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ABSTRACT

Recent observational campaigns have shown that multiplanet systems seem to be abundant

in our Galaxy. Moreover, it seems that these systems might have distant companions, either

planets, brown-dwarfs, or other stellar objects. These companions might be inclined with

respect to the inner planets, and could potentially excite the eccentricities of the inner planets

through the Eccentric Kozai–Lidov mechanism. These eccentricity excitations could perhaps

cause the inner orbits to cross, disrupting the inner system. We study the stability of two-planet

systems in the presence of a distant, inclined, giant planet. Specifically, we derive a stability

criterion, which depends on the companion’s separation and eccentricity. We show that our

analytic criterion agrees with the results obtained from numerically integrating an ensemble of

systems both secularly and with N-body simulations. Finally, as a potential proof-of-concept,

we provide a set of predictions for the parameter space that allows the existence of planetary

companions for the Kepler-56, Kepler-448, Kepler-88, Kepler-109, and Kepler-36 systems.

Key words: planets and satellites: dynamical evolution and stability – planet–star interac-

tions – stars: kinematics and dynamics – planetary systems.

1 IN T RO D U C T I O N

Recent ground- and space-based observations have shown that mul-

tiplanet systems are abundant around main-sequence stars (e.g.

Howard et al. 2010, 2012; Borucki et al. 2011; Lissauer et al. 2011;

Mayor et al. 2011; Youdin 2011; Batalha et al. 2013; Dressing &

Charbonneau 2013; Petigura, Howard & Marcy 2013; Christiansen

et al. 2015). These studies reveal that the architecture of planetary

systems can drastically vary from our Solar system. For example,

systems consisting of multiple low-mass (sub-Jovian) planets with

relatively compact orbits usually have periods that are shorter than

Mercury’s.

NASA’s Kepler mission found an abundance of compact mul-

tiplanet super-Earths or sub-Neptune systems (e.g. Mullally et al.

2015; Burke et al. 2015; Morton et al. 2016; Hansen 2017). These

systems seemed to have low eccentricities (e.g. Lithwick, Xie & Wu

2012; Van Eylen & Albrecht 2015). In addition, it was suggested

that these many body systems are close to the dynamically stable

limit (e.g. Fang & Margot 2013; Pu & Wu 2015; Volk & Gladman

2015). It was also proposed that single planet systems might be

the product of systems initially consisting of multiple planets that

� E-mail: Pdenham629@gmail.com (PD); snaoz@astro.ucla.edu (SN)

underwent a period of disruption, i.e. collisions, resulting in re-

ducing the number of planets (see Johansen et al. 2012; Becker &

Adams 2016).

Giant planets may play a key role in forming inner planetary sys-

tems. Radial velocity surveys, along with the existence of Jupiter,

have shown giants usually reside at larger distances from their host

star than other planets in the system (≥1 au) (e.g. Knutson et al.

2014; Bryan et al. 2016). For example, there were some sugges-

tions that the near-resonant gravitational interactions between giant

outer planets and smaller inner planets can shape the configuration

of an inner system’s asteroid belt (e.g. Williams & Faulkner 1981;

Minton & Malhotra 2011). Hence, it was suggested that our So-

lar system’s inner planets are of a second generation, which came

after Jupiter migrated inwards to its current orbit (e.g. Batygin

& Laughlin 2015). Furthermore, secular resonance may be the

cause of water being delivered to Earth (Scholl & Froeschle 1986;

Morbidelli 1994), the potential instability of Mercury’s orbit (Neron

de Surgy & Laskar 1997; Fienga et al. 2009; Batygin & Laughlin

2008; Lithwick & Wu 2011), and the obliquity of the exoplanets in

general (e.g. Naoz et al. 2011; Li et al. 2014b).

Recently, several studies showed that the presence of a gi-

ant planet can affect the ability to detect an inner system (e.g.

Becker & Adams 2017; Hansen 2017; Huang, Petrovich & Deibert

2017; Jontof-Hutter et al. 2017; Mustill, Davies & Johansen 2017).
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Hidden planetary friends 4147

Figure 1. Here is a schematic of the systems being analysed. The inclination

of the third planet, i3, is shown and measured relative to the z-axis, along

the spin axis of the host star. M, m1, m2, and m3 are the masses of the host

star, and the first, second, and third planets, respectively.

