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Abstract

While much research has been done on the Ehrhart functions of integral and rational

polytopes, little is known in the irrational case. In our main theorem, we determine

exactly when the Ehrhart function of a right triangle with legs on the axes and slant

edge with irrational slope is a polynomial. We also investigate several other situations

where the period of the Ehrhart function of a polytope is less than the denominator of

that polytope. For example, we give examples of irrational polytopes with polynomial

Ehrhart function in any dimension, and we find triangles with periods dividing any

even-index k-Fibonacci number, but with larger denominators.
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1 Introduction

1.1 TheMain Theorem

Let P ⊂ Rd be a convex polytope. The counting function

IP (t) := #(tP ∩ Zd)

for a positive integer t is called the Ehrhart function of P .

The Ehrhart function has been extensively studied in the case where P is integral,

meaning its vertices are given by integers, or P is rational, meaning its vertices are

given by rational numbers. In particular, recall that a quasipolynomial is a function

p : N → R satisfying the equation

p(t) = cn(t)tn + · · · + c0(t),

where the ci (t) are periodic functions of t , of integral period. A classical result of

Ehrhart [5] asserts that when P is rational, IP (t) is a degree d quasipolynomial in t .

The minimum common period of the coefficients of IP (t) is called the period of P ,

while any common period of the coefficients is called a quasiperiod.

The main question we are concerned with here is how frequently an irrational

polytope, namely a polytope that is not rational, has an Ehrhart function that is a

quasi-polynomial or a polynomial. An interesting class of examples comes from fixing

positive numbers u and v with u/v irrational, and studying the Ehrhart function of

the triangle Tu,v ⊂ R2 with vertices (0, 0), (1/u, 0), and (0, 1/v). It turns out that

one can completely determine when the Ehrhart function of such a polytope is a

quasipolynomial or a polynomial. To state our result, first define the quantities

α := u + v, β := 1/u + 1/v. (1.1)

Now recall that any polytope whose Ehrhart function is a polynomial is called pseudo-

integral. In analogy with this, we will call an (irrational) polytope pseudo-rational if

its Ehrhart function is a quasipolynomial, and we will define the period of this polytope

to be the minimal period of this quasipolynomial.

We can now state precisely which triangles Tu,v are pseudo-rational and pseudo-

integral. In fact, u and v must be certain special conjugate quadratic irrationalities.

Given any rational number x , let num(x) denote the numerator of x , and den(x) the

denominator of x , when x is written in lowest terms.

Theorem 1.1 Let u and v be positive numbers with u/v irrational, and let α and β be

as in (1.1).

(i) The triangle Tu,v is pseudo-rational if and only if β ∈ Z and αβ ∈ Z.

(ii) When Tu,v is pseudo-rational, its period divides num(α).

(iii) The triangle Tu,v is pseudo-integral if and only if (i) is satisfied and in addition,

either num(α) = 1, or (num(α), β/ den(α)) ∈ {(3, 3), (2, 4)}.
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To simplify the notation, we call a triangle Tu,v such that β ∈ Z and αβ ∈ Z
admissible. To get a feel for Theorem 1.1, the following example, which we prove in

Sect. 2.1, is illustrative.

Example 1.2 Let u/v be irrational. The pseudo-integral triangle in the family Tu,v

with smallest area corresponds to (u, v) = (τ 2, 1/τ 2), where τ = (1 +
√

5)/2 is the

Golden Ratio.

Since the Ehrhart functions for pseudo-rational Tu,v are quasipolynomials, one can

ask to what degree some of the basic results from Ehrhart theory in the rational case

apply. In fact, versions of Ehrhart–Macdonald reciprocity, as well as the nonnegativity

theorem and monotonicity theorem of the third author, hold for these triangles; see

Proposition 2.8.

Although our primary interest here is for triangles, we can also give examples of

irrational polytopes with quasipolynomial Ehrhart functions in any dimension; see

Examples 2.9, 2.10, and 2.11.

1.2 P-Recursive Sequences

One of the key steps in the proof of the “only if” direction of Theorem 1.1 (i) involves

a slightly stronger statement than what is required, which is of potentially independent

interest. Recall that a sequence f (n) is P-recursive, of order k, if there are polynomials

p0, . . . , pk , not all 0, such that the recurrence relation

pk(n + k) f (n + k) + · · · + p0(n) f (n) = 0

holds for all nonnegative integer n. In general, it can be difficult to show that a sequence

is not P-recursive. (For more about P-recursive sequences, see for example [10, §6].)

However, natural examples of sequences that are not P-recursive are given by the

following.

Theorem 1.3 Let u and v be positive numbers with u/v irrational, and define α and

β by (1.1). Assume that α ∈ Q and β ∈ Q, but Tu,v is not pseudo-rational. Then the

sequence f (n) := ITu,v
(n) is not P-recursive.

1.3 Period Collapse

For integral and rational polytopes, it is known that the period of P is bounded from

above by the minimum integer D such that the vertices of D · P are integral, called

the denominator of P . The precise relationship between P and its period can be quite

subtle, however.

For example, in their study of vertices of Gelfand–Tsetlin polytopes, De Leora and

McAllister [4] constructed an infinite family of non-integral polytopes for which the

Ehrhart function is still a polynomial. Later, McAllister and Woods [7] extended this

result to any dimension d ≥ 2. They showed that, given D and s such that s|D, there

exists a d-dimensional polytope with denominator D whose Ehrhart quasi-polynomial
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has period s. Other interesting related work appears in (for example) [2,6,11], and

unpublished work of the first author and Kleinman.

