This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2877012, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

Obfuscated Built-In Self-Authentication with Secure
and Efficient Wire-Lifting

Qihang Shi, Mark M. Tehranipoor, and Domenic Forte

ECE Department, University of Florida, qihang.shi@ufl.edu,{tehranipoor, dforte} @ece.ufl.edu

Abstract— Hardware Trojan insertion and intellectual property
(IP) theft are two major concerns when dealing with untrusted
foundries. Most existing mitigation techniques are limited in
protecting against both vulnerabilities. Split manufacturing is
designed to stop IP piracy and IC cloning, but it fails at prevent-
ing untargeted hardware Trojan insertion and incurs significant
overheads when high level of security is demanded. Built-in self-
authentication (BISA) is a low cost technique for preventing
and detecting hardware Trojan insertion, but is vulnerable to
IP piracy, IC cloning or redesign attacks, especially on original
circuitry. In this paper, we propose an obfuscated built-in self-
authentication (OBISA) technique that combines and optimizes
both techniques so that they complement and improve security
against both vulnerabilities, while at the same time minimizing
design overheads to the extent that the proposed method does not
incur prohibitive cost for designs of industrial-level sophistication.
Our evaluation on AES and DES cores shows that the proposed
technique can reach security levels more than two times higher,
satisfy all existing layout-based security metrics, while reducing
overheads from hundreds of percents to less than 13% in power,
less than 5% in delay, and zero percent in area, as compared to
best reported performance in existing techniques.

I. INTRODUCTION

Changing economic trends have resulted in a globalized
integrated circuit (IC) supply chain. It is no longer economically
feasible for most IC producers to own foundries and fabricate
ICs in-house. For the majority of the industry, fabrication is
now being performed by contracted foundries and outside the
control of original intellectual property (IP) owners. IP owners
enjoy reduced cost and state-of-art fabrication technologies in
off-shore fabrication, at the cost of reduced control and therefore
reduced trust in the manufacturing process. This has raised
serious concerns on whether trust between an IP owner and such
fabs can be established [1]. An untrusted foundry with malicious
intent could conduct a number of attacks including IP piracy [2],
IC cloning and overproduction [3], [4], and hardware Trojan
insertion [5]. For off-shore fabrication to stay secure, capability
of the IP owner to prevent such attacks must be thoroughly
substantiated.

Split manufacturing has been proposed [6] to address the
threat of IP piracy, cloning, and overproduction. This technique
proposes that an untrusted foundry manufactures the front-end-
of-line (FEOL) part of the IC, and then ships it to a trusted
foundry to deposit back-end-of-line (BEOL) part onto it (see
example in Figure 1). By this arrangement, the untrusted foundry
is denied complete information of the layout, and therefore
prevented from stealing IP information, or committing attacks
that require knowledge of the complete design.

Techniques against hardware Trojan insertion exist in two
categories characterized by how they address the issue: The first

* This work is supported by Cisco Systems, Inc. and under NSF under grant
CNS 1651701.

w b
2]
&=
—— e e c— c— SN e
T3 |NNERNNE (ORNRRARRRRARRRNARRNNRRRAARRNAE
e
=
Untrusted Trusted

—

Polysilicon

Foundry Foundry

Substrate n-Well I| Metal 1 W Metal 2 Metal 3

TR Metal 4 Metal 2 —Metal 1 Via

Metal 3 —Metal 2 Via .

Fig. 1: A sample split manufacturing arrangement. It assumes split
is made between Metal-2 and Metal-1 layers.

Metal 1 —Diffusion Via Metal 1 —Polysilicon Via

Metal 4 — Metal 3 Via

category focuses on detecting Trojans, either by functional veri-
fication, side-channel signal analysis, or by new front-end design
techniques such as design-for-trust [7]-[15]. Techniques in this
category detect existence of hardware Trojans by generating a
signature of the circuit under test (CUT), then classifying the
CUT with this signature. To perform classification, they require
a golden model, i.e. signature of a copy of the same circuit that
is known to be free from hardware Trojans. Unfortunately, it
remains doubtful whether golden models can be acquired for
real world applications. The second category, Trojan prevention
techniques focuses on preventing hardware Trojans from being
inserted into a design, and do not have to deal with process
variation and need for golden ICs. Built-in self-authentication
(BISA) is the first proposed technique to prevent hardware
Trojan insertion in circuit layout and mask [16], [17]. By
occupying all available spaces for Trojan insertion and detecting
malicious removal through built-in self test, BISA is able to
deter hardware Trojan insertion without the requirement of
golden models and free from classification errors introduced
by process variation. Both split manufacturing and BISA are
effective in addressing the threat they are designed to counter.
However, problems remain with both techniques. To begin with,
techniques against IP piracy do not usually consider the threat
of hardware Trojan insertion, and neither do techniques against
hardware Trojan insertion (such as BISA) consider IP theft,
despite both attacks sharing the same adversary. In all likelihood,
untrusted foundries will likely try all attacks in their arsenal,
and IP owners will desire an overall solution that will secure
his design against all of them. Therefore, a complete security
solution to address the threat of untrusted foundry needs to
consider all possible attacks, and both split manufacturing and
BISA are limited on their own.

In this paper, we propose a new approach to an earlier pro-
posed technique called Obfuscated Built-In Self-Authentication
(OBISA) that combines both techniques [18]. The proposed

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2877012, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

technique not only

o prevents weakness from either kind of attacks,
« is secure against attacks specific to BISA,
e is more secure in terms of proposed metrics of split
manufacturing security,
but also

e has drastically reduced time complexity at generating wire

lifting solutions,

o has drastically reduced design overheads of the imple-

mented design,

« provides partitioning techniques to accommodate large de-

signs,
so that the presented technique can be expected to be imple-
mented on industrial-size designs, while keeping overheads in
both design process and design itself manageable.

The rest of the paper is organized as follows. Section II
provides a survey of existing research related to split manufac-
turing security and BISA, elaborates on weaknesses of known
techniques and proposes ways to address these weaknesses using
OBISA, before providing a detailed list of contributions claimed
by the OBISA technique. Section III presents the proposed
OBISA technique in terms of its application flow, how it
integrates with existing back-end design flow, and how each
claimed contribution is realized. Section IV presents experimen-
tal evaluation of the proposed OBISA technique in terms of its
security and overheads. Finally, Section V concludes this paper.

II. BACKGROUND
A. Threat model

The proposed technique is intended to address threats posed
by an untrusted foundry against split manufacturing. These
threats include malicious inclusion (e.g., hardware Trojans), as
well as all possible attacks if the untrusted foundry succeeds
in compromises security of split manufacturing by reverse
engineering BEOL connections denied to him. In other words,
the proposed technique is intended to be secure against Trojan
insertion and as a split manufacturing technique. Since the pro-
posed technique intends to achieve this goal by combining BISA
[16], [17] with wire lifting [19], it also inherits assumptions of
both techniques, e.g. the untrusted foundry is assumed to be able
to access functional netlist as was assumed in [19]'. Note that
this quality of remaining secure even when the netlist becomes
compromised does not make the technique insecure when the
netlist becomes the goal of the attack.

B. Built-In Self-Authentication (BISA)

Built-In Self-Authentication (BISA) prevents hardware Trojan
insertion by exhausting one resource essential to it: white spaces.
Normally, during the placement step of the back-end design of
the circuit, gates in the circuit are placed at optimized locations
based on density and routability [20]. This leaves spaces in the
layout that are not filled with standard cells. If they are replaced
by Trojan gates, no performance loss significant enough to raise
suspicion will likely be incurred, since Trojan gates are rarely
triggered as well.

1) BISA architecture: All inserted BISA cells are connected
into tree-like structures to form a built-in self test (BIST)

This however does NOT assume the untrusted foundry to also have access
to BISA circuitry, as latter is only known well into the layout design, therefore
knowledge of BISA netlist would also mean knowledge of the layout.

BISA circuit under test

. Block 1
:

.
X ! > Block 3 M

Shift In |, Shift Out

TPG
\ 4
ORA

| T

Fig. 2: Structure of BISA

M
I
S
R

= v o

circuitry, so that they could be tested to verify no BISA cell has
been removed. Removal of its member cells will lead to a BIST
failure, so that no attempt to make room for hardware Trojans
will evade detection. As shown in Figure 2, BISA consists of
three parts: the BISA circuit under test, the test pattern generator
(TPG), and the output response analyzer (ORA). In order to
increase its stuck-at fault test coverage, the BISA circuit is
divided into a number of smaller combinational logic blocks,
called BISA blocks shown in Figure 2. The TPG generates
test vectors that are shared by all BISA blocks. The ORA will
process the outputs of all BISA blocks and generate a signature.
TPG has been implemented with Linear Feedback Shift Register
(LFSR) while ORA has been implemented with Multiple Input
Signature Register (MISR) in prior work [17].

The main advantage of BISA over other techniques with
similar objectives is that it has no golden chip requirement.
Since BISA relies on logic testing, process variation is not a
factor either, as compared to Trojan detection techniques based
on side-channel analysis. As an additional advantage, impact
of BISA on the original design in terms of area and power is
also negligible [16], [17]. This is due to the fact that BISA only
occupy spaces originally occupied by decoupling filler cells, and
do not become activated through out life of the IC except once
after fabrication by the IP owner to verify the IC is free from
malicious insertion by the untrusted foundry.

2) Attacks on BISA: The attack most likely to succeed against
BISA is the so-called redesign attack. This attack replaces
original circuitry with smaller functionally equivalent circuitry
to make room for Trojan insertion. Prevention of such an attack
would require anticipation of all possible custom cell designs
that are functionally equivalent to any combination of BISA
cells. That is not likely feasible except for very small BISA
circuitry. Due to the existence of resizing attack, all BISA cells
have to be of the smallest variant in area among standard cells
of the same function, which might make it easier for the attacker
to identify them.

