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Abstract

There are two central problems in studying group dynamics. First, because empirical

research on groups relies on manual coding, it is hard to study groups in large numbers

(the scaling problem). Second, conventional methods in behavioural science are based on

the general linear model, which fails to capture the often nonlinear interaction dynamics

occurring in small groups (the dynamics problem). We discuss technological advances in

artificial intelligence that might help overcome these limitations. Machine learning helps to

address the scaling problem, as massive computing power can be harnessed to multiply

manual codings of group interactions. Computer simulations help to address the dynamics

problem by implementing social psychological theory in data-generating algorithms that

allow for sophisticated statements and tests of such theory. As an illustration of these

developments in small group research, we describe an ongoing research project aimed at

computational analysis of virtual software development teams.

Keywords: Artificial Intelligence, Group Dynamics, Machine Learning, Social

Simulation, Virtual Teams
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Better Hooks to Catch Better Fish:

Using Artificial Intelligence to Study Group Dynamics at Massive Scale

The digital transformation of society has opened up novel opportunities for studying

social interaction. People increasingly use digital tools and social-network platforms to

communicate with each other, producing large amounts of digital data that can be

analyzed to answer psychological or sociological questions. Often, such data can be secured

by researchers through data mining; executing a few lines of code on a personal computer

provides an alluring alternative to the cumbersome process of creating

scientifically-relevant data through surveys, observations, or experiments. Yet, as progress

often comes with a price tag, the analysis of such readily available data can be very

challenging for at least two reasons. One is the sheer volume of data, which requires

complex database technologies and increased computational resources in comparison to

classic quantitative methods in social research. Another challenge is that social media data

were not created with the purpose of answering the social scientist’s specific research

questions. The analysis of these data is ultimately a qualitative exercise, requiring skillful

interpretation of naturally-occurring social interactions. However, the amount of data

makes traditional observation, categorization, and interpretation methods impossible to

carry out at the scale required. Fortunately, researchers in artificial intelligence (AI) have

developed powerful algorithms that can be leveraged to help social scientists tackle the

challenges involved in the analysis of “big” behavioural data.

These developments have been described with much excitement under the label

“computational social science” (Lazer et al., 2009). While there is no lack of big claims

linking computational social science to groundbreaking inventions such as the telescope in

physics or the microscope in biology and, consequently, predicting traditional research

methods to become obsolete (e.g., Savage & Burrows, 2007), we believe the hopes and

promises of these methods are currently much bigger than the actual achievements (cf.

Couper, 2013; Schober, Pasek, Guggenheim, Lampe, & Conrad, 2016). One of the main
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problems, in our view, is a substantial disconnect between disciplines such as computer

science or physics, which produce the methodological expertise for large-scale data analysis

and modeling complex social systems, and disciplines such as psychology or sociology,

which provide a rich landscape of theories and empirical evidence that enable thoughtful

use of these methods. Developing a meaningful “computational social psychology”

(Vallacher, Read, & Nowak, 2017) that capitalizes on novel technologies to advance the

existing body of knowledge about social interaction will require diligent work and

cross-disciplinary interaction for years to come.

The purpose of the present paper is to discuss the promises of a cross-disciplinary,

computational approach to the study of small-group dynamics, and describe how such an

approach might proceed using our own research as an example. Importantly, we not only

want to review computational methods for using large amounts of social media data, but

also point out the necessity and feasibility of doing so in a theoretically-informed way. To

use a metaphor, we want to dig into digital group-dynamics data with a sophisticated,

artificially intelligent shovel that “knows” about social psychology. To show how this is

possible, we will briefly review our own work in developing Bayesian Affect Control Theory,

which mathematically integrates widely-accepted psychological and sociological theories of

social interaction and thus enables us to create artificially intelligent agents that are aware

of social scientific knowledge (Hoey, Schröder, & Alhothali, 2016; Schröder, Hoey, &

Rogers, 2016). We also show some preliminary results from an ongoing research project to

illustrate the logic and feasibility of small-group research enhanced by artificial intelligence

(AI).

Before we turn to our own work in this field, however, we provide a brief review of

developments in AI and computational social science that are relevant, in our opinion, for

group-dynamics research in general. We structure this review around two persistent

problems in the field that we believe can be addressed in fundamentally novel ways with AI

methods. The first we call the scaling problem: it has been a cumbersome task in the past
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to gather and interpret data on small-group dynamics; hence, limited resources often

prevent the execution of this kind of research at massive scale. The second is the dynamics

problem: small groups are complex systems whose analysis requires more sophisticated

mathematical tools than the general linear model widely taught in the social and

behavioural sciences; hence, we often lack an understanding of the deep

information-processing mechanisms at the heart of group dynamics. Both challenges can be

met with the novel tools under development in research on artificial intelligence.

The Scaling Problem

In comparison to social psychological studies focusing on individuals, small-groups

research is difficult to scale. Owing to the statistical non-independence of data from

individual members of one group, the permissible level of analysis for many questions is the

group, not the individual, resulting in a need for much larger sample sizes than the typical

study of individuals would require (cf. Kenny, Mannetti, Pierro, Livi, & Kashy, 2002). In

addition, coordination problems related to physical co-presence abound – one cannot

simply study 1,000 groups in an online survey. Finally, if one is interested in the

micro-dynamics of a group, a very fine time-resolution of the ongoing interaction is often

required, further increasing the economic demands of generating high-quality datasets.

While these issues have traditionally been resolved through manual coding of behaviour

within a small number of closely-monitored groups, we believe that existing AI technology

can be harnessed to overcome the scaling problem.

Coding Schemes for Observation of Small Groups

While the entire methodological apparatus of the social and behavioural sciences has

been used to study group dynamics (for recent reviews, see Forsyth, 2018; Kerr & Tindale,

2014), one of the most distinguished approaches (and perhaps the approach most seriously

plagued by the scaling problem) has arguably been the systematic observation of group

interactions. Scholars studying group dynamics via direct observation have developed
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elaborate systems of categories, purporting to represent all the possible types of

communicative acts that one group member can direct to another. These observation

systems come with specific instructions and manuals for how to divide the ongoing flow of

interaction into discrete segments and assign to each of these segments one or several

categories (e.g. Bales, 1950; Schermuly, Schröder, Nachtwei, & Scholl, 2010). While

systematic observation at the level of the act provides an invaluable data source for

studying the inner mechanics of groups, the task is daunting. Estimations of the time

required to apply these coding schemes range from 8 up to 50 hours per coder for each

hour of group interaction, depending on the amount of detail taken into

account (Schermuly & Schölmerich, 2017). As a consequence, researchers only study small

numbers of groups, small samples of the total interactions, or shy away from studying

groups at such a level of detail altogether (cf. Kerr & Tindale, 2014). It would be

impossible with this method to study, say, 1,000 teams of software developers and analyse

each of their communicative acts over the course of an entire year.

As a specific – and possibly the pioneering – example of categorization systems for

group behaviour, consider Interaction Process Analysis (IPA), developed by Bales (1950).

As displayed in Table 1, acts directed from one member of a group to another can belong

to one of twelve different functional categories. These categories cluster together into two

types of task-oriented behaviours (giving vs. soliciting information or guidance) and two

types of expressive behaviours (positive vs. negative) aimed at socio-emotional regulation.