Specifically, dynamical interactions from a giant planet, having a

semimajor axis much greater than the planets in the inner system,

can excite eccentricities and inclinations of the inner planets. A

possible effect is that the inner system becomes incapable of having

multiple transits or completely unstable. Volk & Gladman (2015)

showed that observed multiplanet systems may actually be the rem-

nants of a compact system that was tighter in the past but lost planets

through dynamical instabilities and collisions (see also Petrovich,

Tremaine & Rafikov 2014). Interestingly, verifying these problems

could reconcile the Kepler dichotomy (e.g. Johansen et al. 2012;

Ballard & Johnson 2016; Hansen 2017) and may also explain some

of the diverse bulk compositions observed in multiple planet sys-

tems (e.g. Inamdar & Schlichting 2016).

In this work, we investigate the stability of compact sub-Jovian

inner planetary systems in the presence of a distant giant planet

(see Fig. 1 for an illustration of the system). Over long time-scales,

a distant giant planet’s gravitational perturbations can excite the

eccentricities of the inner planet’s to high values, destabilizing the

inner system (e.g. Naoz et al. 2011). However, if the frequency of

angular momentum exchange between the inner planets is suffi-

ciently high, then the inner system can stabilize. Below we derive

an analytic stability criterion (Section 2). Then we analyse our nom-

inal system in Section 3 and provide specific predictions for Kepler

systems in Section 3.3. Finally, we offer our conclusion in Section 4.

Near the completion of this work, we became aware of a com-

plementary study of stability in similar systems (Pu & Lai 2018).

Here, we provide a comprehensive stability criterion as a function of

the companion’s parameters. Furthermore, we provide a set of pre-

dictions for possible hidden companion orbits in several observed

systems.

2 A NA LY TIC A L STABILITY CRITERION

Here, we develop a generic treatment of the stability of two-body

systems in the presence of an inclined outer planet. Consider an

inner system consisting of two planets (m1 and m2) orbiting around

a host star M with a relatively tight configuration (with semimajor

axis a1 and a2, respectively). We introduce an inclined and eccentric

companion that is much farther from the host star than the planets

in the inner system (m3 and a3, see Fig. 1 for an illustration of the

system). We initialize this system to have orbits far from mean-

motion resonance, and have a1, a2 � a3. The three planets’ orbits

have corresponding eccentricities e1, e2, and e3. We set an arbitrary

z-axis to be perpendicular to the initial orbital plane of the inner

two planets, thus, the inclinations of m1, m2, and m3 are defined as

i1, i2 and i3. Accordingly, for planets one, two, and three we denote

the longitude of ascending nodes and the argument of periapse �1,

�2, �3, ω1, ω2, and ω3.

The outer orbit can excite the eccentricities, via the EKL (Kozai

1962, Lidov 1962, see Naoz 2016 for review) on each planet in

the inner system. The EKL resonance causes angular momentum

exchange between the outer and inner planets, which in turn causes

precession of the periapse of each of the inner orbits. However, angu-

lar momentum exchange between the inner two planets also induces

precession of the periapse (the so-called Laplace–Lagrange inter-

actions, e.g. Murray & Dermott 2000). If the inner orbits’ angular

momentum exchange takes place at a faster rate than that induced

by the outer companion, then the system will not be disrupted by

perturbations from the tertiary planet. The quadrupole approxima-

tion to the time-scale of the EKL between the third planet m3 and

the second one, m2 is given by

τk(2,3) ∼
16

15

a3
3

a
3/2
2

√
M + m2 + m1

m3

√
G

(

1 − e2
3

)3/2
(1)

(e.g. Antognini 2015) where G is the gravitational constant. This

is roughly the time-scale at which the second planet’s argument

of periapse precesses. Note that here we considered the time-scale

of EKL excitations from the tertiary on m2 since this time-scale is

shorter than the time-scale of EKL excitations between m3 and m1.