Any situation where the period of P is smaller than its denominator is called period

collapse.

We can view Theorem 1.1 as a particularly extreme example of period collapse.

When u and v are rational, the period collapse question for Tu,v is less well understood

than in the irrational case. Nevertheless, we find many new examples of rational

triangles of this form exhibiting significant period collapse. The key is the following

criterion.

Theorem 1.4 Let u = q/p and v = s/r in lowest terms. Then q is a quasiperiod of

the Ehrhart quasipolynomial for Tu,v if

s|p, p|(rq + 1), and gcd

(

rq + 1

p
, s

)

= 1. (1.2)

For example, if q = 1, then one obtains the McAllister and Woods example of

period collapse mentioned above as a corollary of Theorem 1.4. Indeed, the theorem

implies that the triangle with vertices (0, 0), (p, 0) and (0, (p − 1)/p) is a pseudo-

integral triangle with denominator p. This triangle is unimodularly equivalent to the

pseudo-integral triangle found by McAllister and Woods [7, Thm. 2.2], which has

vertices (0, 0), (p, 0) and (1, (p − 1)/p), via the map

ϕ(x) = x

(

−1 0

−p 1

)

+ (p, 0).

Theorem 1.4 can be used to construct other pseudo-integral triangles, via the fol-

lowing result.

Corollary 1.5 Let u = q/p, v = s/r in lowest terms. The triangle Tu,v is pseudo-

integral if

s|p, p|(rq + 1), gcd

(

rq + 1

p
, s

)

= 1 (1.3)

and

q|r , r |(sp + 1), gcd

(

sp + 1

r
, q

)

= 1. (1.4)

The criteria of (1.2) also have a nice relationship with the k-Fibonacci numbers.

Specifically, we can use Theorem 1.4 to construct triangles with period dividing any

even-index k-Fibonacci number, and high denominator (Theorem 3.2). If s = p and

r = q, then the condition (1.2) is also necessary for q to be a quasiperiod, which we

also show (Theorem 3.1).
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1.4 Relationship with Symplectic Geometry

We briefly remark that the triangles Tu,v with u/v irrational seem to have interesting

relationships with symplectic geometry. For example, the triangle from Example 1.2

is closely related to a foundational result of McDuff and Schlenk [8] about symplectic

embedding problems. Some of the other pseudo-rational triangles in the family Tu,v

also seem to be relevant in the context of symplectic embeddings. This is further

explored in work in progress between the first author and Holm, Mandini, and Pires.

See Schlenk [9] for a survey.

2 Irrational Triangles with Ehrhart Quasipolynomials

2.1 Proof of theMain Theorem

The purpose of this section is to prove Theorem 1.1. The proof will follow from several

lemmas and propositions, which will also imply Theorem 1.3. We will first state and

prove these results, and then finish the section by proving the theorem. Throughout,

we assume that α and β are defined by (1.1). At the end of this section, we will also

prove Theorem 1.3, which follows from similar arguments.

We begin with the following simple calculation:

Lemma 2.1 For any pair (u, v),

ITu,v
(t) =

�t/α	
∑

m=0

(

1 +
⌊

t − mα

v

⌋

+
⌊

t − mα

u

⌋)

. (2.1)

Proof We know that ITu,v
(t) is given by the number of nonnegative integer solutions

(x, y) to

ux + vy ≤ t . (2.2)

Let 0 ≤ m ≤ �t/α	 be an integer. By (1.1), the number of solutions to (2.2) with

x = m and y ≥ m is 1 + �(t − mα)/v	. Similarly, the number of solutions to (2.2)

with y = m and x > m is �(t − mα)/u	. The identity (2.1) now follows. ��

We can now prove the following proposition, which will be key in proving

Theorem 1.1 (ii), the “if” direction of Theorem 1.1 (i), and the “if” direction of Theo-

rem 1.1 (iii).

Proposition 2.2 Let u/v be irrational, and assume that β ∈ Z and αβ ∈ Z. Then the

triangle Tu,v is pseudo-rational, with period dividing num(α).
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Proof We will use Lemma 2.1. By (1.1), we know that

⌊

t − mα

v

⌋

=
⌊

(t − mα)

(

β − 1

u

)⌋

=
⌊

(tβ − mαβ) − (t − mα)

u

⌋

= (tβ − mαβ) +
⌊

− (t − mα)

u

⌋

.

So, we can rewrite the right hand side of (2.1) as

σ(t) +
�t/α	
∑

m=0

(tβ − mαβ), (2.3)

where

σ(t) :=
{

1 if t is divisible by num(α),

0 otherwise.
(2.4)

Now, σ(t) is a quasipolynomial, of period num(α), the quantity

�t/α	
∑

m=0

(1 + tβ − mαβ)

is the Ehrhart function of the rational triangle

Conv
{

(0, 0), (0, α−1), (β, 0)
}

,

and so is a quasipolynomial of period dividing num(α), and �t/α	 is also a quasipoly-

nomial, of period num(α). Thus, (2.3) is a quasipolynomial of period dividing num(α),

and so by (2.1), ITu,v
(t) is as well. ��

To prove the “only if” direction of Theorem 1.1 (i) and the “only if” direction of

Theorem 1.1 (iii), the following lemma, which was explained to us by Bjorn Poonen,

will be helpful:

Lemma 2.3 Let u/v be irrational. Then ITu,v
(t) = 1

2uv
t2 + 1

2

(

1
u

+ 1
v

)

t + o(t) for

t ∈ R>0.

