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Abstract— Hardware Trojan insertion and intellectual property
(IP) theft are two major concerns when dealing with untrusted
foundries. Most existing mitigation techniques are limited in
protecting against both vulnerabilities. Split manufacturing is
designed to stop IP piracy and IC cloning, but it fails at prevent-
ing untargeted hardware Trojan insertion and incurs significant
overheads when high level of security is demanded. Built-in self-
authentication (BISA) is a low cost technique for preventing
and detecting hardware Trojan insertion, but is vulnerable to
IP piracy, IC cloning or redesign attacks, especially on original
circuitry. In this paper, we propose an obfuscated built-in self-
authentication (OBISA) technique that combines and optimizes
both techniques so that they complement and improve security
against both vulnerabilities, while at the same time minimizing
design overheads to the extent that the proposed method does not
incur prohibitive cost for designs of industrial-level sophistication.
Our evaluation on AES and DES cores shows that the proposed
technique can reach security levels more than two times higher,
satisfy all existing layout-based security metrics, while reducing
overheads from hundreds of percents to less than 13% in power,
less than 5% in delay, and zero percent in area, as compared to
best reported performance in existing techniques.

I. INTRODUCTION

Changing economic trends have resulted in a globalized

integrated circuit (IC) supply chain. It is no longer economically

feasible for most IC producers to own foundries and fabricate

ICs in-house. For the majority of the industry, fabrication is

now being performed by contracted foundries and outside the

control of original intellectual property (IP) owners. IP owners

enjoy reduced cost and state-of-art fabrication technologies in

off-shore fabrication, at the cost of reduced control and therefore

reduced trust in the manufacturing process. This has raised

serious concerns on whether trust between an IP owner and such

fabs can be established [1]. An untrusted foundry with malicious

intent could conduct a number of attacks including IP piracy [2],

IC cloning and overproduction [3], [4], and hardware Trojan

insertion [5]. For off-shore fabrication to stay secure, capability

of the IP owner to prevent such attacks must be thoroughly

substantiated.
Split manufacturing has been proposed [6] to address the

threat of IP piracy, cloning, and overproduction. This technique

proposes that an untrusted foundry manufactures the front-end-

of-line (FEOL) part of the IC, and then ships it to a trusted

foundry to deposit back-end-of-line (BEOL) part onto it (see

example in Figure 1). By this arrangement, the untrusted foundry

is denied complete information of the layout, and therefore

prevented from stealing IP information, or committing attacks

that require knowledge of the complete design.
Techniques against hardware Trojan insertion exist in two

categories characterized by how they address the issue: The first

* This work is supported by Cisco Systems, Inc. and under NSF under grant
CNS 1651701.

Fig. 1: A sample split manufacturing arrangement. It assumes split
is made between Metal-2 and Metal-1 layers.

category focuses on detecting Trojans, either by functional veri-

fication, side-channel signal analysis, or by new front-end design

techniques such as design-for-trust [7]–[15]. Techniques in this

category detect existence of hardware Trojans by generating a

signature of the circuit under test (CUT), then classifying the

CUT with this signature. To perform classification, they require

a golden model, i.e. signature of a copy of the same circuit that

is known to be free from hardware Trojans. Unfortunately, it

remains doubtful whether golden models can be acquired for

real world applications. The second category, Trojan prevention

techniques focuses on preventing hardware Trojans from being

inserted into a design, and do not have to deal with process

variation and need for golden ICs. Built-in self-authentication

(BISA) is the first proposed technique to prevent hardware

Trojan insertion in circuit layout and mask [16], [17]. By

occupying all available spaces for Trojan insertion and detecting

malicious removal through built-in self test, BISA is able to

deter hardware Trojan insertion without the requirement of

golden models and free from classification errors introduced

by process variation. Both split manufacturing and BISA are

effective in addressing the threat they are designed to counter.

However, problems remain with both techniques. To begin with,

techniques against IP piracy do not usually consider the threat

of hardware Trojan insertion, and neither do techniques against

hardware Trojan insertion (such as BISA) consider IP theft,

despite both attacks sharing the same adversary. In all likelihood,

untrusted foundries will likely try all attacks in their arsenal,

and IP owners will desire an overall solution that will secure

his design against all of them. Therefore, a complete security

solution to address the threat of untrusted foundry needs to

consider all possible attacks, and both split manufacturing and

BISA are limited on their own.

In this paper, we propose a new approach to an earlier pro-

posed technique called Obfuscated Built-In Self-Authentication

(OBISA) that combines both techniques [18]. The proposed
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technique not only

• prevents weakness from either kind of attacks,

• is secure against attacks specific to BISA,

• is more secure in terms of proposed metrics of split

manufacturing security,

but also

• has drastically reduced time complexity at generating wire

lifting solutions,

• has drastically reduced design overheads of the imple-

mented design,

• provides partitioning techniques to accommodate large de-

signs,

so that the presented technique can be expected to be imple-

mented on industrial-size designs, while keeping overheads in

both design process and design itself manageable.

The rest of the paper is organized as follows. Section II

provides a survey of existing research related to split manufac-

turing security and BISA, elaborates on weaknesses of known

techniques and proposes ways to address these weaknesses using

OBISA, before providing a detailed list of contributions claimed

by the OBISA technique. Section III presents the proposed

OBISA technique in terms of its application flow, how it

integrates with existing back-end design flow, and how each

claimed contribution is realized. Section IV presents experimen-

tal evaluation of the proposed OBISA technique in terms of its

security and overheads. Finally, Section V concludes this paper.

II. BACKGROUND

A. Threat model

The proposed technique is intended to address threats posed

by an untrusted foundry against split manufacturing. These

threats include malicious inclusion (e.g., hardware Trojans), as

well as all possible attacks if the untrusted foundry succeeds

in compromises security of split manufacturing by reverse

engineering BEOL connections denied to him. In other words,

the proposed technique is intended to be secure against Trojan

insertion and as a split manufacturing technique. Since the pro-

posed technique intends to achieve this goal by combining BISA

[16], [17] with wire lifting [19], it also inherits assumptions of

both techniques, e.g. the untrusted foundry is assumed to be able

to access functional netlist as was assumed in [19]1. Note that

this quality of remaining secure even when the netlist becomes

compromised does not make the technique insecure when the

netlist becomes the goal of the attack.

