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Abstract

While much research has been done on the Ehrhart functions of integral and rational
polytopes, little is known in the irrational case. In our main theorem, we determine
exactly when the Ehrhart function of a right triangle with legs on the axes and slant
edge with irrational slope is a polynomial. We also investigate several other situations
where the period of the Ehrhart function of a polytope is less than the denominator of
that polytope. For example, we give examples of irrational polytopes with polynomial
Ehrhart function in any dimension, and we find triangles with periods dividing any
even-index k-Fibonacci number, but with larger denominators.
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1 Introduction

1.1 The Main Theorem

Let P C R? be a convex polytope. The counting function
Ip(t) == #(tP NZY)

for a positive integer ¢ is called the Ehrhart function of P.

The Ehrhart function has been extensively studied in the case where P is integral,
meaning its vertices are given by integers, or P is rational, meaning its vertices are
given by rational numbers. In particular, recall that a quasipolynomial is a function
p : N — R satisfying the equation

p) =cy (1" + -+ co(t),

where the ¢;(¢) are periodic functions of ¢, of integral period. A classical result of
Ehrhart [5] asserts that when P is rational, Ip(¢) is a degree d quasipolynomial in 7.
The minimum common period of the coefficients of Ip(¢) is called the period of P,
while any common period of the coefficients is called a quasiperiod.

The main question we are concerned with here is how frequently an irrational
polytope, namely a polytope that is not rational, has an Ehrhart function that is a
quasi-polynomial or a polynomial. An interesting class of examples comes from fixing
positive numbers u and v with u/v irrational, and studying the Ehrhart function of
the triangle 7, , C R? with vertices 0,0), (1/u,0), and (0, 1/v). It turns out that
one can completely determine when the Ehrhart function of such a polytope is a
quasipolynomial or a polynomial. To state our result, first define the quantities

o:=u-+v, B:=1/u+1/v. (1.1)

Now recall that any polytope whose Ehrhart function is a polynomial is called pseudo-
integral. In analogy with this, we will call an (irrational) polytope pseudo-rational if
its Ehrhart function is a quasipolynomial, and we will define the period of this polytope
to be the minimal period of this quasipolynomial.

We can now state precisely which triangles 7, , are pseudo-rational and pseudo-
integral. In fact, # and v must be certain special conjugate quadratic irrationalities.
Given any rational number x, let num(x) denote the numerator of x, and den(x) the
denominator of x, when x is written in lowest terms.

Theorem 1.1 Let u and v be positive numbers with u /v irrational, and let o and 8 be
asin (1.1).

(i) The triangle 1, is pseudo-rational if and only if B € Z and af € Z.
(ii) When T, is pseudo-rational, its period divides num(a).
(iii) The triangle T, , is pseudo-integral if and only if (i) is satisfied and in addition,
either num(a) = 1, or (num(w), B/ den(a)) € {(3, 3), (2,4)}.
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To simplify the notation, we call a triangle 7, , such that § € Z and aff € Z
admissible. To get a feel for Theorem 1.1, the following example, which we prove in
Sect. 2.1, is illustrative.

Example 1.2 Let u/v be irrational. The pseudo-integral triangle in the family 7, ,
with smallest area corresponds to (u, v) = (12, l/tz), where T = (1 + «/3)/2 is the
Golden Ratio.

Since the Ehrhart functions for pseudo-rational 7, , are quasipolynomials, one can
ask to what degree some of the basic results from Ehrhart theory in the rational case
apply. In fact, versions of Ehrhart—-Macdonald reciprocity, as well as the nonnegativity
theorem and monotonicity theorem of the third author, hold for these triangles; see
Proposition 2.8.

Although our primary interest here is for triangles, we can also give examples of
irrational polytopes with quasipolynomial Ehrhart functions in any dimension; see
Examples 2.9, 2.10, and 2.11.

1.2 P-Recursive Sequences

One of the key steps in the proof of the “only if” direction of Theorem 1.1 (i) involves
a slightly stronger statement than what is required, which is of potentially independent
interest. Recall that a sequence f(n) is P-recursive, of order k, if there are polynomials
po, - - ., Pk, not all 0, such that the recurrence relation

pn+ k) fn+k)+---+ po(n)f(n) =0

holds for all nonnegative integer n. In general, it can be difficult to show that a sequence
is not P-recursive. (For more about P-recursive sequences, see for example [10, §6].)
However, natural examples of sequences that are not P-recursive are given by the
following.

Theorem 1.3 Let u and v be positive numbers with u/v irrational, and define o and
B by (1.1). Assume that o € Q and B € Q, but T, ,, is not pseudo-rational. Then the
sequence f(n) := I, (n) is not P-recursive.

1.3 Period Collapse

For integral and rational polytopes, it is known that the period of P is bounded from
above by the minimum integer D such that the vertices of D - P are integral, called
the denominator of P. The precise relationship between P and its period can be quite
subtle, however.