Proof By scaling, we may assume that u = 1. By counting in each vertical line, we

see that

IT1,1/v
(t) =

�t	
∑

m=0

(�t/v − m/v	 + 1). (2.5)

It is convenient to define a function f (x) by

�x	 + 1 = x + f (x).
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We can then rewrite (2.5) as

IT1,v
(t) =

�t	
∑

m=0

(t/v − m/v) +
�t	
∑

m=0

f (t/v − m/v). (2.6)

Now note that the mth term in the first sum computes the area of the trapezoid defined

by m − 1/2 ≤ x ≤ m + 1/2, 0 ≤ y ≤ t/v − x/v. The first sum is therefore within

O(1) of the area of the triangle defined by −1/2 ≤ x ≤ t , 0 ≤ y ≤ t/v − x/v, and

so we have

�t	
∑

m=0

(t/v − m/v) = t2 + t

2v
+ O(1). (2.7)

The second sum is a sum of values of a bounded, integrable, periodic function f at

points that become equidistributed mod 1 as t → ∞ (by Weyl’s criterion for uniform

distribution), and so we find that

�t	
∑

m=0

f (t/v − m/v) = t

∫ 1

0

f (x) dx + o(t) = t

2
+ o(t). (2.8)

Lemma 2.3 now follows by combining (2.6)–(2.8). ��
Corollary 2.4 Let u/v be irrational. If Tu,v is pseudo-rational, then α ∈ Q and β ∈ Q.

Proof The assumptions of the corollary imply that ITu,v
(t) is a quasipolynomial in the

positive integer t , of period C . Write ITu,v
(Ct) = A(C2t2) + B(Ct) + D. We know

that the number ITu,v
(t) must always be an integer. Hence, the numbers A and B here

must be rational. Lemma 2.3 now implies that u + v and 1/u + 1/v must be rational

as well. ��
We can now prove the key:

Proposition 2.5 Assume that α ∈ Q, β ∈ Q, and u/v is irrational. If the Ehrhart

function of Tu,v is P-recursive, then β ∈ Z and αβ ∈ Z.

Proof By Lemma 2.1, we can write, ITu,v
(t) as

�t/α	
∑

m=0

(

1 +
⌊

t − mα

v

⌋

+
⌊

t − mα

u

⌋)

.

We know that �(t − mα)/v	 = �β(t − mα) − (t − mα)/u	. To simplify the notation

for what will follow, define1

σ(t) := #
{

m ∈ Z | 0 ≤ m ≤ �t/α	 and {β(t − mα)} ≥ {(t − mα)/u}
}

, (2.9)

1 This might seem like an abuse of notation, since we also defined a function σ(t) in (2.4). Notice, however,

that under the assumptions of Proposition 2.2, in particular under the assumption that α and αβ are both

integers, the functions in (2.4) and (2.9) agree.
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where {·} denotes the fractional part function. Also define

q(t) :=
�t/α	
∑

m=0

�tβ − mαβ	. (2.10)

Then,

ITu,v
(t) = σ(t) + q(t). (2.11)

Now assume that ITu,v
(t) is P-recursive, and write the recurrence as

ps(t)
(

σ(t) + q(t)
)

+ · · · + p0(t)
(

σ(t − s) + q(t − s)
)

= 0. (2.12)

The function q is a quasipolynomial in t , since it is the Ehrhart function of the rational

triangle Conv{(0, 0), (0, α−1), (β, 0)}.
Write α = c/d in lowest terms, and define the function

head(t) = #
{

m ∈ Z | 0 ≤ m ≤ (d − 1) and {β(t − mα)} > {(t − mα)/u}
}

.

Also introduce the two rotations f1, f2 from [0, 1] (mod 1) to itself given by:

f1(x) = {x − αβ}, f2(x) = {x − α/u} .

Then, f d
1 (x) = {x − cβ} and f d

2 (x) = {x − c/u}, so σ(t) − σ(t − c) = head(t) for

all t ≥ c. Now for t ≥ c + s apply (2.12) twice to get

ps(t) head(t) + · · · + p0(t) head(t − s)

+ ps(t)q(t) − ps(t − c)q(t − c) + · · · + p0(t)q(t − s) − p0(t − c)q(t − c − s)

+ σ(t − c)(ps(t) − ps(t − c)) + · · · + σ(t − s − c)(p0(t) − p0(t − c)) = 0.

(2.13)

Now assume that either β or αβ or both are not integers. We will derive a contradiction.

Write β = k/l in lowest terms, and let C be the period of the quasipolynomial q.

Introduce the set S = {1 + iCl | i ∈ Z≥0}. Then, if β is not an integer, then for any

t ∈ S, {tβ} is some fixed nonzero number a0 independent of t . If β is an integer, then

αβ is not, and in particular {−αβ} is some nonzero number b0. To complete the proof

of Proposition 2.5, we will need the following lemma. ��

Lemma 2.6 Under the assumptions of Proposition 2.5:

(a) If β is not an integer, there exists ε > 0 such that if {t/u} ∈ (a0 − ε, a0 + ε), then:

(i) head(t) is determined by whether or not a0 > {t/u}, and head(t) will differ

depending on whether or not a0 > {t/u}.
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(ii) If, in addition, t ∈ S and t ≥ s + c,

head(t ± 1), . . . , head(t ± s)

do not depend on t.

(b) If β is an integer, there exists ε > 0 such that if {(t − α)/u} ∈ (b0 − ε, b0 + ε),

then:

(i) head(t) is determined by whether or not b0 > {(t − α)/u}, and head(t) will

differ depending on whether or not b0 > {(t − α)/u}.
(ii) If, in addition, t ∈ S and t ≥ s + c, then:

head(t ± 1), . . . , head(t ± s)

do not depend on t.