IPA and similar categorical systems have been employed in numerous studies reviewed by

Bales (1999) to pursue questions such as status emergence in groups, over-time phases in

group dynamics, and the effectiveness of collective problem-solving.

Automatic Categorization with Machine Learning

Formally, the task required of human coders using a system like IPA is to map a

complex sensory input (consisting of soundwaves corresponding to their verbal and vocal
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Table 1
Categories of Interaction Process Analysis (IPA) (Bales, 1999, p. 165).

Problem Areas Observation Categories
Expressive,
Social-Emotional,
Positive Reactions

1. Shows solidarity, raises other’s status, gives help, reward
2. Shows tension release, jokes, laughs, shows satisfaction
3. Agrees, shows passive acceptance, understands, concurs, com-
plies

Instrumental-Adaptive,
Task Orientation,
Attempted Answers

4. Gives suggestion, direction, implying autonomy for other
5. Gives opinion, evaluation, analysis, expresses feeling, wish
6. Gives orientation, information, repeats, clarifies, confirms

Instrumental-Adaptive,
Task Orientation,
Questions

7. Asks for orientation, information, repetition, confirmation
8. Asks for opinion, evaluation, analysis, expression of feeling
9. Asks for suggestion, direction, possible ways of action

Expressive,
Social-emotional,
Negative Reactions

10. Disagrees, shows passive rejection, formality, withholds help
11. Shows tension, asks for help, withdraws out of field
12. Shows antagonism, deflates other’s status, defends or asserts
self

acts, and of photons carrying information about facial and gestural expressions) to a

narrow set of well-defined analytical categories. With recent advances in machine learning

(for review, see Jordan & Mitchell, 2015), artificially intelligent agents have been built that

are as good as humans at this kind of task or even outperform them, including in

psychological rating tasks such as inferring sexual orientation from facial features (Wang &

Kosinski, 2018). A key technology that has fuelled recent success in this area of AI is called

“Deep Learning” (Goodfellow, Bengio, & Courville, 2016; LeCun, Bengio, & Hinton, 2015).

As visualized in Figure 1, Deep Learning is implemented in an artificial neural

network with many layers. Abstracting from learning principles of the human brain, such a

network “learns” by changing the connection weights and thus the flow of activation

between individual neurons. What is “learned” is a mapping from a high dimensional input

(such as images) to a low-dimensional output (such as categories). The exact mechanisms,

or algorithms, by which the connection weights change are the subject of much research in

AI, but a common feature of such algorithms is that the networks need to be trained. This

usually happens by showing the network a sample of mappings between physical inputs
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the network, but once that job is completed, the resulting learned deep network could be

used as an automated assistant that rates group interactions as they occur, potentially

providing insights to the group and helping steer it towards a more cooperative dynamic.

Natural Language Processing and Sentiment Analysis

Another area of recently flourishing AI research, partly overlapping with machine

learning, is Natural Language Processing (NLP), the automated analysis of text written by

humans (for review, see Hirschberg & Manning, 2015). This technology is relevant for

small-group research because group collaboration has become increasingly virtual, at least

in parts, through commercial project management software and social media platforms

such as GitHub (github.com), where millions of people collaborate online to develop

software and other artifacts. Virtual collaboration means that group members interact by

sending each other text messages, which are stored on the platform and often accessible to

researchers. Similarly to video or images, written data could be be used to infer functional

group-interaction categories. In this case, the input provided to a deep network consists of

raw text found on social media platforms, while the output is again a set of categorical

labels such as IPA categories.

A relevant application of NLP is sentiment analysis, the mapping of linguistic written

text to the evaluative sentiment expressed in that text (e.g. “good” vs. “bad”, or “like” vs.

“dislike”) (e.g., Medhat, Hassan, & Korashy, 2014; Pang & Lee, 2008). Sentiment analysis

is potentially useful to the study of affective dynamics in virtual group collaboration

beyond a functional classification of acts. Algorithms can be built, for example, to identify

specific words that carry direct evaluative meanings (e.g., hate or love), evoke implicit

affective meanings (Osgood, 1962) (e.g., most people associate positive feelings with a child

and negative feelings with a rapist), or make use of subtle linguistic signs (e.g., exclamation

marks or emoji). Sentiment analysis of social media data is a dynamic and expanding

research field, which has studied everything from product reviews through happiness



AI IN SMALL GROUP RESEARCH 10

research and election forecasting (e.g., Alhothali & Hoey, 2015; L. Mitchell, Frank, Harris,

Dodds, & Danforth, 2013; Pang & Lee, 2008; Pletea, Vasilescu, & Serebrenik, 2014a;

Tumasjan, Sprenger, Sandner, & Welpe, 2010). However, to our knowledge, most if not all

existing social psychological applications of sentiment analysis are largely atheoretical

data-mining exercises. In contrast, we believe that current theory and model-driven

artificial intelligence enable us to go beyond digital fishing expeditions and develop

theory-driven research agendas that increase our understanding of the mechanisms

underlying dynamics in small groups. Rather than using a “more hooks to catch more fish”

approach, we are using sophisticated technology grounded in social-psychological theory to

more precisely locate the prize catches.

Overcoming the Scaling Problem

Current data-driven machine learning methods have not solved the scaling problem

entirely: labeled training data is still required at a massive scale, and this requires

extensive annotation work by humans. The reason for this is that neural network models

involve a massive number of parameters (one “weight” for each “neuron”) that must be

tuned or learned from data. As in any standard regression problem, the number of data

points needed must be on the same order as the number of parameters in order to

guarantee successful learning. Two methods can be used to overcome this challenge. First,

it is possible to use existing social media data as labeled examples so long as one can

identify signals that correspond to the labels which are explicitly included in the data itself.

For example, emoji can be used as direct labels of sentiment (Felbol, Mislove, Søgaard,

Rahwan, & Lehmann, 2017). Unsupervised methods can also be used to characterise

dimensions of meaning by learning statistical patterns in large document corpora (Blei,

2012; Kozlowski, Taddy, & Evans, 2018). Further, data labeling processes can be

“gamified” to make them a part of the task naturally being worked on by human social

media users as they interact online (Law, Gajos, Wiggins, Gray, & Williams, 2017). These
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so-called “crowdsourcing” methods allow labels to be obtained as an organic byproduct of

human work processes, using only simple adjustments to interfaces or mechanisms.

The second method is to use “top-down” approaches to limit the scope of the models

being learned. Rather than searching over the space of all possible settings of deep network

parameters, for example, one can focus on the specific settings that are likely to yield good

results when trained with small amounts of data. This can be accomplished using “transfer

learning”, where a model trained on one task is applied to another, or by using

theory-driven models from relevant disciplines. Our own approach, described below, falls

into the latter category, as we use social-psychological models to guide machine learning

towards models that are both explanatory of data and predictive of relevant interactions.

