SoftwareX 9 (2019) 85-94

journal homepage: www.elsevier.com/locate/softx

Contents lists available at ScienceDirect

00001100

SoftwareX bl i

Original software publication

NURBS-Python: An open-source object-oriented NURBS modeling]

framework in Python
Onur Rauf Bingol *, Adarsh Krishnamurthy

Department of Mechanical Engineering, lowa State University, United States

Check for
Updates

ARTICLE INFO ABSTRACT

Article history:

Received 23 August 2018

Received in revised form 8 November 2018
Accepted 20 December 2018

Keywords:

Curve and surface modeling
Non-uniform rational B-splines
Object-oriented programming
Python

We introduce NURBS-Python, an object-oriented, open-source, Pure Python NURBS evaluation library
with no external dependencies. The library is capable of evaluating single or multiple NURBS curves and
surfaces, provides a customizable visualization interface, and enables importing and exporting data using
popular CAD file formats. The library and the implemented algorithms are designed to be portable and
extensible via their abstract base interfaces. The design principles used in NURBS-Python allows users to
access, use, and extend the library without any tedious software compilation steps or licensing concerns.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license

(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version

Permanent link to code/repository used for this code version

Legal Code License

Code versioning system used

Software code languages, tools, and services used

Compilation requirements, operating environments & dependencies
If available Link to developer documentation/manual

Support email for questions

v4.3.8
https://github.com/orbingol/NURBS-Python
MIT License

Git

Python, Matplotlib, Plotly

Python v2.7.x, v3.4.x and higher
https://nurbs-python.readthedocs.io
nurbs-python@googlegroups.com

1. Introduction

Non-Uniform Rational B-Splines (NURBS) are accepted as the
industry standard for the representation of geometry in mechan-
ical computer-aided design (CAD) systems. In addition, they are
used in many other fields such as robotics and self-driving cars that
require dealing with geometric elements for trajectory generation
and smoothing. Traditionally, NURBS algorithms are developed
using compiled languages, such as C [1] or C++ [2,3] in order to
achieve better performance over interpreted languages. However,
running simple geometrical queries using compiled libraries re-
quire tedious and complicated setup that depends primarily on
the operating system and computer architecture. A NURBS library
written using an interpreted language can considerably reduce the

* Corresponding author.
E-mail addresses: orbingol@iastate.edu (O.R. Bingol), adarsh@iastate.edu
(A. Krishnamurthy).

https://doi.org/10.1016/j.s0ftx.2018.12.005

overhead of compiling the library, and lead to widespread usage of
the NURBS algorithms in different applications.

In order to develop a widely accessible NURBS library, we
have implemented it using Python. Python [4] is an interpreted
high-level programming language that is widely used by non-
programmers and scientists. By design, Python code can work on
most modern platforms. The reference implementation, CPython
provides a well-designed C programming interface for interacting
with different libraries. As a result, modern libraries, such as
Theano, TensorFlow, Cognitive Toolkit (CNTK), provide user inter-
faces implemented in Python to reduce the programming interface
learning effort and development time, while using Python’s C
programming interface for accessing low level libraries, such as
nVidia’s CUDA and cuDNN.

This paper describes the NURBS-Python package and its pro-
gramming interface. NURBS-Python is a computational geome-
try library specifically designed for evaluating rational and non-
rational B-Spline curves and surfaces. NURBS-Python is an open-
source library designed to have minimum external dependencies.

2352-7110/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2018.12.005
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2018.12.005&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/orbingol/NURBS-Python
https://nurbs-python.readthedocs.io
mailto:nurbs-python@googlegroups.com
mailto:orbingol@iastate.edu
mailto:adarsh@iastate.edu
https://doi.org/10.1016/j.softx.2018.12.005
http://creativecommons.org/licenses/by/4.0/

86 O.R. Bingol and A. Krishnamurthy / SoftwareX 9 (2019) 85-94

The library provides a fully extensible object-oriented data struc-
ture, evaluation, and visualization capabilities implemented using
the Python programming language. The library can be utilized
using a direct object-oriented application programming interface
(API). It does not contain elements that could restrain its flexibil-
ity, such as a graphical user interface (GUI) or a domain-specific
language implementation. Instead, it allows users implement any
graphical user interface using its abstract base classes. The optional
visualization component included in the package implements this
abstract base and can be used for plotting the curves and surfaces.
The abstract base, data API, and evaluation capabilities are self-
contained with no external module dependencies. On the other
hand, the visualization components implement most commonly
used plotting and visualization libraries, such as Matplotlib and
Plotly.