Planet m2’s argument of periapse also precesses due to gravitational

perturbations from the innermost planet, m1. The associated time-

scale is (e.g. Murray & Dermott 2000)

τLL ∼
[

A22 + A21

(

e1

e2

)

cos(�2 − �1)

− B22 − B21

(

i1

i2

)

cos(�2 − �1)

]−1

, (2)

where � j = ωj + �j for j = 1, 2. The Ai, j and Bi, j are Laplace

coefficients, which are determined by

A22 = n2

1

4π

m1

M + m2

(

a1

a2

)2

fψ , (3)

A21 = −n2

1

4π

m1

M + m2

(

a1

a2

)

f2ψ , (4)

B22 = −n2

1

4π

m1

M + m2

(

a1

a2

)2

fψ , (5)

B21 = n2

1

4π

m1

M + m2

(

a1

a2

)

fψ , (6)

and

fψ =
∫ 2π

0

cos ψ
(

1 − 2
(

a1

a2

)

cos ψ +
(

a1

a2

)2
)

3
2

dψ, (7)

f2ψ =
∫ 2π

0

cos 2ψ
(

1 − 2
(

a1

a2

)

cos ψ +
(

a1

a2

)2
)

3
2

dψ. (8)

The system will remain stable if angular momentum exchange

between the two inner planets takes place faster than the precession

induced by m3. Accordingly, there exists two regions of parameter
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4148 P. Denham et al.

space: one contains systems where perturbations on m2 are domi-

nantly from m1 and the other contains systems where m2 is dom-

inated by m3. The former is called the Laplace–Lagrange region,

and the latter is called the EKL region. The transition between the

Laplace–Lagrange region and EKL region is determined by com-

paring the two time-scales relating the frequencies of precession

from each mechanism, i.e.

τk ∼ τLL. (9)

We have related the time-scale for Kozai oscillations induced by

m3 on m2 to the Laplace–Lagrange time-scale between m1 and m2.

Equating these time-scales yields a simple expression for the critical

eccentricity of the third planet, e3,c, as a function of a2, i.e.

e3,c ∼

⎛

⎝1 −

[

15

16

m3

√
G

√
M + m1 + m2

a
3/2
2

a3
3

1

fLL

]
2
3

⎞

⎠

1
2

, (10)

where

fLL = A22 + A21

e1,ic

e2,ic

cos(�1−�2)−B21

i1,ic

i2,ic

cos(�1−�2)−B22.

(11)

ej,ic and ij,ic are the initial eccentricity and inclination for the two

inner planets, i.e. j = 1, 2. As we show below, during the evolution

of a stable system �1 ∼ �2, � 2 ∼ � 1, e1 ∼ e2, and i1 ∼ i2. Thus,

we define a minimum stable configuration of fLL,min

fLL,min = A22 +
e1,ic

e2,ic

A21 −
i1,ic

i2,ic

B21 − B22. (12)

Numerically we find that during the evolution of an unstable system,

e1/e2, i1/i2, �1/�2, and � 2/� 1 largely deviate from unity, where

cos (� 1 − � 2) can be negative. Thus, we also define the maximum

stability as

fLL,max = A22 −
e1,ic

e2,ic

A21 −
i1,ic

i2,ic

B21 − B22, (13)

where the difference between equations (12) and (13) is the sign of

A21. The stability of systems transitions from the minimum to the

maximum fLL, as a function of e3. In other words we find a band of

parameter space, between e3,c(fLL,min) and e3,c(fLL,max), where sys-

tems are nearly unstable or completely unstable. If the third planet’s

eccentricity is larger than the right-hand side of equation (10), then

the inner system is more likely to become unstable. In the next

section, we test this stability criterion and show that it agrees with

secular numerical integration.

We note that this stability criterion is based on the Laplace–

Lagrange approximation, which assumes small eccentricities and

inclinations for orbits in the inner system. Thus, it might break down

for initial large eccentricities or mutual inclinations of the inner two

planets. Furthermore, this stability criterion assumes that the inner

system is compact and that the eccentricity excitations from the

second planet on the first are suppressed. On the other hand, in the

presence of these conditions the stability criterion depends only on

the shortest EKL time-scale induced by the far away companion

and the corresponding Laplace–Lagrange time-scale. Thus, it is

straightforward to generalize it to more than two inner planets.

3 LONG-TERM STABI LI TY OF MULTI PLANET

SYSTEM

3.1 The Gaussian averaging method

To test our analytic stability criterion we utilize Gauss’s method.

This prescription allows us to integrate the system over a long

time-scale (set to be 10 Gyr, see below), in a time-efficient way.

In this mathematical framework, the non-resonant planets’ orbits

are phase-averaged and are treated as massive, pliable wires inter-

acting with each other. The line-density of each wire is inversely

proportional to the orbital velocity of each planet. The secular, orbit-

averaged method requires that the semimajor axes of the wires are

constants of motion. We calculate the forces that different wires

exert on each other over time.

