints, J. Chem. Phys. 130 (2009) 094503.

[9] M.M. Smedskjaer, et al., Quantitative design of glassy materials using temperature-
dependent constraint theory, Chem. Mater. 22 (2010) 5358–5365.

[10] J.C. Mauro, Topological constraint theory of glass, Am. Ceram. Soc. Bull. 90 (2011)
31–37.

[11] G.G. Naumis, Glass transition phenomenology and flexibility: an approach using the
energy landscape formalism, J. Non-Cryst. Solids 352 (2006) 4865–4870.

[12] G.G. Naumis, Energy landscape and rigidity, Phys. Rev. E Stat. Nonlinear Soft
Matter Phys. 71 (2005) 026114.

[13] J.C. Mauro, et al., Accelerating the Design of Functional Glasses through Modeling,

Chem. Mater. 28 (2016) 4267–4277.
[14] M.M. Smedskjaer, J.C. Mauro, Y. Yue, Prediction of glass hardness using tempera-

ture-dependent constraint theory, Phys. Rev. Lett. 105 (2010) 115503, https://doi.
org/10.1103/PhysRevLett.105.115503.

[15] C.T. Moynihan, et al., Dependence of the glass transition temperature on heating
and cooling rate, J. Phys. Chem. 78 (1974) 2673–2677.

[16] B. Öz, I. Kabalcı, M.L. Öveçoğlu, G. Özen, Thermal properties and crystallization
behavior of some TeO2–K2O glasses, J. Eur. Ceram. Soc. 27 (2007) 1823–1827.

[17] J. Heo, D. Lam, G.H. Sigel, E.A. Mendoza, D.A. Hensley, Spectroscopic analysis of
the structure and properties of alkali tellurite glasses, J. Am. Ceram. Soc. 75 (1992)
277–281.

[18] D. Zhu, et al., Glass transition and fragility of Na2O-TeO2 glasses, J. Non-Cryst.
Solids 319 (2003) 247–256.

[19] A. Gulenko, et al., Atomistic simulations of TeO₂-based glasses: interatomic po-
tentials and molecular dynamics, Phys. Chem. Chem. Phys. 16 (2014)
14150–14160.

[20] J.C. Phillips, M.F. Thorpe, Constraint theory, vector percolation and glass forma-
tion, Solid State Commun. 53 (1985) 699–702.

C.J. Wilkinson et al. Journal of Non-Crystalline Solids 502 (2018) 172–175

175

http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0025
https://doi.org/10.1016/0022-3093(90)90768-H
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0035
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0035
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0035
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0040
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0040
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0040
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0045
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0045
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0050
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0050
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0055
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0055
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0060
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0060
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0065
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0065
https://doi.org/10.1103/PhysRevLett.105.115503
https://doi.org/10.1103/PhysRevLett.105.115503
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0075
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0075
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0080
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0080
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0085
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0085
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0085
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0090
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0090
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0095
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0095
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0095
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0100
http://refhub.elsevier.com/S0022-3093(18)30517-9/rf0100

	Topological constraint model of alkali tellurite glasses
	Introduction
	Model
	Materials and methods
	Results
	Discussion
	Conclusions
	Acknowledgments
	References