For example, in their study of vertices of Gelfand-Tsetlin polytopes, De Leora and
McAllister [4] constructed an infinite family of non-integral polytopes for which the
Ehrhart function is still a polynomial. Later, McAllister and Woods [7] extended this
result to any dimension d > 2. They showed that, given D and s such that s|D, there
exists a d-dimensional polytope with denominator D whose Ehrhart quasi-polynomial
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has period s. Other interesting related work appears in (for example) [2,6,11], and
unpublished work of the first author and Kleinman.

Any situation where the period of P is smaller than its denominator is called period
collapse.

We can view Theorem 1.1 as a particularly extreme example of period collapse.
When u and v are rational, the period collapse question for 7, , is less well understood
than in the irrational case. Nevertheless, we find many new examples of rational
triangles of this form exhibiting significant period collapse. The key is the following
criterion.

Theorem 1.4 Let u = q/p and v = s/r in lowest terms. Then q is a quasiperiod of
the Ehrhart quasipolynomial for T, , if

rqg +1
slp, plirg+1), and gcd 5 ) =1 (1.2)
P

For example, if ¢ = 1, then one obtains the McAllister and Woods example of
period collapse mentioned above as a corollary of Theorem 1.4. Indeed, the theorem
implies that the triangle with vertices (0, 0), (p, 0) and (0, (p — 1)/p) is a pseudo-
integral triangle with denominator p. This triangle is unimodularly equivalent to the
pseudo-integral triangle found by McAllister and Woods [7, Thm. 2.2], which has
vertices (0, 0), (p, 0) and (1, (p — 1)/p), via the map

o) = x (:11) (1’) +(p. 0.

Theorem 1.4 can be used to construct other pseudo-integral triangles, via the fol-
lowing result.

Corollary 1.5 Let u = q/p,v = s/r in lowest terms. The triangle T, , is pseudo-
integral if

rqg +1
slp, pllrq +1), gcd< qp ,s)zl (1.3)

and

sp + 1
glr, rlGsp + 1), gcd( pr ,q>=1. (1.4)

The criteria of (1.2) also have a nice relationship with the k-Fibonacci numbers.
Specifically, we can use Theorem 1.4 to construct triangles with period dividing any
even-index k-Fibonacci number, and high denominator (Theorem 3.2). If s = p and
r = ¢, then the condition (1.2) is also necessary for ¢ to be a quasiperiod, which we
also show (Theorem 3.1).
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1.4 Relationship with Symplectic Geometry

We briefly remark that the triangles 7,,, with u /v irrational seem to have interesting
relationships with symplectic geometry. For example, the triangle from Example 1.2
is closely related to a foundational result of McDuff and Schlenk [8] about symplectic
embedding problems. Some of the other pseudo-rational triangles in the family 7, ,
also seem to be relevant in the context of symplectic embeddings. This is further
explored in work in progress between the first author and Holm, Mandini, and Pires.
See Schlenk [9] for a survey.

2 Irrational Triangles with Ehrhart Quasipolynomials

2.1 Proof of the Main Theorem

The purpose of this section is to prove Theorem 1.1. The proof will follow from several
lemmas and propositions, which will also imply Theorem 1.3. We will first state and
prove these results, and then finish the section by proving the theorem. Throughout,
we assume that o and 8 are defined by (1.1). At the end of this section, we will also

prove Theorem 1.3, which follows from similar arguments.
We begin with the following simple calculation:

Lemma 2.1 For any pair (u, v),

Lefe] t —ma t —ma
ITM(t)=Z<1+{ . J+{ - J) 2.1)

m=0

Proof We know that /7, , (¢) is given by the number of nonnegative integer solutions
(x,y)to

ux +vy <t. 2.2)

Let 0 < m < [t/a] be an integer. By (1.1), the number of solutions to (2.2) with
x=mandy >mis 1+ [(t —ma)/v]. Similarly, the number of solutions to (2.2)
with y =m and x > m is [ (t — ma)/u]. The identity (2.1) now follows. O

We can now prove the following proposition, which will be key in proving
Theorem 1.1 (ii), the “if”” direction of Theorem 1.1 (i), and the “if”” direction of Theo-
rem 1.1 (iii).

Proposition 2.2 Let u/v be irrational, and assume that € 7. and af € 7. Then the
triangle T, , is pseudo-rational, with period dividing num(«).
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Proof We will use Lemma 2.1. By (1.1), we know that

\f—maJ _ {(;—ma) (ﬂ_l>J
v u

So, we can rewrite the right hand side of (2.1) as

Lt/
o(t)+ Y (B —map), (2.3)

m=0
where

1 if 7 is divisible by num(«),
o(t):= . 2.4)
0  otherwise.

