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ABSTRACT

The unprecedented growth of wireless data
traffic not only challenges the design and evolu-
tion of the wireless network architecture, but also
brings about profound opportunities to drive and
improve future networks. Meanwhile, the evolution
of communications and computing technologies
can make the network edge, such as BSs or UEs,
become intelligent and rich in terms of computing
and communications capabilities, which intuitively
enables big data analytics at the network edge. In
this article, we propose to explore big data analyt-
ics to advance edge caching capability, which is
considered as a promising approach to improve
network efficiency and alleviate the high demand
for the radio resource in future networks. The
learning-based approaches for network edge cach-
ing are discussed, where a vast amount of data can
be harnessed for content popularity estimation and
proactive caching strategy design. An outlook of
research directions, challenges, and opportunities
is provided and discussed in depth. To validate the
proposed solution, a case study and a performance
evaluation are presented. Numerical studies show
that several gains are achieved by employing learn-
ing-based schemes for edge caching.

INTRODUCTION

The proliferation of smartphones has substantially
enriched the mobile user experience, leading to
a vast amount of emerging multimedia services,
including video streaming, Internet and mobile
gaming, social network applications, and so on.
Such dramatic changes of different types of con-
tents result in an interesting phenomenon on data
and content distribution, that is, the same pop-
ular contents may be requested many times at
different time instants but at a similar location,
which has motivated mobile operators to rethink
the current network architecture, and seek more
sophisticated and advanced techniques to bring
contents closer to end users with low latency and
in a cost-efficient way [1]. In this context, moving
contents’ proximity to the network edge and pro-
actively caching popular contents, such as at base
stations (BSs), namely infrastructure caching, or at
user equipments (UEs), namely infrastructureless
caching, are recognized as promising solutions for
enabling data services with low latency and alle-
viating heavy traffic load at cellular backhaul [2].
For example, in a vehicular network, a roadside
unit can cache popular content, such as traffic or

weather information, and distribute it to the vehi-
cles in proximity in infrastructure caching, while
the vehicles can pre-cache and disseminate the
content for other nearby vehicles in infrastruc-
tureless caching. In general, two closely related
problems need to be addressed for edge cach-
ing: content placement and content delivery. The
content placement problem is to determine what,
where, and when to cache, and the content deliv-
ery problem is to find a way to deliver the content
to end users. In wireless networks, content deliv-
ery can be realized via the access scheme, such
as cellular downlink or device-to-device (D2D)
communications. The content placement prob-
lem, however, heavily relies on the accuracy of
the prediction of user requirement and content
popularity, and caching strategy design, which
draws great efforts in network edge caching
research.

To accurately predict the demand for data
content, users’ demand profiles can be tracked,
recorded, and built by leveraging the massive
amount of available data. Moreover, the widely
deployed online social networks have become an
enabler for content sharing and distribution. As a
matter of fact, users who have similar backgrounds
and interests or close social relationships tend to
rank the data content in a similar way [3]. Thus,
the correlation of social and geographic data, as
well as the history data of users, can be utilized
for better prediction of user demand. However,
the large-scale data also poses a major obstacle
for efficiently utilizing an intelligent edge caching
mechanism. Thanks to the recent advances in
the computing and storage of BSs and UEs, big
data analytics [4], for example, machine learning
schemes, can be explored and implemented even
to the network edge to analyze and extract the
features of the collected data from end users and
make more accurate caching decisions.

In fact, as most traditional approaches for
addressing an unexpected growth of data traffic
are becoming ineffective in terms of scalability and
flexibility, big data analytics has been recognized
as an innovative way to manage future wireless
networks and cope with the challenges brought by
the data explosion [4]. In today’s networks, wire-
less data is generated on a very large scale from
various sources, with different quality and trust lev-
els. The induced 4V features (volume, velocity, vari-
ety, veracity) not only pose immediate challenges
to conventional network management operations,
but also bring profound opportunities for estab-
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lishing a smart and intelligent network. In the con-
text of edge caching, as it is unlikely to provide an
accurate caching prediction based on one dimen-
sion of data from one single end user, big data
analytics schemes, in particular, machine learning
mechanisms for large scale multi-dimensional data
from various resources, are indispensable [5]. In
this work, we examine the potentials and challeng-
es of utilizing machine learning in network edge
caching design.