The Dynamics Problem

Despite a widespread understanding that dynamic interactions between individuals

are the core processes that need to be understood in order to make sense of small-group

phenomena, much of classic group research in sociology and psychology has been

surprisingly unaffected by the computational modeling techniques developed in other

scientific disciplines that deal with dynamical systems. In contrast, artificial intelligence

has a long history of attempting to model the behaviour of groups. For example,

multi-agent systems (MAS) research aims to build teams of robots that can cooperate in

working towards common goals, often by invoking strategic behaviours based on rational

utility. This approach typically results in computationally complex strategic models that

must account for many agents optimizing their utility functions simultaneously. On the

other end of the spectrum, agents that replicate human behaviour are typically based on

relatively simple models. Agent-based modeling (ABM) aims to replicate the emergent

behaviour of groups using simple individual behaviours.
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Multi-Agent Systems

A classic example of multi-agent systems research is the robot soccer “grand

challenge” which has aimed (since 1998) to build a robot soccer team that can compete

against the best human soccer teams (robocup.org). Other important application areas

include teaching robots to conduct search and rescue and compete in multi-player

computer games. As with much artificial intelligence research, most MAS work aims to

build rational agents who are individual utility maximizers. That is, each agent has a set of

preferences encoded in a utility function, which it uses to optimize its behaviour by

computing expectations with respect to likely future scenarios. In order to enable group

behaviours, such rational agents must model other agents’ intelligent behaviour. If a

cooperative solution is sought, agents may be endowed with a utility function that encodes

group preferences. In a competitive situation, agents may need to plan for the worst-case

strategic behaviour of the other agents. Further, a rational agent (call them “A”) must

concede that each other agent (call them “B”) may also be optimizing in a similar way.

Therefore, A must include a rational model for B, as well as a nested model of B’s model of

A. In fact, to be perfectly rational, agent A must continue to nest these models ad

infinitum. Gmytrasiewicz and Doshi (2005) attempt to accomplish this, but their models

are not scalable beyond a few agents in simple scenarios.

Rational choice in group behaviour has also been the subject of much investigation in

economics and game theory. However, rationality leads to inconsistencies when considering

simple games with social interdependence (e.g., social dilemmas). Humans in social

dilemmas1 are very good at finding what appear to be non-rational solutions that are more

globally beneficial. Behavioural economists have tackled this problem by proposing a

variety of mechanisms that explain the experimental evidence of prosocial (cooperative)

behaviour in humans. Early work on motivational choice (Messick & McClintock, 1968)

1A social dilemma is a game with uncompensated interdependencies (externalities) (Kollock, 1998): each
person’s actions in the game affect other persons without their explicit consent (e.g., without compensating
them).
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proposed a probabilistic relationship between game outcomes (payoffs) and cooperative

behaviour. This led to the proposition that humans make choices based on a modified

utility function that includes some reward for fairness (Rabin, 1993) or penalty for

inequity (Fehr & Schmidt, 1999). More recently, cooperative behaviour has been linked to

altruism through factors like kinship, direct reciprocity, or indirect reciprocity via

reputation (M. A. Nowak, 2006). However, it appears that fairness or inequity adjustments

may not be comprehensive enough to account for human behaviour across all games, and a

morality concept that is not based on outcomes provides a more parsimonious

account (Capraro & Rand, 2017). The question of how this morality is defined is left as an

open question, but it may be case that modeling human behaviour as motivated by

emotion may exactly the type of social intuitionist (Haidt, 2001) model of moral and

ethical reasoning that will explain some of these paradoxes.

Researchers have also found motivational and strategic solution concepts for

cooperation based on group membership (Kollock, 1998). For example, Akerlof and

Kranton have proposed an economic model in which an individual’s utility function is

dependent upon their identity (so called identity economics) (Akerlof & Kranton, 2000;

Huettel & Kranton, 2012). Earlier work on social identity theory foreshadowed this

economic model by noting that simply assigning group membership increases individual

cooperation (Hogg, 2006; Tajfel & Turner, 1979). Other authors have confirmed that group

membership influences individual choice (e.g., Charness, Rigotti, & Rustichini, 2007). This

work has been contested with the counter-argument that group membership does not

directly increase cooperation, but rather increases individuals’ belief that others will

cooperate (see Kollock, 1998). The difference is then between group membership as a

motivational solution (being in a group actually changes one’s payoff structure in some

way), or as a strategic solution (being in a group changes ones beliefs about future events).

In our recent work, we have shown that these two solution concepts may not be

significantly different (Asghar & Hoey, 2015; Jung & Hoey, 2016, 2017). By considering
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identity as a shared cultural and affective quantity, beliefs about group membership are

directly connected to beliefs about strategic choices. That is, the very meaning of the

group by definition is an affective one, and this affective sentiment is also explicitly

connected to beliefs about behaviours (e.g., good people should do good things to good

people and bad things to bad people). The forces of the resulting relational commitments

of people to groups bear heavy weight upon the actions of group members (Lawler, Thye,

& Yoon, 2009). We have shown that human behaviour in a social dilemma can be

accounted for more closely using these basic principles (Jung & Hoey, 2016, 2017) and the

mathematical structure of affect control theory (David R Heise, 2007, reviewed below).

In general, attempts to handle social interaction effects in artificial intelligence, game

theory, and economics take the stance that the agent is still acting on rational and decision

theoretic principles, but has a “modified” utility function (Bénabou & Tirole, 2006), with

some “tuning” parameter that trades off social normative effects modeled as intrinsic

rewards with the usual extrinsic rewards (e.g., exchange currencies). The tuning

parameters are fit to data that is not accounted for by traditional economic models.

Nevertheless, the fundamental problem persists in that an agent needs to optimize its

behaviour by considering all possible strategic behaviours of other agents in order to

compute a rational solution. These models lead to shallow (in time) and broad (in number

of options considered) solutions due to limited processing power, and fail to provide

convincing accounts of human social behaviour at a large scale.

Agent-Based Models and Social Simulation

Agent-based models (ABMs) are similar to multi-agent systems in that they consist

of autonomous computational agents that interact with each other and thus generate an

emergent, group-level outcome. However, in social science applications of ABMs, the goal

is not to build a system that solves a problem (e.g., winning a soccer game) but to

understand and explain the complex behaviours of a social system that are often not
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trivially reducible to the properties of individual agents (for reviews, see Edmonds &

Meyer, 2017; Smith & Conrey, 2007; Squazzoni, 2012). A primer is in order about the term

“model”, which is employed in a somewhat different sense than is typical in social

psychology (as in “statistical model”). ABMs are mathematical implementations of

theories in a piece of software about how agents process information internally and how

they spread information to other agents. The software can then be used in a “social

simulation”, which is essentially a virtual experiment aimed at exploring the consequences

of the chosen implementation of theory. Thus, ABMs are data-generating models. Of

course, the data produced in social simulations can be analyzed with the same statistical

methods as empirical data from observations with “real” agents/humans. In fact, social

simulation modelers will often be interested in comparing the data patterns generated with

a model to data patterns observed in the world. The logic behind this approach is: “if I

can build a model that behaves like the real thing, I must have understood the real thing”.

Many ABMs in social simulation have studied processes of attitude formation and

diffusion in groups or societies, emphasizing the importance of social influence between

agents (e.g., Deffuant, Neau, Amblard, & Weisbuch, 2000; Hegselmann & Krause, 2002;

A. Nowak, Szamrej, & Latané, 1990). The agents in these models are usually very simple;

e.g., an ABM might represent an agent’s “opinion” as a number on a single dimension that

changes according to a simple algebraic rule when subject to “influence” from another

agent that is either a “neighbour” on a spatial grid or connected to the agent in a more or

less realistic social network. For example, a homophilous agent may tend to change its

behaviour to be more similar to the agents it interacts with most often (its “friends” and

“co-workers”). The virtue of such models is that they show how even very simple

mechanisms can produce, through the coupled interactions of many agents, complex

group-level phenomena that are poorly understood – such as the contemporary ideological

polarisation of Western democracies, for example (cf. Homer-Dixon et al., 2013). However,

most ABMs lack even the most basic ingredients of intelligence (whether human or
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artificial), namely the ability to reason, plan, and act in the world, let alone cooperate with

other agents.