C. Split Manufacturing Security and Limitations

1) Prior works on split manufacturing security: The prior
work in this field [19], [21], [22] is motivated by one major
objective: to establish a sound metric of security for designs
fabricated using various split manufacturing methods. Most
researchers attack the problem from a layout point of view.
Publications in this category often examine irregularities in the
layout and theorize how they can be used by a hypothetical
attacker. Authors in [21] proposed proximity attack, which
simulates an attacker who makes educated guesses on BEOL
connections of open input/output pins in FEOL. This idea

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2877012, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

of proximity attack has received further development in later
publications. [23] proposed to also consider load capacitance
limitations as well as the direction of dangling wires, while [24]
discussed more definitions of proximity based on known router
behaviors. Another study [22] also uses layout information, but
instead of performing hypothetical attacks, it seeks to define
objective measures of the layout that might become useful to
exploit. This leads to the following metrics being proposed:

1) Neighborhood Connectedness (NC) is defined as function

of count of connections per neighbor cell within range R,
ie C(R) __ >~ connections to neighbors in R,
e - > neighbors in R ’

2) Standard-cell composition bias is designed to reflect

imbalance in number of instantiations of specific cells
considered representative of design function?;

3) Cell-level obfuscation measures percentage of standard
cells that has functionality hidden with obfuscation;

4) Entropy measures disorder in FEOL information, and is
givenby £ = — Zf\; p;ilog(p;), where N is total number
of cell types and p; is the percentage of each cell type
among all cells; and

5) Overheads in area and delay are used to measure the cost
of the obfuscation technique.

Security metrics based on layout information are available to
designers through layout editor tools, and have seen recent ap-
plication [25], [26]. Unfortunately, problems remain. First, since
no attack has been reported to have successfully reconstructed
BEOL connection from FEOL clues, no hypothetical attacks and
objective metrics is more convincing than the other. Further,
proposed metrics themselves don’t scale linearly with difficulty
in any conceivable attack, which makes it difficult for designers
to estimate how much protection is enough. And finally, when
multiple metric values are measured, it is very difficult to find
a way to estimate the relative importance among them.

Another research [19] evaluates split manufacturing security
based on graph connectivity of FEOL layout and seeks to define
security with dimensions of the solution space from which the
attacker must pick one correct solution. The proposed metric
operates on Directional Acyclic Graphs (DAG) abstracted from
both the complete layout (G) and FEOL layout (H) (see Figure
3a for an example). In the resulting DAG, gates are represented
with vertices, i.e. colored circles in Figure 3a, whose color
represents models of each gate; and nets are abstracted into sets
of directional edges, each edge corresponds to a driving vertex
and driven vertex pair (represented with arrows in Figure 3a).
Then it computes the number of legal mappings %k that maps
each gate u; in complete layout graph G to a distinct gate v; in
FEOL layout graph H. This number k is defined as the security
of that gate, and the security of the complete layout is defined
as the lowest k of all gates. In the example shown in Figure
3, XOR gates have a security £k = 2 but all other gates have
k = 1, therefore the overall security of the circuit remains at
k = 1. This security metric is often referred to using its letter of
choice k as k-security. A greedy algorithm is then presented to
find a minimal subset of wires in the layout to uplift to BEOL
while satisfying minimum security k, an optimization of split
manufacturing security also known as wire lifting.

The introduction of k-security has two advantages. One,
it is quantifiable, therefore an optimization algorithm can be

2e.g. XOR gates for their correlation with cryptographic circuits, flip-flops for
their correlation with state machines, adders for their correlation with arithmetic
cores, etc.

Netlist

(a) A split manufactured full adder, its FEOL graph H,
and its complete graph G.

Legal Mapping _
of Vertices #0

&

Legal Mapping

>

(b) Both mappings of vertices in FEOL graph H to
vertices in complete graph G are legal.
Fig. 3: Principle of k-security using a full adder as example.

designed with k-security as its objective function to improve the
absolute security of the BEOL connections, instead of simply
preventing every known loopholes. Two, its definition is not
dependent on specific layout, which makes it compatible with
most layout based approaches, and secure even when netlist of
the design is compromised [19]. It is also effective against a
wide spectrum of threats, owing to the fact that few attacks are
possible without making sense of what function gates in the
layout serves.

However, it is not without weaknesses. Its first disadvantage
is its difficulty to compute. k-security definition checks whether
any given FEOL netlist has a security level of k£ by checking
a property called subgraph isomorphism, which makes compu-
tation of the security level of any wire lifting solution NP-hard
[19]. The proposed wire lifting algorithm in [19] functions by
procedurally checking if lifting another wire lowers the security
level, which makes it exponentially more complex. This makes
it extremely computationally costly, and even less scalable than
typical NP-hard algorithms. In addition, the fact that k-security
is defined using graph connectivity also results in lack of
consideration on any leakage of information from FEOL layout.
This understandably deteriorated the performance of the design
in every possible way, as it relies on layout not being optimized
for performance to keep it from leaking security information.
Further, need to boost k makes it necessary to reduce rare gate
models, further restricting design performance.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2877012, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

2) Limitation of split manufacturing: Split manufacturing
prevents all attacks that require complete knowledge of the
whole layout, which also includes attacks against BISA such
as identification of BISA cells. However, not all attacks require
complete knowledge of the whole layout. One example is the
untargeted Trojan insertion [18], a threat discussed in details in
[27]. Untargeted hardware Trojans are capable of degrading the
performance and/or reliability of manufactured ICs, or trigger a
denial-of-service (DoS) in critical control systems [28].

D. Motivation: Implementing BISA with Split Manufacturing

In light of respective limitations of BISA and split manu-
facturing techniques, it makes sense to improve both with the
relative advantage of the other. We henceforth term the com-
bined technique obfuscated BISA (OBISA). The most apparent
advantage of the resulting technique would be the security
against untargeted hardware Trojan insertion, as well as security
against IP piracy and IC cloning, both of which are the primary
strengths of BISA and split manufacturing. Enhanced with split
manufacturing, this new technique can also become secure
against redesign attack that BISA was not able to fully prevent,
since the attacker must first identify which existing cells are
connected together before designing a functionally equivalent
circuit to replace these existing cells. This will be much harder
if the designer lifts the wires that connects them to BEOL,
so that BISA structure becomes indistinguishable from original
circuitry. Security against redesign attacks also reduces the
necessity of using detection based anti-Trojan techniques, and
relaxes prior necessity of only using minimum sized standard
cell variant.

Split manufacturing security in OBISA could also benefit
from BISA insertion. For example, additional cells and FEOL
interconnects introduced to the layout by BISA insertion makes
reaching higher k-security easier, and no longer restricted by
rarely instantiated standard cell models, which has been leading
to dilemma between either eschewing them or suffering from
restricted security level. This makes wire lifting a particularly
suitable candidate. Additional cells and interconnects introduced
by BISA circuitry can help to homogenize distribution of FEOL
features, and proximity based attacks could also be foiled by
occupying white spaces and compensating spatial distribution
of gate types with BISA cells, which makes OBISA secure
when evaluated with layout-based security metrics for split
manufacturing as well. To summarize, a combined OBISA
technique improves from both split manufacturing and BISA
in terms of their respective security metrics.

A few options exist to implementing OBISA, depending on
how it implements split manufacturing. In a previous work [18],
an approach with minimal computational cost was investigated.
In that previous work, obfuscation connections were added
between OBISA circuits and functional circuits, and between
OBISA tree-like structures, while optimization on wire lifting
was kept to a minimum; In this paper, we propose to investigate
the opposite scenario, where level of security is desired, while
keeping it viable for industrial level of integration. As explained
earlier in Section II-C1, we find optimizing for split manufac-
turing security possible with wire lifting optimization for k-
security. We also find it worth investigating because combining
BISA with wire lifting more difficult than simply implementing
both techniques, as additional cells introduced by BISA makes
wire lifting exponentially more complicated as much as they
make it more secure; in other words, combining them requires

novel technique to overcome this non-trivial problem. Therefore,
in this work we present an OBISA implementation with wire
lifting using k-security definition, and investigations on its
performance as well as overheads.

E. Contributions

In addition to theoretical advantages from combining BISA
with wire lifting as was discussed in Section II-D, the presented
technique also claims the following contributions from evalua-
tions with implementations of the technique:

1) A more efficient wire lifting algorithm: By proposing a new
set of solution constraints that are stronger than subgraph
isomorphic [19], we were able to convert the wire lifting
problem into a binary programming problem. In doing
so, we developed a faster algorithm to find provably
optimal® wire lifting solutions. Experiments on Circuit432
benchmark circuits yielded 75% to 155% of edges kept
at 1.74 x 10°X to 1.06 x 10X speed improvements over
previous wire lifting algorithm.

2) A comprehensive application framework on partitioning
design into manageable layout: Existing wire lifting al-
gorithm is limited in size of layout it can process due
to weakness in speed. The proposed fast wire lifting
algorithm increased the size of layout it can realistically
process by one to two orders of magnitude. In order to
ensure applicability to industrial level of applications, we
have investigated ways to partition designs, and proposed
two approaches - one based on logic hierarchy, the other
using simple geometry - that complement each other to
cover all possible scenarios. Implementation with said
partitioning techniques proved to be successful on designs
up to 385,001 gates large.

3) Pin-based definition of edges: An edge in [19] was defined
based on its driving and driven vertices, which may not
always be unique. With a wire lifting algorithm with
greatly reduced time complexity, we are able to define
edges using their driving and driven pins that eliminates
this problem.

4) Cell model compensation to further improve security level:
Unlike BISA, the proposed OBISA allows all standard cell
models to be used. This allows us to compensate rarely
instantiated gate models so that wire lifting restriction on
rare standard gate models can be relaxed, meanwhile im-
proving maximum achievable security level k. In doing so,
we simultaneously improve security and reduce overhead.