B. Built-In Self-Authentication (BISA)

Built-In Self-Authentication (BISA) prevents hardware Trojan

insertion by exhausting one resource essential to it: white spaces.

Normally, during the placement step of the back-end design of

the circuit, gates in the circuit are placed at optimized locations

based on density and routability [20]. This leaves spaces in the

layout that are not filled with standard cells. If they are replaced

by Trojan gates, no performance loss significant enough to raise

suspicion will likely be incurred, since Trojan gates are rarely

triggered as well.

1) BISA architecture: All inserted BISA cells are connected

into tree-like structures to form a built-in self test (BIST)

1This however does NOT assume the untrusted foundry to also have access
to BISA circuitry, as latter is only known well into the layout design, therefore
knowledge of BISA netlist would also mean knowledge of the layout.

Fig. 2: Structure of BISA

circuitry, so that they could be tested to verify no BISA cell has

been removed. Removal of its member cells will lead to a BIST

failure, so that no attempt to make room for hardware Trojans

will evade detection. As shown in Figure 2, BISA consists of

three parts: the BISA circuit under test, the test pattern generator

(TPG), and the output response analyzer (ORA). In order to

increase its stuck-at fault test coverage, the BISA circuit is

divided into a number of smaller combinational logic blocks,

called BISA blocks shown in Figure 2. The TPG generates

test vectors that are shared by all BISA blocks. The ORA will

process the outputs of all BISA blocks and generate a signature.

TPG has been implemented with Linear Feedback Shift Register

(LFSR) while ORA has been implemented with Multiple Input

Signature Register (MISR) in prior work [17].

The main advantage of BISA over other techniques with

similar objectives is that it has no golden chip requirement.

Since BISA relies on logic testing, process variation is not a

factor either, as compared to Trojan detection techniques based

on side-channel analysis. As an additional advantage, impact

of BISA on the original design in terms of area and power is

also negligible [16], [17]. This is due to the fact that BISA only

occupy spaces originally occupied by decoupling filler cells, and

do not become activated through out life of the IC except once

after fabrication by the IP owner to verify the IC is free from

malicious insertion by the untrusted foundry.
2) Attacks on BISA: The attack most likely to succeed against

BISA is the so-called redesign attack. This attack replaces

original circuitry with smaller functionally equivalent circuitry

to make room for Trojan insertion. Prevention of such an attack

would require anticipation of all possible custom cell designs

that are functionally equivalent to any combination of BISA

cells. That is not likely feasible except for very small BISA

circuitry. Due to the existence of resizing attack, all BISA cells

have to be of the smallest variant in area among standard cells

of the same function, which might make it easier for the attacker

to identify them.

C. Split Manufacturing Security and Limitations

1) Prior works on split manufacturing security: The prior

work in this field [19], [21], [22] is motivated by one major

objective: to establish a sound metric of security for designs

fabricated using various split manufacturing methods. Most

researchers attack the problem from a layout point of view.

Publications in this category often examine irregularities in the

layout and theorize how they can be used by a hypothetical

attacker. Authors in [21] proposed proximity attack, which

simulates an attacker who makes educated guesses on BEOL

connections of open input/output pins in FEOL. This idea
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of proximity attack has received further development in later

publications. [23] proposed to also consider load capacitance

limitations as well as the direction of dangling wires, while [24]

discussed more definitions of proximity based on known router

behaviors. Another study [22] also uses layout information, but

instead of performing hypothetical attacks, it seeks to define

objective measures of the layout that might become useful to

exploit. This leads to the following metrics being proposed:

1) Neighborhood Connectedness (NC) is defined as function

of count of connections per neighbor cell within range R,

i.e. C(R) =
∑

connections to neighbors in R∑
neighbors in R

;

2) Standard-cell composition bias is designed to reflect

imbalance in number of instantiations of specific cells

considered representative of design function2;

3) Cell-level obfuscation measures percentage of standard

cells that has functionality hidden with obfuscation;

4) Entropy measures disorder in FEOL information, and is

given by E = −
∑N

i=1
pilog(pi), where N is total number

of cell types and pi is the percentage of each cell type

among all cells; and

5) Overheads in area and delay are used to measure the cost

of the obfuscation technique.

Security metrics based on layout information are available to

designers through layout editor tools, and have seen recent ap-

plication [25], [26]. Unfortunately, problems remain. First, since

no attack has been reported to have successfully reconstructed

BEOL connection from FEOL clues, no hypothetical attacks and

objective metrics is more convincing than the other. Further,

proposed metrics themselves don’t scale linearly with difficulty

in any conceivable attack, which makes it difficult for designers

to estimate how much protection is enough. And finally, when

multiple metric values are measured, it is very difficult to find

a way to estimate the relative importance among them.

Another research [19] evaluates split manufacturing security

based on graph connectivity of FEOL layout and seeks to define

security with dimensions of the solution space from which the

attacker must pick one correct solution. The proposed metric

operates on Directional Acyclic Graphs (DAG) abstracted from

both the complete layout (G) and FEOL layout (H) (see Figure

3a for an example). In the resulting DAG, gates are represented

with vertices, i.e. colored circles in Figure 3a, whose color

represents models of each gate; and nets are abstracted into sets

of directional edges, each edge corresponds to a driving vertex

and driven vertex pair (represented with arrows in Figure 3a).

Then it computes the number of legal mappings k that maps

each gate ui in complete layout graph G to a distinct gate vj in

FEOL layout graph H . This number k is defined as the security

of that gate, and the security of the complete layout is defined

as the lowest k of all gates. In the example shown in Figure

3, XOR gates have a security k = 2 but all other gates have

k = 1, therefore the overall security of the circuit remains at

k = 1. This security metric is often referred to using its letter of

choice k as k-security. A greedy algorithm is then presented to

find a minimal subset of wires in the layout to uplift to BEOL

while satisfying minimum security k, an optimization of split

manufacturing security also known as wire lifting.

The introduction of k-security has two advantages. One,

it is quantifiable, therefore an optimization algorithm can be

2e.g. XOR gates for their correlation with cryptographic circuits, flip-flops for
their correlation with state machines, adders for their correlation with arithmetic
cores, etc.
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Fig. 3: Principle of k-security using a full adder as example.

designed with k-security as its objective function to improve the

absolute security of the BEOL connections, instead of simply

preventing every known loopholes. Two, its definition is not

dependent on specific layout, which makes it compatible with

most layout based approaches, and secure even when netlist of

the design is compromised [19]. It is also effective against a

wide spectrum of threats, owing to the fact that few attacks are

possible without making sense of what function gates in the

layout serves.