This method was recently extended to include softened gravita-

tional interactions by introducing a small parameter in the inter-

action potentials to avoid possible divergences while integrating

(Touma, Tremaine & Kazandjian 2009). Furthermore, the method

has been proven to be very powerful in addressing different prob-

lems in astrophysics, ranging from understanding the dynamics in

galactic nuclei to describing how debris discs evolve (e.g. Touma

et al. 2009; Nesvold et al. 2016; Sridhar & Touma 2016; Saillenfest

et al. 2017).

3.2 Stability test on a nominal system

We tested our stability criterion by using the aforementioned Gaus-

sian averaging method to numerically integrate an ensemble of

systems with identical initial conditions except for the semima-

jor axis and eccentricity of the second and third planets, respec-

tively. In this ensemble, we initialize all systems with a primary star

M = 1 M� orbited by three planets where the two inner planets,

m1, and m2, each have masses of 1 M⊕. The innermost planet, m1,

was placed in an orbit with a semimajor axis of a1 = 1 au, and

both inner planets were set initially on nearly circular orbits (e1 =
e2 = 0.001) in the same orbital plane. We set the third planet with

a mass of m3 = 1 MJ, at a3 = 100 au. Throughout the ensemble,

a2 ranges from 1.4 to 5.9 au, in steps of 0.5 au, and e3 ranges from

0 to 0.95 in steps of 0.05. In all such systems, the third planet’s

inclination was set to be 45◦ relative to the inner system. We in-

tegrated each system to 10 Gyr, or until orbits crossed. From the

results we made a grid labelling the stable/unstable systems of the

ensemble. The grid revealed that stable orbits are bounded by the

stability criterion. The same process was done on an ensemble which

had the third planet’s inclination set to 65◦ instead; the result was

the same.

We also check for consistency of our results with direct N-body

calculation using the REBOUND software (e.g. Rein & Liu 2012).

As mentioned, all of our secular runs were integrated up to 10 Gyr

or until we achieved orbit crossing, however, this is a numerically

expansive practice. Thus, using REBOUND we have numerically in-

tegrated the slice of the parameter space with a2 fixed to 4.9 au. The

integration carried on to either orbit crossing or up to 80 Myr. We

note that log(1 − δ) values from N-body calculations are in agree-

ment with those found from the orbit averaging code (not shown in

Fig. 2 to avoid clutter).

In Fig. 2, we show the grid of systems we integrated in the

parameter space relating a2 and e3. The colour code is determined

by a proxy that characterizes the stability of the system. The proxy

is defined as log (1 − δ), where δ is a parameter which describes

MNRAS 482, 4146–4154 (2019)
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Hidden planetary friends 4149

Figure 2. Here is the parameter space relating the third planet’s eccentricity

with the second planet’s separation. The distant companion’s inclination

was set to 45◦. The colour code shows log (1 − δ), equation (14). This

parameter serves as a proxy for how close the two inner orbits came to

each other during the evolution. A darker colour characterizes far away

separation while a lighter colour characterizes orbit crossing. The stability

criterion, equation (10), is plotted over the grid to show that stable orbits are

bounded. The bottom green line represents e3,c(fLL,min) and the top green

line represents e3,c(fLL,max), and thus the shaded band is the transition zone

(see the text). Systems above the zone undergo an instability episode while

systems below the zone are stable.

how close the two inner orbits came during the evolution:

δ = min

[

a2(1 − e2) − a1(1 + e1)

a2 − a1

]

. (14)

In Fig. 2, a lighter colour means a smaller value of δ, which when

zero yields orbit crossing, while a darker colour represents a stable

configuration. The criterion for stability is plotted over the grid to

show that it is in agreement with the probability for orbits to cross.

Above the stability curve, systems are more likely to destabilize

during evolution.

The proxy also reveals a transitional zone of the parameter space.

This zone agrees with our analytically determined zone [i.e. between

e3,c(fLL,min) and e3,c(fLL,max)], where, given the initial conditions in

the numerical runs, we set e1,ic/e2,ic ∼ 1 and i1,ic/i2,ic ∼ 1. Closer to

the stability curve, the orbits might get their eccentricities excited

and periodically move closer to one another, but their orbits may

never cross. Moreover, far into the top right of Fig. 2, the instability

will take place sooner in the evolution. In this region, the two

inner orbits will undergo Eccentric Kozai–Lidov (EKL) evolution

independently of each other.