5) Secure in terms of almost all known layout-based secu-
rity metrics: Instead of scrambling layout at the cost of
prohibitively high performance overheads as was opted
in [19], in this presented approach of OBISA we perform
normal performance-oriented optimizations typical of con-
ventional design flows, and then show the resulting layout
meets most known layout-based security metrics®.

III. OBFUSCATED BUILT-IN SELF-AUTHENTICATION VIA
WIRE LIFTING

The proposed approach to implement OBISA is characterized
by a major departure from its predecessor in [18]: it uses wire

30ptimum defined the same as the one used in [19], i.e. minimizing number
of edges lifted.

4With the sole exception of cell-level obfuscation, which is beyond the
scope of wire lifting or BISA, and can be addressed by combining dedicated
obfuscation techniques with the presented technique.

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

lifting as its principal strategy to ensure split manufacturing
security. A most rudimentary implementation is to simply insert
BISA cells, and then solve for a wire lifting solution. This
would allow most benefits by simply combining BISA with
split manufacturing as described in Section II-D. However, it is
possible to further improve OBISA security by modifying BISA
insertion. This is illustrated in an example shown in Figure 4.

Consider the full adder as shown in Figure 3a, and graph for
its FEOL layout. It is apparently impossible to distinguish the
two XOR gates (represented by vertices shaded in red slash)
in FEOL layout. XOR gates in this full adder have a k£ = 2
security. If the same can be said for all other gate models, the
FEOL layout would have £ = 2 security. Unfortunately, it is
impossible for the full adder to reach £ = 2 simply because it
has only one OR gate.

There are a few ways to address this issue. In [19], only
3 to 7 gate models are allowed during design synthesis, in
order to prevent rare gate models from restricting wire lifting
optimization. From a designer’s point of view, however, this
approach seriously impacts the performance of the original
circuitry in area and power. For example, restricting Circuit432
to 3 gate models almost triples total cell count (from 115 to
282) and doubles total power and area (1.7725 x 10~% Watt,
1205.45 pum? to 3.4955 x 10~* Watt, 2506.75 pum?).

An OBISA technique that performs wire lifting does not have
to submit to this restriction, because the number of instances of
rare gate models can be compensated by inserting OBISA cells.
This is illustrated in Figure 4. In this example, OBISA cells
and interconnects are added, shown in dashed lines. We can see
from the example how the bottleneck in the previous example -
the single OR gate - is compensated with OBISA cells. In the
shown wire lifting example, £k = 2 security is reached; If we
consider a more extreme solution, e.g. lifting all wires to BEOL,
at maximum the layout could reach k£ = 4 security rating.

OBISA insertion does not impact timing, because they are not
connected electrically to the functional circuit. It does not impact
dynamic power because it is not going to be active during the
design’s functional mode. However, if the functional circuit is
very small and number of rarely-instantiated standard cell mod-
els is large, white spaces in the layout might not be sufficient.
In our experiment, compensating unrestricted Circuit432 layout
using OBISA insertion to at least 10 cells per model required us
to lower layout utilization to 0.42, which in turn increased area
to 1205.45 ym? and power to 1.9549 x 10~* Watt. This becomes
less of a problem when applied on larger layouts. For example,
in one_round submodule of 256 bit AES core, utilization ratio
at 0.6 would allow us to compensate to at least 209 cells per
model.

A. Time Complexity of Wire Lifting

Above discussion highlights an obstacle of simply combining
BISA with wire lifting: The computational complexity of wire
lifting algorithm, which will suffer exponentially if additional
OBISA gates are added to its consideration.

Determining the security of any wire lifting solution has time
complexity NP-hard. There are solutions with trivial difficulty
to verify: for example, lifting all wires. However, most of
these easy solutions demand a very high percentage of wires
lifted to BEOL, which can cause overhead in timing and loss
in fabrication yield due to increased difficulty of matching
more vias. Therefore, a satisfactory wire lifting algorithm needs

Netlist Graph of FEOL circuit

C———BEOL nets 3235_ f— k=1 @k:l
M
= jjli»—'_AE 4 Wire lifting %
;—,—‘ESP-D alone M
F20—FEOL nets

F=5 OBISA nets 3 k=2
—=—BEOLets—j3p- — 2. gkz:
ke E \

: il OBISA N
=gl B %@
FEOL[nets) I_ RS- r;:iS?-D @“W@ @
—! "W L % 5%
P g I B {.}_I\;:__“’@I%?
— iE 2 k=2

I
-
OBISA nets

-9 osisa -
- @ Original Circuitry

gate vertex

Net/wire

Fig. 4: Example: Due to OBISA insertion, wire lifting optimization
on the same full adder can achieve higher k-security rating..

to minimize the number of wires lifted as its optimization
objective.

So far, only one wire lifting algorithm based on this definition
has been proposed [19], and it is based on greedy algorithm.
Simply put, the algorithm (shown in Algorithm 1, henceforth
referred to as “greedy wire lifting”) starts from a wire lifting
solution E’ where all edges are assumed to have been lifted
(i.e. E' equals to all edges in complete graph F[G]), then
iteratively chooses each edge e among current £’ to add back
to FEOL and checks the resulting security o of lifting solution
E’. If the maximum resulting security s = max{c(E'}) > k
the algorithm adds its corresponding edge e to current solution
E’ and continue searching; otherwise it concludes with current
solution E’. There are two problems with this approach: it is

Input: All edges in graph G: E[G]
Requested security level: k
Output: Edges to lift: £’

1 begin

2 E' + E[G]

3 while |E’| > 0 do

4 s+ 0

5 foreach e € E’ do

6 E' + E' — {e}

7 if o(E’) > s then

8 s+ o(E")

9 ep < e

0 end

1 E' «+ E"U{e}

2 end

3 if s < k then

4 | return E’

5 end

6 E' + E' —{ep}

7 end

18 return £’

9 end

Algorithm 1: Greedy wire lifting algorithm [19].

not efficient, and it is not optimal. It is not optimal because
the adding one wire back to FEOL will very likely preclude at
least one other wire to be added back, and therefore limiting
solutions the algorithm will be able to reach. Hence, the wire
lifting solution available when choosing each wire to add back
will be increasingly more reliant on choices made in earlier
steps. If we choose to investigate all possible branches of the
problem, the time cost will also be exponentially amplified. It
is also not efficient because for each wire to be added back,
security impact of adding each wire back to FEOL wires need

Indistinguishable if edges not
directly connected to it

are ignored i
0./ B . o0 _AF
@ .0 | _as SV e = & @

Y

(b) Two among many possible
(@) Uniquely identifying two subgraphs with more than two
marked vertices in two sub- interconnected vertices if ver-
graphs will need complete infor- tices are allowed to connect to
mation of all vertices and edges more than one edge.
in each subgraph.

k
" |

NER' |

- =5 - /7
JW@}___1
|

|

| — |— Allow these vertices.

— Eliminate these vertices.

(c) Constraint: only allow vertices connected to at most one edge.

Fig. 5: Edge types and vertex types: How to constrain the wire
lifting problem to make it easier to solve.
to be determined. If we assume the number of wires kept to be
a fraction of the total number of wires - a relationship usually
holds in experiments - we see the complexity of the greedy
wire lifting algorithm to be exponential with regard to the total
number of wires in the design.

Unless a more efficient wire lifting algorithm is found, OBISA
insertion will exponentially complicate the problem of wire
lifting for exactly the same reason it aids the process.

B. Fast Wire Lifting

We have established two facts: One, that we know with
mathematical certainty that even verifying k-security of any
given wire lifting solution is NP-hard; Two, that we know with
certainty that a wire lifting OBISA will need a more efficient
wire lifting algorithm. In this subsection, we demonstrate that
our proposed wire lifting OBISA technique can be efficient
while satisfying those two seemingly prohibitive requirements,
by providing an alternative approach to finding solutions to the
wire lifting problem.

1) Binary Programming (BP)-based wire lifting algorithm:
Since the problem of verifying k-security of any given wire
lifting solution cannot be efficient, an efficient solution must
not consist of it. It is easy to see that any wire lifting solutions
can be represented with a n.-bit binary vector, where n. is the
number of edges in the complete graph. If we can find a set
of constraints so that all wire lifting solutions that satisfies said
constraints also satisfy level k security, the problem of finding
optimized wire lifting solutions becomes a Binary Programming
(BP) problem, i.e.:

. . Ne
maximize) ¢ x;
subject to Ax < B,

T (1

where = (z1,22,...,Zpn,) ,
Vie{1,...,ne},x; € {0,1},

Ax < B is the set of constraints we have to find.

Now the problem becomes how to find such a set of con-
straints. k-security is about how many different vertices in
complete graph can be mapped to the same vertex in FEOL
graph. An apparent special case that satisfies this definition is
that if s vertices of the same color (i.e., gates of the same
model) in FEOL graph are indistinguishable from each other,
we may say that k = s for those s vertices; or more generally,
for each group of vertices in FEOL graph that have a common
identifiable feature that makes them distinct from other vertices
and indistinguishable from among themselves, the security &k of
each vertex in this group equals to the number of vertices in
this group s.

Vertices in a DAG have only three identifiable characteristics:
its own color, the edges connected to it and vertices connected to
these edges, and edges as well as vertices further connected. It is
easy to see the third characteristic is most likely computationally
the most complex: a vertex can be connected to a large number
of vertices. This is obviously computationally complex and
needs to be excluded. Satisfying constraints have to function
with only information of the lifting decision on the edge to be
decided only. This forces us to restrict each vertex to keep at
most one edge (shown in Figure 5c), since as shown in Figure
5b, any combination of more than one edge per vertex will
allow existence of subgraphs with more than two interconnected
vertices.