Now, o (¢) is a quasipolynomial, of period num(«), the quantity

Lt/a]
Z (1 +tB — map)

m=0

is the Ehrhart function of the rational triangle
Conv {(0,0), (0,a™ "), (8,0},

and so is a quasipolynomial of period dividing num(«), and | ¢/« ] is also a quasipoly-
nomial, of period num («). Thus, (2.3) is a quasipolynomial of period dividing num (&),
and so by (2.1), I, ,(7) is as well. O

To prove the “only if” direction of Theorem 1.1 (i) and the “only if” direction of
Theorem 1.1 (iii), the following lemma, which was explained to us by Bjorn Poonen,
will be helpful:

Lemma2.3 Let u/v be irrational. Then I, (1) = ﬁ 2+ % (% + %)t + o(t) for
t € Rop.

Proof By scaling, we may assume that # = 1. By counting in each vertical line, we
see that

1)
I7,,(0) = > (lt/v—m/v] + ). 2.5)

m=0

It is convenient to define a function f(x) by
x]+1=x4+ f(x).
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We can then rewrite (2.5) as

1t] [2]
I, ()= (t/v—m/v)+ Y f(t/v—m/v). (2.6)

m=0 m=0

Now note that the mth term in the first sum computes the area of the trapezoid defined
bym—1/2<x <m+1/2,0 <y <t/v—x/v. The first sum is therefore within
O(1) of the area of the triangle defined by —1/2 <x <¢,0 <y <t/v—x/v, and
so we have

1]
> /v—mjv) =

m=0

2+t
2v

+0(). 2.7

The second sum is a sum of values of a bounded, integrable, periodic function f at
points that become equidistributed mod 1 as t — oo (by Weyl’s criterion for uniform
distribution), and so we find that

L] 1
Zf(t/v—m/v):t/ f(x)dx—i—o(t):%—i—o(t). (2.8)
m=0 0
Lemma 2.3 now follows by combining (2.6)—(2.8). O

Corollary 2.4 Let u/v be irrational. If 1, , is pseudo-rational, then € Q and 8 € Q.
Proof The assumptions of the corollary imply that /7 (¢) is a quasipolynomial in the

positive integer 7, of period C. Write I, ,(Ct) = A(bztz) + B(Ct) + D. We know
that the number /7, , (#) must always be an integer. Hence, the numbers A and B here
must be rational. Lemma 2.3 now implies that # 4+ v and 1/u + 1 /v must be rational

as well. m|
We can now prove the key:

Proposition 2.5 Assume that « € Q, B € Q, and u/v is irrational. If the Ehrhart
function of T, is P-recursive, then § € Z and af € Z.

Proof By Lemma 2.1, we can write, Iﬂ,u (1) as

(o) )

m=0

We know that | (t — ma)/v] = |B(t — ma) — (t — ma)/u]. To simplify the notation
for what will follow, define!

o(t) :=#{meZ|0<m<|r/a]and (Bt — ma)} = {(t — ma)/u}}, (2.9)

! This might seem like an abuse of notation, since we also defined a function o (¢) in (2.4). Notice, however,
that under the assumptions of Proposition 2.2, in particular under the assumption that o and «f are both
integers, the functions in (2.4) and (2.9) agree.
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where {-} denotes the fractional part function. Also define

Lt/a]

q(t):= Y [tp—map]. (2.10)
m=0
Then,
I, () =0 (t) +q(0). (2.11)

Now assume that /7, (t) is P-recursive, and write the recurrence as

ps (@) +q@®) + -+ po) (ot —s)+q —5)) =0. (2.12)

The function ¢ is a quasipolynomial in 7, since it is the Ehrhart function of the rational
triangle Conv{(0, 0), (0, 1), (8, 0)}.
Write « = ¢/d in lowest terms, and define the function

head(t) = #{m €Z|0<m<(d-1) and {B(t —ma)} > {(¢ —ma)/u}}.
Also introduce the two rotations fi, f> from [0, 1] (mod 1) to itself given by:

i) ={x—afl,  fo(x) ={x —a/u}.

Then, f(x) = {x — ¢} and f§'(x) = {x — c/u}, so o (t) — o (t — ¢) = head(t) for
all r > c. Now for t > ¢ + s apply (2.12) twice to get

ps(t)head(t) 4 - - - + po(¢) head(r — s)
+ps(t)q(t) — ps(t —c)q(t —c) + -+ po(t)q(t —s) — po(t —c)g(t —c —5)
+o(t—o)(ps@®) —ps@t—c)+---+ot—s—0c)po®) — po(t —c)) =0.
(2.13)

Now assume that either 8 or o8 or both are not integers. We will derive a contradiction.