This paper presents the different components of the NURBS-
Python library. The main contributions of this paper include:

e An object-oriented and self-contained NURBS framework
providing easy-to-use data structures and extensible algo-
rithms.

e A pure Python NURBS computational library with no extra
dependencies or compilation requirements.

e Utilizing existing plotting libraries to visualize NURBS curves
and surfaces.

e A free and open-source extensible framework without any
licensing concerns.

This paper is arranged as follows. In Section 2, we highlight our
design considerations and compare NURBS-Python with existing
packages and In Section 3 we outline the NURBS formulations.
In Section 4, we discuss the components of the framework and
their the implementation details including the different algorithms
used. Finally, in Section 5 we provide some code examples describ-
ing the framework with different curve and surface examples.

2. Design considerations

NURBS-Python is an object-oriented NURBS evaluation library
with data structures suited for geometric operations. NURBS have
a compact definition any NURBS shape (curve or surface) can be
defined by its degrees, knot vectors, and a set of control points.
These are usually input by the user, however, the library is also
capable of automatically generating a uniform knot vector, partly
simplifying the knot vector input for some use cases. The geometric
output variables are computed after evaluating the shape. The
curve and surface objects are interactive; it is possible to change
any input variable at runtime and the library re-evaluates the
shapes automatically.

In order to achieve the best compatibility, NURBS-Python is
designed to only use modules that come with the core Python
distribution [4], also called as Python Standard Library including
the mathematical evaluation libraries. Having no external depen-
dencies allows users to have a lightweight and portable package
that can be integrated with different architectures with minimal
effort. A self-contained pure python library also protects users from
binary interface incompatibilities and eliminates extra compilation
steps and installation of third-party software for running a simple
code segment. Due to its modular and object-oriented nature, the
evaluation capability of NURBS-Python is easily extensible to a
variety of platforms, such as HPC clusters or GPUs. Moreover, it
can be used for various use cases such as integration with CAD,
CAM, robotics, and machine learning libraries and for educational
purposes for teaching geometric modeling concepts.

Development of NURBS date back to 1950s and therefore, it
would be unwise to think that NURBS-Python is the only library of
its kind. However, we are not aware of any pure Python standalone
NURBS evaluation library for direct comparison. Nevertheless, we

would like to compare our library with some of the existing open-
source libraries containing NURBS components. We would like to
note that the following libraries are not stand-alone NURBS evalu-
ation libraries and mostly designed to support other uses such as
isogeometric analysis. One of the most famous and commonly used
Python library for isogeometric analysis is igakit [5]. Although
igakit has a complete NURBS evaluation implementation, it is
heavily dependent on third-party libraries and require compila-
tion for usage. Additionally, igakit does not provide a separate
package for its NURBS evaluation module. Moreover, the software
design approach between igakit and NURBS-Python is different.
The NURBS evaluation component of igakit uses a mathematical
approach, which does not differentiate between the dimension
of the NURBS shapes. On the other hand, NURBS-Python’s design
approach is focused specifically on curves and surfaces, and can
be extended to volumes. Although, this is just a matter of design
preference, we believe that our approach improves the usability of
the library. There are also several NURBS libraries developed using
MATLAB/Octave [6-8]. These implementations are also mainly de-
signed to support isogeometric analysis, however, they are devel-
oped in programming languages that are considered proprietary or
closed-source.

3. A brief introduction to NURBS

A NURBS shape is defined as a vector-valued function of one
or more parameters which maps a k-dimensional space into, at
minimum, a k + 1-dimensional space. This function is simply the
vector product (or a tensor product, depending on the k value)
of basis or blending functions by a set of n-dimensional control
points [9,10].

The basis functions in NURBS are evaluated using the
Cox—de Boor recursion algorithm as described in Eq. (1), where &
is the parameter value, N;, is the ith order basis function and p is
the degree of the shape defined for the parametric dimension in
consideration [9].