All vertices in a wire lifting solution that satisfies this con-
straint will either be completely isolated (i.e., all edges lifted)
or form a pair with its driving/driven vertex. The two-vertices-
pair scenario has a very useful property for our purpose: that it
is uniquely identified by the edge that connects both vertices,
and the edge can be uniquely identified with only three pieces of
information: the color of the driver vertex, the color of the driven
vertex, and the direction of the edge. Based on this property, the
set of constraints we need Axz < B can be written as:

1 edge e; is of type t;
0 otherwise
1 edge e, is of type t;
0 otherwise

Ant,axnew Z k: Q5 = {

Bnt,dxnem S 07 bi,j = {

2
1 edge ¢; is connected
Cnvxngw < 1, Cij = to vertex v;
0 otherwise
3)

Ne — Dy xn,® >k d;; is the number of vertices of
reference 4 that edge e; is
connected to.

“)
Where £ is the requested security level; ¢; is a distinct type of
edge defined using its driver vertex color, its driven vertex color,
and its direction; ny,q is the total number of allowable edge types
(i.e., standard cell models of both driving and driven cells of an
edge); ny 4 is the total number of edge types to be eliminated; n,,
is the total number of vertices; n. is the total number of colors
of vertices (i.e., number of standard cell models that exist in the
layout). Equation 2 constrains edges so that each distinct type
of edge either has at least k indistinguishable instances, or are
completely lifted to BEOL. The latter kind of types of edges can
be determined by tallying total number of edges by types in the
complete graph and banning types with fewer than k instances.
Equation 3 constrains the lifting solution to leave at most one
edge per vertex. Equation 4 constrains vertex colors to have at

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2877012, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

least k isolated vertices (i.e., vertices with all edges lifted).

One final piece in this puzzle is for the constraints to fit all
possible scenarios. Constraints as shown in Equation 2 and 4
means at least one solution exists that satisfies all named edge
types have at least &k indistinguishable instances, and each color
of vertices to have at least k vertices with all edges lifted.
In reality, desirable solutions do not need to satisfy all these
requirements. Some edge types that have more than k& instances
in the complete graph may have to be all lifted to ensure all
others having at least k instances, or some colors of vertices
may all keep an edge, leaving no need to lift all edges of at
least k vertices of each of these colors.

To adapt our constraints to these different possible scenarios,
we convert affected constraints into so-called either-or con-
straints by introduce a few extra variables y and z to choose
between the alternatives. The complete description of the BP
problem therefore becomes Equation 5. This is the complete set
of constraints for the BP-based approach of fast wire lifting.

maximize Y ¢

subject to

A7Lt7a><n6$ 2 k - Mya
Ant,axncw S M(y - 1)7
Bnt,anefL’ S 07

Cnvxnem S 17

Ne — Dy xn, @ > k+ M(z—1)
Ne — Dhpxn, T < Mz

Viv Ty Yi, i € {05 1}5

where x=(r1,29,...,2,.)"
Yy = (y17y27 ceey ynt,a_lf
z=1(21,22,..,2n,)
a b — 1 edge e; is of type t;
B 76T 71 0 otherwise

1 edge e; is connected
to vertex v;
0 otherwise
d; ; is the number of vertices of reference
¢ that edge e; is connected to.

Cijj =

(&)
Here we delineate the process of producing a set of constraints
with a real world example. Consider a netlist to be lifted for
security k. We first identify its vertices v = (vy,va,...,v,,) 3
each vertex v; refers to one gate.Based on the standard cell
model of the gate (referred to as “reference” in Equation
5), the type t(v;) of vertex v; can be determined. Based
on identified vertices, edges of the netlist can be defined as
e = (e1,ea,...,e,.)", where each edge e; is defined as a pair
of vertices (v;0,v;1) and has a direction from v;; to v;o. Similar
to vertices, type of edge e; can be determined as (¢(vo), t(vi1)).

We can thus begin constructing equations to determine x =
(xl,xg,...,xne)T, whose each binary element x; represents
whether edge e; should be kept in FEOL part of the layout. We
immediately know some (n = n;) types of edges are fewer
than k; they all have to be eliminated. We then construct a
binary matrix B whose elements b; ; denote whether edge j
is of edge type i € {1,...,n.4}, i.c. one of the edge types
that need to be eliminated. This matrix B constitutes the third
constraint By, ,xn, T < 0. Conversely, some other (n = nyq)
types of edges have more instances than k, and we can construct
another binary binary matrix A whose elements a;; denote
whether edge j is of edge type ¢ € {1,...,n.,} that can be
kept. This matrix A constitutes the first and second constraints

A, xn® >k — My, Ay, xn.x < M(y — 1), where M
is a natural number much larger than k, and y is a vector of
supplemental variables, whose element y; denotes whether a
corresponding edge type ¢ is to be kept in FEOL.

A further consideration is to not let any vertex become
connected to more than one edge; this is ensured by constraining
the sum of variable x of all edges connected to any same
vertex to not exceed 1 for all vertices, as expressed in the
fourth constraint C),, xn, & < 1. Finally, no type of vertices
should have less than k vertices with 0 edge remaining in
FEOL, or have less than k vertices with 1 edge remaining.
This results in fifth and sixth constraints n, — Dy, xn, € >
k+M(z—1),n.— D, xn, & < Mz and concludes construction
of the binary programming problem.

2) Pin-based definition of edges: The prior definition based
on cells impacts both security and/or difficulty of implemen-
tation in a real industrial design. First, it disregards the actual
difference between pins. In a cell-based definition, two edges
might both be leading from an inverter to an AND vertex, while
in the netlist one wire is connected to the A pin and the other
is connected to the B pin of their respective AND gate. This
indicates actual number of indistinguishable wires may be much
lower than the algorithm reports, which constitutes a leak of
information.

Another problem is with multiple output cells, a most com-
mon example is flip-flops. Typical flip-flops offer two outputs,
Q and QN, where one is the inverted signal of the other. A cell-
based definition will be unable to distinguish different wires in
this scenario and treat all of them as the same edge.

It is possible to modify the greedy wire lifting algorithm to
work with pin-based definitions, but this will further exponen-
tially increase already extremely long processing time. On the
other hand, the proposed BP-based wire lifting algorithm can
accommodate this with superior processing speed. Therefore,
on top of being faster, provably optimal, the proposed BP-based
algorithm is also free from a leak of information and can be
applied to designs that uses gates with multiple outputs.

C. Implementation Flow

The proposed BP-based approach of wire lifting greatly
alleviates the time complexity of wire lifting solution generation.
However, binary programming remains an NP-complete prob-
lem.Therefore, implementation of proposed OBISA technique
needs to provide solution to two specific problems:

1) Implementing the proposed OBISA technique on a

reasonably-sized layout;

2) Converting any given design to layouts of the first kind.
For the first problem, we show a layout design flow modified
from the original BISA implementation flow in Section III-C1;
For the second problem, we propose to divide the layout along
logic module boundaries and apply OBISA flow on each logic
modules, shown in Section III-C2; in corner cases where this
is not realistic or efficient, we present an alternative approach
where the layout is divided using geometrical boundaries, and
shown in Section III-C3.

1) Implementation flow on a reasonably-sized layout: The
proposed OBISA flow is shown in Figure 6. Boxes shaded with
blue slashes represent procedures already present in BISA flow,
while boxes shaded with red crosses represent new procedures
in this approach. Our need for security requires gate type
compensation as well as random placement for maximal obfus-
cation. Cells of the rare gate models are placed before others to

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

. P Unused Space Compensation Cell
Netlist Floorplanning Identification Placement
I
Placement BISA Cell Randomized BISA
Placement Cell Placement
Choose Wires to lift;
Clock Tree BISA Cell Routing to BEOL for
Synthesis .
Obfuscation
GDS1I Signal Routing Constrain routing to Route FEOL wires,
7 7 BEOL
v
Procedure present in New flow
classic BISA flow .
Classic BISA
flow
Procedure present in Both flow

new flow

Fig. 6: Implementation flow of proposed OBISA technique on a
reasonably-sized layout.

compensate gate model distribution. The locations of these gates
are chosen randomly to reduce possible leakage of information
in FEOL layout; for the same purpose, remaining white spaces
are filled with BISA cells with random gate models. After that,
classic BISA cell routing is performed. Before wire routing,
an optimized wire lifting solution is found for the complete
layout, using the BP-based technique we have discussed in
Section III-B1. The rest of the design flow does not differ from
conventional back-end design flow.

One sample result of this procedure is shown in Figure 7.
In this example, Circuit432 benchmark from ISCAS’85 is used,
and split is performed between M3 and M4 layers. The layout
without wire lifting shown in Figure 7a shows most wires in
purple (e.g., wires connecting core area to virtual pins), which
is the color assigned to M2 layer, while the layout with k = 46
wire lifting shown in Figure 7b shows most wires in green (e.g.,
wires connecting core area to virtual pins), which is the color
assigned to M4 layer. Compared to similar layout presented in
[19], layout in Figure 7b does not appear to have significantly
more congestion than layout in Figure 7a, likely due to the fact
that placement optimization is not done blindly and therefore
does not suffer from wire length overhead likely caused by an
under-optimized placement.

2) Hierarchy-based partitioning: Designs larger than tens
of thousands of gates likely need to be partitioned for wire
lifting to be efficient. In this subsection we illustrate reuse of
partitions already existing in a hierarchical layout design flow
by simply performing OBISA insertion and wire lifting to each
logic modules it instantiates. A flow diagram of the proposed
hierarchy-based partitioning method is shown in Figure 8. In
order to manage the amount of computation needed for wire
lifting, designs are first partitioned into hard macros (Figure 8).
If recurring circuit subgraphs is discovered, they can also be
extracted into logic modules and follow the same routine.

3) Geometry-based partitioning: In addition to size, real
industrial-scale designs pose unique challenges to efficient wire
lifting which require further attention. For example, some of

(a) Circuit432 layout without (b) Circuit432 layout using k =

wire lifting optimization. 46 wire lifting solution.

Toplevel

layout

Toplevel

Netlist

Fig. 7: Circuit432 layout, with and without wire lifting optimization.
ﬂ | Layout !