Proof To prove Lemma 2.6 (a)(i), note that since αβ is rational, while α/u is irrational,

for rational x we can never have f m
1 (x) = f m

2 (x) for any positive integer m. With

this in mind, consider f1(a0), . . . , f d−1
1 (a0). If we take ε sufficiently small, we can

guarantee that for any y ∈ (a0 − ε, a0 + ε), f m
2 (y) �= f m

1 (a0) for any 1 ≤ m ≤ d − 1.

By shrinking ε if necessary, we can also conclude that for any y in this interval,

f i
2 (y) �= 0, hence Lemma 2.6 (a)(i) is proved.

We can use the same argument to prove Lemma 2.6 (b)(i).

To prove Lemma 2.6 (a)(ii), let a±
1 , . . . , a±

s be the rational numbers {a0 ± iβ}. For

any 1 ≤ i ≤ s, we can never have {a0 ± i/u} = a±
i , since {a0 ± i/u} is irrational.

Consider then a±
i and z±

i = {a0 ± i/u}. By the argument in the previous paragraph,

if ε is sufficiently small and x±
i is some irrational number in (z±

i − ε, z±
i + ε), then

#

{

m ∈ Z | 0 ≤ m ≤ (q − 1) and {a±
i − mαβ} >

{

x±
i − mα

u

}}

does not depend on x±
i . Since we can make {(t ± i)/u} arbitrarily close to z±

i by

making {t/u} sufficiently close to a0, Lemma 2.6 (a)(ii) now follows. As above, the

same argument proves Lemma 2.6 (b)(ii). ��
We can now complete the proof of Proposition 2.5.

Let ps−s̃ be one of the polynomials p j , with the property that no other p j has higher

degree. Let ti be any infinite sequence with the property that ti − s̃ ∈ S. Then, since

we are fixing t , mod C ,

head(ti − s̃) = a(ti )/ps−s̃(ti ) − R(ti )/ps−s̃(ti ), (2.14)

where a is some fixed polynomial of ti , whose coefficients do not depend on i . Mean-

while, the term R(t) is given by

R(ti ) =
s

∑

j=0

σ(ti − c − j)(ps− j (ti ) − ps− j (ti − c)).
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We know that if xr − s̃ ∈ S is any sequence of points tending to +∞, then there exists

some constant M such that

limr→∞ R(xr )/ps−s̃(xr ) = M, (2.15)

because the degree of ps−s̃ is strictly greater than the degree of any of the polynomials

ps− j (t) − ps− j (t − p), while σ(t) = �(t) + o(t), for some linear polynomial �(t) by

combining (2.11) and Lemma 2.3.

Now note that as t ranges over S, {t/u} is dense in (0, 1).

If β is not an integer, we produce a contradiction as follows. Take an infinite

sequence ti such that {(ti − s̃)/u} ∈ (a0, a0 + ε) and ti − s̃ ∈ S. Since {(ti − s̃)/u} ∈
(a0, a0 +ε), by Lemma 2.6 (ii), (2.15), and (2.14), the rational function a(ti )/ps−s̃(ti )

must have a horizontal asymptote as ti → ∞. Now choose some collection of t̂i −
s̃ ∈ S such that {(t̂i − s̃)/u} ∈ (a0 − ε, a0) and ps−s̃(t̂i ) �= 0. By again invoking

Lemma 2.6 (ii), (2.15), and (2.14), the rational function a(t̂i )/ps−s̃(t̂i ) has a horizontal

asymptote as t̂i goes to +∞. Since a0 > {(t̂i − s̃)/u} while a0 < {(ti − s̃)/u}, these

two asymptotes are different, by Lemma 2.6 (ii); this can not happen for a rational

function.

If β is an integer, then the argument in the previous paragraph still produces a

contradiction, by choosing t − s̃ ranging over S with {(t − s̃ − α̃)/u} in (b0−ε, b0+ε)

instead. ��
We can now finally give the proof of Theorem 1.1.

Proof The “if” direction of Theorem 1.1 (i) follows directly from Proposition 2.2. To

prove the “only if” direction of Theorem 1.1 (i), first note that if the Ehrhart function

of Tu,v is pseudo-rational, then by Corollary 2.4 we can assume that α ∈ Q and β ∈ Q.

Moreover, if Tu,v is pseudo-rational, then the Ehrhart function must be P-recursive.

The “only if” direction now follows from Proposition 2.5.

Theorem 1.1 (ii) follows directly from Proposition 2.2.

To prove Theorem 1.1 (iii), we can assume that β and αβ are integers. We can

therefore apply the argument in Proposition 2.2 to conclude that ITu,v
(t) must be

given by (2.3). Now rewrite (2.3) as

σ(t) +
(⌊

t

α

⌋

+ 1

) (

tβ − αβ�t/α	
2

)

. (2.16)

Write k := β/ den(α).

Let z := t den(α) (mod num(α)). Then �t/α	 = (den(α)t − z)/num(α). Hence

we can rewrite (2.16) as

σ(t) + (t den(α) − (z − num(α))(tk den(α) + zk)

2 num(α)

= t2k den(α)2 + t num(α) den(α)k + zk(num(α) − z) + 2 num(α)σ (t)

2 num(α)
.