‘ 1 ifE <& <&
Nio(§) = {0 otherwise (1)
§—& S§iip—§
Ni = 71\[1‘ _ Ni — 1b
o(§) Pl 1(8) + By — i +1,p-1(8) (1b)

The derivatives of the basis functions can be evaluated using
Eq. (2)[9].

k
(;(I;_Ni,p(é) = (pfi'k)' j_zoak,jNi+j,p4<($) (2a)
ago =1 (2b)
Qk—1,0
o= ivp—k+1 — & (2¢)
oy = Ok—1,0 — Uk—1,j—1 , (2d)
Sirprjkr1 — iy
ok = —Ok—1,k—1 (2e)

Eirpr1 — Eivk
where j = 1,...,k — 1. The derivatives are used to compute
tangents, normals, and binormals of the NURBS shapes.

After computing the basis functions, a single point on the
curve corresponding to the parameter & is evaluated by simply
multiplying the basis functions with the corresponding control
points, B; j and summing up the multiplication results, as described
in Eq. (3) [9].

C(&) =) Niy(&)P (3)
i=1

O.R. Bingol and A. Krishnamurthy / SoftwareX 9 (2019) 85-94 87

BSpline.Curve Abstract.Curve
+ __init_ () # _cache
+ add_dimension() + bbox
+ binormal() + ctripts
+ binormals() + degree
+ curvept() + delta
+ decompose() + dimension
+ derivatives() + evalpts
+ evaluate() [+ evaluator
+ insert_knot() + knotvector
+ load() + name
+ normal() + order
+ normals() + rational
+ save() + sample_size
+ set_ctrlpts() + vis
+ split() =
+ tangent() +o_dnit_()
+ tangents() # _check_variables()
+ translate() + evaluats()
+ render()
jk + reset()
NURBS.Curve
+ ctripts
+ ctriptsw
+ weights
+_init_()
+ derivatives()

Fig. 1. Class diagram showing the inheritance of Curve classes.

The same evaluation method also applies to the surfaces. Sur-
faces are defined on a 2-dimensional parametric space described
using (&, n), To calculate a single point corresponding to these
parameters, the basis functions on each parametric dimension,
Ni »(&), M; (), need to be evaluated and multiplied with the con-
trol points, P; j, and summed up as described in Eq. (4) [9].

Ni.p(§)Mj (n)Pi, (4)

n m
=1

S(E. =Yy

i=1 j

These equations are also applicable to Bézier curves and sur-
faces, since NURBS are a superset of Bézier shapes.

NURBS shapes can be divided into two types with respect to
their knot vector structure: clamped and unclamped. A clamped
shape can be understood from the repetitions of the knots at the
beginning or at the end of its knot vectors. In an unclamped shape,
there would be no repeating knots on both ends of the knot vector.
Unclamped shapes still follow all NURBS properties and they can be
evaluated using the same equations. For instance, the knot vector
in Eq. (5) defines a clamped shape at both ends, where p is the
degree and m + 1 corresponds to the number of knots in the knot
vector [9].

U={a,....,a,Upt1,...,Un—p-1,b, ..., b} (5)
—— S——
p+1 p+1

All knot vectors obey the following equation:
m=p+n+1 (6)

where p is the degree, m + 1 is the number of knots in the knot
vector and n + 1 is the number of control points [9]. The values in
the knot vectors are non-decreasing. These properties are used to
validate the knot vectors.

4. Components of the framework

We describe the main components and the features of NURBS-
Python on the following sections. More details can be found in
Appendix A.

4.1. Core components and data structures

The core component involves the data structures for represent-
ing the shapes in the form of curves and surfaces and the evalu-
ation functionality as well as the abstraction layer for providing
extensibility. It includes input validation methods, which validates
all user inputs with respect to the mathematical description of
NURBS discussed in Section 3, and a caching system, which is
directly integrated to improve interactivity of the library. NURBS-
Python provides abstraction via the Abstract module. This mod-
ule provides templates for future extension of the library and tries
to maintain the programming interface as standard as possible
between the current and the extended modules.

The data structure and the evaluation operations are available
in NURBS and BSpline modules representing rational and non-
rational versions of the non-uniform basis splines, respectively.
The only difference between these modules is the structure of the
control points. Evaluation functionality in NURBS module requires
weighted control points, whereas BSpline requires no weights.
The logic behind this design is generating an easy-to-understand
environment by logically separating rational and non-rational al-
gorithms and eliminating the need for extra information, such
as weights, for users who only prefer to work with non-rational
surfaces and curves.