In this article, we first overview the concepts
and architectures of network edge caching and
the need for sophisticated big data analytics
approaches. Then we briefly introduce the big
data analytics schemes proposed for wireless net-
works. Moreover, we leverage machine-learning-
based approaches for enabling big-data-enabled
edge caching, and provide detailed discussions
on its potential for performance gain and future
research directions and architectures to accom-
modate machine learning schemes in caching
development. To validate the proposed solution,
we consider two case studies and present the cor-
responding performance evaluation.

NETWORK EDGE CACHING:
CONCEPTS AND CHALLENGES

Caching at the edge of the wireless network is
a promising way to boost network throughput,
improve energy efficiency (EE), decrease service
latency, and reduce traffic load of the cellular
backhaul. These improvements are rooted in the
fact that popular contents are brought to the net-
work edge to be reused by many UEs.

INFRASTRUCTURE CACHING

As shown in Fig. 1, it is expected that a data cen-
ter/fog node with data storage can be deployed
at the BS level, for example, at existing macro BSs
(MBSs) and small BSs (SBSs). Compared to data
caching or fetching in the core network or even
at a higher level, edge caching at the BSs essen-
tially alleviates backhaul congestion. Moreover, it
is also possible to deploy new dedicated caching
entities with cabled backhaul or dedicated wire-
less backhaul to enable a flexible and cost-effec-
tive method of content distribution. As caching
more data can generally increase the cache-hit
probability and alleviate the required backhaul
capacity, but at the cost of distributed storage, the
trade-off should be investigated. Moreover, as the
BS usually has more powerful computing units, it
is also able to provide an accurate prediction of
the data demand.

INFRASTRUCTURELESS CACHING

Today’s smart devices, such as smartphones and
tablets, usually have large storage capacities that
are typically underutilized. Infrastructureless cach-
ing, that is, caching at the device level, can be
implemented efficiently and effectively by uti-
lizing these storage spaces. By device caching,
the traffic load of the BS and core network can
be further alleviated, and are made available for
other operations [2]. As illustrated in Fig. 1, there
are two kinds of device caching. One is that with
known or estimated content popularity or user
demand, popular contents can be pushed to the
UEs via broadcast or unicast. Such a process can
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FIGURE 1. Caching at the network edge.

also be referred to as content push, self-caching,
or pre-fetching (Fig. 1). In practice, due to the
involved energy consumption, a user may not be
willing to cache contents for others. Therefore,
energy consumption investigation is important
in this context and has been studied in [3, 6]. In
addition, how to motivate users to cache contents
is also of research interest [6].

If the contents are not cached at a local device
but in the UEs in proximity, a D2D communica-
tion link can be established to deliver the contents.
In D2D caching, as shown in Fig. 1, a BS can uti-
lize the available information of data popularity
and user location, and cache popular contents at
given UEs that are willing to share their storage
with others. Recent studies have shown a profound
performance gain in terms of throughput and EE
achieved by D2D caching [6].

RELATED WORKS AND CHALLENGES

The investigation of caching strategies basical-
ly focuses on the core issues: when, how, and
what to cache [1]. In addition, an edge caching
mechanism needs to address another challeng-
ing issue: where to cache. Most existing research
works focus on the content placement and con-
tent delivery problems in edge caching. For the
infrastructure caching design, there are several key
features to be explored, that is, content popularity,
social relations [3, 71, user preference, cache size,
as well as estimation or data uncertainty. For infra-
structureless caching, the authors of [1] discuss the
importance of exploring where, what, and when to
cache and share data. The authors of [6] focus on
extracting the inherent social relations of the devic-
es to encourage D2D caching and pushing. Based
on the above observation, we summarize the key
features, challenges, and approaches of the edge
caching schemes in Fig. 2.