The psychological simplicity of agents in many social simulations has been the

subject of much debate among modelers, who have always faced a tradeoff between

principles of EROS (enhancing the realism of simulations) vs. KISS (keep it simple,

stupid!) (cf. Jager, 2017). To put it polemically, it is not helpful to replace the dubious

assumption of the full rationality of agents encountered in much AI research with the

equally dubious assumption of full stupidity encountered in many ABMs. As the field

matures and as computational resources become more ubiquitous, many social simulation

researchers have moved to build more psychologically realistic ABMs. One example of such

a model is GroupSimulator, developed by David R. Heise (2013). In this model, exchanges

of behaviour among a group of computational agents are organized according to the

structure of Bales’ Interaction Process Analysis (Table 1). The choice of actions across IPA

categories at each time step is computed according to the dynamic principles of affect

control theory, which we review in more detail below as a possible starting point for a

fruitful synthesis of AI and more traditional group-dynamics research.

Overcoming the Dynamics Problem

The work reviewed in this section lies at two modeling extremes. Multi-agent systems

approaches attempt to build highly complex models of agent behaviour based on strategic

analyses that are theoretically elegant and individually sensible, but fail to capture both

the simplicity and emergent complexity of human group behaviour. Agent-based models,

on the other hand, build simple descriptive models that are able to explain aggregate

statistics of emergent human behaviour data, but often fail to account for individual

interactions in specific settings. Our recent work bridges the gap between these two

extremes, by proposing a dual-systems approach to artificial intelligence that combines

rational reasoning with emotional motivations and attentional mechanisms. Our research
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on affectively-motivated artificial intelligence is fundamentally different than models in

MAS or ABM, in that it assumes the agent’s reward is primarily extrinsic, but that

attentional mechanisms based on affect control are used to focus on action choices that are

aligned with the prevailing social order. The resulting solutions are therefore narrow (more

focussed on socially aligned solutions) and deep, giving longer-term strategies of

cooperation that are more predictive of human behaviour. While dual-systems approaches

have also been investigated in beahvioural economics (Slovic, Finucane, Peters, &

MacGregor, 2007), these typically relegate the affective system to a set of ad hoc heuristics

that are descriptive of experimental human behaviours, but rarely grounded in social

psychological theory. In the next section, we discuss our work in the development of

psychologically grounded models, and show how they can be used to more parsimoniously

account for human behaviour across a wider range of cooperative or competitive situations.

BayesACT: Integrating Social Psychological Theory and AI

Affect Control Theory

Affect control theory (ACT) is a mathematical theory that links social perception

with identity, behaviour, and emotion in social interactions (for a comprehensive review,

see Heise 2007). The theory draws on symbolic interactionism (Blumer, 1969;

Neil J MacKinnon, 1994; Mead, 1934) as well as theories of psychological

consistency (Heider, 1946; Simon & Holyoak, 2002) and cybernetic control (Powers, 1973;

Robinson, 2007), proposing that people rely on linguistic representations with

culturally-shared meanings to efficiently orient themselves within social interactions and

anticipate the behavioural and emotional responses of others (David R Heise, 1979, 2007;

Neil J MacKinnon, 1994; Smith-Lovin & Heise, 1988). Our motivation to maintain the

cultural meanings associated with our own identities and the identities of others directly

governs our interpersonal behaviours and emotions.

ACT uses the cultural meanings associated with labels for identities, behaviour, and
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emotions to model how humans interpret and respond to social events. Based on classic

work by Osgood and colleagues (e.g., Osgood, May, & Miron, 1975, 1957), the theory uses

three universal semantic dimensions to measure cultural meanings for various concepts: 1)

evaluation (good vs. bad), 2) potency (weak vs. strong), and 3) activity (calm vs. excited).

Evaluation is associated with perceptions of warmth, likeability, and approachability.

Potency is associated with perceptions of competence, dominance, and submission.

Activity is associated with perceptions of social agency and action readiness (Rogers,

Schröder, & Scholl, 2013; Scholl, 2013). Shared cultural knowledge, expressed on these

dimensions (referred to collectively as EPA), describes and differentiates social concepts,

with each concept possessing a specific pattern of affective meanings known as fundamental

sentiments. Fundamental sentiments reflect how the members of a given culture view

elements of the social world; they characterize how good, powerful, and active particular

identities, behaviours, or emotions seem in general, outside of the context of social events.

For example, we tend to see heroes as good, powerful, and active (2.6, 2.3, 2.1), mobsters

as bad, powerful, and active (-1.2, 2.0, 1.2), senior citizens as good, powerless, and inactive

(1.2, -0.0, -1.8), and dropouts as bad, powerless, and inactive (-1.7, -1.8, -1.5)2.

Our fundamental sentiments for identities, behaviours, and emotions shift when they

appear together in the context of social events. For example, a hero seems much more

good, powerful, and active when he rescues a child (3.84, 1.96, 1.66) than when he

compromises with a villain (.08, .92, -.13). These event-contextualized EPA meanings,

known as transient impressions, capture the group’s interpretation of actors, behaviours,

and other elements of the situation and help to predict their behavioural and emotional

responses to unfolding events. Affect control theory postulates that we can derive a group

member’s likely behavioural and emotional responses to a given situation from their

transient impressions of that situation because human beings seek mental consistency

between cultural expectations and social action (Heider, 1946; Schröder & Thagard, 2014;

2for historical reasons, EPA measurements are scaled to lie between -4.3 and +4.3
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Simon & Holyoak, 2002). In other words, people act in ways that maintain the affective

meanings associated with the group’s interpretation of the situation, and expect others to

do the same.

When our expectations about the identities and behaviours involved in an event are

violated, we experience deflection, a sort of tension about the situation which signals that

our experiences are out of alignment with cultural expectations. People seek to minimize

deflection by acting in ways that maintain the group’s interpretation of the situation; this

is known as the affect control principle. Our social actions are planned and carried out to

either maintain situational meanings or to bring them back into alignment with cultural

expectations. Affect control theorists calculate deflection as the sum of the squared

Euclidean distances between transient impressions of the identities and behaviours

emerging from the situation and fundamental sentiments for these event elements. Thus,

the lower the deflection, the greater the alignment between cultural expectations and

situational circumstances. Deflection is much lower, for example, when a hero rescues a

child than when they compromise with a villain.

Affect control theorists predict the emotions resulting from an event by solving for

the EPA profile of the emotion that best explains the transient impressions experienced by

the group given their fundamental sentiments. The theory thus asserts that our emotional

response to a situation is determined both by our transient impressions of the event and

the level of deflection the event produces. For example, nice events make us feel good.