Write B = k/I in lowest terms, and let C be the period of the quasipolynomial g.
Introduce the set S = {1 +iCl|i € Z>o}. Then, if B is not an integer, then for any
t € S, {tB} is some fixed nonzero number ag independent of ¢. If B is an integer, then
af is not, and in particular {—«f} is some nonzero number bg. To complete the proof
of Proposition 2.5, we will need the following lemma. O

Lemma 2.6 Under the assumptions of Proposition 2.5:
(a) If B is not an integer, there exists ¢ > 0 such that if {t /Ju} € (ap — &, ap + ¢), then:
(1) head(?) is determined by whether or not ay > {t/u}, and head(t) will differ

depending on whether or not ag > {t/u}.
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(ii) If, in addition, t € S andt > s + c,
head(r == 1), ..., head(r = s)

do not depend on t.

(b) If B is an integer, there exists € > 0 such that if {(t — o) /u} € (bg — €, by + €),
then:

(1) head(t) is determined by whether or not by > {(t — o) /u}, and head(t) will
differ depending on whether or not by > {(t — o) /u}.
(ii) If, in addition, t € S andt > s + c, then:

head(r = 1), ..., head(t £ s)

do not depend on t.

Proof To prove Lemma 2.6 (a)(i), note that since o is rational, while o /u is irrational,
for rational x we can never have f{"(x) = f,"(x) for any positive integer m. With
this in mind, consider fi(ag), ..., 1‘171 (ap). If we take ¢ sufficiently small, we can
guarantee that for any y € (ap — ¢, ap +¢), f," (y) # f{"(ap) forany I <m <d — 1.
By shrinking & if necessary, we can also conclude that for any y in this interval,
fzi (y) # 0, hence Lemma 2.6 (a)(i) is proved.

We can use the same argument to prove Lemma 2.6 (b)(i).

To prove Lemma 2.6 (a)(ii), let aft, R asfE be the rational numbers {ag + i 8}. For
any 1 < i <'s, we can never have {ap £ i/u} = al.i, since {ag = i/u} is irrational.
Consider then aii and zii = {ap £ i/u}. By the argument in the previous paragraph,
if ¢ is sufficiently small and xl.jE is some irrational number in (zijE — &, zl-jE + ¢), then

#{meZ | 0<m<(q—1) and {a?—maﬁ}>{xi—%”

1

does not depend on xii. Since we can make {(# £ i)/u} arbitrarily close to zijE by
making {¢/u} sufficiently close to ag, Lemma 2.6 (a)(ii) now follows. As above, the
same argument proves Lemma 2.6 (b)(ii). m]

We can now complete the proof of Proposition 2.5.

Let p,_; be one of the polynomials p ;, with the property that no other p; has higher
degree. Let #; be any infinite sequence with the property that r; — § € S. Then, since
we are fixing ¢, mod C,

head(s; — §) = a(ti)/ ps—3(ti) — R(ti)/ ps—5(ti), (2.14)

where a is some fixed polynomial of #;, whose coefficients do not depend on i. Mean-
while, the term R(¢) is given by

N

R(t) =) o(ti —c— )(ps—j(t) — ps—j(ti — ).

J=0
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We know that if x, —§ € § is any sequence of points tending to 400, then there exists
some constant M such that

lim; 00 R(x;)/ps—5(xy) = M, (2.15)

because the degree of p,_; is strictly greater than the degree of any of the polynomials
DPs—j(t) — ps—j(t — p), while o (t) = £(t) + o(¢), for some linear polynomial £(¢) by
combining (2.11) and Lemma 2.3.

Now note that as ¢ ranges over S, {f/u} is dense in (0, 1).

If B is not an integer, we produce a contradiction as follows. Take an infinite
sequence ¢; such that {(z; — 5)/u} € (ag, a0 +¢) andt; —5 € S. Since {(t; — §)/u} €
(ap, ap +¢), by Lemma 2.6 (ii), (2.15), and (2.14), the rational function a(¢;)/ ps_s (t;)
must have a horizontal asymptote as #; — 0o. Now choose some collection of #; —
§ € S such that {(fy — §)/u} € (ap — €, ap) and ps_;(f;) # 0. By again invoking
Lemma 2.6 (ii), (2.15), and (2.14), the rational function a(#; )/ ps_; (f;) has a horizontal
asymptote as #; goes to +00. Since ag > {(f; — §)/u} while ag < {(t; — §)/u}, these
two asymptotes are different, by Lemma 2.6 (ii); this can not happen for a rational
function.

If B is an integer, then the argument in the previous paragraph still produces a
contradiction, by choosing ¢ —§ ranging over S with {( — 5 — &) /u}in (bg—¢&, bg+¢)
instead. O

We can now finally give the proof of Theorem 1.1.

Proof The “if” direction of Theorem 1.1 (i) follows directly from Proposition 2.2. To
prove the “only if” direction of Theorem 1.1 (i), first note that if the Ehrhart function
of 7, , is pseudo-rational, then by Corollary 2.4 we can assume thate € Qand 8 € Q.
Moreover, if 7, , is pseudo-rational, then the Ehrhart function must be P-recursive.
The “only if” direction now follows from Proposition 2.5.