However, it is not without weaknesses. Its first disadvantage

is its difficulty to compute. k-security definition checks whether

any given FEOL netlist has a security level of k by checking

a property called subgraph isomorphism, which makes compu-

tation of the security level of any wire lifting solution NP-hard

[19]. The proposed wire lifting algorithm in [19] functions by

procedurally checking if lifting another wire lowers the security

level, which makes it exponentially more complex. This makes

it extremely computationally costly, and even less scalable than

typical NP-hard algorithms. In addition, the fact that k-security

is defined using graph connectivity also results in lack of

consideration on any leakage of information from FEOL layout.

This understandably deteriorated the performance of the design

in every possible way, as it relies on layout not being optimized

for performance to keep it from leaking security information.

Further, need to boost k makes it necessary to reduce rare gate

models, further restricting design performance.
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2) Limitation of split manufacturing: Split manufacturing

prevents all attacks that require complete knowledge of the

whole layout, which also includes attacks against BISA such

as identification of BISA cells. However, not all attacks require

complete knowledge of the whole layout. One example is the

untargeted Trojan insertion [18], a threat discussed in details in

[27]. Untargeted hardware Trojans are capable of degrading the

performance and/or reliability of manufactured ICs, or trigger a

denial-of-service (DoS) in critical control systems [28].

D. Motivation: Implementing BISA with Split Manufacturing

In light of respective limitations of BISA and split manu-

facturing techniques, it makes sense to improve both with the

relative advantage of the other. We henceforth term the com-

bined technique obfuscated BISA (OBISA). The most apparent

advantage of the resulting technique would be the security

against untargeted hardware Trojan insertion, as well as security

against IP piracy and IC cloning, both of which are the primary

strengths of BISA and split manufacturing. Enhanced with split

manufacturing, this new technique can also become secure

against redesign attack that BISA was not able to fully prevent,

since the attacker must first identify which existing cells are

connected together before designing a functionally equivalent

circuit to replace these existing cells. This will be much harder

if the designer lifts the wires that connects them to BEOL,

so that BISA structure becomes indistinguishable from original

circuitry. Security against redesign attacks also reduces the

necessity of using detection based anti-Trojan techniques, and

relaxes prior necessity of only using minimum sized standard

cell variant.
Split manufacturing security in OBISA could also benefit

from BISA insertion. For example, additional cells and FEOL

interconnects introduced to the layout by BISA insertion makes

reaching higher k-security easier, and no longer restricted by

rarely instantiated standard cell models, which has been leading

to dilemma between either eschewing them or suffering from

restricted security level. This makes wire lifting a particularly

suitable candidate. Additional cells and interconnects introduced

by BISA circuitry can help to homogenize distribution of FEOL

features, and proximity based attacks could also be foiled by

occupying white spaces and compensating spatial distribution

of gate types with BISA cells, which makes OBISA secure

when evaluated with layout-based security metrics for split

manufacturing as well. To summarize, a combined OBISA

technique improves from both split manufacturing and BISA

in terms of their respective security metrics.
A few options exist to implementing OBISA, depending on

how it implements split manufacturing. In a previous work [18],

an approach with minimal computational cost was investigated.

In that previous work, obfuscation connections were added

between OBISA circuits and functional circuits, and between

OBISA tree-like structures, while optimization on wire lifting

was kept to a minimum; In this paper, we propose to investigate

the opposite scenario, where level of security is desired, while

keeping it viable for industrial level of integration. As explained

earlier in Section II-C1, we find optimizing for split manufac-

turing security possible with wire lifting optimization for k-

security. We also find it worth investigating because combining

BISA with wire lifting more difficult than simply implementing

both techniques, as additional cells introduced by BISA makes

wire lifting exponentially more complicated as much as they

make it more secure; in other words, combining them requires

novel technique to overcome this non-trivial problem. Therefore,

in this work we present an OBISA implementation with wire

lifting using k-security definition, and investigations on its

performance as well as overheads.

E. Contributions

In addition to theoretical advantages from combining BISA

with wire lifting as was discussed in Section II-D, the presented

technique also claims the following contributions from evalua-

tions with implementations of the technique:

1) A more efficient wire lifting algorithm: By proposing a new

set of solution constraints that are stronger than subgraph

isomorphic [19], we were able to convert the wire lifting

problem into a binary programming problem. In doing

so, we developed a faster algorithm to find provably

optimal3 wire lifting solutions. Experiments on Circuit432

benchmark circuits yielded 75% to 155% of edges kept

at 1.74×105X to 1.06×106X speed improvements over

previous wire lifting algorithm.

2) A comprehensive application framework on partitioning

design into manageable layout: Existing wire lifting al-

gorithm is limited in size of layout it can process due

to weakness in speed. The proposed fast wire lifting

algorithm increased the size of layout it can realistically

process by one to two orders of magnitude. In order to

ensure applicability to industrial level of applications, we

have investigated ways to partition designs, and proposed

two approaches - one based on logic hierarchy, the other

using simple geometry - that complement each other to

cover all possible scenarios. Implementation with said

partitioning techniques proved to be successful on designs

up to 385, 001 gates large.

3) Pin-based definition of edges: An edge in [19] was defined

based on its driving and driven vertices, which may not

always be unique. With a wire lifting algorithm with

greatly reduced time complexity, we are able to define

edges using their driving and driven pins that eliminates

this problem.

4) Cell model compensation to further improve security level:

Unlike BISA, the proposed OBISA allows all standard cell

models to be used. This allows us to compensate rarely

instantiated gate models so that wire lifting restriction on

rare standard gate models can be relaxed, meanwhile im-

proving maximum achievable security level k. In doing so,

we simultaneously improve security and reduce overhead.

5) Secure in terms of almost all known layout-based secu-

rity metrics: Instead of scrambling layout at the cost of

prohibitively high performance overheads as was opted

in [19], in this presented approach of OBISA we perform

normal performance-oriented optimizations typical of con-

ventional design flows, and then show the resulting layout

meets most known layout-based security metrics4.