(2.17)
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The coefficients of t2 and t in (2.17) do not depend on t . So Tu,v is pseudo-integral if

and only if

zk(num(α) − z) + 2 num(α)σ (t)

2 num(α)
= 1 (2.18)

for all equivalence classes z of t modulo num(α). To prove the “only if” part of

Theorem 1.1 (iii), we assume that Tu,v is pseudo-integral. Now choose t such that

t den(α) ≡ 1 (mod num(α)). By (2.18), this gives

k(num(α) − 1)

2 num(α)
= 1, (2.19)

so k = 2 num(α)/(num(α) − 1). Now observe that β and αβ are integers if and only

if β and k are. The only solutions to (2.19) with num(α) > 1 and k an integer are

(3, 3) and (2, 4). Conversely, if num(α) = 1, or (num(α), k) ∈ {(3, 3), (2, 4)}, then

(2.18) holds for all equivalence classes of z. ��
We can also now give the proof that was owed for Example 1.2.

Proof Let (u, v) be such that Tu,v is pseudo-integral. Then uv = α/β. To minimize the

area of Tu,v , we would like to maximize α/β; the maximum occurs when den(α) = 1.

By Theorem 1.1, if num(α) > 1, then (num(α), β/ den(α)) ∈ {(3, 3), (2, 4)}. The

largest possible value in these two cases is α
β

= 1, which is uniquely obtained by the

“golden mean” triangle.

For α = 1, the only possible value of β that could give an equally large α/β is when

β = 1. There are no real numbers satisfying u + v = 1, 1/u + 1/v = 1, however. ��
Remark 2.7 Similar arguments can be used to give another characterization of the

“golden mean” triangle: it is the only pseudo-integral triangle of the form Tu,v where

u and v are quadratic irrational algebraic integers. We omit the proof for brevity.

Finally, we can prove Theorem 1.3.

Proof We argue by contradiction. Assume that the sequence f (n) is P-recursive.

Then, we can apply Proposition 2.5 to conclude that β ∈ Z and αβ ∈ Z. We can then

apply the “if” direction of Theorem 1.1 (i) to conclude that Tu,v is pseudo-rational,

contradicting one of the hypotheses of the theorem. ��

2.2 Properties of Admissible Irrational Triangles

We now prove some properties of the Ehrhart functions of admissible triangles that

mirror properties from the rational case; compare [1, §3], [3]. For simplicity, we state

some of the results for pseudo-integral triangles, although we expect they should hold

more generally. Along those lines, recall from [1, Lem. 3.9] that if Tu,v is pseudo-

integral, then we can write

∑

t≥0

ITu,v
(t)zt = gu,v(z)

(1 − z)3
,
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where gu,v(z) is a polynomial of degree at most 2.

Proposition 2.8 Let Tu,v be admissible. Then the Ehrhart function of Tu,v satisfies

(i) (Reciprocity) If t is positive, then

ITu,v
(−t) =

{

# (tT o
u,v ∩ Z2)

}

+ σ(t),

where the superscript o denotes the interior.

(ii) (Nonnegativity) If Tu,v is pseudo-integral, then each coefficient of gu,v is non-

negative.

(iii) (Monotonicity) If Tu,v and Tu′,v′ are both pseudo-integral, and Tu,v ⊂ Tu′,v′ ,

then each coefficient of gu,v is less than or equal to the corresponding coefficient

of gu′,v′ .

Proof To prove Proposition 2.8 (i), note that the number of lattice points on the bound-

ary of the triangle with vertices (t/u, 0), (0, t/v) and (0, 0) is �t/u	+�t/v	+1, plus

the number of points on the slant edge. We know that

�t/u	 + �t/v	 = tβ − 1,

and we know that ux + vy = t only if x = y. Proposition 2.8 (i) now follows by

subtracting the number of lattice points on the boundary from the formula in (2.17).

To prove Propositions 2.8 (ii) and 2.8 (iii), note that if gu,v(z) = a0 + a1z + a2z2,

then a0 = 1, a1 = ITu,v
(1)−3, and a2 = 3−3ITu,v

(1)+ITu,v
(2) (here, we are implicitly

using the fact that ITu,v
(0) = 1, as can be seen by (2.18).) To show Proposition 2.8 (ii),

we therefore first have to show that ITu,v
(1) ≥ 3, or equivalently, by (2.17), that β/α+

β ≥ 4. If (num(α), β/den(α)) ∈ {(3, 3), (2, 4)}, then this holds, so by Theorem 1.1 we

can assume that num(α) = 1. It suffices to show that β den(α)+β ≥ 4, which follows

immediately since we can never have (α, β) ∈ {(1, 1), (1/2, 1)}. So nonnegativity for

a1 follows. For nonnegativity of a2, we need to show that (β − αβ)/α ≥ −2. If

num(α) = 1, then this is automatic; if (num(α), β/den(α)) ∈ {(3, 3), (2, 4)}, then it

holds as well, which proves Proposition 2.8 (ii).

For Proposition 2.8 (iii), we are given that 1/u ≤ 1/u′ and 1/v ≤ 1/v′. That

a0 ≤ a′
0 and a1 ≤ a′

1 are immediate; to see that a2 ≤ a′
2, we need to show that

β(1/α − 1) ≤ β ′(1/α′ − 1). This follows from 1/u ≤ 1/u′, 1/v ≤ 1/v′. ��

2.3 Examples in Other Dimensions

Here we briefly mention some examples of polytopes in other dimensions that are not

rational, but nevertheless have Ehrhart functions that are polynomials.

In dimension 1, such examples are easy to come by:

Example 2.9 Let P = [u, v] ⊂ R, where u and v are irrational numbers with v−u = m

and m is an integer. Then for positive integer t , IP (t) = tm.