In fact, content popularity, which is one of the
key parameters for caching accuracy, is time-vary-
ing and usually unknown in advance. Moreover,
how to utilize different features of the previously
requested data to improve the tracking and esti-
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mation of timely content popularity is an important
issue. Moreover, the locations of the UEs are also
time-varying and the prediction of spatio-tempo-
ral users’ behavior requires dedicated efforts. All
such data uncertainties may pose great obstacles
for next-step analysis, and also make the proposed
schemes vulnerable to the upcoming data and
device explosion. Therefore, employing machine
learning technology in the design of caching poli-
cies has great potential to improve the system per-
formance in the emerging big data era.

LEARNING FOR CACHING AT THE NETWORK EDGE

In the following, we first briefly summarize the
typical big data analytics schemes in the design
of wireless networks as shown in Fig. 3 and dis-
cuss the machine learning scheme for edge cach-
ing development. It is worth noticing that some
big data analytics schemes may have inherent
connections. For example, some of the machine
learning schemes can be classified as general data
mining schemes or vice versa, and some statistical
modeling schemes can be considered as broad
data mining schemes.

BiG DATA ANALYTICS FOR FUTURE NETWORKS

Stochastic and Statistical Modeling: Using
probabilistic models, stochastic-modeling-based
methods can capture the explicit features and
dynamics of the data traffic and the deployment
of network elements. Commonly used stochastic
models include the K-Markov model (KMM), hid-
den Markov model (HMM), stochastic geomet-
ric model, time series, linear/nonlinear random
dynamic systems, and so on, which have been
applied to address the problems of energy har-
vesting analysis, data traffic control, prediction of
BS sleeping and user association, and so on [4].
Statistical modeling is a simplified mathemat-
ical method to approximate reality and make
predictions from the approximation. Statistical

modeling is a popular tool for channel modeling,
measurements, deployment and traffic analysis,
multiple-input multiple-output (MIMO) systems,
and so on [8].

Data Mining: Data mining focuses on extract-
ing and exploiting the implicit structures in the
datasets. Data-mining-based schemes have been
widely applied to solving the security problems,
such as intrusion and anomaly detection, and
those of self-organizing networks (SONs), such
as self-optimization, self-healing, and many others
[51.

Distributed and Dynamic Optimization: Dis-
tributed optimization techniques, such as primal/
dual decomposition and alternating direction
method of multipliers (ADMM), are useful to
decouple large-scale data transmission and anal-
ysis problems into several small subproblems for
parallel computing so as to relieve both the com-
putational burden at the fog node or in the cloud,
and to alleviate bandwidth pressures at the fron-
thaul/backhaul links.

Machine Learning: The main objective of
machine learning is to establish a functional rela-
tionship between input data and output actions
in order to obtain an auto-processing capability
for patterns of data inputs. Based on whether the
data is labeled or not, machine learning can be
generally categorized into two groups: supervised
and unsupervised learning. In supervised learning,
the goal is to establish a function from labeled
training data (input and output data), while unsu-
pervised learning is to infer a function to describe
the hidden structure from unlabeled data.

In addition, based on how learning is per-
formed, there are several other learning schemes,
such as transfer learning, deep learning, and rein-
forcement learning. In the following, we break
the traditional categorization of machine learning
and introduce some learning schemes that have
been or have the potential to be applied for edge
caching.

MACHINE LEARNING SCHEMES FOR EDGE CACHING

Classification and Regression Analysis: Among
the many useful techniques in supervised learning,
classification and regression analysis are two com-
mon methods that have been applied to context
identification of mobile usage and prediction of
traffic levels (classification) and content demand.
Regression analysis relies on a statistical process
for estimating the relationships among the vari-
ables. The goal of regression analysis is to pre-
dict the value of one or more continuous-valued
estimation(s). Although supervised learning may
obtain relatively good caching decisions, some
pre-knowledge is required to label the data, which
in practice may not be possible when there is not
sufficient information about the users in the net-
work.

Clustering: In unsupervised learning, cluster-
ing is used to identify the different patterns in the
datasets. It can be applied to edge caching design
by clustering numbers of UEs into different groups
based on their behavioral and data request history
information [7]. Then the edge node can predict
the data demand based on the interests or social
relations of the entire group and cache the con-
tent that attracts the most UEs in the group. It can
be found that proximity measure among groups
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should be carefully chosen for implementing clus-
tering schemes and has a great impact on the
algorithm performance.