The third planet can excite the inner planet’s eccentricities on the

EKL time-scale. However, eccentricity excitations of each planet

will not necessarily cause orbit crossing, as depicted in Fig. 2. In

the parameter space for our ensemble, we have identified a region

containing stable systems that seems to smoothly transition into

the instability region. Hence, we identify three regimes: the sta-

ble regime, the intermediate regime, and the unstable regime. In

the stable regime, the Laplace–Lagrange rapid angular momentum

exchange between the two inner planets dominates over the gravi-

tational perturbations of the outer orbit. The left column of Fig. 3

depicts this evolution; the system in this column resides in the bot-

tom left of the parameter space in Fig. 2. The system remains stable

for 10 Gyr of evolution and the orbits never come close to one an-

other. The two inner planets’ inclinations oscillate together around

the initial z-axis, due to the precession of the nodes (see below).

In the intermediate region, systems might appear to be stable for a

long time but the outer orbit perturbations become too dominant,

causing instability of the inner system. We show the dynamics of

this type of evolution in the middle panel of Fig. 3. This system re-

sides very close to the stability criterion plotted in Fig. 2, inside the

transition zone between e3,c(fLL,min) and e3,c(fLL,max). In the unstable

regime, gravitational perturbations from the third planet cause high

amplitude eccentricity excitation in the inner planets, causing orbits

to cross. We show this behaviour in the right column 3. This system

lies in the top right of the parameter space depicted in Fig. 2.

In the system’s reference frame (see Fig. 1), the inner planet’s in-

clinations are the angles between their respective angular momenta

and the normal to the initial orbits. Thus, the inclination modula-

tion shown in the stable system (the left column in Fig. 3, is due

to precession of the nodes, which results in maximum inclination,

which is ∼2 × i3, since we have started with i3,0 = 45◦ (e.g. Innanen

et al. 1997). In contrast, the unstable regime results in misalignment

between the inner two planets.

3.3 Applications: predictions for observed systems

The stability criterion derived here can be used to predict the param-

eter space in which a hidden companion can exist within a system

without destabilizing it. As a proof-of-concept, we discuss the sta-

bility of a few non-resonant observed exoplanetary systems in the

presence of inclined planets. Specifically, for some observed sys-

tems, we provide a set of predictions that characterize the ranges of

parameter space available for hidden companions to exist in without

disrupting inner orbits. We focus on the following systems: Kepler-

419, Kepler-56, Kepler-448, and Kepler-36. These represent the few

systems that characterize the extreme limits of two-planet systems,

from tightly packed super-Earths such as Kepler-36 to hierarchical

eccentric warm Jupiter systems such as Kepler-448. In Fig. 4, we

show the relevant parameter space in which the systems can have a

hidden inclined companion and remain stable. We chose the more

conservative stability criterion for this exercise, i.e. e3,c(fLL,min).

Each line in the four panels of Fig. 4 shows the stability criterion

for different companion masses. In particular, we consider compan-

ion masses of (from top to bottom), 0.1, 0.5, 1, 5, and 20 MJ. For

each companion mass, allowed system configurations lie below the

curve, and unstable configurations are above the curve. We caution

that very close to the stability curve (even below the curve) systems

may still undergo eccentricity excitations that may affect the dy-

namics. The parameters of the inner, observed planets were taken

from observations, see Table 1. Below we discuss the specifics of

the four example systems.

(i) Kepler-36 is an, approximately, one solar mass star orbited by

two few-Earth mass planets on 13.8 and 16.2 d orbits (Carter et al.

2012). This compact configuration is expected to be stable in the

presence of perturbations as shown in Fig. 4, in the top left panel.

For example, as can be seen in the figure, an eccentric inclined

20 MJ brown dwarf can reside slightly beyond 2 au.

(ii) Kepler-56 is an evolved star (M = 1.37 M�) at the base of

the red giant branch and is orbited by two sub-Jovian planets with

low mutual inclinations (e.g. Huber et al. 2013). Most notably, as-

teroseismology analysis placed a lower limit on the two planets’

obliquities of 37◦. Li et al. (2014b) showed that a large obliquity

MNRAS 482, 4146–4154 (2019)
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4150 P. Denham et al.