The BSpline and NURBS modules contain two classes for rep-
resenting the geometrical shapes. Curve class represents a single-
manifold n-dimensional curve shape and Surface class repre-
sents a two-manifold 3-dimensional surface shape. All NURBS and
B-Spline classes implement evaluate method for shape evalu-
ation and evalpts property to retrieve evaluated points. These
classes automatically evaluate the shape when required, such as
plotting the shapes or retrieving the evaluated points from the
object instance; therefore, it is not needed to explicitly evaluate the
shape before any operation that requires the evaluated shape. The
class diagrams of BSpline and NURBS modules showing their in-
heritance are shown in Figs. 1 and 2. Moreover, the Multi module
contains two classes, MultiCurve and MultiSurface, for storing
and evaluating multiple curves and surfaces simultaneously.

4.2. Curve and surface evaluation

The curve and surface evaluation is handled by the Evaluator
module and the abstract base class used is AbstractEvalua-
tor. The class diagram showing the inheritance of the included
Evaluator modules are shown in Fig. 3. This module contains
knot vector span finding algorithms using linear and binary search
techniques, basis function and point evaluation algorithms as sug-
gested by Piegl and Tiller [9]. The Evaluator modules are de-
signed to allow users to extend algorithms easily or use them as
an evaluation strategy, i.e. change them at runtime without need
of re-creating the object instance. Therefore, it makes easier to
compare, mix and reuse different evaluation algorithms with the
same shape data.

In order to evaluate a shape (a curve or a surface), the user
first sets the degrees, the knot vectors, the control points and
the sample size or evaluation delta which corresponds to the
number of points to be evaluated by NURBS-Python. The included
evaluation algorithms can handle clamped and unclamped shapes.
The evaluation interval delta, or the delta property, should be
between 0.0 and 1.0, otherwise the library warns the user to pick
a value between the interval. Sample size, represented by the
sample_size property, can be any number bigger than 1 and it
should be an integer value. NURBS-Python is designed to fix any

88 O.R. Bingol and A. Krishnamurthy / SoftwareX 9 (2019) 85-94

BSpline.Surface Abstract.Surface
+ _init_ () # _cache: dict
+ decompose() + bbox: list
+ derivatives() + ctripts: list
+ evaluate() + ctrlpts_size_u: int
+ insert_knot() + ctripts_size_v: int
+ load() + ctripts2d: list
+ normal() + degree_u: int
+ normals() —————T>{+ degree_v:int
+ save() + delta: float
+ set_ctripts() + delta_u: float
+ split_u() + delta_v: float
+ split_v() + dimension: int
+ surfpt() + evalpts: list
+ tangent() + evaluator: AbstractEvaluator
+ tangents() + knotvector_u: list
+ translate() + knotvector_v: list
+ transpose() + name: str
+ order_u: int
4 + order_v:int
+ rational: bool
NURBS.Surface + sample_size: int
+ vis: VisAbstractSurf
+ ctripts: list
+ ctriptsw: list + o _init_()
+ weights: list # _check_variables()
+ evaluate()
+ __init_ () + render()
+ derivatives() + reset()

Fig. 2. Class diagram showing the inheritance of Surface classes.

Evaluator
(Abstract) VisAbstract Grid
_cache - _elements - _delta=10e-8
> Hame + it () - 7dir.nensi.on =3
- _grid_points
+ _nit_() = ECLD - _origin = [0.0, 0.0, 0.0]
+ derivatives() + clear() = o s
+ derivatives_single() + render() - sizey
+ evaluate() = —
+ evaluate_single() A + __init_ ()
SurfaceEvaluat CurveEvaluator + _check_bump()
(Abstract) (Abstract) + bumps()
N . + generate()
+ insert_knot_u() + insert_knot() + grid()
+ insert_knot_v() + rotate_x()
+ rotate_y()
% 4 + rotate_z()
+ save()
SurfaceEvaluator CurveEvaluator + translate()
+_init_() + _init_ ()
+ derivatives() + derivatives()
+ derivatives_single() + derivatives_single()
+ evaluate() + evaluate() i
+ evaluate_single() + evaluate_single() VisAbstractSurf
+ insert_knot_u() + insert_knot() N init__()
+ insert_knot_v() " Ender?)