Reinforcement Learning: Reinforcement learn-
ing (RL) focuses on how a machine or agent
determines the proper actions automatically to
optimize its performance. In RL, reward feedback
is required for the machine to adapt its behavior
from the environment. Basically, RL is about the
decision making process instead of simply learn-
ing from the data. There are some attempts to
apply RL in caching design [9, 10]. Typical exam-
ples are applying Q-learning to perceive the data
request probability or popularity distribution, and
the statistics of the random arrival of data or UEs
by finding the Q-value. The multi-armed bandit
learning scheme [10] has also been applied to
edge caching design by properly designing the
reward of caching.

Transfer Learning: Transfer learning (TL) focus-
es on storing knowledge gained while solving one
problem and applying it to a different but related
problem. In other words, TL allows one to deal with
some problems by leveraging the already existing
data of some related tasks. Generally, by leverag-
ing user-content correlations and the information
from some other domains, such as social networks
or location, the aim of utilizing transfer-learn-
ing-based schemes is to enhance the estimation
of content popularity [11]. However, a TL-based
scheme may face difficulty when source and target
problems have few relations. Therefore, when the
information from another domain is not as related
to content demand, the TL-based scheme may not
provide accurate decisions for caching.

Deep Learning Approach: Deep learning (DL)
investigates a deep, multi-layered, and hierar-
chical architecture of data learning and distrib-
uted representation, where higher-level, more
abstract features are defined by lower-level fea-
tures [12]. Due to its hierarchical architecture,
DL schemes enable automatic abstraction and
feature extraction from the underlying data. As
for edge caching, DL-based schemes are able to
make accurate caching decisions in some cases.
Among DL architectures, we have used a deep
neural network (DNN) for the caching design
and provide a DNN-based scheme for optimiz-
ing content delivery in edge caching. A DNN is
an artificial neural network with several hidden
layers between the input and output layers. Com-
pared to the conventional iterative optimization
methods, the DL-based approach can provide a
good approximation to the optimal content deliv-
ery solution with significant complexity reduction.
However, It is worth noticing that it may require a
large amount of data for training.

Similarity Learning Approach: Generally,
similarity learning has been applied to super-
vised learning. In similarity learning, the learning
machine is given pairs of examples that are con-
sidered similar and pairs of less similar objects.
It needs to learn a similarity function (or a dis-
tance metric function) that can predict whether
new objects are similar. Similarity learning can
be applied to edge caching by identifying the
similarity among UEs with similar data demands
and selecting the UEs who can act as edge cach-
es. However, the system should have sufficient
knowledge of the UEs in order to perform simi-
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tions.

larity learning for accurate decisions. We provide
a case study and examine the effect of similarity
learning below.

DEVELOPING LEARNING-BASED EDGE CACHING:
CHALLENGES AND FUTURE DIRECTIONS

The performance of the edge caching algorithm
heavily depends on the knowledge of content
popularity among a number of users, which is usu-
ally observed in a large area and over a very long
period. However, the temporary content popu-
larity in practice varies largely from time to time
and is usually not in line with certain distribution.
Therefore, knowing temporary content popular-
ity is of importance to design efficient proactive
caching algorithms. Investigating a machine-learn-
ing-based scheme may bring a new way of edge
caching development. However, there are still
many challenges ahead concerning the amount of
data and computational resources, learning pro-
cess, accuracy, efficiency, privacy, and security.
In the following, we introduce the obstacles that
may prevent leaning-based caching design and
point out possible research directions.

CoLD-StART UE AND DATA SPARSITY
The cold-start problem is very prevalent in the
machine-learning-based system. To implement the
learning-based scheme for edge caching, data or
information on the UEs within range is necessary.
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FIGURE 4. Hierarchical edge caching structure.