Figure 3. Here are the three prominent types of dynamics from each region. From left to right, stable, intermediate, and unstable, for our nominal system.

Shown in the top panels are the apocentres and the pericentres of the innermost planets (m1 in blue and m2 in red). The middle panels show the inclinations

of the inner planets (i1 in blue and i2 in red). Note that this inclination is not with respect to the total angular momentum, but rather with respect to the initial

angular momentum of the two inner planets. The bottom panels show, coloured in black, the difference between the longitude of ascending nodes of the two

inner planets as cos (�1 − �2), and, in yellow, the difference between the longitude of the periapsis as cos (� 1 − � 2). These two parameters are present in

equation (11). Recall that the nominal system has the following parameters: M = 1 M�, m1 = m2 = 1 M⊕, m3 = 1 MJ, a1 = 1 au, a3 = 100 au, and we set

initially ω1 = ω2 = ω3 = �1 = �2 = �3 = 0, e1 = e2 = 0.001, i1 = i2 = 0.001 and i3 = 45◦. The only difference between each integrated system is the

second planet’s separation and the third planet’s eccentricity. For the stable system we chose a2 = 3 au and e3 = 0.8. For the intermediate system we had a2 =
3 au and e3 = 0.9 (which placed it on the stability curve), and finally for the unstable system we had a2 = 5.9 au and e3 = 0.551.

for this system is consistent with a dynamical origin. They sug-

gested that a third outer companion is expected to reside far away

and used the inner two planets’ obliquities to constrain their inclina-

tions. Follow-up radial velocity measurements estimated that a third

companion indeed exists with a period of 1000 d and a minimum

mass of 5.6 MJ (e.g. Otor et al. 2016). Here, we show that indeed

a ∼5 MJ planet can exist at ∼3 au, with a range of possible eccen-

tricities up to 0.9. A more massive planet can still exist at ∼3 au

with a possible range of eccentricities up to slightly below e3 ∼ 0.8.

This example of a tightly packed system yields the expected result,

i.e. a large part of the parameter space is allowed to have an in-

clined companion, as depicted in Fig. 4 in the top right panel. In the

presence of an inclined companion, the inner two planets will most

likely have non-negligible obliquities, as was postulated by Li et al.

(2014b).

(iii) Kepler-88 is a star of, approximately, one solar mass. It has

been observed to be orbited by two planets. The first planet is Earth-

like (m1 ∼ 0.85 M⊕) and the second planet is comparable to Jupiter

(m2 ∼ 0.67 MJ). Together, the two planets form a compact inner

system with negligible eccentricities (e.g. Nesvorný et al. 2013;

Barros et al. 2014; Delisle et al. 2017). In Fig. 4, left middle panel,

we show that an inclined planet can exist in large parts of the

parameter space. For example, a massive companion (∼20 MJ) can

exist beyond 2 au with an eccentric orbit (∼0.7).

(iv) Kepler-109 is a star that also has, approximately, one so-

lar mass (1.07 M�) and two planets orbiting it in a compact

MNRAS 482, 4146–4154 (2019)
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Hidden planetary friends 4151

Figure 4. The parameter space of hidden friends for a few observed systems. Here, we consider the companion’s eccentricity e3 and separation a3 for five

Kepler systems. For each of the systems, we plot the stability criterion e3,c(fLL,min), for the different companion masses. Note that this time we have varied a3

rather than a2 to predict parameter spaces in which known inner systems can exist. Changing the dependent parameters for these cases yields a different shape

of the stability curve when compared to Fig. 2. In particular, we consider companion mass of (from top to bottom), 0.1, 0.5,1, 5, and 20 MJ, with line styles

indicated in the legend of the top left plot. The stable region exists below each curve and the instability region resides above each curve. (For Kepler-448, we

shaded both the stable and unstable regions below the curve corresponding to a 20 MJ companion and above the curve corresponding to a 0.1 MJ companion,

respectively.) For each system, we used the observed parameters in equation (12) to generate the contours. The observed parameters we used for the inner

planets are specified in Table 1. We note that a third companion was reported to Kepler-56, with a minimum mass of 5.6 MJ, which yields a 3.1 au separation

(Otor et al. 2016). This constrains the eccentricity of the companion to lie on a vertical line of a constant semimajor axis in the parameter space. As such, we

overplotted Kepler-56d on the top right panel (dashed line).
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Table 1. Observable parameters of the example systems. The observations

are adopted from Kepler-36: Carter et al. (2012). Kepler-56: Huber et al.