i

NURBSSurfaceEvaluator

1

NURBSCurveEvaluator

set_ctripts_offset()

GridWeighted

- _dimension =4

+ __init_ () + __init_ ()
+ evaluate() + evaluate()
+ evaluate_single() + evaluate_single()

VisConfigAbstract *+ _nit_()
1sContig strac o addiwelght()
+ init__() + modify_weight()

Fig. 3. Class diagrams showing the inheritance of abstract Evaluator, surface generator and visualization classes.

discrepancies by applying type casting when a value could properly
be converted into the correct type without additional user input.

The following equation shows the relation between delta (d)
and the sample_size (S):

S ! +1
T d
The evaluation of % mostly results in a floating point value;

therefore its result is type-casted to the integer type. The type

casting operation rounds the result of the division to the lower

(7)

integer value. The delta property is set to 0.01, by default. The
main steps in evaluating curves and surfaces are:

1. Find spans on the given knot interval which are determined
via the input sample size.

2. Compute basis functions for the spans using Eq. (1).

3. Evaluate the shape by finding all the control points that
belong to the given knot interval and performing the multipli-
cation with the basis functions and summation using Egs. (3)
or (4).

After evaluation, the evaluated points are automatically cached

and can then be accessed using the evalpts property. The internal

O.R. Bingol and A. Krishnamurthy / SoftwareX 9 (2019) 85-94 89

cache is used to speed up the responsiveness of the library, since
the evaluated points could only change if any of the evaluation
variables (degree, knot vector, control points, or the evaluation
delta) changes. If any change occurs in these variables, the cache
is reset and the shape is re-evaluated.

NURBS-Python also has capabilities to evaluate derivatives of
the curves and surfaces using the algorithms suggested by Piegl
and Tiller [9]. The method derivatives is designed to evaluate
nth order derivatives of the curves and surfaces. The geometric
interpretation of the derivatives, such as tangents, normals, and
binormals, have their own methods, tangent, normal, binormal
respectively. Curve tangents are computed from the 1st deriva-
tive at the given parametric value, normals are computed from
the 2nd derivative, and binormals are computed by vector cross-
product of tangents and normals. These vectors correspond to the
Frenet-Serret Frame which is a right-handed system of a pair-
wise orthonormal vectors that follow the curve. In a Frenet-Serret
frame, the tangent (T), normal (N) and binormal (B) vectors are
perpendicular to each other and can be computed from 1st deriva-
tives, 2nd derivatives, and via the equality B = T x N, respectively.
Surface tangents are computed from the 1st derivative with respect
to each parametric direction, and the surface normal is computed
by vector cross-product of the tangents in each direction.

4.3. Shape splitting and knot insertion

The Multi module has capabilities to evaluate multiple curves
and surfaces. NURBS-Python uses Multi objects to return split
or decomposed shapes. Curve classes have split and surface
classes have split_u and split_v methods corresponding to
each parametric direction. Both curve and surface classes have
decompose methods for Bézier decomposition. Both shape split-
ting and decomposition can be achieved by using an evaluator
method insert_knot which is implemented using the algorithm
suggested by Piegl and Tiller [9].

The splitting algorithm takes a parameter value u between 0.0
and 1.0, finds the multiplicity s of the parameter over the knot
vector in the chosen parametric direction and inserts r number of
knots (calculated using the equationr = p—s, where pis the degree
of the shape in the chosen parametric direction). Although this
operation is simply considered as splitting [9], it is not enough to
generate 2 different shapes with separate knot vectors and control
points arrays. In order to generate two different shapes, NURBS-
Python needs to find the exact span on the knot vector which
defines the split point. The split knot span in consideration can be
found by adding 1 to the input parameter value, u + 1. NURBS-
Python then splits the knot vector using the split knot span into 2
separate vectors. Since the generated shapes are always clamped,
the u value is added to the end of the first knot vector and to the
beginning of the second knot vector to satisfy the rules discussed
in Section 3. The control points array is separated into two arrays
at the split location by adding the span of the input parameter, u
and the number of knots inserted, r. Finally, the separated knot
vectors and control points arrays are saved into the MultiCurve
or MultiSurface container object.