GDSIIJ

Fig. 8: Hierarchical wire lifting: Apply OBISA flow to each logic
module, then integrate into final GDSII.

Design

Netlist OBISA Flow

these challenges may include:

« Numbers of instantiations among logic modules differ. This
leads to the need of compensation in gate types and security
levels among non-uniformly instantiated modules.

« Some logic modules are consisted of few types of gates.
This leads to need to hide this unique composition with
OBISA cells.

e Some logic modules can be too large; some other logic
modules may be too small to provide enough white space.

Some of these challenges can be addressed with clever ap-
plications of constraints and partition rules. For such challenges
the following arrangements are made in our implementation:

« Use gate types from other logic modules with more types of
gates for OBISA gate type compensation on logic modules
with fewer types of gates, in order to hide the standard-cell
composition bias present in such modules.

o Use lower utilization ratio for very small modules to
accommodate OBISA cells.

o Assign lower security level k for more frequently instanti-
ated modules.

However, it remains a possibility that a logic module may be
too large and too indivisible. To prepare for such eventualities,
we present a simple geometry-based partitioning scheme to
complement hierarchical-based partitioning.

This geometric partitioning simply partitions cells in the
layout into n X n rectangular regions based on their location, as
shown in Figure 9a. Wire lifting can then be performed for each
partition with updated security level divided by the number of
partitions.

This method of partition leads to two more questions to be
answered: One, how to determine the wire lifting solution of
wires connecting cells belonging to different partitions; Two,
edges that are not rarer than the security level of the module
may become rarer than that of each partition, whose lifting
should be decided independent from partitions. To address the
first problem, we introduce the concept of fringe cells, defined

Partitioned (b) Partitions updated to include
DES core fringe cells.

(a) Example:
toplevel of a
geometrically.

Fig. 9: Layout partitioning for simplified wire lifting.

as cells belonging to other partitions that are connected to
cells of current partition through edges. They, along with edges
connecting them to cells in current partition, will be included
when solving wire lifting problem of each partition. If any edge
connecting a fringe cell is kept in any partition, the constraint
representing that fringe cell in Equation 3 is changed to zero
for all future partitions so that no other edge leading to that cell
will be kept. We term edges featured in the second problem as
rare edges and pulled from the consideration of each partition,
and decided globally after solution of all partitions are found.
To avoid solution of each partition and solution of rare edges
from affecting solution of the other, constraints from Equation
3 and 4 involving rare edges are modified so that no matter the
rare edges are lifted or kept, no cell will have more than one
edges kept, and isolated gate counts of each gate model will be
at least as large as security level of that partition. Specifically,
constraints of cells connected to rare edges become

1 rare edge ¢; is
connected to vertex v;

0 otherwise

Ne — Dnmxu,ﬂ?Z k + nncrgxl

C’ T <0,c ;=

Nyre XMNe — 7]

(6)
Where element d; ; of matrix D, «n, is the number of
vertices of reference ¢ that edge e; is connected to, 1y, (number
of rows of matrix C}, .,) is the number of vertices connected
to rare edges, ncre (number of rows of matrix Dy, xn,) is
the number of gate models that have vertices connected to rare
edges, and element n; of vector m,,x1 is the number of
vertices of gate model ¢ that are connected to rare edges. A
diagram that elaborates on the entire process of partitioned wire
lifting is shown in Figure 10.

Find connected
>~ fringe cells in other;

-

\\\\\\\

partitions
‘ owewnsreneprennrnnnnl
Cells present I
in layout L] Cells in a 7
partition 5W Solution

\

\\\\\\\\

(/ﬁ

277
4

Fig. 10: Flow of partitioned wire lifting.

v

v

Rare cells ——

\\

TABLE I: Number of nets and gates of used benchmark circuits
at RTL stage

Benchmark | c432 c880 c1908 c3540
#RTL nets 499 588 766 1,571
#RTL gates | 263 528 733 1,521
Benchmark | ¢5315 | c6288 des aes
#RTL nets | 2,379 | 6,688 | 38,523 | 487,489
#RTL gates | 2,201 | 6,656 | 34,264 | 448,136

IV. EXPERIMENTAL EVALUATION

In this section we present experimental evaluation results to
support our claims about the proposed technique, as well as
explore implementation costs in terms of timing, area, power,
and implementation time. Specifically, the following topics will
be discussed:

1) Comparison of processing time and number of wires kept
between by greedy wire lifting algorithm and proposed
BP-based wire lifting algorithm;

2) Comparison of wire lifting performance between cell-
based and pin-based definition of edges;

3) Evaluation of security of layout protected using proposed
technique, in terms of known layout-based split manufac-
turing security metrics;

4) Demonstration of application on designs of industrial
dimensions and evaluation of design overhead in terms
of area, power, and path delays.

Results presented are collected using following benchmark
circuits: Circuit432 from ISCAS’85 benchmark suite, DES
and AES crypto-cores from www.opencores.org. Additionally,
¢880, ¢1908, ¢3540, c5315, ¢6288 from ISCAS’85 circuits are
processed to investigate how fast the time complexity climbs as
layouts become larger. Their respective sizes are shown in Table
I. Note that these figures only reflect the number of gates when
their RTL design are uncompiled, and may reduce depending
on leeway given to synthesizer. .

Circuit432 is used to evaluate performance of proposed
technique with regard to existing greedy wire lifting approach
since it was used for this purpose in [19]. The small size of
this benchmark circuit poses a particular challenge to OBISA
insertion, which is not enough white spaces are left when normal
floorplanning density is used, forcing a trade-off between area
overhead and restriction on number of standard cell models.
To study this limitation, two netlists of Circuit432 benchmark
circuits are synthesized: one where only 3 standard cell models
are allowed, and one without such restriction’. DES and AES
cores are used in demonstration of application on designs of
large scale and evaluation of design overhead. For each synthe-
sized netlist, three layout are created: Ctrl is the control group
where neither OBISA insertion nor wire lifting is performed;
OBISA-Only has OBISA cell occupying white spaces, but
routed normally; OBISA-Lifted underwent both OBISA cell
insertion and wire lifting.

Proposed BP-based wire lifting algorithm is implemented by
first generating the problem formulation using a script within the
layout editor and then solved with a third-party integer linear
programming solver. The presented results are collected using
Synopsys IC Compiler and/or Design Compiler environment
for the script, and solved with SCIP Optimization Suite [29].

S5For Circuit432, not restricting standard cell models lead to 12 standard cells
being used.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2877012, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

MiniSat, as was used in [19], is used as the Boolean satisfiability
problem (SAT) solver in greedy wire lifting algorithm.

A. Performance of BP-based Wire Lifting Algorithm

All comparisons for the purpose of comparing processing
speed were made on Circuit432 benchmark circuit synthesized
with only 3 standard cell models. The definition of edges used
in proposed BP-based wire lifting algorithm is also restricted to
cell-based definition. Such restrictions were made to accommo-
date the greedy algorithm based wire lifting. Both evaluations
took place on same server computer featuring 24-core 1995.216
MHz Intel CPUs, 384 GB total memory at 1333 MHz.

From Table II, we can see even under favorable circum-
stances, the greedy algorithm based approach is inferior in
terms of processing speed by 1.74eb to 1.08e6 times. Another
observation is that while the BP-based approach does not appear
particularly affected by requested security level k, high security
level k significantly impacts the time taken by greedy algorithm
based approach. This is likely resulting from the difference both
approaches approach security levels. For the BP-based approach,
a higher security level means only a larger integer being used
on the right side of the constraint equation; indeed, higher
security level often reduce the number of possible solutions and
improve its speed. On the other hand, the greedy algorithm based
approach evaluates security level of each candidate solution by
enumerating k different isomorphic mappings between FEOL
and the complete graph, a process that becomes exponentially
more difficult as k increases.

A final row of data in Table II gives the percent of number
of edges kept by the proposed BP-based approach as compared
to greedy algorithm approach. The worst case performance in
this metric gives us 75% , while best case performance ranges
between 155% and 185%. This result has two implications:
one, that for most security levels the performance of BP-based
approach in terms of edges kept is sufficient, seeing that only
in three occasions it yields a worse result than 90%, and one
among them was 89%; two, that the result of greedy approach in
this regard is much more erratic than that of BP-based approach.
This likely results from fact that quality of solutions produced by
BP solver is mathematically guaranteed under given constraints,
while the result of the greedy approach relies on the quality of
its earlier choices of kept edges. Therefore it is very much likely,
and corroborated by results in Table II, that wire lifting solutions
provided by the greedy approach are not optimal.

A few more benchmark circuits from ISCAS’85 benchmark
suite have thus been processed, and their processing time are
shown in Table III. In the table, “Total time” refers to the
sum of both generation of BP constraints and the actual time
involved in solving the problem with SCIP solver (i.e., same as
“Time” in Table II), while “BP time” only refers to the later.
Both results are averages of 100 repetitions. “BP time” is more
relevant here since time it takes the EDA tool to retrieve relevant
data is unlikely NP-complete. We can see from the table that
item exceeds 1 second between one and two thousand gates,
making layouts of around ten thousand gates likely upper bound
of practicality by extrapolation.

B. Pin-based vs. Cell-based Definition of Edges

Shown in Table IV are number of edges kept n. when cell-
based definition and pin-based definition of edges are used, as
well as evaluated level of security k using pin-based definition of

edges on cell-based wire lifting results. As can be gathered from
the results, not only does n. differ when the definition of edge
is changed, so does the security level. Since it is imprudent to
assume the attacker is unable to distinguish pins from the layout,
we must assume that cell-based definition of edges in fact leads
to lower level of security than requested, as is evidenced by
results in Table I'V.

Having shown the superiority of pin-based definition of edges,
we switch to pin-based definition of edges for results shown in
the remainder of this section.