However, this requirement sometimes cannot be
satisfied due to the mobile and dynamic nature
of wireless networks. When the UEs enter a new
cell, the BS has no sufficient prior knowledge of
the new UEs. Thus, it cannot obtain accurate esti-
mation of the demand and cache the possible
requested data by leveraging machine learning
without sufficient data. There are some possible
solutions for addressing the cold-start UE prob-
lem. One is to explore protocol design for col-
laborative edge caching. By designing protocol,
the edge node can request information from the
central cloud/core network or other edge nodes
regarding the new UEs and execute the caching
decisions. Moreover, the edge node may also
be able to check the cache or its record of the
UEs provided that the security and privacy can be
guaranteed. In addition, it is of profound impor-
tance to investigate effective machine learning
schemes to analyze the limited available data, and
estimate the usefulness of the data, to overcome
the data sparsity.

INTEGRATION OF MACHINE LEARNING AT THE EDGE:
EFFICIENCY AND ACCURACY

In edge caching, the machine-learning-based
schemes face many new challenges concerning
data processing and analysis. Both data sparsi-
ty and high density pose challenges for the
learning and training process. Moreover, some
learning-based schemes can be computational-
ly prohibitively expensive. Therefore, it is worth
investigating whether data preprocessing is
needed to extract knowledge from the raw data
before the machine learning process. In addition,
limited computing resources also pose stringent
constraints on operating the learning process in
a sustainable way. The computing resources may
be insufficient to process the high-dimensional
data and make accurate caching decisions. Thus,
how to tightly integrate machine learning at the
network edge for great consolidation to improve
the intelligent functionalities of the edge, from
both the academic and industrial perspectives,
is significant. Efficient learning schemes for mas-
sive high-dimensional data should be developed
in order to provide accurate prediction of the
cached data at the network edge. Radio resourc-
es, computational efficiency, and EE should be

seriously considered when designing a machine
learning scheme. In addition, investigation of the
trade-off between the consumed resources, such
as computing units, spectrum, and energy, and
accuracy of prediction, is highly practical and vital
for the caching strategy design at the network
edge.

SECURITY AND PRIVACY

In order to provide an accurate caching strate-
gy, a large volume of data should be collected
and processed at the network edge or even at
the central core network. A large amount of data
that are collected for strategy design may be
exposed to active attackers or passive eavesdrop-
pers. Moreover, by applying machine learning
schemes, the outcome and extracted information
contain much sensitive and critical personal infor-
mation, and any leakage can cause serious confi-
dentiality, security, and privacy concerns. Utilizing
the social network also poses security and privacy
issues as the learned data is also from other UEs.
For example, in vehicular networks, the route and
destination of a vehicle may be predicted, and the
map and transportation status can be pre-cached.
However, if such information is not secure, the
safety of the vehicle may face some problems.
To secure the edge caching system, security and
privacy-preserving schemes should be developed
not only in the transmission/collection domain,
but also in the data processing, access, and stor-
age domains, and to both edge nodes and UEs.
In particular, the sophisticated cryptographic pro-
tocol, authentication/access control, secure inter-
face design, anomaly detection, and prevention
mechanisms should be explored.

HIERARCHICAL COLLABORATIVE EDGE CACHING STRUCTURE FOR
A LEARNING-BASED SCHEME

As discussed, the inherent features create many
obstacles toward efficiently utilizing machine
learning approaches in edge caching. For exam-
ple, a UE may not have authority to obtain others’
data and information. Meanwhile, the computing
capabilities of the UEs may not be sufficient to
learn from the data. Thus, the UEs may not be
able to make D2D caching decisions themselves.
Moreover, due to the limited computing resourc-
es at the edge node and the mobility of the UEs,
one single BS or other edge nodes may not exe-
cute the entire learning and caching process.
Based on the above observations, a hierarchical
edge caching structure as shown in Fig. 4 should
be considered for edge caching.