III. OBFUSCATED BUILT-IN SELF-AUTHENTICATION VIA

WIRE LIFTING

The proposed approach to implement OBISA is characterized

by a major departure from its predecessor in [18]: it uses wire

3Optimum defined the same as the one used in [19], i.e. minimizing number
of edges lifted.

4With the sole exception of cell-level obfuscation, which is beyond the
scope of wire lifting or BISA, and can be addressed by combining dedicated
obfuscation techniques with the presented technique.
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least k isolated vertices (i.e., vertices with all edges lifted).

One final piece in this puzzle is for the constraints to fit all

possible scenarios. Constraints as shown in Equation 2 and 4

means at least one solution exists that satisfies all named edge

types have at least k indistinguishable instances, and each color

of vertices to have at least k vertices with all edges lifted.

In reality, desirable solutions do not need to satisfy all these

requirements. Some edge types that have more than k instances

in the complete graph may have to be all lifted to ensure all

others having at least k instances, or some colors of vertices

may all keep an edge, leaving no need to lift all edges of at

least k vertices of each of these colors.

To adapt our constraints to these different possible scenarios,

we convert affected constraints into so-called either-or con-

straints by introduce a few extra variables y and z to choose

between the alternatives. The complete description of the BP

problem therefore becomes Equation 5. This is the complete set

of constraints for the BP-based approach of fast wire lifting.

maximize
∑ne

1
xi

subject to

Ant,a×ne
x ≥ k −My,

Ant,a×ne
x ≤ M(y − 1),

Bnt,d×ne
x ≤ 0,

Cnv×ne
x ≤ 1,

nc −Dnr×ne
x ≥ k +M(z − 1)

nc −Dnr×ne
x ≤ Mz

∀i, xi, yi, zi ∈ {0, 1},
where x = (x1, x2, . . . , xne

)⊤

y = (y1, y2, . . . , ynt,a
)⊤

z = (z1, z2, . . . , znr
)⊤

ai,j , bi,j =

{

1 edge ej is of type ti
0 otherwise

ci,j =







1 edge ej is connected

to vertex vi
0 otherwise

di,j is the number of vertices of reference

i that edge ej is connected to.
(5)

Here we delineate the process of producing a set of constraints

with a real world example. Consider a netlist to be lifted for

security k. We first identify its vertices v = (v1, v2, . . . , vnv
)⊤;

each vertex vi refers to one gate.Based on the standard cell

model of the gate (referred to as “reference” in Equation

5), the type t(vi) of vertex vi can be determined. Based

on identified vertices, edges of the netlist can be defined as

e = (e1, e2, . . . , ene
)⊤, where each edge ei is defined as a pair

of vertices (vi0, vi1) and has a direction from vi1 to vi0. Similar

to vertices, type of edge ei can be determined as (t(vi0), t(vi1)).

We can thus begin constructing equations to determine x =
(x1, x2, . . . , xne

)⊤, whose each binary element xi represents

whether edge ei should be kept in FEOL part of the layout. We

immediately know some (n = nt,d) types of edges are fewer

than k; they all have to be eliminated. We then construct a

binary matrix B whose elements bi,j denote whether edge j
is of edge type i ∈ {1, . . . , nt,d}, i.e. one of the edge types

that need to be eliminated. This matrix B constitutes the third

constraint Bnt,d×ne
x ≤ 0. Conversely, some other (n = nt,a)

types of edges have more instances than k, and we can construct

another binary binary matrix A whose elements ai,j denote

whether edge j is of edge type i ∈ {1, . . . , nt,a} that can be

kept. This matrix A constitutes the first and second constraints

Ant,a×ne
x ≥ k − My,Ant,a×ne

x ≤ M(y − 1), where M
is a natural number much larger than k, and y is a vector of

supplemental variables, whose element yi denotes whether a

corresponding edge type i is to be kept in FEOL.
A further consideration is to not let any vertex become

connected to more than one edge; this is ensured by constraining

the sum of variable x of all edges connected to any same

vertex to not exceed 1 for all vertices, as expressed in the

fourth constraint Cnv×ne
x ≤ 1. Finally, no type of vertices

should have less than k vertices with 0 edge remaining in

FEOL, or have less than k vertices with 1 edge remaining.

This results in fifth and sixth constraints nc − Dnr×ne
x ≥

k+M(z−1), nc−Dnr×ne
x ≤ Mz and concludes construction

of the binary programming problem.
2) Pin-based definition of edges: The prior definition based

on cells impacts both security and/or difficulty of implemen-

tation in a real industrial design. First, it disregards the actual

difference between pins. In a cell-based definition, two edges

might both be leading from an inverter to an AND vertex, while

in the netlist one wire is connected to the A pin and the other

is connected to the B pin of their respective AND gate. This

indicates actual number of indistinguishable wires may be much

lower than the algorithm reports, which constitutes a leak of

information.
Another problem is with multiple output cells, a most com-

mon example is flip-flops. Typical flip-flops offer two outputs,

Q and QN, where one is the inverted signal of the other. A cell-

based definition will be unable to distinguish different wires in

this scenario and treat all of them as the same edge.
It is possible to modify the greedy wire lifting algorithm to

work with pin-based definitions, but this will further exponen-

tially increase already extremely long processing time. On the

other hand, the proposed BP-based wire lifting algorithm can

accommodate this with superior processing speed. Therefore,

on top of being faster, provably optimal, the proposed BP-based

algorithm is also free from a leak of information and can be

applied to designs that uses gates with multiple outputs.

C. Implementation Flow

The proposed BP-based approach of wire lifting greatly

alleviates the time complexity of wire lifting solution generation.

However, binary programming remains an NP-complete prob-

lem.Therefore, implementation of proposed OBISA technique

needs to provide solution to two specific problems:

1) Implementing the proposed OBISA technique on a

reasonably-sized layout;

2) Converting any given design to layouts of the first kind.

For the first problem, we show a layout design flow modified

from the original BISA implementation flow in Section III-C1;

For the second problem, we propose to divide the layout along

logic module boundaries and apply OBISA flow on each logic

modules, shown in Section III-C2; in corner cases where this

is not realistic or efficient, we present an alternative approach

where the layout is divided using geometrical boundaries, and

shown in Section III-C3.
1) Implementation flow on a reasonably-sized layout: The

proposed OBISA flow is shown in Figure 6. Boxes shaded with

blue slashes represent procedures already present in BISA flow,

while boxes shaded with red crosses represent new procedures

in this approach. Our need for security requires gate type

compensation as well as random placement for maximal obfus-

cation. Cells of the rare gate models are placed before others to

7
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MiniSat, as was used in [19], is used as the Boolean satisfiability

problem (SAT) solver in greedy wire lifting algorithm.