C. Security Evaluation with Known Layout-based Metrics

In this sub-section we present evaluations of proposed method
in terms of existing layout-based security metrics for split
manufacturing techniques. We are presenting results taken with
the following metrics:

o Security against proximity attack is evaluated, as well as
neighborhood connectedness ratio C'(R).

« Security against identification of functionality through stan-
dard cell composition bias is computed with the metric of
the same name as defined in [22].

The metric of entropy in FEOL standard cells will not be
evaluated as its definition overlaps and contradicts the principle
of definition of security level as number of possible mappings
from FEOL graph to graph of the complete layout.

1) Security against proximity attack: This metric is studied
by simulating a proximity attack on sample layouts and calcu-
lating percentage of correct guesses. Layouts at various stages
of implementation in the proposed OBISA flow were created to
evaluate impact of each measure on success rate of proximity
attack. In the table, only columns indicate layouts that underwent
OBISA insertion only (i.e., without wire lifting), while lifted
columns indicate layouts that underwent both OBISA insertion
and wire lifting. Evaluations on a Circuit432 layout secured with
wire lifting solutions produced with greedy algorithm and place-
routed without BEOL information is also provided in column
anonymized for comparison. In addition to Circuit432, key_sel
module of DES core (to be elaborated in Section IV-D) is also
shown as an example of effect on larger benchmarks. The results
are shown in Table V. A first impression from the results as
shown in Table V is that the number of successful guesses
for each layout can be rather stochastic. Indeed, number of
successful guesses of all layouts are below 5 except for two
cases. This likely results from number of nets that actually had
been routed as short as possible, an understandable objective
of placement optimization. However, the number of open pins
in FEOL does indeed become greatly improved by OBISA cell
insertion as well as wire lifting. This on the other hand is likely
more significant than possibilities of proximity attack being
successful, as guess-based attack might not be always based
on proximity, but all guess-based attack are universally more
difficult as number of open pins in FEOL increase. If necessary,
number of open pins in the FEOL can be further increased
arbitrarily by adding dummy vias to BEOL layers that do not
lead to BEOL wires. This is probably made more significant
as larger k is requested - the lifted layout for 3-standard-cell-
netlist is 46, much higher than ¥ = 10 for the lifted layout of
the 12-standard-cell-netlist.

2) Security against netflow attack: Recently, research interest
has been focused on improving proximity attack [23], [24],
likely due to its potential at producing valid successful attacks

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2877012, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

TABLE II: Comparison of Binary Programming (BP) and greedy algorithm-based wire lifting in terms of n. kept and time consumption.

Method k=46 k=32 k=20 k=16 k=12 k=8 k=4
BP n. kept 48 52 96 121 123 123 123
Time (sec) 1.3 1.35 3.65 1.43 1.34 1.68 1.38
Greedy e kept > 26 56 101 78 152 138 165
Time (day) > 29 12.27 7.34 3.38 16.75 6.05 3.65

Speed improvement | > 1.92e6X | 7.85e5X | 1.74e5X | 2.04e5X | 1.08e6X | 3.11e5X | 2.29e5X
% of edges kept < 185% 93% 95% 155% 81% 89% 5%

TABLE III: Time consumption of proposed wire lifting algorithm
on ISCAS’85 benchmark circuits with OBISA insertion

Benchmark c880 | c1908 | c3540 | c5315 | c6288
Achieved k 10 10 19 20 27
FEOL edges 10 10 112 252 252
Total edges 323 264 990 1355 | 3475
Total time (sec) | 0.77 | 0.69 2.99 3.49 | 14.88
Total cell count | 248 209 631 864 2140
Repetition 100
BP time (sec) | 0.06 [0.07 [0.11 | 0.77 | 8.28

TABLE IV: Comparison of security and n. between cell-based and
pin-based definition of edges.

Security level k 46 | 32 | 20 | 16 | 12 8 4
Cell-based 48 | 52 | 96 | 115 | 119 | 121 | 123
e Kept 5 based | 45 | 50 | 68 | 105 | 117 | 120 | 123
Security level of cell-based | 14 | 13 | 7 5 2 2 4

against split fabrication schemes. Therefore, it makes sense
to further verify the security of our proposed OBISA scheme
against a state-of-art attack. We have opted to replicate the net-
flow attack as was described in [23], since the other alternative
[24] was performed on routing benchmarks, whose conversion
into hardware description language (HDL) would involve quite
a lot of effort beyond the scope of this paper. The netflow
attack makes use of four more hints in addition to geometric
proximity, which are 2) acyclic combinational logic circuit; 3)
load capacitance constraint; 4) directionality of dangling wires;
5) timing constraint.

Similar to the treatment in [23], we implemented netflow
attack as a set of linear programming problem. Proximity and
directionality of dangling wires were implemented as weights
to potential connections, hint 3 and 5 are implemented as
constraints, and hint 2 was implemented by detecting timing
loops in netlist according to linear programming solution, and
then adding constraints to prohibit connections responsible for
detected timing loops and rerun the attack. Hint of directionality
of dangling wires was not implemented as a hard constraint as
was done in [23], because it was discovered that directions of

TABLE V: Success rate of proximity attacks.

Circuit432 Ctrl Anonymized } Onl}?BI‘SALifted Ctrl } Onl?B‘ISI/jifted
#Std-cell 3 12
OBISA insertion No Yes No Yes
Lifted No Yes No Yes No No Yes
Success 5.38% 0.38% 1.99% 6.42% | 0.00% | 0.54% | 0.27%
#Cell 220 220 293 293 115 309 309
#OBISA cell 0 0 73 73 0 194 194
Open pins 93 523 184 680 102 952 954
Hit pairs 5 2 3 28 0 1 2
key_sel, Crl OBISA
DES Core Only Lifted
OBISA insertion No Yes Yes
Lifted No No Yes
Success 0.24% 0.0003% | 0.006%
#Cell 1608 3801 3801
#OBISA cell 0 2193 2193
Open pins 5461 13069 14957
Hit pairs 9 4 69

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

dangling wires do not always fit the direction of the correct con-
nection, and excluding all pins in “wrong” direction may leave
the problem with no valid solution. The complete statement of
the linear programming problem is shown in Equation 7:

minimize) w; ;x; ;

subject to
Cx > 0,
Tx > 0,
235 < 01if ¢ and j share the same gate, (7)
2o Zi,jES zi; <0,
Zj:l T =1
> it Ty > 0
V’L',j, Tij € {0, 1},

where € {1,2,...,I},j€{1,2,...,J}

I is total number of unconnected output pins,

J is total number of unconnected input pins,

U)iJ = diJ’ — liJ‘ — lj7r,:

d; ; = Euclidean distance between output pin ¢ and
input pin j

lx; = Length of dangling wire of pin £ in same
direction as pin [

¢;,; = Available capacitance allowance of output pin ¢
minus capacitive load of input pin j

t; ; = Required arrival time of input pin j minus
arrival time of output pin %

s is a set of all unconnected pins that are found in a
timing loop

Experiments with thus described netflow attack was per-
formed on c432 circuit. Since c¢432 circuit did not have sequen-
tial gates, required arrival time of unconnected input pins were
implemented by taking the sum of visible gate delays between
said input pin and output port, then subtracted with longest path
delay of the circuit (serves as substitute to clock period). Three
layout were created and evaluated: “Normal” was the control
group where layout is placed and routed normally without
human intervention; “Anonymized” has all its BEOL edges
removed prior to placement, then routed without placement
optimization (i.e., as was described in [19]); “OBISA” is placed
normally, then underwent OBISA insertion flow as described in
Figure 6. For normal layout, unconnected pins were extracted
from layout by choosing all routed shapes of metal layer M3
and above; for the other two layouts, lifted edges were used.

Results from this evaluation are shown in Table VI. It can be
gathered from the demonstrated results that OBISA is slightly
less secure than anonymizing the layout placement, likely due
to proximity hints not being entirely eliminated; however, both
OBISA and anonymized significantly outperforms unaltered
layout. Since OBISA circuitry often has short timing path,
similar fan-out capability as functional circuitry, and no more
likely to form timing loops than candidates in functional circuit,
these hints are unlikely able to distinguish between OBISA and

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2877012, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

TABLE VI: Results of netflow attack [23] on layouts of c432
benchmark with normal placement, anonymized placement, and
OBISA insertion.

Circuit432 benchmark | Normal | Anonymized | OBISA
#Correct guesses 10
35 4
#Correct guesses 8
in functional circuit
#Edges in BEOL 387
£es 1 264 277
#Functional 973
edges in BEOL
Neighborhood connectedness with varying radii
¢ ‘ ‘ ‘ —<—3ref_ctrl
T % t t —#— 3ref_OBISAonly
/ 3ref_OBISAlifted
—5—12ref_ctrl
/ 12ref_OBISAonly
3 12ref_OBISAlifted
= = = —#— 3ref_anonymized

0 I I I I L
0 50 100 150 200 250 300

R

Fig. 11: Neighborhood connectedness (C(R)) curve as radii (R)
increases, on Circuit432 layouts.

functional gates. Directions of dangling wires is less obvious,
but the result seems to suggest even if that hint could distinguish
OBISA and functional gates, its effect is small. We are of the
opinion that dangling wires can likely be eliminated with relative
ease by pre-inserting vias and wire shapes from pins to BEOL
layers before letting automatic router to route BEOL edges,
however proving it would be beyond the scope of this paper.

3) Neighborhood Connectedness: The neighborhood con-
nectedness (C'(R)) plot of the same layouts investigated in Table
V is shown in Figure 11. As can be seen from the figure,
all C(R) curves saturates as radii increases, but both OBISA
insertion and wire lifting reduces the eventual saturated C'(R).
As have been pointed out in [22], the lower the measure, the
more “spread out” the circuit is, and less functional information
is leaked, resulting in a more secure FEOL layout. Figure 11
also shows C'(R) of a Circuit432 layout anonymized (using tech-
nique described in [19]) with the trace named 3ref _anonymized
closely follows C'(R) of the layouts with OBISA insertion AND
wire lifting (traces 3ref_anonymized and 12ref_anonymized) at
all ranges but lower than C(R) of layouts without wire lifting,
likely due to wire lifting.