Theorem 1.1 (ii) follows directly from Proposition 2.2.

To prove Theorem 1.1 (iii), we can assume that 8 and of are integers. We can
therefore apply the argument in Proposition 2.2 to conclude that /7, () must be
given by (2.3). Now rewrite (2.3) as

o(t) + <LLJ + 1) (I,B — M) . (2.16)
o 2

Write k := 8/ den(w).
Let z := tden(«) (mod num(«)). Then |#/a] = (den(«)t — z)/num(«). Hence
we can rewrite (2.16) as

(tden() — (z — num())(tk den(a) + zk)
o(1) +

2num(x)
_ t%kden(a)? +  num(e) den(a)k + zk(num(a) — z) + 2 num(a)o (1)
B 2 num (o) ’

(2.17)
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The coefficients of 7 and ¢ in (2.17) do not depend on 7. So 7, , is pseudo-integral if
and only if

zk(num(@) — 2) +2num@o (1) _ (2.18)

2 num (o)

for all equivalence classes z of t modulo num(«). To prove the “only if” part of
Theorem 1.1 (iii), we assume that 7, , is pseudo-integral. Now choose ¢ such that
tden(o) = 1 (mod num(w)). By (2.18), this gives

k(num(x) — 1) .

T um @) 1, (2.19)

s0 k = 2num(w)/(num(c) — 1). Now observe that § and of are integers if and only
if B and k are. The only solutions to (2.19) with num(¢) > 1 and k an integer are
(3,3) and (2, 4). Conversely, if num(«) = 1, or (num(x), k) € {(3, 3), (2, 4)}, then
(2.18) holds for all equivalence classes of z. O

We can also now give the proof that was owed for Example 1.2.

Proof Let (u, v) be such that 7, ,, is pseudo-integral. Then uv = «/S. To minimize the
area of 7, ,,, we would like to maximize o/ 8; the maximum occurs when den(«) = 1.
By Theorem 1.1, if num(«) > 1, then (num(w), B/ den(x)) € {(3,3), (2,4)}. The
largest possible value in these two cases is % = 1, which is uniquely obtained by the
“golden mean” triangle.

For o = 1, the only possible value of S that could give an equally large o/ 8 is when
B = 1. There are no real numbers satisfyingu +v =1, 1 /u + 1/v = 1, however. O

Remark 2.7 Similar arguments can be used to give another characterization of the
“golden mean” triangle: it is the only pseudo-integral triangle of the form 7, ,, where
u and v are quadratic irrational algebraic integers. We omit the proof for brevity.

Finally, we can prove Theorem 1.3.

Proof We argue by contradiction. Assume that the sequence f(n) is P-recursive.
Then, we can apply Proposition 2.5 to conclude that 8 € Z and ¢ € Z. We can then
apply the “if”” direction of Theorem 1.1 (i) to conclude that 7, , is pseudo-rational,
contradicting one of the hypotheses of the theorem. O

2.2 Properties of Admissible Irrational Triangles

We now prove some properties of the Ehrhart functions of admissible triangles that
mirror properties from the rational case; compare [1, §3], [3]. For simplicity, we state
some of the results for pseudo-integral triangles, although we expect they should hold
more generally. Along those lines, recall from [1, Lem. 3.9] that if 7, , is pseudo-
integral, then we can write

S 1y, (0t = S

_ 3
e (I-2)
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where g, ,(2) is a polynomial of degree at most 2.

Proposition 2.8 Let 7, ., be admissible. Then the Ehrhart function of T, ,, satisfies

(1) (Reciprocity) If t is positive, then
I, (=) = {# (T, NZH} + o (1),

where the superscript ° denotes the interior.

(ii) (Nonnegativity) If 7, , is pseudo-integral, then each coefficient of g, . is non-
negative.

(iii) (Monotonicity) If 7, and T, . are both pseudo-integral, and T, , C T .y,
then each coefficient of g,y is less than or equal to the corresponding coefficient
of §u' v'-

Proof To prove Proposition 2.8 (i), note that the number of lattice points on the bound-
ary of the triangle with vertices (¢ /u, 0), (0, t/v) and (0, 0) is [¢/u]| + |t/v] + 1, plus
the number of points on the slant edge. We know that

lt/u] + t/v] =18 -1,

and we know that ux + vy = ¢ only if x = y. Proposition 2.8 (i) now follows by
subtracting the number of lattice points on the boundary from the formula in (2.17).