Events that are even better than we would expect based on the identities defining the

situation make us feel even better. Researchers have found the ACT’s predictions to

accurately reflect the behaviours and emotions experienced in a variety of real-world social

interactions (Freeland & Hoey, 2018; David R Heise & Lerner, 2006; Robinson &

Smith-Lovin, 1992; Schröder & Thagard, 2013; Smith-Lovin & Douglas, 1992).

Recently, David R. Heise (2013) extended affect control theory to model small-group

interactions by developing a simulation platform called GroupSimulator. Like the classic
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ACT model of dyadic interactions on which it is based, GroupSimulator rests on the affect

control principle, according to which agents strive to maintain the shared meanings of all

identities involved in the interaction. The model capitalizes on the many strengths of ACT,

such as its capacity to efficiently model the creative human interpretive process in a

diversity of social situations, using a parsimonious dimensional structure to represent

cultural meanings and small set of inputs to characterize events. In addition, compatibility

between the theory’s EPA measurement model and Bales (1999) SYMLOG measurement

system (which is the basis of Interaction Process Analysis) allows for the classification of

behaviours into IPA categories and facilitates the use of past groups data to validate

simulation results.

GroupSimulator has been validated with mock jury data collected by Strodtbeck and

Mann (1956). Participants in this study met in a judicial complex under the supervision of

a court bailiff, listened to an audio recording of a trial, then deliberated to reach a

judgement. Their deliberations were recorded and transcribed, and researchers manually

classified the participants’ interpersonal actions into IPA categories. David R. Heise (2013)

was able to successfully reproduce the distribution of behaviours exhibited by the jurors in

this study using GroupSimulator. The participants most frequently enacted task-related

behaviours such as giving orientation and giving opinions, IPA categories 6 and 5

respectively. Second to these, participants most often engaged in socio-emotional

behaviours such as agreeing and accommodating. The remaining five percent of the

observed actions fall into one of the other nine IPA categories.

Yet, the model is not without its shortcomings. Although GroupSimulator is able to

reproduce the behaviours of task groups, many of the parameters associated with social

sense-making and turn-taking are external to the model rather than theoretically

integrated components. Consequently, studies conducted with GroupSimulator are

vulnerable to overfitting (creating an overly complex model to explain idiosyncrasies in the

data). Two theoretical assumptions were also introduced in constructing this model to
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address uncertainty in turn-taking: 1) the actor with the greatest deflection will act next

when self-selection is possible; and 2) actors will choose to interact with the group member

that will most effectively minimize their deflection. In addition, GroupSimulator features

only one utility function, the minimization of deflection. In real-world small-group

interactions, group members must balance identity maintenance with task-related

priorities. The recent development of Bayesian affect control theory (BayesAct), provides a

means to address many of these limitations.

Bayesian Generalization of ACT

The Bayesian generalization of ACT, called BayesAct, overcomes many of the

limitations mentioned in the previous section (Hoey et al., 2016; Schröder et al., 2016).

BayesAct adds three new elements to ACT, which can also be viewed as removing limiting

assumptions of the theory.

1. BayesAct models all sentiments as probability distributions, thereby accounting for

population-level differences in affective meanings for identities and behaviour that are

likely replicated in personal uncertainties in social perception. Sentiment

distributions can also be multi-modal, meaning that different viewpoints and multiple

simultaneous identities and emotions of social agents are accounted for.

2. BayesAct includes a denotative state space that can represent other semantically

meaningful elements of an interaction. Using this, utility can be defined beyond

deflection to include other aspects of individual preference that are likely to affect

agents’ interpretations of and responses to events. BayesAct can therefore account for

the tension involved in a social dilemma where individual and social gains are at odds

with each other.

3. BayesAct allows for the simultaneous optimisation of all elements of an interaction,

including identities, behaviours and turn-taking. The model seamlessly integrates
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notions of re-identification with behaviour alignment, and proposes a parsimonious

account for how agents trade these off: as deflection gets too large to overcome with

behaviour modifications, re-identification occurs and new modes of belief are

introduced in the identity sentiments.

With these additions, BayesAct is constructed as a suitable basis model for task-oriented

group interactions. BayesAct uses a probabilistic and decision theoretic model of stochastic

control that arises in operations research called a partially observable Markov decision

process (POMDP) (Åström, 1965). A POMDP is characterized by the maintenance of a

belief state which is a distribution over the possible ways the world could be, and that

represents everything an agent needs to know about its current state. A POMDP includes

a utility function encoding agent preferences, and an optimization algorithm known as

“dynamic programming” can be used to compute a mapping from belief states to actions of

the agent. This mapping is called a policy and the policy that leads the agent to the

highest utility (according to its preferences) is called the optimal policy.

An interesting property of a POMDP policy is that it may use “information

gathering” actions. In the context of BayesAct, an agent can take actions that temporarily

increase deflection in order to, for example, discover something about the interactant’s

identity, thereby helping the agent to decrease deflection in the long term, or to achieve

some secondary reward. Information gathering is foundational to the reinforcement

learning (RL) problem, in which an agent is confronted with a stream of experiences and

rewards/punishments (positive/negative utilities according to its preferences), and must

learn to optimize its behaviour, but must do so while acting in the world (Sutton & Barto,

2017). Such an agent is confronted with a catch-22: it must explore to find the best actions

to take, but must also exploit its current knowledge of what works well.

In traditional RL, exploitation is seen as a cognitive skill requiring intense

computation, since it involves predicting the future based on learned knowledge, and

analyzing the costs and benefits of different strategies. Exploration, on the other hand, is
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seen as something that could be guided by any number of (possibly affective) elements,

such as being optimistic in the face of uncertainty. In BayesAct, the roles of exploration

and exploitation are reversed. Exploitation consists of captializing on the learned

socio-cultural knowledge of identity and behaviour dynamics to rapidly choose an

affectively aligned action that promotes a social order. Exploration is now in the hands of

the denotative reasoning engine that seeks actions nearby in the affective space (to the

socially aligned action), but that may provide more individual reward. In BayesAct, the

tradeoff between the two has a clear and simple meaning: it is a resource (time or energy)

bound. If sufficient time or energy is available, then denotative “exploration” can occur,

otherwise, connotative “exploitation” will rule the day.

BayesAct has been extended to take into account notions of the self (Hoey &

Schröder, 2015), parallelling recent work on the affect control theory of

self (Neil J. MacKinnon & Heise, 2010). Self-sentiments can be represented as distributions

over the same affective space as identities and behaviour, and reflect persons’

autobiographical memories about themselves as they really are. The affect control theory

of self builds on the key insight of ACT, the affect control principle, showing that people

are motivated to seek out situations that help them maintain their self-sentiments. The

Bayesian affect control theory of self therefore includes a mechanism for selection of

interactants into social situations (i.e., the alignment of self-sentiments with situational

identity enactments), providing a theoretical justification for some of the seemingly ad hoc

mechanisms used in GroupSimulator. A BayesAct version of GroupSimulator is under

construction in order to allow us to carry out simulations. Some early examples can be

found in Hoey and Schröder (2015).