4) Standard cell composition bias: In this evaluation, key_sel
module and toplevel module of DES core are examined for
its particular design characteristic. Being a control module,
functional cells in both modules consists only of flip-flop and
multiplexers. Thus, either unsecured module will be very weak
in terms of Standard cell composition bias. This is compensated
by inserting OBISA cells that are common in other modules
of the same DES core. As shown in Table VII, standard cell
composition bias of both modules decreased more than 50%

TABLE VII: Standard cell composition bias of key_sel and DES
toplevel.

key_sel des
ctrl OBISA ctrl OBISA
Flip-Flops 840 840 1144 1144
Muxes 768 768 0 984
XORs/XNORs 0 0 562 2324
#Cells 1608 3800 1761 29276
bias 6.67E-01 | 2.82E-01 | 6.53E-01 | 5.74E-02

after OBISA insertion.

D. Implementation and Overhead on Large Designs

Two particular benchmarks were used in this study: an
Advanced Encryption Standard (AES) and a Data Encryption
Standard (DES) core. Crypto-cores are selected on the grounds
that they are more likely targeted by attacks and usually require
higher security reinforcements. After synthesis, the 256-bit AES
core we have selected has 657,292 gates, while the 64-bit
DES core has 15,651. Further, DES was also chosen in [19],
and will likely serve as a good basis of comparison. Both
designs are large enough to make lifting of a flattened netlist
computationally heavy, and therefore necessitates partitioning.
Both AES and DES cores are from opencores.org.

Each DES core in the design is consisted of 16 instances
of crp module and 1 instance of key_sel module. The 256-bit
AES core is consisted of 16 instances of one_round module,
7 instances of expand_key_type_A_256 module, 6 instances of
expand_key_type_B_256 module, and 1 instance of final_round
module. Finally, both DES and AES core instantiates interface
cells such as flip-flops and multiplexers on their toplevel.

In our implementation we chose a security level £k = 16
for one_round of AES and k = 10 for crp of DES core.
These coefficients were chosen following the guideline as was
discussed in Section III-C3, so that the overall security level
can be made higher. This leads to an overall security level of
k = 208 for AES core and k£ = 160 for DES core. To help
improve efficiency, geometry-based partitioning was performed
on both toplevel modules and one_round module of AES core.
Implementation overheads in terms of power, timing delay, and
area of each module are summarized in Table VIII and IX.

Both tables provide two sets of comparisons:

1) In terms of total wire length, number of OBISA cells in-
serted as compared to that of functional cells, as well as number
of standard cell models instantiated: Close total wire length
results between OBISA-inserted layout with (Lifted column) and
without (Only column) wire lifting help to explain why little
power and path delay difference were observed between these
two types of layouts.

2) In terms of area, power, and path delays: OBISA-
reinforced layout that underwent wire lifting (Lifted column
under OBISA column) is compared against similarly OBISA-
reinforced layout without wire lifting (Only column under
OBISA column) as well as layout of same module without any
security enhancement (Ctrl column). Area result are the same for
all three scenarios since the same utilization ratio 0.6 was used
for all layouts during their floorplanning stage. There is a slight
increase in terms of power and path delays in the Liffed column
with regard to the Ctrl column, but in all implementations quite
small, and the worst-case path delay overhead in both cores are
3.64% and 4.08% respectively, while the total power overheads
are 12.73% and 6.96%. Based on these results, we are confident

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2877012, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

TABLE VIII: Power, timing, and area overheads of wire-lifted DES
modules.

Module key_sel crp
OBISA OBISA
Layout Only Lifred Cul Only Lifted Cud
Power |_Imernal | 4.80E-03 | 425E-03 | 3.79E-03 | 1.52E-03 | I.SIE-03 | 1.50E-03
Switching | 7.48E-04 | 7.07E-04 | 5.71E-04 | 1.30E-03 | 1.I8E-03 | 1.09E-03
(w) | Leakage | 288E-04 | 28VE-04 | 2T3E-04 | 3TTE05 | 377E05 | 285E-05
Total | 5.84E-03 | 5.24E-03 | 4.585-03 | 2.86E-03 | 2.72E-03 | 2.62E-03
Path Min 04 05 0.32 0.87 0.82 08
Delays | Median 0.82 0.64 048 09 0.86 0.83
(ns) Max 1.02 0.78 0.59 1.05 0.98 0.94
Total wire 425E+05 | 3.37E+05 | 1.A0E+05 | 6.86E+04 | 6.74E+04 | 2.70E+04
length(ym)
Area (um?) 67599.4 10354.2
#Std-cell 9 28
#Cell 4381 1608 1099 745
#OBISA cell 2773 0 354 0
Security Level k 1 [160 1 1 10 1
Module des
OBISA
Layout Only Lified Ctrl
Power Internal 2.93E-03 | 2.94E-03 | 2.86E-03
Switching | 9.92E-03 | 9.39E-03 | 8.78E-03
(w) | Leakage | T32E-03 | T32E-03 | 24TE04
Total 142602 | 1.37B-02 | 1.I9E-02
Path Min 037 0.39 0.35
Delays | Median 041 0.44 0.37
(ns) Max 0.61 0.64 0.58
Total wire 4.12E+06 | 3.99E+06 | 1.12E+06
length(pm)
Area (um?) 753423
#Std-cell 34
#Cell 29293 1778
#OBISA cell 27515 0
Security Level k& 1 [160 1

TABLE IX: Power, timing, and area overheads of wire-lifted AES
modules.

Module final_round one_round
OBISA OBISA
Layout Only Tifted Curl Only Lified Curl
Power Internal 6.70E-03 | 6.64E-03 | 6.44E-03 | 1.02E-02 | 1.01E-02 | 9.81E-03
Switching 7.70E-03 | 7.49E-03 | 6.53E-03 | 1.16E-02 | 1.14E-02 | 1.12E-02
w) Leakage 424E-04 | 424E-04 | 3.08E-04 | 6.40E-04 | 6.40E-04 | 6.39E-04
Total 1.48E-02 | 1.46E-02 | 1.33E-02 | 2.25E-02 | 2.21E-02 | 2.16E-02
Path Min 1.37 1.32 1.2 1.83 1.79 1.71
Delays Median 1.42 1.37 1.24 1.92 1.88 1.79
(ns) Max 1.7 1.62 1.42 2.46 2.28 22
Total wire length (#m) | 1.08E+06 | 1.07E+06 | 4.90E+05 | 1.65E+06 | 1.64E+06 | 1.12E+06
Area (um?) 119882 177073
#Std-cell 31 37
#Cell 12377 8236 17688 11856
#OBISA cell 4141 0 5832 0
Security Level k& 1 [208 1 1 [16 1
Module expand_key_type_A_256 expand_key_type_B_256_OBISA
OBISA OBISA
Layout Only Lifted Curl Only Lifted Cul
Power Internal 3.53E-03 | 3.51E-03 | 3.06E-03 | 3.28E-03 | 3.09E-03 | 3.26E-03
Switching 2.40E-03 | 2.23E-03 | 1.99E-03 | 2.09E-03 | 1.91E-03 | 1.96E-03
W) Leakage 2.39E-04 | 2.39E-04 | 1.74E-04 | 2.31E-04 | 2.31E-04 | 1.74E-04
Total 6.17E-03 | 598E-03 | 5.23E-03 | 5.61E-03 | 5.23E-03 | 5.39E-03
Path Min 1.15 1.12 1.09 1.13 1.13 1.11
Delays Median 1.23 1.19 1.16 1.2 1.19 1.17
(ns) Max 1.69 1.56 1.48 1.55 1.53 1.47
Total wire length (um) | 5.00E+05 | 4.89E+05 | 2.18E+05 | 2.16E+05 | 2.41E+05 | 2.14E+05
Area (um®) 58680.1 58602.7
#Std-cell 30 30
#Cell 4662 2636 4760 2636
#OBISA cell 2020 0 2124 0
Security Level k L] 30 1 T] 35 1
Module aes_256_hierl
Ctrl
Layout OBISA Only ified
Power Internal 3.49E-02 | 3.27E-02 | 2.71E-02
Switching 1.11E-01 | 7.89E-02 | 8.78E-02
W) Switching 1.18E-02 | 1.18E-02 | 1.92E-04
Total 1.58E-01 | 1.23E-01 | 1.15E-01
Path Min 0.33 0.33 0.35
Delays Median 0.49 0.49 0.44
(ns) Max 1.63 1.14 1.27
Total wire length (um) | 1.19E+07 | 1.10E+07 | 1.06E+07
Area (um©) 5674310
#Std-cell 106
#Cell 108087 2636
#OBISA cell 107036 0
Security Level k 1 [208 1

to conclude the proposed wire lifting based OBISA technique
introduces no significant performance overhead to the original
circuitry.

Implementation results shown in Table VIII and Table IX
points at two improvements of significance that were achieved
on top of the performance reported in [19]:

1) a much larger and more standard design (AES) achieved
a much higher level of security; and

2) overheads in area, delay, and power are reduced from tens
to hundreds percent to around ten percent in power, less
than five percent in delay, and zero percent in area; further,
limitation on number of standard cell models was also
removed.