To prove Propositions 2.8 (ii) and 2.8 (iii), note that if g, ,(z) = ao + a1z + arz?,
thenap = 1,a) = Iz, ,(1)—3,anday = 3317, (1)+17, ,(2) (here, we are implicitly
using the fact that /7,  (0) = 1, as can be seen by (2.18).) To show Proposition 2.8 (ii),
we therefore first have to show that /7, , (1) > 3, or equivalently, by (2.17), that 8/ +
B = 4.1f (num(w), B/den(x)) € {(3, 3), (2, 4)}, then this holds, so by Theorem 1.1 we
can assume that num(«) = 1. It suffices to show that 8 den(«) + 8 > 4, which follows
immediately since we can never have (o, 8) € {(1, 1), (1/2, 1)}. So nonnegativity for
aj follows. For nonnegativity of a, we need to show that (8 — o)/ > —2. If
num(e) = 1, then this is automatic; if (num(«), 8/den(x)) € {(3, 3), (2, 4)}, then it
holds as well, which proves Proposition 2.8 (ii).

For Proposition 2.8 (iii), we are given that 1/u < 1/u’ and 1/v < 1/v’. That
ap < ay and a; < a] are immediate; to see that ay < aj, we need to show that
B(/a —1) < B'(1/a’ — 1). This follows from 1/u < 1/u’, 1/v < 1/v. O

2.3 Examples in Other Dimensions

Here we briefly mention some examples of polytopes in other dimensions that are not
rational, but nevertheless have Ehrhart functions that are polynomials.
In dimension 1, such examples are easy to come by:

Example 2.9 LetP = [u, v] C R, where u and v are irrational numbers withv—u = m
and m is an integer. Then for positive integer ¢, Ip(t) = tm.

Proof We know that Ip(t) = [tv] — [tu] = tm. O
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In higher dimensions, we do not currently know many examples of truly different
character. However, one has:

Example 2.10 Suppose that n > 2 and let P, denote the polytope in R" with the
following n + 1 vertices:

©,0,...,0),(1,0,...,0),(,1,...,0),

1 1
(0,0,1,...,0),...,(o,...,-,o),(o,...,o,-),
u v

where (u, v) satisfies the conditions in Theorem 1.1 (iii). Then Ip(¢) is a polynomial
int.
To see this, note that we have:

Po={(x1.x2,....x0) €R" | x; =0, x; +x2+ - + X2 + ux,—; + vx, < 1}
and
Ip, (1) = #{(v1 %2, oo xn) €27 | %3 = 0, X1 + X0+ -+ Xpo2 + U1 + VX < 1}

t
=2:¢4*{(Xz,...,xn)EZ"_1 | Xi >0, X2+ + Xy + Uxp_y +vx, <1 —i}
=0

t
= Ip,_ (t—i).
i=0

So, the proof is immediate by induction on 7.

A more interesting example is given in dimension three:

Example 2.11 The polytope with vertices (0, 0, 0), (1/2,0,0), (0,2 + V2, 0) and
(0,0,2 — +/2) has an Ehrhart function which is a polynomial.

The proof of Example 2.11 is deferred to Sect. 3.3.

3 Rational Examples

We now give the proof of Theorem 1.4.

Proof Firstly, it is easy to see that gcd(rg, ps) = 1. Let &,, denote a primitive mth
root of unity. By [1, Thm. 2.10], we have

1 5 1 1 1 1
—@-pr)y+z@-pr)| —+—+
2-rq-ps 2 rq ps rq-ps

1 1 1 1 (rqg ps 1
+-({l1+—+—)+=—+—+
4 rq  ps 12\ ps rq rq-ps

I s ) =
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rg—1 —jt-pr ps—1 —lt-pr
Srq 1

—Z ps

— + —
1
Ta-g -y P A-gD0 gL
pr , 1 1 1 1 1
=— '+ (Z+-+—)t+= |1+ —+—
2gs +2< +s+qs) +4 +rq+ps
1 s 1
+ — —q+p—+
12\ ps rq rq-ps

42—:1 Jtp 1 ps—1 g—m

“m)(l Srjq) PS4 (I—Spsrq)(l—é )
3.1

1
rq

Then it suffices to show that
1 ps—1 %-—ltr

PSS (- —gl,

is a constant function in ¢. In fact, writing/ = is+u : 0 <i < p,0 <u < s and
using the fact that rg = —1 (mod p), we have

1 ps—1 %-—ltr

= -1 -6

:12

—u r 1
e X_: ' Z é__(ls—&-u)rq)(l

ps 2 1(1 ”")(1 iz (11— ERT)
— ! . 7utr
ps Zl (1- ”q)(l Zl 2; (1= &p" ”( — &™)
3.2)

Keeping in mind that s|(rq + 1) and gcd((rg + 1)/p, s) = 1, we find that
pstu(rg +1), and pslu(rqg+ Dp
forany 1 <u <s — 1. By Lem. 2.1 in arXiv:1307.5493v1, we deduce that
p—1 1