Proof We know that IP (t) = �tv	 − �tu	 = tm. ��
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In higher dimensions, we do not currently know many examples of truly different

character. However, one has:

Example 2.10 Suppose that n ≥ 2 and let Pn denote the polytope in Rn with the

following n + 1 vertices:

(0, 0, . . . , 0), (1, 0, . . . , 0), (0, 1, . . . , 0),

(0, 0, 1, . . . , 0) , . . . ,

(

0, . . . ,
1

u
, 0

)

,

(

0, . . . , 0,
1

v

)

,

where (u, v) satisfies the conditions in Theorem 1.1 (iii). Then IP (t) is a polynomial

in t .

To see this, note that we have:

Pn =
{

(x1, x2, . . . , xn) ∈ Rn | xi ≥ 0, x1 + x2 + · · · + xn−2 + uxn−1 + vxn ≤ 1
}

and

IPn
(t) = #

{

(x1, x2, . . . , xn) ∈ Zn | xi ≥ 0, x1 + x2 + · · · + xn−2 + uxn−1 + vxn ≤ t
}

=
t

∑

i=0

#
{

(x2, . . . , xn) ∈ Zn−1 | xi ≥ 0, x2 + · · · + xn−2 + uxn−1 + vxn ≤ t − i
}

=
t

∑

i=0

IPn−1
(t − i).

So, the proof is immediate by induction on n.

A more interesting example is given in dimension three:

Example 2.11 The polytope with vertices (0, 0, 0), (1/2, 0, 0), (0, 2 +
√

2, 0) and

(0, 0, 2 −
√

2) has an Ehrhart function which is a polynomial.

The proof of Example 2.11 is deferred to Sect. 3.3.

3 Rational Examples

We now give the proof of Theorem 1.4.

Proof Firstly, it is easy to see that gcd(rq, ps) = 1. Let ξm denote a primitive mth

root of unity. By [1, Thm. 2.10], we have

ITq/p,s/r
(t) = 1

2 · rq · ps
(t · pr)2 + 1

2
(t · pr)

(

1

rq
+ 1

ps
+ 1

rq · ps

)

+ 1

4

(

1 + 1

rq
+ 1

ps

)

+ 1

12

(

rq

ps
+ ps

rq
+ 1

rq · ps

)
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+ 1

rq

rq−1
∑

j=1

ξ
− j t ·pr
rq

(1 − ξ
j ·ps

rq )(1 − ξ
j

rq)
+ 1

ps

ps−1
∑

l=1

ξ
−lt ·pr
ps

(1 − ξ
l·rq
ps )(1 − ξ l

ps)

= pr

2qs
· t2 + 1

2

(

p

q
+ r

s
+ 1

qs

)

t + 1

4

(

1 + 1

rq
+ 1

ps

)

+ 1

12

(

rq

ps
+ ps

rq
+ 1

rq · ps

)

+ 1

rq

rq−1
∑

j=1

ξ
− j tp
q

(1 − ξ
j ·ps

rq )(1 − ξ
j

rq)
+ 1

ps

ps−1
∑

l=1

ξ−ltr
s

(1 − ξ
l·rq
ps )(1 − ξ l

ps)
.

(3.1)

Then it suffices to show that

1

ps

ps−1
∑

l=1

ξ−ltr
s

(1 − ξ
l·rq
ps )(1 − ξ l

ps)

is a constant function in t . In fact, writing l = is + u : 0 ≤ i < p, 0 ≤ u < s and

using the fact that rq ≡ −1 (mod p), we have

1

ps

ps−1
∑

l=1

ξ−ltr
s

(1 − ξ
l·rq
ps )(1 − ξ l

ps)

= 1

ps

p−1
∑

i=1

1

(1 − ξ
irq
p )(1 − ξ i

p)
+ 1

ps

s−1
∑

u=1

ξ−utr
s

p−1
∑

i=0

1

(1 − ξ
(is+u)rq
ps )(1 − ξ is+u

ps )

= 1

ps

p−1
∑

i=1

1

(1 − ξ
irq
p )(1 − ξ i

p)
+ 1

ps

s−1
∑

u=1

ξ−utr
s

p−1
∑

i=0

1

(1 − ξ
urq−is
ps )(1 − ξu+is

ps )

(3.2)

Keeping in mind that s|(rq + 1) and gcd((rq + 1)/p, s) = 1, we find that

ps � u(rq + 1), and ps|u(rq + 1)p

for any 1 ≤ u ≤ s − 1. By Lem. 2.1 in arXiv:1307.5493v1, we deduce that

p−1
∑

i=0

1

(1 − ξ
urq−is
ps )(1 − ξu+is

ps )
= 0

for any 1 ≤ u ≤ s − 1. Therefore, we have

1

ps

ps−1
∑

l=1

ξ−ltr
s

(1 − ξ
l·rq
ps )(1 − ξ l

ps)
= 1

ps

p−1
∑

i=1

1

(1 − ξ
irq
p )(1 − ξ i

p)
,
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which is a constant function in t . It follows from (3.1) that q is a quasiperiod of

ITq/p,s/r
(t). ��

Next we prove Corollary 1.5.

Proof First we note that gcd(q, s) = 1. In fact, suppose that d is an arbitrary common

divisor of q and s, then we obviously have d|rq. On the other hand, the assumption d|s
and the condition (1.3) imply that d|(rq +1). It follows that d|1 and so gcd(q, s) = 1.

Next we show that both q and s are quasiperiods of ITq/p,s/r
(t).