Illustration: Group Dynamics in Virtual Software Development Teams

Understanding the social forces behind self-organized collaboration is increasingly

important in today’s society, where political problem-solving and the creation of economic
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value occur less and less in formal, hierarchical organizations. Instead, we live in what

scholars have described as an emerging distributed economy and digital democracy, where

technological and social innovations are increasingly generated through informal processes

of collaboration in and across startups, civic laboratories, fabrication labs and the like,

often enabled through cheap and ubiquitous information and communication technology

(e.g., see, Blowfield and Johnson (2013), Bogers and West (2012), Helbing and Pournaras

(2015), Townsend (2013)). In the THEMIS.COG project 3, we study the open,

collaborative development of software in online social coding communities like GitHub 4 as

one key example of these economic changes. Exploring collaboration dynamics in

communities like GitHub can further our understanding of the social and psychological

mechanisms that drive the novel kind of human collaboration so central to the 21st

century’s economy and society.

Prior research suggests that people care at least as much about maintaining social

relationships as they do about striving to maximize personal gains in their transactions

with others. This makes intuitive sense, since maximizing one’s gains depends on

sustaining valuable relationships over time. Building on a long tradition of sociological

theory and research, we hypothesize that identity dynamics explain how and why actors

pursue each of these goals through interactions with others; our goal is to use Bayesian

Affect Control Theory to predict and test collaborative dynamics. In this section, we first

review the GitHub collaboration platform, then describe preliminary results from our work

on solving the scaling problem and the dynamics problem. First, to tackle the scaling

problem, we investigate automated methods for the analysis of IPA categories and

sentiment from comment text on GitHub. Second, to tackle the dynamics problem, we use

GroupSimulator to investigate some simple collaborative dynamics in simulation.

3themis-cog.ca
4github.com
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Online Collaborative Networks

GitHub is a social coding platform where software developers from around the world

come together to collaborate on software projects of common interest. The site enables

software developers to work on the same software project (and even the same file in a

project) simultaneously, and to merge their contributions without overwriting one another.

The history of their contributions is saved, and one can always revert to an older version.

While the vast majority of software projects on GitHub are open source, meaning that

project-related code can be viewed, shared, and modified by other users and organizations

on the site, this is not a requirement of the platform. There are indeed many closed source

projects that use GitHub.

The following is a typical scenario in a GitHub project. A team of 10 developers is

working on a software project. Alice and Bob are working on two different problems that

both require the same file in the project to be edited. In a scenario without GitHub, one of

them would have to wait till the other finishes and then make their changes. Using

GitHub, both Alice and Bob can work simultaneously on local copies of the file. When

they make their changes, they “commit” their contributions back to a central repository

that maintains the project’s history on the GitHub server. Let’s say Alice commits her

contribution first. Now when Bob tries tries to merge his contribution, GitHub will warn

Bob that the file he is trying to make changes to has been changed since the last time he

read it. Bob will have to carefully review the changes made so that he does not overwrite

Alice’s contribution.

Since such an infrastructure exists, a third person who is not part of the team can

also make contributions to the project. Suppose John finds out there is a bug in the

software, and he knows how to fix it. He can make a copy of the project repository in

GitHub (called “forking” a project), then make a local copy of the repository on his local

computer (called “cloning” the project). Once he makes changes to the project on his local

computer, John can “push” his changes to the forked repository. Then he can create what
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is called a “pull request” – a contribution that he is submitting to the project for review. A

team member like Alice can look at John’s contribution and either deem it acceptable or

not. She can also initiate a discussion on this contribution and get the thoughts of others.

They can ask John to make some changes and, when they deem it acceptable, they can

“merge” the contribution to their project.

The above example is but one possible process by which software development may

take place on GitHub. Each project team decides what process they are going to use for

managing collaborative contributions. There are dozens of such process models. In order to

collaborate on and contribute to a project, one has to follow the process outlined by the

project team. Discussions and revisions by the group following the GitHub model is a

crucial part of creating a relational meaning for the group of developers, which may later

become a strong motivating force behind the group collaboration.

The Need to Go Further

Emotions and interaction processes play an important role in software collaborations.

For example, emotions have been shown to affect task quality, productivity, creativity,

group rapport and job satisfaction (De Choudhury & Counts, 2013). While positive

emotions like happiness help people to be more creative, which is essential for successful

software design (Fredickson, 2001), negative emotions such as fear can discourage

developers from changing/refactoring their code (Ambler, 2002). While large-scale digital

data traces for discussions of software projects are openly available through sites like

GitHub, sentiment and emotional analysis can be challenging as affective content is

embedded in technical discussions and punctuated with segments of code. Previous

attempts include: Murgia, Tourani, Adams, and Ortu (2014), who perform a feasibility

study of emotions mining using Parrott’s framework on Apache issue reports; Guzman,

Azócar, and Li (2014), who use lexical sentiment analysis to study emotions expressed in

commit comments of open source projects; and Pletea, Vasilescu, and Serebrenik (2014b),
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who use a Natural Language Text Processing tool (Natural Language Toolkit) to conduct a

sentiment analysis of security-related discussions on GitHub. While studies like these yield

interesting results, they are primarily descriptive in nature and therefore do not achieve the

main purpose of performing sentiment analysis – to build models which are able to explain

the behaviour of developers. There are several explanations for this limitation of the prior

literature: either the techniques used are not robust enough, the dataset on which the

analysis is performed is not large enough, or it is simply not possible to infer the

behaviours of the developers from that dataset. Our work takes a hybrid approach, by

leveraging social-psychological theory as a “top-down” model to guide the automated

analysis. By grounding the analyses in affect control theory, we hope to show that a more

generalizable model will be obtained.

Using Machine Learning to Code Group Interactions

In this section, we investigate methods for the automated analysis of both Interaction

Process Analysis (IPA) categories (Bales, 1950) and emotion words. We investigate the 12

IPA categories shown in Table 1, as well as a set of ten emotions (positive: Thanks, Calm,

Cautious, Happy and negative: Sorry, Nervous, Careless, Aggressive, Defensive, Angry).

These emotion words were chosen to span ACT’s three-dimensional emotional space (EPA)

as identified by and related to IPA categories by David R. Heise (2013). In the following,

we discuss our efforts towards classifying interactions on GitHub into these IPA and

emotion categories. The ability to make such classifications will allow us to build group

process simulations similarly to David R. Heise (2013), as reviewed in the following section.

We focus here on GitHub “pull” requests. We randomly selected 834 pull requests

and a total of 3,000 pull request comments from GitHub in February 2017. Out of the 834

pull requests, 41 were open, 343 were closed without being merged, and 450 were merged.

The comments were filtered to remove sections of code, then annotated by four people for

the twelve IPA labels and ten emotions described above. One annotator was a co-author of
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IPA

group

IPA Cate-

gory

Example pull request comment Emotions

Shows solidar-
ity

im sure youll recover somehow Calm

positive
reac-
tions

Shows
tension release

ooops sorry my mistake Sorry, Careless

Agrees allright will do thanks for the feedback Thanks, Calm
Gives
suggestion

needs a metric tonne of docs Cautious

attempted
answers

Gives opinion love it Happy

Gives
orientation

fucking hell im hungry now Aggressive, Angry

Asks
for orientation

what if the file does not exist Nervous, Cautious

questions Asks for opin-
ion

what about filtering by type and tag Cautious

Asks
for suggestion

how could i show the name of the fighter
that wins the turn

Calm, Cautious

Disagrees for me just says linux which is not very
useful at all

Aggressive

negative
reac-
tions

Shows tension um i dont know i dont remember chang-
ing that and probably did it by accident

Nervous, Defensive

Shows
antagonism

Kill this method with an axe and then
burn its body

Defensive,
Aggressive

Table 2
IPA categories used in the study, along with example comments and emotion ratings.

the study, while three were hired on Amazon Mechanical Turk (MTurk). The three MTurk

annotators had experience in programming and had heard of GitHub. Further, they were

screened according to their ratings on an initial set of 50 pull request comments. Detailed

instructions on how to annotate a particular pull request comment were provided, and each

pull request comment could be annotated with a maximum of three IPA categories and a

maximum of three emotions. The participants were also asked to filter out any unnecessary

sections of code in the comment. More details can be found in (Rishi, 2017). Majority

voting was used to threshold all the ratings; a comment was assigned an IPA/emotion label
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if three out of four raters assigned it that label. Table 2 shows a few examples of the

sentences corresponding to the various IPA and emotion categories.