> =0

S — e (1 — ENTT

for any 1 <u < s — 1. Therefore, we have

pszl i_—*ltr 1 Z
ps S —ghiha—¢ely  psa l(1—%’”0(1 £
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which is a constant function in ¢. It follows from (3.1) that ¢ is a quasiperiod of
1 1p.51r (O o
Next we prove Corollary 1.5.
Proof First we note that gcd(q, s) = 1. In fact, suppose that d is an arbitrary common
divisor of ¢ and s, then we obviously have d|r¢g. On the other hand, the assumption d|s
and the condition (1.3) imply that d|(rg + 1). It follows that d|1 and so gcd(q, s) = 1.
Next we show that both ¢ and s are quasiperiods of I, ().
By Theorem 1.4, condition (1.3) implies that g is a quasiperiod of I, (¢). On
the other hand, it is obvious that

(x, y) = (v, x)
is a bijection between lattice points in triangles ’]:] /p.s/r and 75 Jr.q/p- SO we have
IZf/p-S/f ) = I7§/r.q/p ().

By Theorem 1.4 again, condition (1.4) means that s is also a quasiperiod of I, . (7).
It follows that 1 is a quasiperiod of I, (D). Therefore, the triangle I, (D) isa
pseudo-integral triangle. O

3.1 The Case Whereu = 1/v

As mentioned in the introduction, for when s = p and r = ¢, one can also give a
necessary condition for a version of Theorem 1.4. Specifically, we have:

Theorem 3.1 Suppose that p, q are relatively prime positive integers. Then q is a
quasiperiod of I,,, . (1) if and only if

2
+1
pl@*>+1) and gcd<qp ,p>=1. (3.3)

Proof Clearly, the “if ”” part follows from the proof of Theorem 1.4. We now proceed
to the proof of the “only if” part.
Suppose that g is a quasiperiod of I7, (7). By (3.1), we deduce that

=
7

Efltq
s Ha )

qu(t) =

is a periodic function of ¢ with period ¢. Clearly, p is also a period of f, (). Since
(p,q) = 1, we deduce that f), ,(¢) is a constant function of ¢. It follows from (3.2)
that

1

2 Z —ut‘l Z prvm —-C
_%_pz )

iz (1— ”‘1 M
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for some constant C. Keeping in mind the fact that gcd(p, g) = 1, we have

e, i=u=p-1}={g 1<j=p-1}.
So
{1’ E;tq’ 5,7_2"], L Ep—(p—l)tq} _ {1’ 51751%’, L E{()p—l)t},
which consists of p linearly independent functions from N to C. Hence we have
p—1 1

> =0

T -g -

forany 1 <u < p — 1. By applying Lem. 2.1 in arXiv:1307.5493v1, we deduce that
plu(g* +1) and p*fu(g®+1)

foreach 1 < u < p — 1. Now we can conclude immediately that

2
1
plg>+1) and ng(p,q; ):1. o

3.2 The k-Fibonacci Numbers

In Thm. 1.2 of arXiv:1307.5493v1, it was shown that 7,,, ,/4 is pseudo-integral if
andonlyif p = q = 1 or {p, q} = {Far—1, For+1} for some k > 1, where p and
q are relatively prime positive integers, Fy, denotes the mth Fibonacci number. We
now further study the relationship between the period collapse problem and recursive
sequences, by proving a similar result, involving two consecutive terms in the sequence
of generalized Fibonacci numbers.

Recall first for any integer k > 1, the k-Fibonacci sequence { F;, (k)}, defined recur-
sively as follows:

Fo(k) =0, Fik)y=1, Fy(k) =kFp1(k) + Fy2(k), n=2.

Clearly, when k = 1, we get the Fibonacci sequence. For notational simplicity, for
any k > 1,n > 2, we let

Ik’” ) = ITFn (k)/ Fy—1 (k), Fyy —1 (k) / Fn (k) ).

In the following we shall consider period collapse in I , (¢). To this end, we need the
following immediate facts:
Fact 1 For any k, n > 1, gcd(F,(k), F,—1(k)) = 1 and gcd(F, (k), k) = 1.
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Fact 2 For any k, n > 1, we have
Fp(k)? — kEy—1 (k) Fy (k) — Fy_1(k)* + (=1)" = 0.

Both Facts 1 and 2 can be verified immediately by induction on n. We only give the
proof of Fact 2 here. Clearly, the fact holds for n = 1. Assume n > 2 and Fact 2 is
true for n — 1 and then we have

Fu(k)? = kFy_(K)Fy (k) — Fy_1(k)* + (= 1)"
= (kFy—1(k) + Fy2(k))* — kFy_1 (k) (k Fy—1 (k) + Fu—z(k))
— Fac1(b)* 4 (=1)"
= kFy_1 (k) Fy_a(k) + Fy2(k)* — Fu_1 () + (= 1)"
= —(Fyo1 (k) = kFy— (k) Fyp (k) — Fya(k)* + (=) = 0.