To cope with the problems of caching at the
device level, the caching decision should be made
in the BS domain. The BS can utilize the data (at
both the individual and social levels) from UEs,
execute the learning process, and identify the UE
that should act as the cache for other UEs and the
content in which the other UEs are interested. For
example, as shown in Fig. 4, when considering a
home environment, the UE may be willing to cache
the content and share it with other UEs. In addi-
tion, when the BS acts as the cache (e.g,, in a stadi-
um), it should be able to obtain the information or
data from many UEs, and leverage the computing
capabilities and UE information from other BSs or
core networks to perform collaborative network
caching via learning schemes. Within such a hierar-
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chical structure, the backhaul between the BS and
core networks, and radio resources among the BSs
should be utilized to carry out (abstracted) data
transmission. As such, the limitation caused by data
sparsity and insufficiency computing resources may
be overcome, along with limited radio resources,
the overhead of signaling, and sophisticated algo-
rithm design.

CASE STuDY AND NUMERICAL RESULTS

In this section, two case studies are conducted to
evaluate the learning performance in infrastruc-
ture and infrastructureless caching. We use the
datasets from a realife cellular network, Alexan-
derplatz in the city of Berlin, provided by Euro-
pean project MOMENTUM (publicly available
data: www.zib.de/momentum). The entire serving
area is divided by thousands of pixels. Each pixel
represents a small square area, where the signal
strength between each pixel and BS is derived
from real measurements. The BSs’ locations,
antenna heights, mechanical tilts, electrical tilts,
and azimuths are pre-optimized.

MACHINE/ DEEP LEARNING FOR INFRASTRUCTURE CACHING

In the first case study, we integrate unsupervised
learning, deep learning, and optimization algo-
rithms to edge caching. A sub-area is extracted
from the dataset consisting of seven cache-en-
abled BSs with orthogonal channel allocation.
Each cell serves 100-200 randomly distributed
UEs in its converge area/pixels. The objective is
to optimize the energy consumption in data trans-
mission, such that all the UEs’ file/data requests
can be satisfied in a timely manner. Conventional
optimization algorithms may fail to support online
decision making in real-time systems due to the
high computational complexity in optimal content
delivery. By introducing learning approaches, we
aim at providing an efficient solution with com-
petitive performance. The whole procedure can
be organized in two phases. In the first phase,
we use unsupervised learning (e.g., K-means
clustering) to partition the UEs in each cell into
10-20 clusters based on their channel conditions
and history information. In the second phase,
based on the clustering result, we enumerate all
the groups among the clusters, then selectively
and sequentially schedule these cluster groups
to transmit data to serve UEs. The optimal solu-
tion can be obtained by some iterative algorithms
(e.g., see the linear programming formulations
and the exact algorithms in [12-14]), but the pro-
cess is time-consuming. We then train a DNN,
and let it learn how the optimal decisions behave
with input parameters (channel conditions and
UEs’ file requests). After training, the well-trained
DNN helps us to establish a predicting system to
tackle the most difficult and time-consuming part
of optimization. The resilient back-propagation
scheme is advocated as the learning heuristic for
supervised learning in the DNN training stage.
The DNN'’s output design is tailored. For example,
the DNN returns a K-dimension binary vector.
The kth element of the vector indicates wheth-
er the kth cluster should be scheduled alone or
simultaneously transmitted with other clusters.
Relying on these types of output information, one
can significantly reduce the searching space in
the optimization process, for example, excluding

CPU time (s) in computations

Number of UEs per cell LBS Alg.1 Alg.2 Alg.3
100 (10 clusters) 0.046 0.16 0.15 0.11

150 (15 clusters) 0.052 0.97 0.73 0.48
200 (20 clusters) 0.085 226.7 142.9 82.4

DNN performance in LBS
Training set size 500 1000 2000 3000 5000
Time (s) in DNN training 49 72 11.85 15.6 253
DNN predict accuracy 52 61% 8500 89% 92%
LBS in approximating the optimum (100 UEs per cell)

Training set size 500 1000 2000 3000 5000

Energy (optimum: 336.8J) 481.6 4547 383.9 3671 363.7
Gap to optimum 43% 35% 14% 9% 8%

TABLE 1. Performance of the proposed learning-based solution.

a large number of non-optimal groups. Thus, an
overall efficient solution for content delivery can
be expected.