A. Performance of BP-based Wire Lifting Algorithm

All comparisons for the purpose of comparing processing

speed were made on Circuit432 benchmark circuit synthesized

with only 3 standard cell models. The definition of edges used

in proposed BP-based wire lifting algorithm is also restricted to

cell-based definition. Such restrictions were made to accommo-

date the greedy algorithm based wire lifting. Both evaluations

took place on same server computer featuring 24-core 1995.216
MHz Intel CPUs, 384 GB total memory at 1333 MHz.

From Table II, we can see even under favorable circum-

stances, the greedy algorithm based approach is inferior in

terms of processing speed by 1.74e5 to 1.08e6 times. Another

observation is that while the BP-based approach does not appear

particularly affected by requested security level k, high security

level k significantly impacts the time taken by greedy algorithm

based approach. This is likely resulting from the difference both

approaches approach security levels. For the BP-based approach,

a higher security level means only a larger integer being used

on the right side of the constraint equation; indeed, higher

security level often reduce the number of possible solutions and

improve its speed. On the other hand, the greedy algorithm based

approach evaluates security level of each candidate solution by

enumerating k different isomorphic mappings between FEOL

and the complete graph, a process that becomes exponentially

more difficult as k increases.

A final row of data in Table II gives the percent of number

of edges kept by the proposed BP-based approach as compared

to greedy algorithm approach. The worst case performance in

this metric gives us 75% , while best case performance ranges

between 155% and 185%. This result has two implications:

one, that for most security levels the performance of BP-based

approach in terms of edges kept is sufficient, seeing that only

in three occasions it yields a worse result than 90%, and one

among them was 89%; two, that the result of greedy approach in

this regard is much more erratic than that of BP-based approach.

This likely results from fact that quality of solutions produced by

BP solver is mathematically guaranteed under given constraints,

while the result of the greedy approach relies on the quality of

its earlier choices of kept edges. Therefore it is very much likely,

and corroborated by results in Table II, that wire lifting solutions

provided by the greedy approach are not optimal.

A few more benchmark circuits from ISCAS’85 benchmark

suite have thus been processed, and their processing time are

shown in Table III. In the table, “Total time” refers to the

sum of both generation of BP constraints and the actual time

involved in solving the problem with SCIP solver (i.e., same as

“Time” in Table II), while “BP time” only refers to the later.

Both results are averages of 100 repetitions. “BP time” is more

relevant here since time it takes the EDA tool to retrieve relevant

data is unlikely NP-complete. We can see from the table that

item exceeds 1 second between one and two thousand gates,

making layouts of around ten thousand gates likely upper bound

of practicality by extrapolation.

B. Pin-based vs. Cell-based Definition of Edges

Shown in Table IV are number of edges kept ne when cell-

based definition and pin-based definition of edges are used, as

well as evaluated level of security k using pin-based definition of

edges on cell-based wire lifting results. As can be gathered from

the results, not only does ne differ when the definition of edge

is changed, so does the security level. Since it is imprudent to

assume the attacker is unable to distinguish pins from the layout,

we must assume that cell-based definition of edges in fact leads

to lower level of security than requested, as is evidenced by

results in Table IV.

Having shown the superiority of pin-based definition of edges,

we switch to pin-based definition of edges for results shown in

the remainder of this section.

C. Security Evaluation with Known Layout-based Metrics

In this sub-section we present evaluations of proposed method

in terms of existing layout-based security metrics for split

manufacturing techniques. We are presenting results taken with

the following metrics:

• Security against proximity attack is evaluated, as well as

neighborhood connectedness ratio C(R).
• Security against identification of functionality through stan-

dard cell composition bias is computed with the metric of

the same name as defined in [22].

The metric of entropy in FEOL standard cells will not be

evaluated as its definition overlaps and contradicts the principle

of definition of security level as number of possible mappings

from FEOL graph to graph of the complete layout.

1) Security against proximity attack: This metric is studied

by simulating a proximity attack on sample layouts and calcu-

lating percentage of correct guesses. Layouts at various stages

of implementation in the proposed OBISA flow were created to

evaluate impact of each measure on success rate of proximity

attack. In the table, only columns indicate layouts that underwent

OBISA insertion only (i.e., without wire lifting), while lifted

columns indicate layouts that underwent both OBISA insertion

and wire lifting. Evaluations on a Circuit432 layout secured with

wire lifting solutions produced with greedy algorithm and place-

routed without BEOL information is also provided in column

anonymized for comparison. In addition to Circuit432, key sel

module of DES core (to be elaborated in Section IV-D) is also

shown as an example of effect on larger benchmarks. The results

are shown in Table V. A first impression from the results as

shown in Table V is that the number of successful guesses

for each layout can be rather stochastic. Indeed, number of

successful guesses of all layouts are below 5 except for two

cases. This likely results from number of nets that actually had

been routed as short as possible, an understandable objective

of placement optimization. However, the number of open pins

in FEOL does indeed become greatly improved by OBISA cell

insertion as well as wire lifting. This on the other hand is likely

more significant than possibilities of proximity attack being

successful, as guess-based attack might not be always based

on proximity, but all guess-based attack are universally more

difficult as number of open pins in FEOL increase. If necessary,

number of open pins in the FEOL can be further increased

arbitrarily by adding dummy vias to BEOL layers that do not

lead to BEOL wires. This is probably made more significant

as larger k is requested - the lifted layout for 3-standard-cell-

netlist is 46, much higher than k = 10 for the lifted layout of

the 12-standard-cell-netlist.

2) Security against netflow attack: Recently, research interest

has been focused on improving proximity attack [23], [24],

likely due to its potential at producing valid successful attacks

10
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TABLE II: Comparison of Binary Programming (BP) and greedy algorithm-based wire lifting in terms of ne kept and time consumption.