Bézier decomposition is performed by applying tree expansion
on the shapes. The shape is split at the middle knot locations.
i.e. the ones that are not 0.0 or 1.0s. The split shapes can be con-
sidered as the leaf nodes. If any leaf node is still splittable (i.e. not
a Bézier segment or a patch), the algorithm continues splitting
at the middle knot locations until no middle knots remain in the
knot vectors. For curves, the decomposition algorithm is directly

applied as they are described with one parametric direction. The
resultant curve segments are stored in a MultiCurve container
object. For surfaces, the decomposition algorithm is applied on first
v parametric direction and then u parametric direction. Similar to
the decomposed curves, the resultant Bézier surface patches are
stored in a MultiSurface container object.

4.4. Surface generator

We initially designed the surface generator module to gen-
erate sample surfaces for testing our work on incorporation of
defects on layered composite structures [11]. The classes Grid and
GridWeighted are used to generate surfaces that are compatible
with BSpline and NURBS, respectively. The class diagrams are
displayed on Fig. 3. Both classes are initialized with width, x and
height, y with zero thickness. The grid mesh is generated by in-
putting number of divisions in both width and height directions.
These divisions define the control points locations and they are
uniformly distributed over the generated surface. These steps are
enough for generating a planar surface in desired dimensions with
desired number of control points. Additional details on surface
generation can be found in Appendix A.1.

4.5. Exporting and importing data

Despite being designed as a low-level library, NURBS-Python
includes a CAD interoperability and exchange module for extend-
ing its usability with the other software. The interoperability mod-
ule provides control points grid manipulation operations, such
as changing the array structures from weighted to unweighted,
extracting and replacing weights and changing the row order. The
exchange module provides support for exporting control points
and evaluated points as CSV and VTK polydata formats, and export-
ing surfaces using common CAD formats, such as OBJ, STL, and OFF.

Since the CAD formats defined here require a triangulated sur-
face, NURBS-Python includes a simple triangulation functionality
(Fig. 4). This functionality uses the parametric correspondence
of the 3-dimensional surface points using the delta or sam-
ple_size property as described using Eq. (7) to generate the
triangle mesh. These properties determine the distance between
the surface points on the parametric space and this information

() (b)

N

(c))

Fig. 4. Generating a triangulated surface with NURBS-Python using delta = 0.25.
(a) Positions of the evaluated points on the parametric space, (b) triangulated
surface on the parametric space, (c) A scatter plot on the 3-dimensional space
illustrating the positions of the individual evaluated surface points. (d) Triangulated
surface.

90

(a) (b)

O.R. Bingol and A. Krishnamurthy / SoftwareX 9 (2019) 85-94

(©)

@)

Fig. 5. NURBS curves and surfaces generated by the library and plotted using Matplotlib implementation of the visualization component. (a) A circular NURBS shape
generated from 7 control points, (b) Bézier decomposition of the circular shape, each curve segment is colored differently, (c) A cylindrical NURBS surface, (d) Bézier
decomposition of the cylindrical surface, each surface patch is colored differently. The colors on the decomposed shapes are randomly generated.

- —e- Control Points
Y — curve
04 2

024

0.0

—0.4

-1.00 «0.15 -0.50 0325 0.00

Fig. 6. An unclamped curve plotted using Matplotlib implementation of the visual-
ization component. Blue dotted-dashed line shows the control points polygon and
the black solid line shows the evaluated curve.

can be used to pick the closest points that could generate non-
overlapping triangles. The size of the triangles, and therefore the
smoothness of the surface can be fine-tuned by the user input.

NURBS-Python is designed to work with Python’s default con-
tainer classes, such as 1ist and tuple to import new shapes.
We implement some importing functionality from text files and
libconfig-type files out-of-the-box; however, we prefer not to
invent another file format and instead make the package work
with Python’s default container classes. Any class or package that
can output the data as 1ist or tuple is compatible with NURBS-
Python for data import. For libraries that output the control points
in different formats, such as (x, y, z, w) in OpenNURBS [3] or sep-
arate (x,y,z) and w arrays, where x,y, z are the coordinates of
the control points and w is the weight value, NURBS-Python’s
compatibility module can be used to convert the control points
into the format that NURBS-Python can read as well as saving them
as text files.