The first difference between the AES module and DES
module is their difference in size: one_round module of AES
has more than ten times as many gates as crp module of
DES, even before we consider additional cells brought about by
insertion of OBISA circuitry. All things considered, the OBISA-
inserted AES core consisted of 385,001 gates, more than 25
times as many gates as a DES core without OBISA insertion.
Another difference is in the fact that DES core is a very
unique design: only its key_sel module and its topmodule have
flip-flops, both of which are instantiated only once. Therefore,
implementation on AES core, whose modules are all clocked,
demonstrates the ability to be applied on synchronous design,
as we have predicted during our introduction of our pin-based
definition of edges in Section III-B2. A final observation is that
our proposed BP-based wire lifting approach allowed presented
implementation to reach security levels such as k = 160 and
k = 208 with ease, much higher than previously reported k = 64
[19]. This supported our early observation that satisfying an
arbitrarily high security level is not only easy for the proposed
BP-based approach, it often takes it even less time to conclude
than lower security levels which may have more viable solution
candidates.

Equally significant is the reduction in overheads. As was
theorized previously in Section III-C1, the huge overhead® in
[19] was most likely result of the approach of eliminating layout
cues by preventing place and route tool to optimize the design
according to its function. Our evaluation in terms of known
layout-based split manufacturing security metrics supported our
hypothesis that it would not greatly impact security perfor-
mance. Our theory that OBISA insertion would help remove
the restriction on number of standard cell models was also
supported by our implementation result: only design where any
such restriction was felt was crp module of only 745 gates,
where we achieved k£ = 10, and could have further improved
that number had we allowed ourselves overhead in area.

E. Comparison with contemporary research

Since after the submission of this work, another work [30]
have been accepted at a conference, which is similar to our
work in also seeking to improve upon the time complexity of
wire lifting algorithm using mixed-integer linear programming,
and improving the security level by introducing dummy vertices
and edges. We find it encouraging that the idea that timing
complexity of wire lifting algorithm can be improved has
received support.

654% to 92% in power, 73% to 114% in delay, 167% to 502% in area were
reported in [19].

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2877012, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems

The primary difference between these two works, on the
other hand, is that OBISA is intended as an improvement to
existing BISA technique, and therefore carries limitations along
with advantages of BISA, as opposed to the technique reported
in [30], which is intended as an improvement to k-security.
One example of this difference is that all additional gates
inserted by the OBISA technique will only occupy white-space
and therefore do not incur additional area, power, or timing
overhead. Further, the OBISA technique occupies all available
white spaces and prevents untargeted Trojan insertion, which is
not always possible with split manufacturing alone.

V. CONCLUSION

In this paper, we have presented a novel implementation
approach of Obfuscated Built-In Self-Authentication (OBISA)
technique that combines hardware Trojan deterrence through
Built-In Self-Authentication (BISA) circuit insertion as well as
optimized split manufacturing through wire lifting. The resulting
technique is shown to be efficient, secure, and introduces very
low performance overhead to the functional design that it is fit
for industrial level of integration. The presented implementation
flow is tailored to work with all mainstream EDA tools. In
the future, the proposed flow could be further improved by
expanding the presented technique to further reduce overhead
and improve solution generation efficiency.

REFERENCES

[1] U. Guin, D. Forte, and M. Tehranipoor, “Anti-counterfeit techniques: from
design to resign,” in 2013 14th International Workshop on Microprocessor
Test and Verification. 1EEE, 2013, pp. 8§9-94.

[2] M. M. Tehranipoor, U. Guin, and D. Forte, “Counterfeit integrated cir-
cuits,” in Counterfeit Integrated Circuits. Springer, 2015, pp. 15-36.

[3] U. Guin, Q. Shi, D. Forte, and M. M. Tehranipoor, “Fortis: A comprehen-
sive solution for establishing forward trust for protecting ips and ics,” ACM
Transactions on Design Automation of Electronic Systems (TODAES),
vol. 21, no. 4, p. 63, 2016.

[4] U. Guin, “Establishment of trust and integrity in modern supply chain
from design to resign,” 2016.

[5] K. Xiao, “Techniques for improving security and trustworthiness of
integrated circuits,” 2015.

[6] “IARPA Trusted Integrated Circuits (TIC) program announcement,” http:
/Iwww.fbo.gov.

[71 H. Salmani, M. Tehranipoor, and J. Plusquellic, “A novel technique
for improving hardware trojan detection and reducing trojan activation
time,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 20, no. 1, pp. 112-125, 2012.

[8] J.Liand J. Lach, “At-speed delay characterization for ic authentication and
trojan horse detection,” in Hardware-Oriented Security and Trust, 2008.
HOST 2008. IEEE International Workshop on. 1EEE, 2008, pp. 8-14.

[9]1 Y. Jin, N. Kupp, and Y. Makris, “Dftt: Design for trojan test,” in
Electronics, Circuits, and Systems (ICECS), 2010 17th IEEE International
Conference on. 1EEE, 2010, pp. 1168-1171.

[10] J. Rajendran, V. Jyothi, O. Sinanoglu, and R. Karri, “Design and analysis
of ring oscillator based design-for-trust technique,” in 29th VLSI Test
Symposium. 1EEE, 2011, pp. 105-110.

[11] H. Salmani and M. Tehranipoor, “Layout-aware switching activity lo-
calization to enhance hardware trojan detection,” IEEE Transactions on
Information Forensics and Security, vol. 7, no. 1, pp. 76-87, 2012.

[12] R. S. Chakraborty and S. Bhunia, “Security against hardware trojan
through a novel application of design obfuscation,” in Proceedings of the
2009 International Conference on Computer-Aided Design. ACM, 2009,
pp. 113-116.

[13] M. Banga and M. S. Hsiao, “Odette: A non-scan design-for-test methodol-
ogy for trojan detection in ics,” in Hardware-Oriented Security and Trust
(HOST), 2011 IEEE International Symposium on. 1EEE, 2011, pp. 18-23.

[14] R. S. Chakraborty and S. Bhunia, “Harpoon: an obfuscation-based soc

design methodology for hardware protection,” Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on, vol. 28, no. 10,
pp. 1493-1502, 2009.

[15] J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security analysis of
logic obfuscation,” in Proceedings of the 49th Annual Design Automation
Conference. ACM, 2012, pp. 83-89.

[16] K. Xiao and M. Tehranipoor, “Bisa: Built-in self-authentication for pre-
venting hardware trojan insertion,” in Hardware-Oriented Security and
Trust (HOST), 2013 IEEE International Symposium on. 1EEE, 2013, pp.
45-50.

[17] K. Xiao, D. Forte, and M. Tehranipoor, “A novel built-in self-authentication
technique to prevent inserting hardware trojans,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 33, no. 12,
pp. 1778-1791, 2014.

[18] K. Xiao, D. Forte, and M. M. Tehranipoor, “Efficient and secure split
manufacturing via obfuscated built-in self-authentication,” in Hardware
Oriented Security and Trust (HOST), 2015 IEEE International Symposium
on. IEEE, 2015, pp. 14-19.

[19] F. Imeson, A. Emtenan, S. Garg, and M. Tripunitara, “Securing computer
hardware using 3d integrated circuit (ic) technology and split manufactur-
ing for obfuscation,” in Presented as part of the 22nd USENIX Security
Symposium (USENIX Security 13), 2013, pp. 495-510.

[20] X. Yang, B.-K. Choi, and M. Sarrafzadeh, “Routability-driven white space
allocation for fixed-die standard-cell placement,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 22, no. 4,
pp. 410-419, Apr 2003.

[21] J. J. Rajendran, O. Sinanoglu, and R. Karri, “Is split manufacturing
secure?” in Proceedings of the Conference on Design, Automation and
Test in Europe. EDA Consortium, 2013, pp. 1259-1264.

[22] M. Jagasivamani, P. Gadfort, M. Sika, M. Bajura, and M. Fritze, “Split-
fabrication obfuscation: Metrics and techniques,” in Hardware-Oriented
Security and Trust (HOST), 2014 IEEE International Symposium on.
IEEE, 2014, pp. 7-12.

[23] Y. Wang, P. Chen, J. Hu, and J. J. Rajendran, “The cat and mouse in split
manufacturing,” in Proceedings of the 53rd Annual Design Automation
Conference. ACM, 2016, p. 165.

[24] J. Magaa, D. Shi, J. Melchert, and A. Davoodi, “Are proximity attacks a
threat to the security of split manufacturing of integrated circuits?” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 12, pp. 3406-3419, Dec 2017.

[25] C.T. O. Otero, J. Tse, R. Karmazin, B. Hill, and R. Manohar, “Automatic
obfuscated cell layout for trusted split-foundry design,” in Hardware
Oriented Security and Trust (HOST), 2015 IEEE International Symposium
on. IEEE, 2015, pp. 56-61.

[26] Y. Xie, C. Bao, and A. Srivastava, “Security-aware design flow
for 2.5d ic technology,” in Proceedings of the 5th International
Workshop on Trustworthy Embedded Devices, ser. TrustED ’15.
New York, NY, USA: ACM, 2015, pp. 31-38. [Online]. Available:
http://doi.acm.org/10.1145/2808414.2808420

[27] Q. Shi, K. Xiao, D. Forte, and M. M. Tehranipoor, “Obfuscated built-
in self-authentication,” in Hardware Protection through Obfuscation.
Springer International Publishing, 2017, ch. 11, pp. 263-289.

[28] R.J.Turk et al., Cyber incidents involving control systems. Idaho National
Engineering and Environmental Laboratory, 2005.

[29] G. Gamrath, T. Fischer, T. Gally, A. M. Gleixner, G. Hendel, T. Koch, S. J.
Mabher, M. Miltenberger, B. Miiller, M. E. Pfetsch, C. Puchert, D. Rehfeldt,
S. Schenker, R. Schwarz, F. Serrano, Y. Shinano, S. Vigerske, D. Weninger,
M. Winkler, J. T. Witt, and J. Witzig, “The scip optimization suite 3.2,”
ZIB, Takustr.7, 14195 Berlin, Tech. Rep. 15-60, 2016.

[30] M. Li, B. Yu, Y. Lin, X. Xu, W. Li, and D. Z. Pan, “A practical split
manufacturing framework for trojan prevention via simultaneous wire
lifting and cell insertion.”

0278-0070 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