(2013) and Otor et al. (2016). Kepler-88: Nesvorný et al. (2013), Barros

et al. (2014), and Delisle et al. (2017). Kepler-109: Marcy et al. (2014),

Van Eylen & Albrecht (2015), and Silva Aguirre et al. (2015). Kepler-419:

Dawson et al. (2012, 2014), and Huang, Wu & Triaud (2016). Kepler-448:

Bourrier et al. (2015), Johnson et al. (2017), and Masuda (2017).

Name SMA (au) Mass (MJ) Eccentricity

Kepler-36b 0.12 0.015 <0.04

Kepler-36c 0.13 0.027 <0.04

Kepler-56b 0.103 0.07 –

Kepler-56c 0.17 0.57 –

Kepler-88b 0.097 0.027 0.06

Kepler-88c 0.15 0.62 0.056

Kepler-109b 0.07 0.023 0.21

Kepler-109c 0.15 0.07 0.03

Kepler-419b 0.37 2.5 0.83

Kepler-419c 1.68 7.3 0.18

Kepler-448b 0.15 10 0.34

Kepler-448c 4.2 22 0.65

configuration, having a small mutual inclination (Marcy et al. 2014;

Silva Aguirre et al. 2015; Van Eylen & Albrecht 2015). However,

the eccentricity of the innermost planet is not as negligible as the

secondary’s (e1 ∼ 0.21 > e2 ∼ 0.03), but does not yield a violation

of the approximation. We show the stability bounds within the (e3,

a3) parameter space for this system in the middle right panel of

Fig. 4. There it can be seen that this system can exist in the presence

of an eccentric companion with 20 MJ, so long as the companion is

beyond 3 au.

(v) Kepler-419 is a 1.39 M� mass star which is orbited by two

Jupiter-sized planets with non-negligible eccentricities and low mu-

tual inclinations (e.g. Dawson et al. 2012, 2014; Huang et al. 2016).

The large, observed eccentricities of the planets violate the as-

sumption that the eccentricities are sufficiently small. Recall that

this assumption was used to derive the stability criterion in equa-

tion (10). Furthermore, the quadrupole time-scale for precession

induced by Kepler-419c on Kepler-419b is comparable to that of

Laplace–Lagrange’s. Thus, a distant massive companion is expected

to excite the two planets’ eccentricities and inclinations. When the

mutual inclination between the two inner planets is large, the sec-

ond planet can further excite the innermost planet’s eccentricity,

thus rendering the system unstable. We have verified, numerically,

the instability of the system is consistent with the breakdown of our

criterion. We did this for several systems with far away compan-

ions with masses varying from 1, 5, and 20 MJ. Thus, we suggest

that a massive inclined companion can probably be ruled out for

this system. Since our stability criterion is violated here, it is not

necessary to show its parameter space in a plot. On the other hand,

a smaller companion is not expected to cause secular excitations in

the eccentricities of more massive planets, since the inner system

will excite its eccentricity and inclination (e.g. inverse EKL Naoz

et al. 2017; Zanardi et al. 2017; Vinson & Chiang 2018). Therefore,

the existence of a smaller inclined companion cannot be ruled out.

(vi) Kepler-448 is a 1.45 M� star orbited by a 10 MJ warm

Jupiter (Bourrier et al. 2015; Johnson et al. 2017). Recently, there

was a reported discovery of a massive companion (∼22 MJ) with a

rather hierarchical configuration (Masuda 2017). The hierarchical

nature of the inner system yields a more limited range of separations

to hide a companion, see Fig. 4, in the bottom panel. On the other

hand, the large masses of Kepler-448b and Kepler-448c imply that

a small planetary inclined companion can still exist with negligible

implications on the inner system. In fact, one would expect that the

inner system will largely affect a less massive companion (e.g. Naoz

et al. 2017; Zanardi et al. 2017, 2018; Vinson & Chiang 2018).

The relatively large observed eccentricity value of Kepler-448c can

raise the question of the validity of the Laplace–Lagrange approx-

imation of small eccentricities. After using the Gaussian averaging

method for several extreme systems with fixed m3 = 20 MJ, but

different e3, we found consistency with the stability curve. This

was true even for the large eccentricity value of Kepler-448c. More-

over, for stable systems, the Laplace–Lagrange behaviour of small

eccentricity oscillations still captures the dynamics of the system.