It follows from Facts 1 and 2 that, when # is even, both (p, q) = (F,,—1(k), F,(k))
and (p, q) = (Fp+1(k), F,(k)) satisfy condition (3.3). We therefore get:

Theorem 3.2 For any k > 1 and even integer n > 2, F, (k) is a common quasiperiod
of I n(t) and Iy p11(1).

3.3 Tetrahedra

We now give a few higher dimensional examples of period collapse.
Recall first the sequence given by a; = 2, a2 = 3,a3 = 10,a4 = 17 and

ap = 6ay_2 — ap_4. (3.4)

It follows from Thm. 1.6 (i) in arXiv:1307.5493v1 that for each n > 1, the triangle
with vertices (0, 0), (a2n+1/a2,, 0) and (0, 2ay, /az,+1) is a pseudo-integral triangle
with Ehrhart polynomial

Li(1) = (t + D2

Using this we can show:
Theorem 3.3 Let {a,} be the sequence defined by (3.4). Then for any n > 1, the tetra-

hedron T,, with vertices (0, 0, 0), (1/2,0,0), (0, azy+1/az, 0) and (0, 0, 2az, /azn+1)
is a pseudo-integral tetrahedron.
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Proof Let f,(t) denote the Ehrhart function for 7},. Then for any positive integer 7,
we have

falt) =# {<Xyz>eZ3!2x+ v+ 2 <, xyz>°}
a2n+1 2ay,

Lt/2]

a a
=Z#{(y,z)eZ2‘ e 13 y,zzo}
azn41 2apy,

1£/2] l#/2]

= I,(t -2 t—2 1 t t 1,
Z(x)Z( x+ 1) ++6+

where I, (¢) denotes the Ehrhart function of the triangle with vertices (0, 0), (a2,+1/
az, 0) and (0, 2az, /azn+1)- o

We now give the proof of Example 2.11. Note that Example 2.11 is natural to
consider, in view of Theorem 3.3. It is easy to show that

2
lim 2% — 24 V2, and lim =2 —2_ V2.

n—>0oo azn n—oo a2n+l

Theorem 3.3 states that for any n > 1, the tetrahedron with vertices

1 2
0,0,0), (—,0,0>,<o, a2"+1,0) and, (o,o, “2”)
2 ary, azp+1

is a pseudo-integral tetrahedron with the Ehrhart polynomial

11
f(t)— P4+ — 6 t+1,

which is independent of n. Thus, it is reasonable to expect that the Ehrhart function
of the limiting tetrahedron 7 with vertices (0, 0, 0), (1/2, 0, 0), (0,2 + «/5, 0) and
(0,0, 2 — +/2) is also equal to the polynomial f(z), and one can indeed show this by
using Theorem 3.3 plus a limiting argument. We instead give a more direct proof that
does not require Theorem 3.3.

Proposition 3.4 The Ehrhart function of the irrational tetrahedron T with vertices
(0 0,0), (1/2 0,0), (0,2 + V2, 0) and (0,0,2 — ﬁ) is the polynomial f(t) =
W+ L+
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Proof Let g(t) denote the Ehrhart function of 7. Then we have

g) =#T N7
=#{(x,y,z)eZ3’2x+<1—?)y+(l+?)z§t, x,y,zZO}

11/2)
= > #{i.y.2) |G, y.2) €1TNZY
i=0
11/2)
=Y #{(.y. 916 y.2) etTNZ, y >z
i=0
1¢/2)
+ Y #{G.y.2) G, y.2) etTNL, y <z)
i=0
1t/2) L(1=2i)/2)
=Y Y #{G.y. DGy, )etTNZ, y= j)
i=0 j=0
[£/2) L(1=2i—14~/2/2)/2]
+ Y > #{(. k. 2) |G k,2) €T NZ3 k < 2)
i=0 k=0

- Wf L(z%ﬂj Qt i ZjJ . 1) ) Wf L(tZili:«/i/Z)/ZJ Y ok — ZiJ
i=0  j=0 - ﬁ/z i=0 k=0 1+ ﬁ/z

/2] [(t—2i)/2] . . . .
_ t—2i —2j t—2i—2j
=2 2 Ql—fz/zJHﬂHﬁ/zJ)'

i=0  j=0

Keeping in mind that

1 1
=2 2, —————=2-+2,
1—4/2)2 +V2 14++/2/2

we deduce that
t—2i—2j . .

— = = =2 —2))Q+ V2
L—ﬂ/zJ L =2 =2))2+V2)]

= [(t —2i —2/)(4 - 2 —2))]
t—2i—2jJ

=4t —8i —8j+ | ———
/ { 14+/2/2
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So we have

. 1£/2) Lt—20)/2)
S+ X{: X(:) (4t — 8i —8j), tiseven;
= /_
8(1) 11/2] L(t—2i)/2]

Z Z (4t — 8i — 8)), ¢ is odd

i=0  j=0

1, 5, 1
=+ —1+1.
6 6

]
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