We compare the performance of the proposed
learning-based solution (“LBS” in Table 1) with
three content delivery algorithms, that is, simplex
algorithm (“Alg.1”) [12], column generation algo-
rithm [13] (“Alg.2”), and a near-optimal algorithm
[14] (“Alg.3"), where Alg.1 and Alg.2 are optimal,
and Alg.3 is heuristic. First, we evaluate the average
CPU time in computations (seconds per instance)
in Table 1. The computing time is counted from
the moment of giving a new input to a well-trained
DNN or to the algorithms until obtaining the final
(feasible) solution. From the results, the average
computation time in LBS is much less than all the
other algorithms, and is insensitive to the network
scale. Second, we evaluate the DNN performance
in terms of training time and prediction accura-
cy. In general, the training time linearly increases
with the training set size. For training a mature
DNN, the process can be completed in around
dozens of seconds. When the training is sufficient
(e.g., training by thousands of datasets), one can
expect a high-quality prediction by the DNN. On
average, over 90 percent of tested cases, the
DNN'’s predicted results are consistent with the
optimal results. Third, we show the LBS’s capabil-
ity in approximating the optimal energy. We use
the 100-UE instances for illustration. Based on the
accurate DNN predictions, LBS is able to progres-
sively improve its energy saving performance in the
training, around 8 percent gaps to the optimum
(336.8 J). The near-optimal solution (Alg.3) has
similar energy saving performance, around 5-13
percent gaps to the optimum, but with much more
CPU time. Therefore, toward online optimization
in edge caching, adopting learning approaches
in content delivery is promising to achieve com-
petitive performance and meanwhile enables less
computation time.

SIMILARTY LEARNING FOR D2D CACHING
In this case, we consider applying similarity learn-
ing for D2D caching design and evaluate the
user satisfaction based on the hit probability. It
is assumed that there are several transmit UEs
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FIGURE 5. Satisfaction level of D2D caching.

(TX-UEs) who act as caches and several receive
UEs (RX-UEs) who ask for data. The BS can uti-
lize the similarity learning to find the social tie
of two UEs, and we define the similarity of the
UEs as their common interests over a large num-
ber of data items. A Kullback-Leibler (KL)-diver-
gence-based metric is used for obtaining the
similarity. After finding the social tie via learning,
we also consider the physical relations, that is, the
link quality of D2D communications. We incor-
porate a one-to-one matching scheme for pairing
the TX and RX UEs, and the final pairing decision
is made based on both social and physical rela-
tions, and the goal of finding the TX-RX pair so
that the social throughput (defined as the com-
bination of similarity ranking and data rate of the
D2D link) can be maximized.

We examine the impact of social relations on
user satisfaction. Figure 5 shows the cumulative dis-
tribution function (CDF) of the satisfaction for D2D
RX-UEs, that is, the similarity of users’ preferences
on the data between the matched D2D pairs. To
investigate the impact of the social relations on
D2D RX-UEs’ satisfaction, we compare our pro-
posed socially aware matching algorithm with the
one without consideration of social information.
In addition, the threshold of social relationships 0
<3 < 1 (alager d indicates that a stronger social
tie is needed for pairing) is also varied to see its
impact. It is shown that when compared to the one
without social relation consideration, the proposed
scheme can obtain better satisfaction for users. It
can also be seen that when & decreases, the sat-
isfaction performance also becomes worse. This is
mainly due to the fact that for a higher threshold,
it is more difficult for D2D TX-UEs and RX-UEs to
form a pair, which in turn achieves a better satisfac-
tion performance.

CONCLUSION

In this article, big data analytics techniques, par-
ticularly machine learning mechanisms, are pro-
posed to advance edge caching capability. We
review and categorize the current edge caching

schemes and introduce big data analytics tech-
niques. The major families of machine learning
algorithms are examined in the context of their
potential applications in edge caching. The chal-
lenges, along with a long-term view of research
directions, and opportunities are provided and
discussed in depth. A hierarchical collaborative
edge caching structure for implementing learn-
ing schemes is also introduced. To validate the
proposed solution, a case study and a perfor-
mance evaluation are presented. Numerical stud-
ies show that several performance gains can be
achieved.
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