Method k=46 k=32 k=20 k=16 k=12 k=8 k=4

BP
ne kept 48 52 96 121 123 123 123

Time (sec) 1.3 1.35 3.65 1.43 1.34 1.68 1.38

Greedy
ne kept ≥ 26 56 101 78 152 138 165

Time (day) > 29 12.27 7.34 3.38 16.75 6.05 3.65
Speed improvement > 1.92e6X 7.85e5X 1.74e5X 2.04e5X 1.08e6X 3.11e5X 2.29e5X

% of edges kept ≤ 185% 93% 95% 155% 81% 89% 75%

TABLE III: Time consumption of proposed wire lifting algorithm
on ISCAS’85 benchmark circuits with OBISA insertion

Benchmark c880 c1908 c3540 c5315 c6288

Achieved k 10 10 19 20 27
FEOL edges 10 10 112 252 252
Total edges 323 264 990 1355 3475

Total time (sec) 0.77 0.69 2.99 3.49 14.88
Total cell count 248 209 631 864 2140

# Repetition 100
BP time (sec) 0.06 0.07 0.11 0.77 8.28

TABLE IV: Comparison of security and ne between cell-based and
pin-based definition of edges.

Security level k 46 32 20 16 12 8 4

ne kept
Cell-based 48 52 96 115 119 121 123
Pin-based 48 50 68 105 117 120 123

Security level of cell-based 14 13 7 5 2 2 4

against split fabrication schemes. Therefore, it makes sense

to further verify the security of our proposed OBISA scheme

against a state-of-art attack. We have opted to replicate the net-

flow attack as was described in [23], since the other alternative

[24] was performed on routing benchmarks, whose conversion

into hardware description language (HDL) would involve quite

a lot of effort beyond the scope of this paper. The netflow

attack makes use of four more hints in addition to geometric

proximity, which are 2) acyclic combinational logic circuit; 3)

load capacitance constraint; 4) directionality of dangling wires;

5) timing constraint.

Similar to the treatment in [23], we implemented netflow

attack as a set of linear programming problem. Proximity and

directionality of dangling wires were implemented as weights

to potential connections, hint 3 and 5 are implemented as

constraints, and hint 2 was implemented by detecting timing

loops in netlist according to linear programming solution, and

then adding constraints to prohibit connections responsible for

detected timing loops and rerun the attack. Hint of directionality

of dangling wires was not implemented as a hard constraint as

was done in [23], because it was discovered that directions of

TABLE V: Success rate of proximity attacks.

Circuit432 Ctrl Anonymized
OBISA

Ctrl
OBISA

Only Lifted Only Lifted

#Std-cell 3 12
OBISA insertion No Yes No Yes

Lifted No Yes No Yes No No Yes

Success 5.38% 0.38% 1.99% 6.42% 0.00% 0.54% 0.27%
#Cell 220 220 293 293 115 309 309

#OBISA cell 0 0 73 73 0 194 194
Open pins 93 523 184 680 102 952 954
Hit pairs 5 2 3 28 0 1 2
key sel,

DES Core
Ctrl

OBISA

Only Lifted

OBISA insertion No Yes Yes

Lifted No No Yes

Success 0.24% 0.0003% 0.006%
#Cell 1608 3801 3801

#OBISA cell 0 2193 2193
Open pins 5461 13069 14957
Hit pairs 9 4 69

dangling wires do not always fit the direction of the correct con-

nection, and excluding all pins in “wrong” direction may leave

the problem with no valid solution. The complete statement of

the linear programming problem is shown in Equation 7:

minimize
∑

wi,jxi,j

subject to

Cx ≥ 0,
Tx ≥ 0,
xi,j ≤ 0 if i and j share the same gate,
∑

s

∑

i,j∈s xi,j ≤ 0,
∑J

j=1
xi,j = 1

∑I

i=1
xi,j > 0

∀i, j, xi,j ∈ {0, 1},

(7)

where i ∈ {1, 2, . . . , I}, j ∈ {1, 2, . . . , J}
I is total number of unconnected output pins,

J is total number of unconnected input pins,

wi,j = di,j − li,j − lj,i
di,j = Euclidean distance between output pin i and

input pin j
lk,l = Length of dangling wire of pin k in same

direction as pin l
ci,j = Available capacitance allowance of output pin i
minus capacitive load of input pin j
ti,j = Required arrival time of input pin j minus

arrival time of output pin i
s is a set of all unconnected pins that are found in a

timing loop

Experiments with thus described netflow attack was per-

formed on c432 circuit. Since c432 circuit did not have sequen-

tial gates, required arrival time of unconnected input pins were

implemented by taking the sum of visible gate delays between

said input pin and output port, then subtracted with longest path

delay of the circuit (serves as substitute to clock period). Three

layout were created and evaluated: “Normal” was the control

group where layout is placed and routed normally without

human intervention; “Anonymized” has all its BEOL edges

removed prior to placement, then routed without placement

optimization (i.e., as was described in [19]); “OBISA” is placed

normally, then underwent OBISA insertion flow as described in

Figure 6. For normal layout, unconnected pins were extracted

from layout by choosing all routed shapes of metal layer M3

and above; for the other two layouts, lifted edges were used.

Results from this evaluation are shown in Table VI. It can be

gathered from the demonstrated results that OBISA is slightly

less secure than anonymizing the layout placement, likely due

to proximity hints not being entirely eliminated; however, both

OBISA and anonymized significantly outperforms unaltered

layout. Since OBISA circuitry often has short timing path,

similar fan-out capability as functional circuitry, and no more

likely to form timing loops than candidates in functional circuit,

these hints are unlikely able to distinguish between OBISA and

11
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TABLE VI: Results of netflow attack [23] on layouts of c432
benchmark with normal placement, anonymized placement, and
OBISA insertion.

Circuit432 benchmark Normal Anonymized OBISA

#Correct guesses
35 4

10
#Correct guesses

in functional circuit
8

#Edges in BEOL
264 277

387
#Functional

edges in BEOL
273
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Fig. 11: Neighborhood connectedness (C(R)) curve as radii (R)
increases, on Circuit432 layouts.

functional gates. Directions of dangling wires is less obvious,

but the result seems to suggest even if that hint could distinguish

OBISA and functional gates, its effect is small. We are of the

opinion that dangling wires can likely be eliminated with relative

ease by pre-inserting vias and wire shapes from pins to BEOL

layers before letting automatic router to route BEOL edges,

however proving it would be beyond the scope of this paper.