By Theorem 1.4, condition (1.3) implies that q is a quasiperiod of ITq/p,s/r
(t). On

the other hand, it is obvious that

(x, y) �→ (y, x)

is a bijection between lattice points in triangles Tq/p,s/r and Ts/r ,q/p. So we have

ITq/p,s/r
(t) = ITs/r ,q/p

(t).

By Theorem 1.4 again, condition (1.4) means that s is also a quasiperiod of ITq/p,s/r
(t).

It follows that 1 is a quasiperiod of ITq/p,s/r
(t). Therefore, the triangle ITq/p,s/r

(t) is a

pseudo-integral triangle. ��

3.1 The CaseWhere u = 1/v

As mentioned in the introduction, for when s = p and r = q, one can also give a

necessary condition for a version of Theorem 1.4. Specifically, we have:

Theorem 3.1 Suppose that p, q are relatively prime positive integers. Then q is a

quasiperiod of ITq/p,p/q
(t) if and only if

p|(q2 + 1) and gcd

(

q2 + 1

p
, p

)

= 1. (3.3)

Proof Clearly, the “if ” part follows from the proof of Theorem 1.4. We now proceed

to the proof of the “only if” part.

Suppose that q is a quasiperiod of ITq/p,p/q
(t). By (3.1), we deduce that

f p,q(t) := 1

p2

p2−1
∑

l=1

ξ
−ltq
p

(1 − ξ
lq2

p2 )(1 − ξ l
p2)

is a periodic function of t with period q. Clearly, p is also a period of f p,q(t). Since

(p, q) = 1, we deduce that f p,q(t) is a constant function of t . It follows from (3.2)

that

1

p2

p−1
∑

u=1

ξ
−utq
p

p−1
∑

i=0

1

(1 − ξ
uq2−i p

p2 )(1 − ξ
u+i p

p2 )
= C
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for some constant C . Keeping in mind the fact that gcd(p, q) = 1, we have

{

ξ
−utq
p : 1 ≤ u ≤ p − 1

}

=
{

ξ
j t
p : 1 ≤ j ≤ p − 1

}

.

So

{

1, ξ
−tq
p , ξ

−2tq
p , . . . , ξ

−(p−1)tq
p

}

=
{

1, ξ t
p, ξ

2t
p , . . . , ξ

(p−1)t
p

}

,

which consists of p linearly independent functions from N to C. Hence we have

p−1
∑

i=0

1

(1 − ξ
uq2−i p

p2 )(1 − ξ
u+i p

p2 )
= 0

for any 1 ≤ u ≤ p − 1. By applying Lem. 2.1 in arXiv:1307.5493v1, we deduce that

p|u(q2 + 1) and p2 � u(q2 + 1)

for each 1 ≤ u ≤ p − 1. Now we can conclude immediately that

p|(q2 + 1) and gcd

(

p,
q2 + 1

p

)

= 1. ��

3.2 The k-Fibonacci Numbers

In Thm. 1.2 of arXiv:1307.5493v1, it was shown that Tq/p,p/q is pseudo-integral if

and only if p = q = 1 or {p, q} = {F2k−1, F2k+1} for some k ≥ 1, where p and

q are relatively prime positive integers, Fm denotes the mth Fibonacci number. We

now further study the relationship between the period collapse problem and recursive

sequences, by proving a similar result, involving two consecutive terms in the sequence

of generalized Fibonacci numbers.

Recall first for any integer k ≥ 1, the k-Fibonacci sequence {Fn(k)}, defined recur-

sively as follows:

F0(k) = 0, F1(k) = 1, Fn(k) = k Fn−1(k) + Fn−2(k), n ≥ 2.

Clearly, when k = 1, we get the Fibonacci sequence. For notational simplicity, for

any k ≥ 1, n ≥ 2, we let

Ik,n(t) := ITFn (k)/Fn−1(k),Fn−1(k)/Fn (k)
(t).

In the following we shall consider period collapse in Ik,n(t). To this end, we need the

following immediate facts:

Fact 1 For any k, n ≥ 1, gcd(Fn(k), Fn−1(k)) = 1 and gcd(Fn(k), k) = 1.
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Fact 2 For any k, n ≥ 1, we have

Fn(k)2 − k Fn−1(k)Fn(k) − Fn−1(k)2 + (−1)n = 0.

Both Facts 1 and 2 can be verified immediately by induction on n. We only give the

proof of Fact 2 here. Clearly, the fact holds for n = 1. Assume n ≥ 2 and Fact 2 is

true for n − 1 and then we have

Fn(k)2 − k Fn−1(k)Fn(k) − Fn−1(k)2 + (−1)n

= (k Fn−1(k) + Fn−2(k))2 − k Fn−1(k)(k Fn−1(k) + Fn−2(k))

− Fn−1(k)2 + (−1)n

= k Fn−1(k)Fn−2(k) + Fn−2(k)2 − Fn−1(k)2 + (−1)n

= −(Fn−1(k)2 − k Fn−1(k)Fn−2(k) − Fn−2(k)2 + (−1)n−1) = 0.

It follows from Facts 1 and 2 that, when n is even, both (p, q) = (Fn−1(k), Fn(k))

and (p, q) = (Fn+1(k), Fn(k)) satisfy condition (3.3). We therefore get:

Theorem 3.2 For any k ≥ 1 and even integer n ≥ 2, Fn(k) is a common quasiperiod

of Ik,n(t) and Ik,n+1(t).

3.3 Tetrahedra

We now give a few higher dimensional examples of period collapse.