4 D ISCUSSION

We have analysed the stability of four-body hierarchical systems,

where the forth companion is set far away (a3 
 a2, a1). Specifically,

we focus on three planet systems, for which the two inner planets

reside in a relatively close configuration and have an inclined, far

away, companion. Observations have shown that multiple tightly

packed planetary configurations are abundant in our Galaxy. These

systems may host a far away companion, which might be inclined

or even eccentric. An inclined perturber can excite the eccentricity

of planets in the inner system via the EKL mechanism, which can

ultimately destabilize the system.

We have analytically determined a stability criterion for two-

planet systems in the presence of an inclined companion (equa-

tion 10). This criterion depends on the initial conditions of the inner

planetary system and on the outer orbit’s mass, eccentricity, and

separation. It is thus straightforward to generalize it to n > 2 inner

planetary systems. We then numerically integrated a set of similar

systems using the Gauss’s averaging method, varying only the outer

companion’s eccentricity e3 and the second planet’s separation a2.

We have characterized each numerical integrated systems’ stability

and showed that stable systems are consistent with our analytical

criterion.

A system will remain stable if the time-scale for angular mo-

mentum exchange between the two inner orbits takes place faster

than eccentricity excitations that might be induced by a far away,

inclined, companion. When the system is stable, the two inner or-

bits have minimal eccentricity modulations and their inclinations,

with respect to their initial normal orbit, remained aligned to one

another. An example of such a system is depicted in the left-hand

panels of Fig. 3.

Assuming the normals of the inner orbits are initially parallel

to the stellar axis allows precession of the nodes to be interpreted

as obliquity variations. Thus, a non-negligible obliquity for two

(or more) tightly packed inner orbits may be a signature of an

inclined, distant, companion (e.g. Li et al. 2014b). The obliquity, in

this case, oscillates during the system’s dynamical evolution, which

can have large implications on the habitability of the planets (e.g.

Shan & Li 2017).

On the other hand, a system will destabilize if the precession

induced by the outer companion is faster than the precessions caused

by interactions between the inner bodies. In this case, the two inner

planets will exhibit large eccentricity excitations accompanied with

large inclination oscillations (see e.g. right-hand panels in Fig. 3).

In this type of system, each planet undergoes nearly independent

EKL oscillations, and thus extremely large eccentricity values can

be expected, as well as chaos (e.g. Naoz et al. 2013a; Teyssandier

et al. 2013; Li et al. 2014a).
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We also showed (e.g. Fig. 2, green band) that the stability criterion

includes a transition zone, where systems are likely to develop large

eccentricity, leading to close orbits. Systems close to the transition

zone, or in the transition zone, can be stable for long period of

time, and develop instability very late in the evolution. We show an

example for such a system in the middle column of Fig. 2. In this

example, the system stayed stable for slightly more than a Gyr and

developed an instability that leads to orbit crossing after ∼1.5 Gyr.

We note that our analysis did not include general relativistic or

tidal effects between the planets and the star because, typically,

including them will further stabilize systems. General relativistic

precession tends to suppress eccentricity excitations if the preces-

sion takes place on a shorter time-scale than the induced gravita-

tional perturbations from a companion (e.g. Naoz et al. 2013b).

Also, tidal precession tends to suppress eccentricity excitations

(Fabrycky & Tremaine 2007; Liu, Muñoz & Lai 2015). These sup-

pression effects become more prominent the closer the inner orbits

are to the host star. Thus, if eccentricity excitations from the com-

panion take place on a longer time-scale than general relativity or

tidal precession the system will remain stable.

Finally, as a proof-of-concept, we used our stability criterion to

predict the parameter space in which a hidden inclined companion

can reside for four Kepler systems (see Fig. 4). The systems we

consider were Kepler-419, Kepler-56, Kepler-448, and Kepler-36.

These systems represent a range of configurations, from tightly

packed systems with small or super-Earth mass planets to potentially

hierarchical systems with Jupiter mass planets. A notable example is

Kepler-56, where the recently detected third planet was reported to

have a minimum mass of 5.6 MJ, and a ∼1000 d orbit. Such a system

indeed resides in the predicted stable regime. Furthermore, given a

mass for the Kepler-56d, we can limit its possible eccentricity.
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