Each word in each pull request was first mapped into a dimensional space defined by

statistical patterns of words (so-called “word vectors”) found in a large online corpus (the

Google corpus). Word vectors were then weighted by their term-frequency, inverse

document frequencies (TF-IDF) for each comment, which promotes words that are more

important for the comment as a whole. Finally, a linear support vector machine (SVM)

was trained on the resulting weighted vectors. An SVM optimizes a linear boundary

between elements of two classes such that the two classes are maximally separated.

Logistic regression, metric learning, and a variety of deep learning methods yielded similar

results, see (Rishi, 2017) for details. We show the F1-scores (evenly weighted precision and

recall) for a one-vs-all classification task of all IPA categories and all emotions in

Table 3(a) and (b), resp. Parameters for the algorithms were set by searching exhaustively

over a reasonably large, evenly spaced set of possibilities. Results are for a 5-fold

cross-validation in which 4/5 of the data is used for training the SVM classifier, and 1/5 is

used for testing, and this process is repeated for all five splits. From the results, it is clear

that the task presents a significant challenge, which we believe can only be overcome by

using more detailed emotional analysis of each comment 5. We also examined aggregated

IPA and emotion categories by grouping IPA categories into positive vs. negative reactions,

and questions vs. attempted answers, and grouping emotions into positive and negative

categories. The results in Table 3(c) show that this task is much simpler, and F1-scores

over 0.85 can be achieved.

The results of our preliminary data analysis show that the task of sentiment and

interaction analysis is a major challenge in cases with more objective conversations than

what is usually attempted. And yet, it is known that subjective emotional and social

interactions play a significant role in the online software development process. We have

5see (Alhothali & Hoey, 2015) for attempts in this direction
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IPA Category F1

Shows solidarity 56.8
Shows tension release 10.0

Agrees 64.0

Gives suggestion 33.4
Gives opinion 51.4

Gives orientation 58.6
Asks for orientation 36.2

Asks for opinion 22.9
Asks for suggestion 10.6

Disagrees 56.6
Shows tension 30.0

Shows antagonism 13.2

Emotion F1

Thanks 54.7
Sorry 58.7
Calm 69.3

Nervous 23.6
Careless 15.7
Cautious 69.8

Aggressive 25.2
Defensive 16.7

Happy 2.5
Angry 0

Aggregated sets F1-score

positive vs. nega-
tive reactions

86.6

questions vs. at-
tempted answers

93.4

positive vs. nega-
tive emotions

98.5

(a) (b) (c)
Table 3
One vs. All classifications: (a) IPA categories; (b) Emotions; (c) aggregated classes

therefore exposed a significant gap for research in this area. Our current work is aimed at

more fine-grained (sentence or word-level) sentiment analysis, and further group process

analysis that may provide top-down information which can improve the overall

effectiveness of the analysis. Longer term goals include the development of artificial agents

to assist in software development by catalyzing more effective group processes online.

Theory Development and Generation of Hypotheses: Simulating Interactions

on GitHub

We now turn to simulations of group interaction with GroupSimulator. We focus on

two example simulations as an illustration of how GroupSimulator works, and the types of

insights it can provide: 1) peer interactions occurring in a group of developers, and 2)

interactions consisting of a leader and two newcomers. This allows us not only to compare

a non-hierarchical group to a hierarchical one, but also to address a common and important

type of interaction in online communities, the integration of newcomers (Marlow, Dabbish,

& Herbsleb, 2013). We use GroupSimulator to examine the behaviours that are produced

in each group, as well as who is enacting these behaviours and who is the target. We also
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examine how experiences of deflection are distributed across members of the group.

In order to develop generative models of self-organized collaborations on GitHub, we

first recruited a sample of 503 GitHub users and asked them to provide evaluation, potency,

and activity ratings of 587 identities, behaviours, and other concepts (see Appendix A). We

included concepts identified in the literature and by subject matter experts as salient

features of GitHub interactions and tasks (Tsay, Dabbish, & Herbsleb, 2014), as well as

those that are found in a large proportion of interactions on the site. Respondents were

recruited through Qualtrics Panels, an organization that identifies and recruits potential

study participants who meet specific eligibility criteria (e.g., demographic characteristics,

expertise in a particular field). We oversampled with respect to both gender (50% female)

and race (30% non-white). Participants ranged from eighteen to seventy-nine years of age,

with most being in their thirties. While the majority of respondents had some college

(17%) or a bachelor’s (38%) or advanced degree (20%), others reported having some high

school education (3%), a high school education (14%), or vocational training (5%).

Our simulation of a non-hierarchical group of developers consists of three good,

powerful, and lively agents. The agents’ identity sentiments are drawn randomly from a

multivariate normal distribution, centered at 1.61, 1.91, and 1.76 in E, P, and A

dimensions, respectively. In contrast, the leader and newcomer simulation consists of one

very good, potent, and active identity (the group’s leader), and two good but less potent

and active identities (the two newcomers). Identity sentiments for the leader are drawn

from a multivariate normal distribution centered at 2.67, 2.37, and 2.27, while the

sentiments of the two newcomers are drawn from multivariate distributions centered at

1.78, .77, and .62. These values come from the survey described above.

Figure 2 displays the behaviour distributions predicted by GroupSimulator for a

group of developers and a leader and two newcomers in the left and right panels,

respectively. The x-axis indicates the IPA categories to which the behaviours were

assigned. IPA categories refer to four clusters of behaviours: positive expressive behaviours
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Figure 2 . IPA Frequency Distributions for a Group of Three Developers and a Leader and
Two Newcomers

(categories 1-3), behaviours associated with providing information or advice (categories

4-6), behaviours associated with soliciting information or advice (categories 7-9), and

negative expressive behaviours (categories 10-12). The y-axis indicates the percentage of

behaviours by IPA category each group member enacted, with the lines indicating the

identities of each group member. The points indicate the frequency of behaviours in each

category, with the absence of points indicating that the agent did not engage in a

behaviour associated with that category. For example, developer 3 never agreed with other

group members over the course of 1,500 turns across 220 simulations.

The difference between the frequency distribution of the group of developers and that

of the leader and newcomers suggest that the simulation is able to capture the difference in

the power dynamics implied by the identity labels. Although group members in both

groups most frequently laughed or joked with others (category 2), the leader had many

more opportunities than either developers or newcomers to engage in these behaviours.