3) Neighborhood Connectedness: The neighborhood con-

nectedness (C(R)) plot of the same layouts investigated in Table

V is shown in Figure 11. As can be seen from the figure,

all C(R) curves saturates as radii increases, but both OBISA

insertion and wire lifting reduces the eventual saturated C(R).
As have been pointed out in [22], the lower the measure, the

more “spread out” the circuit is, and less functional information

is leaked, resulting in a more secure FEOL layout. Figure 11

also shows C(R) of a Circuit432 layout anonymized (using tech-

nique described in [19]) with the trace named 3ref anonymized

closely follows C(R) of the layouts with OBISA insertion AND

wire lifting (traces 3ref anonymized and 12ref anonymized) at

all ranges but lower than C(R) of layouts without wire lifting,

likely due to wire lifting.

4) Standard cell composition bias: In this evaluation, key sel

module and toplevel module of DES core are examined for

its particular design characteristic. Being a control module,

functional cells in both modules consists only of flip-flop and

multiplexers. Thus, either unsecured module will be very weak

in terms of Standard cell composition bias. This is compensated

by inserting OBISA cells that are common in other modules

of the same DES core. As shown in Table VII, standard cell

composition bias of both modules decreased more than 50%

TABLE VII: Standard cell composition bias of key sel and DES
toplevel.

key sel des

ctrl OBISA ctrl OBISA

Flip-Flops 840 840 1144 1144

Muxes 768 768 0 984

XORs/XNORs 0 0 562 2324

#Cells 1608 3800 1761 29276

bias 6.67E-01 2.82E-01 6.53E-01 5.74E-02

after OBISA insertion.

D. Implementation and Overhead on Large Designs

Two particular benchmarks were used in this study: an

Advanced Encryption Standard (AES) and a Data Encryption

Standard (DES) core. Crypto-cores are selected on the grounds

that they are more likely targeted by attacks and usually require

higher security reinforcements. After synthesis, the 256-bit AES

core we have selected has 657, 292 gates, while the 64-bit

DES core has 15, 651. Further, DES was also chosen in [19],

and will likely serve as a good basis of comparison. Both

designs are large enough to make lifting of a flattened netlist

computationally heavy, and therefore necessitates partitioning.

Both AES and DES cores are from opencores.org.

Each DES core in the design is consisted of 16 instances

of crp module and 1 instance of key sel module. The 256-bit

AES core is consisted of 16 instances of one round module,

7 instances of expand key type A 256 module, 6 instances of

expand key type B 256 module, and 1 instance of final round

module. Finally, both DES and AES core instantiates interface

cells such as flip-flops and multiplexers on their toplevel.

In our implementation we chose a security level k = 16
for one round of AES and k = 10 for crp of DES core.

These coefficients were chosen following the guideline as was

discussed in Section III-C3, so that the overall security level

can be made higher. This leads to an overall security level of

k = 208 for AES core and k = 160 for DES core. To help

improve efficiency, geometry-based partitioning was performed

on both toplevel modules and one round module of AES core.

Implementation overheads in terms of power, timing delay, and

area of each module are summarized in Table VIII and IX.

Both tables provide two sets of comparisons:
1) In terms of total wire length, number of OBISA cells in-

serted as compared to that of functional cells, as well as number

of standard cell models instantiated: Close total wire length

results between OBISA-inserted layout with (Lifted column) and

without (Only column) wire lifting help to explain why little

power and path delay difference were observed between these

two types of layouts.
2) In terms of area, power, and path delays: OBISA-

reinforced layout that underwent wire lifting (Lifted column

under OBISA column) is compared against similarly OBISA-

reinforced layout without wire lifting (Only column under

OBISA column) as well as layout of same module without any

security enhancement (Ctrl column). Area result are the same for

all three scenarios since the same utilization ratio 0.6 was used

for all layouts during their floorplanning stage. There is a slight

increase in terms of power and path delays in the Lifted column

with regard to the Ctrl column, but in all implementations quite

small, and the worst-case path delay overhead in both cores are

3.64% and 4.08% respectively, while the total power overheads

are 12.73% and 6.96%. Based on these results, we are confident
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TABLE VIII: Power, timing, and area overheads of wire-lifted DES
modules.

Module key sel crp

Layout
OBISA

Ctrl
OBISA

Ctrl
Only Lifted Only Lifted

Power
Internal 4.80E-03 4.25E-03 3.79E-03 1.52E-03 1.51E-03 1.50E-03

Switching 7.48E-04 7.07E-04 5.71E-04 1.30E-03 1.18E-03 1.09E-03

(W)
Leakage 2.88E-04 2.88E-04 2.13E-04 3.77E-05 3.77E-05 2.85E-05

Total 5.84E-03 5.24E-03 4.58E-03 2.86E-03 2.72E-03 2.62E-03

Path Min 0.4 0.5 0.32 0.87 0.82 0.8

Delays Median 0.82 0.64 0.48 0.9 0.86 0.83

(ns) Max 1.02 0.78 0.59 1.05 0.98 0.94

Total wire
4.25E+05 3.37E+05 1.40E+05 6.86E+04 6.74E+04 2.70E+04

length(µm)

Area (µm2) 67599.4 10354.2

#Std-cell 9 28

#Cell 4381 1608 1099 745

#OBISA cell 2773 0 354 0

Security Level k 1 160 1 1 10 1

Module des

Layout
OBISA

Ctrl
Only Lifted

Power
Internal 2.93E-03 2.94E-03 2.86E-03

Switching 9.92E-03 9.39E-03 8.78E-03

(W)
Leakage 1.32E-03 1.32E-03 2.41E-04

Total 1.42E-02 1.37E-02 1.19E-02

Path Min 0.37 0.39 0.35

Delays Median 0.41 0.44 0.37

(ns) Max 0.61 0.64 0.58

Total wire
4.12E+06 3.99E+06 1.12E+06

length(µm)

Area (µm2) 753423

#Std-cell 34

#Cell 29293 1778

#OBISA cell 27515 0

Security Level k 1 160 1

TABLE IX: Power, timing, and area overheads of wire-lifted AES
modules.