(@)

(b)

Importing from the CAD exchange formats, which directly sup-
port NURBS data structures, such as IGES and X3D, is still work in
progress and will be released in the next major version of NURBS-
Python.

4.6. Visualization components

NURBS-Python implements 2 common python visualization li-
braries, Matplotlib [15] and Plotly [16] using its abstract base
classes, VisAbstract for general plotting and VisAbstract-
Surf for surface plotting customizations. These provide native
ability to visualize the NURBS shapes. Their class diagrams are
illustrated on Fig. 3. Moreover, Figs. 5 and 7 illustrate single and
multi surface visualization capabilities using different plotting li-
braries. Fig. 6 illustrates a 2-dimensional curve unclamped on the
both sides and plotted using Matplotlib implementation of the
visualization component.

The curve visualization classes VisCurve2D and VisCurve3D
directly uses the line plots and surface visualization class VisSur-
face uses the triangulation method discussed in Section 4.5. To
plot the control points grid mesh, VisSurface uses an algorithm
that connects the closest 4 control points to generate quads. The
closest points are identified from the structure of the control points
array.

Each visualization class can be configured using a configuration
class. The abstract base of the configuration classes is VisConfi-
gAbstract as referred in Fig. 3. The configuration class can only
make visual changes to the output curve or surface plot, such as
changing the figure size and the resolution, hiding legend from
the plot as illustrated in Fig. 8. In our design, it is only possible to
configure at the visualization instance generation step, otherwise
it will use the default configuration implementation with optimal

(©

Fig. 7. NURBS multi-surfaces (MultiSurface class) generated by the library and plotted using Plotly implementation of the visualization component. (a) Heart valve
modeled from 3 surface patches [12]. (b) Wind turbine blade modeled from 28 surface patches [13]. (c) Human heart modeled from 297 surface patches [14].

O.R. Bingol and A. Krishnamurthy / SoftwareX 9 (2019) 85-94 91

values (i.e. everything is visible on a screen with 1280 x 720 pixels
resolution) set inside the visualization modules.

4.7. Testing and algorithm validation

To test the library and validate the results of the geometrical
algorithms, we have implemented unit and functional tests for
NURBS-Python using pytest and all tests are connected to a
continuous integration (CI) system for automated testing of the
library. We have achieved the geometrical evaluation validity by
implementing multiple tests with different inputs for checking the
complete shape evaluated with a relatively large delta value or only
specific regions (e.g. only validating the affected region after the
knot insertion operation).

The automated tests included cover all the algorithms, python
properties (getters and setters) and most of the helper function-
ality. We were able to achieve full code coverage via the tests on
the algorithms validation excluding the input checking and data
validity parts of the methods. At the time of this writing, we were
able to achieve around 70% code coverage with 257 automated
tests.

5. Code examples

The following examples illustrate how to generate a curve and
a surface, and then visualize it using NURBS-Python. We start with
a 3-dimensional curve example.

from geomdl import BSpline, utilities
from geomdl.visualization import VisMPL

Create a curve instance
crv = BSpline.Curve()

Set curve degree
crv.degree = 3

Set control points
crv.ctrlpts = [[10, 5, 10], [10, 20, —30],
[40, 10, 25], [—10, 5, 0O]]

Auto—generate the knot vector
crv.knotvector = utilities.generate_knot_vector(curve.degree,
len(curve.ctrlpts))

Evaluate the curve
crv.evaluate ()

Set the visualization component
crv.vis = VisMPL.VisCurve3D()

Plot the curve
crv.render()

The code listing starts with importing the modules and then we
create a curve instance, controlled by the variable crv . We set the
curve degree and input control points using the property ctrlpts.
The control points are represented as list of n-dimensional co-
ordinates using Python lists. Using the utilities module, we
generate a uniform knot vector automatically and set it using the
knotvector property. Finally, we evaluate the curve, although the
library would automatically evaluate the curve or the surface when
the evaluated points are requested by an internal component or a
user. The evaluation method computes the curve points using the
default Evaluator algorithm. For the visualization part, we set the
visualization module designed for plotting 3-dimensional curves
using the vis property and executing render method of the Curve
class will plot the curve by calling Matplotlib functions.