Recall first the sequence given by a1 = 2, a2 = 3, a3 = 10, a4 = 17 and

an = 6an−2 − an−4. (3.4)

It follows from Thm. 1.6 (i) in arXiv:1307.5493v1 that for each n ≥ 1, the triangle

with vertices (0, 0), (a2n+1/a2n, 0) and (0, 2a2n/a2n+1) is a pseudo-integral triangle

with Ehrhart polynomial

In(t) = (t + 1)2.

Using this we can show:

Theorem 3.3 Let {an} be the sequence defined by (3.4). Then for any n ≥ 1, the tetra-

hedron Tn with vertices (0, 0, 0), (1/2, 0, 0), (0, a2n+1/a2n, 0) and (0, 0, 2a2n/a2n+1)

is a pseudo-integral tetrahedron.
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Proof Let fn(t) denote the Ehrhart function for Tn . Then for any positive integer t ,

we have

fn(t) = #

{

(x, y, z) ∈ Z3
∣

∣

∣
2x + a2n

a2n+1
y + a2n+1

2a2n

z ≤ t, x, y, z ≥ 0

}

=
�t/2	
∑

x=0

#

{

(y, z) ∈ Z2
∣

∣

∣

a2n

a2n+1
y + a2n+1

2a2n

z ≤ t − 2x, y, z ≥ 0

}

=
�t/2	
∑

x=0

In(t − 2x) =
�t/2	
∑

x=0

(t − 2x + 1)2 = 1

6
t3 + t2 + 11

6
t + 1,

where In(t) denotes the Ehrhart function of the triangle with vertices (0, 0), (a2n+1/

a2n, 0) and (0, 2a2n/a2n+1). ��

We now give the proof of Example 2.11. Note that Example 2.11 is natural to

consider, in view of Theorem 3.3. It is easy to show that

lim
n→∞

a2n+1

a2n

= 2 +
√

2, and lim
n→∞

2a2n

a2n+1
= 2 −

√
2.

Theorem 3.3 states that for any n ≥ 1, the tetrahedron with vertices

(0, 0, 0),

(

1

2
, 0, 0

)

,

(

0,
a2n+1

a2n

, 0

)

and,

(

0, 0,
2a2n

a2n+1

)

is a pseudo-integral tetrahedron with the Ehrhart polynomial

f (t) = 1

6
t3 + t2 + 11

6
t + 1,

which is independent of n. Thus, it is reasonable to expect that the Ehrhart function

of the limiting tetrahedron T with vertices (0, 0, 0), (1/2, 0, 0), (0, 2 +
√

2, 0) and

(0, 0, 2 −
√

2) is also equal to the polynomial f (t), and one can indeed show this by

using Theorem 3.3 plus a limiting argument. We instead give a more direct proof that

does not require Theorem 3.3.

Proposition 3.4 The Ehrhart function of the irrational tetrahedron T with vertices

(0, 0, 0), (1/2, 0, 0), (0, 2 +
√

2, 0) and (0, 0, 2 −
√

2) is the polynomial f (t) =
1
6
t3 + t2 + 11

6
t + 1.
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Proof Let g(t) denote the Ehrhart function of T . Then we have

g(t) = # (tT ∩ Z3)

= #

{

(x, y, z) ∈ Z3
∣

∣

∣
2x +

(

1 −
√

2

2

)

y +
(

1 +
√

2

2

)

z ≤ t, x, y, z ≥ 0

}

=
�t/2	
∑

i=0

# {(i, y, z) | (i, y, z) ∈ tT ∩ Z3}

=
�t/2	
∑

i=0

# {(i, y, z) | (i, y, z) ∈ tT ∩ Z3, y ≥ z}

+
�t/2	
∑

i=0

# {(i, y, z) | (i, y, z) ∈ tT ∩ Z3, y < z}

=
�t/2	
∑

i=0

�(t−2i)/2	
∑

j=0

# {(i, y, j) | (i, y, j) ∈ tT ∩ Z3, y ≥ j}

+
�t/2	
∑

i=0

�(t−2i−1+
√

2/2)/2	
∑

k=0

# {(i, k, z) | (i, k, z) ∈ tT ∩ Z3, k < z}

=
�t/2	
∑

i=0

�(t−2i)/2	
∑

j=0

(⌊

t − 2i − 2 j

1 −
√

2/2

⌋

+ 1

)

+
�t/2	
∑

i=0

�(t−2i−1+
√

2/2)/2	
∑

k=0

⌊

t − 2k − 2i

1 +
√

2/2

⌋

=
�t/2	
∑

i=0

�(t−2i)/2	
∑

j=0

(⌊

t − 2i − 2 j

1 −
√

2/2

⌋

+ 1 +
⌊

t − 2i − 2 j

1 +
√

2/2

⌋)

.

Keeping in mind that

1

1 −
√

2/2
= 2 +

√
2,

1

1 +
√

2/2
= 2 −

√
2,

we deduce that

⌊

t − 2i − 2 j

1 −
√

2/2

⌋

= �(t − 2i − 2 j)(2 +
√

2)	

= �(t − 2i − 2 j)(4 − (2 −
√

2))	

= 4t − 8i − 8 j +
⌊

− t − 2i − 2 j

1 +
√

2/2

⌋

.
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So we have

g(t) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

t

2
+ 1 +

�t/2	
∑

i=0

�(t−2i)/2	
∑

j=0

(4t − 8i − 8 j), t is even;

�t/2	
∑

i=0

�(t−2i)/2	
∑

j=0

(4t − 8i − 8 j), t is odd

= 1

6
t3 + t2 + 11

6
t + 1.

��
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