Module final round one round

Layout
OBISA

Ctrl
OBISA

Ctrl
Only Lifted Only Lifted

Power
Internal 6.70E-03 6.64E-03 6.44E-03 1.02E-02 1.01E-02 9.81E-03

Switching 7.70E-03 7.49E-03 6.53E-03 1.16E-02 1.14E-02 1.12E-02

(W)
Leakage 4.24E-04 4.24E-04 3.08E-04 6.40E-04 6.40E-04 6.39E-04

Total 1.48E-02 1.46E-02 1.33E-02 2.25E-02 2.21E-02 2.16E-02

Path Min 1.37 1.32 1.2 1.83 1.79 1.71

Delays Median 1.42 1.37 1.24 1.92 1.88 1.79

(ns) Max 1.7 1.62 1.42 2.46 2.28 2.2

Total wire length (µm) 1.08E+06 1.07E+06 4.90E+05 1.65E+06 1.64E+06 1.12E+06

Area (µm2) 119882 177073

#Std-cell 31 37

#Cell 12377 8236 17688 11856

#OBISA cell 4141 0 5832 0

Security Level k 1 208 1 1 16 1

Module expand key type A 256 expand key type B 256 OBISA

Layout
OBISA

Ctrl
OBISA

Ctrl
Only Lifted Only Lifted

Power
Internal 3.53E-03 3.51E-03 3.06E-03 3.28E-03 3.09E-03 3.26E-03

Switching 2.40E-03 2.23E-03 1.99E-03 2.09E-03 1.91E-03 1.96E-03

(W)
Leakage 2.39E-04 2.39E-04 1.74E-04 2.31E-04 2.31E-04 1.74E-04

Total 6.17E-03 5.98E-03 5.23E-03 5.61E-03 5.23E-03 5.39E-03

Path Min 1.15 1.12 1.09 1.13 1.13 1.11

Delays Median 1.23 1.19 1.16 1.2 1.19 1.17

(ns) Max 1.69 1.56 1.48 1.55 1.53 1.47

Total wire length (µm) 5.00E+05 4.89E+05 2.18E+05 2.16E+05 2.41E+05 2.14E+05

Area (µm2) 58680.1 58602.7

#Std-cell 30 30

#Cell 4662 2636 4760 2636

#OBISA cell 2020 0 2124 0

Security Level k 1 30 1 1 35 1

Module aes 256 hier1

Layout OBISA
Ctrl

Only Lifted

Power
Internal 3.49E-02 3.27E-02 2.71E-02

Switching 1.11E-01 7.89E-02 8.78E-02

(W)
Switching 1.18E-02 1.18E-02 1.92E-04

Total 1.58E-01 1.23E-01 1.15E-01

Path Min 0.33 0.33 0.35

Delays Median 0.49 0.49 0.44

(ns) Max 1.63 1.14 1.27

Total wire length (µm) 1.19E+07 1.10E+07 1.06E+07

Area (µm2) 5674310

#Std-cell 106

#Cell 108087 2636

#OBISA cell 107036 0

Security Level k 1 208 1

to conclude the proposed wire lifting based OBISA technique

introduces no significant performance overhead to the original

circuitry.

Implementation results shown in Table VIII and Table IX

points at two improvements of significance that were achieved

on top of the performance reported in [19]:

1) a much larger and more standard design (AES) achieved

a much higher level of security; and

2) overheads in area, delay, and power are reduced from tens

to hundreds percent to around ten percent in power, less

than five percent in delay, and zero percent in area; further,

limitation on number of standard cell models was also

removed.

The first difference between the AES module and DES

module is their difference in size: one round module of AES

has more than ten times as many gates as crp module of

DES, even before we consider additional cells brought about by

insertion of OBISA circuitry. All things considered, the OBISA-

inserted AES core consisted of 385, 001 gates, more than 25
times as many gates as a DES core without OBISA insertion.

Another difference is in the fact that DES core is a very

unique design: only its key sel module and its topmodule have

flip-flops, both of which are instantiated only once. Therefore,

implementation on AES core, whose modules are all clocked,

demonstrates the ability to be applied on synchronous design,

as we have predicted during our introduction of our pin-based

definition of edges in Section III-B2. A final observation is that

our proposed BP-based wire lifting approach allowed presented

implementation to reach security levels such as k = 160 and

k = 208 with ease, much higher than previously reported k = 64
[19]. This supported our early observation that satisfying an

arbitrarily high security level is not only easy for the proposed

BP-based approach, it often takes it even less time to conclude

than lower security levels which may have more viable solution

candidates.

Equally significant is the reduction in overheads. As was

theorized previously in Section III-C1, the huge overhead6 in

[19] was most likely result of the approach of eliminating layout

cues by preventing place and route tool to optimize the design

according to its function. Our evaluation in terms of known

layout-based split manufacturing security metrics supported our

hypothesis that it would not greatly impact security perfor-

mance. Our theory that OBISA insertion would help remove

the restriction on number of standard cell models was also

supported by our implementation result: only design where any

such restriction was felt was crp module of only 745 gates,

where we achieved k = 10, and could have further improved

that number had we allowed ourselves overhead in area.

E. Comparison with contemporary research

Since after the submission of this work, another work [30]

have been accepted at a conference, which is similar to our

work in also seeking to improve upon the time complexity of

wire lifting algorithm using mixed-integer linear programming,

and improving the security level by introducing dummy vertices

and edges. We find it encouraging that the idea that timing

complexity of wire lifting algorithm can be improved has

received support.

654% to 92% in power, 73% to 114% in delay, 167% to 502% in area were
reported in [19].
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The primary difference between these two works, on the

other hand, is that OBISA is intended as an improvement to

existing BISA technique, and therefore carries limitations along

with advantages of BISA, as opposed to the technique reported

in [30], which is intended as an improvement to k-security.

One example of this difference is that all additional gates

inserted by the OBISA technique will only occupy white-space

and therefore do not incur additional area, power, or timing

overhead. Further, the OBISA technique occupies all available

white spaces and prevents untargeted Trojan insertion, which is

not always possible with split manufacturing alone.

V. CONCLUSION

In this paper, we have presented a novel implementation

approach of Obfuscated Built-In Self-Authentication (OBISA)

technique that combines hardware Trojan deterrence through

Built-In Self-Authentication (BISA) circuit insertion as well as

optimized split manufacturing through wire lifting. The resulting

technique is shown to be efficient, secure, and introduces very

low performance overhead to the functional design that it is fit

for industrial level of integration. The presented implementation

flow is tailored to work with all mainstream EDA tools. In

the future, the proposed flow could be further improved by

expanding the presented technique to further reduce overhead

and improve solution generation efficiency.
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