The leader also more frequently provided information than newcomers, and solicited for

information or advice less often than newcomers. As expected, newcomers solicited for

information and advice more often than either leaders or developers. Leaders also never

engaged in negative expressive behaviours, most likely because the leader had numerous
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Figure 4 . Deflection Experienced in a Group of Three Developers Compared to a Leader
and Two Newcomers

members at nearly the same frequency.

The high proportion of behaviours enacted by the leader compared to newcomers and

developers displayed in Figure 2 emerges from the interaction patterns featured in

Figure 3. Leaders address the group, and newcomers tend solicit information and advice.

The leader and newcomers tend to address the group more often than each other, with the

exception of newcomer 1 and the leader. Nevertheless, the dominant interaction is the

leader addressing the group, with far fewer pairwise interactions occurring than is true in

the developers group.

Finally, Figure 4 displays the distribution of deflecting events experienced by each

group member across the 220 runs, with the left and right panels referring to the

developers and to the leader and newcomers respectively. The mean deflection and

confidence interval of the developers is 7.41 (7.39-7.43). In contrast, the mean deflection

and confidence interval of the leader and two newcomers is 6.39 (6.38-6.40) and 5.5

(5.51-5.62) respectively. The difference in the levels of deflection experienced by the

developers compared to the leader and newcomers emerges from an interaction dynamic

referred to by affect control theorists as the object diminishment effect. Being an object of
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an interaction results in a loss of perceived potency, and thus is a source of deflection for

potent identities such as developers (Smith-Lovin & Heise, 1988). Increased deflection

results in group members directing compensatory behaviours meant to restore their

perceived loss of potency to other group members which in turn leads to greater deflection,

resulting in the pattern of peer-to-peer interactions shown in Figure 3 and the antagonism

shown in Figure 2. In contrast, the lower relative potency of newcomers compared to the

leader allows them to endure the leader’s jokes and accept direction, and to direct most

interactions towards the group rather than towards each other. By directing actions

towards the group, the loss of perceived potency is distributed across the group reducing

the tendency towards compensatory behaviours and thus reducing the overall level of

deflection experienced by the group.

Discussion and Outlook: Next Steps in the Case Study

To summarize, affect control theory provides a well-grounded theoretical model that

can make explicit predictions about interactions online in a collaborative group. These

predictions are based on the notion of each group member holding an affective identity that

is learnable, mathematically describable, and complementary to those of other group

members (according to the principles of symbolic interactionist identity theories). These

explicit predictions allow us to go much further and deeper than usual in data mining, as

we can look for highly specific interactions of certain types in order to answer questions

about the very nature of collaboration based on large-scale interaction traces in online

collaboration networks. As an instantiation of ACT’s theoretical model of group processes,

augmented with the ability to model denotative state and multiple, conflicting identities,

applications of BayesAct to interactions within online collaborative networks can provide

direct empirical validation of group process theories, exposing novel areas of research and

new social science questions.
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General Discussion

The use of artificial intelligence (AI) in group process research has, to date, been

somewhat limited. The limitations have primarily stemmed from difficulties researchers

face in analyzing sufficient quantities of data on group interactions (the “scaling” problem),

and from the inherent complexity of modeling human behaviours in groups (the

“dynamics” problem). Artificial intelligence has largely been concerned with building

systems that mine large data repositories in a somewhat “blind” fashion (i.e., failing to

integrate prior theory, empirical evidence, or models of human interactions), and that build

artificial agents based on a principle of rationality in the decision theoretic sense. These

approaches fail to yield sufficiently rich or detailed models of human behaviour, especially

within groups. In contrast, our work in building emotionally aligned AI is built upon a

foundation of social-psychological theorizing about the role of emotion in group behaviour.

Its fundamental tenet is that relational attachments between individuals and between

individuals and groups define social orders that are strong, long lasting, and cooperative.

These attachments form the basis for much human social interaction.

A key area of application for emotionally-aligned AI agents is online collaborative

networks. More than ever, technological and social innovations are enabled by information

and communication technologies and are generated through informal, distributed processes

of collaboration, rather than in formal, hierarchical or market-based organizations.

Although an individualization narrative pervades much theorizing about twenty-first

century human interactions, an alternative socio-relational narrative has recently developed

in which relational and affective person-to-group ties are understood as a keystone of

networked coordination and effectiveness (Lawler et al., 2009). Relational ties grow from

repeated interactions in groups with a shared responsibility in which positive emotions are

created. Attribution by group members of their feelings to the group further strengthens

the relational ties, creating a self-reinforcing mechanism for group coordination. Affect

(emotion) is the essential element that fosters and promotes this strong group equilibrium.
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Shared responsibility and positive affective interactions make the group salient and endow

it with a moral and normative force upon the individual group members. Groups thus

endowed are powerful agents for the mobilization of collaborative human efforts and

collective action.

Our claim is that the foundations of human group behaviour in situations like these

are likely to be based in a socio-affective mechanism that is socially transmitted and that

encodes a social order (Hoey et al., 2016; Schröder et al., 2016). This is a radically new

view for AI, as it starts from the premiss that humans are primarily social animals, rather

than individualistic and rational ones. Strong and persistent ties in human networks are

relational rather than transactional (Lawler et al., 2009). In this view, rationality exists at

the level of groups of agents, not of individuals. Intelligence is defined by a social order

that exists in a group and is internalised by each member through affective dynamical

structures of roles or identities. Members of a group learn these structures as children,

growing to assume a set of identities within the structures as adults. Members seek out

other members of the group that play complementary roles, and enact a joint behaviour for

their chosen relationship. Small-scale breakdowns are handled through a restorative set of

multi-modal communicative cues that are displayed in the voice, face, gestures, and body,

and are commonly referred to as “emotion” signals. Larger-scale breakdowns are handled

by cognitive skill in creating new structures that are reified and internalized by group

members (Berger & Luckmann, 1966). The dynamics of role relationships, coupled with

human ability to cognitively explore in a time- and energy- bounded fashion, using reason

and rationality, allow the entire group to build, maintain, enact, and transform a social

order (Goffman, 1963) that is jointly optimal for survival. Our ability to build

computational models of these processes based on the BayesAct framework allows us to

bring the full weight of technological advances in AI to bear on the problem of how to

model these processes in real networks involving thousands of humans and agents.

The presence of artificial agents in human social networks is growing. From chatbots
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to robots, human experience in the developed world is moving towards a socio-technical

system in which agents can be technological or biological artifacts, with increasingly

blurred distinctions between. Our aim is to study computational models of affect and

emotions from a social perspective in order to ensure that groups develop in this

socio-technical world that are effective, efficient, moral and ethical, and that these groups

positively reinforce basic human needs for strong, positive, and cohesive relationships. Our

belief is that endowing artificial agents with socially aligned reasoning capabilities about

affect is a foundational element in the construction of the socio-technical world that we are

living in. Building on a long tradition of sociological theory and research, we propose that

identity dynamics explain core motivations of actors in their interactions with others, and

offer a mathematically precise model that can be used to predict and test collaborative

dynamics. The general assumption is that humans are motivated in their social interactions

by affective alignment: they strive for their social experiences to be coherent at a deep,

emotional level with their sense of identity and general worldviews as constructed through

culturally shared symbols. This affective alignment creates cohesive bonds between group

members, and is instrumental for collaborations to become relational group commitments.
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