60

0

Fig. 8. The generated surface is visualized using Matplotlib implementation of the
visualization component. The control points polygon and the legend are removed
from the figure using the visualization configuration class.

The following code listing generates a surface using NURBS-
Python and plots the surface using the Plotly implementation of
the visualization component.

from geomdl import BSpline, utilities
from geomdl.visualization import VisPlotly

Create a surface instance
surf = BSpline.Surface()

Set degrees
surf.degree_u = 3
surf.degree_v = 2

List of control points

control_points = [[O0, O, O], [0, 4, 0], [0, 8, —3],
[2, o0, 6], [2, 4, 0], [2, 8, O],
|4, 0, 0], [4, 4, 0], [4, 8, 3],
[6, 0, O], [6, 4, —3], [6, 8, 0]]

Set control points
surf.set_ctrlpts(control_points, 4, 3)

Auto—generate knot vectors

surf.knotvector_u = utilities.generate_knot_vector(surf.
degree_u, surf.ctrlpts_size_u)

surf.knotvector_v = utilities.generate_knot_vector(surf.
degree_v, surf.ctrlpts_size_v)

Set sample size
surf.sample_size = 25

Evaluate surface
surf.evaluate ()

Set the visualization component
vis_component = VisPlotly.VisSurface()
surf.vis = vis_component

Plot the surface
surf.render ()

The surface generation example is similar to the curve genera-
tion example. The main difference is in setting the control points.
The control points shown with the variable control_points on
the above example are stored in a list of 3-dimensional coordinates.
However, a surface is defined over a 2-dimensional parametric
space and therefore, requires a grid of control points. To allow
user input as a single dimensional array of coordinates, we im-
plemented a structure only applicable to the surfaces. On this

92 O.R. Bingol and A. Krishnamurthy / SoftwareX 9 (2019) 85-94

structure, the v index varies first. That is, a row of v control points
for the first u value is found first. Then, the row of v control points is
found for the next u value. This variation is controlled by a separate
function, set_ctrlpts as Python properties cannot be arranged
to accept multiple variables as the same time. We also did not
want to confuse the users by implementing structures, such as
Python dictionaries as the input. The set_ctrlpts function takes
the control points and the number of control points in u and v
directions as the input.

It would not be possible to provide examples for all the features
of NURBS-Python in this paper, and hence we have also released
a set of example scripts publicly on Github with the intention of
providing templates to the NURBS-Python users. We constantly
add more examples for the new features, integration and usage
scenarios that we encounter while using the library. We encourage
NURBS-Python users to refer to the examples repository (https://
github.com/orbingol/NURBS-Python_Examples) for more possible
usage and integration scenarios.

6. Conclusions and future work

We have introduced an open-source object-oriented geometric
modeling library with visualization options. We have publicly re-
leased the library on https://github.com/orbingol/NURBS-Python
and in addition, we provide over 40 example scripts that illustrate
the features of the library and some sample usage scenarios on
a separate GitHub repository. The scripts to generate some of the
figures illustrated on this paper can also be found in that repository.
We also provide a complete class documentation with more ex-
amples and figures. The documentation is automatically generated
and published on ReadTheDocs, a free documentation generation
and publishing website. Users can also access to the other reports,
such as continuous integration system logs and code coverage
graphs via project’s GitHub page. To increase the accessibility of
the library on different platforms and reduce the user effort for
installation, we have uploaded NURBS-Python to Python Package
Index (pypi.org) and Anaconda Cloud (anaconda.org), allowing
users to download the library using the package managers pip and
conda.

NURBS-Python is designed to be an extensible and open-source
framework for geometric modeling. Since it is freely available
on a public domain, developers can extend the library in their
own liking or integrate it in their own works. Nevertheless, we
would like to add some comments on our current work and some
possible extension paths for the NURBS-Python library. We will be
adding additional spline algorithms, such as knot removal, degree
elevation and reduction, as well as fitting, trimming, offsetting
and volume parameterizations. We are currently developing a
module called shapes for allowing users to generate commonly
used NURBS shapes, such as circles, cylinders, torus, etc. Finally,
extending the framework to support truncated hierarchical B-
splines (THB-splines), T-splines, and polynomial/rational splines
over hierarchical T-meshes (PHT/RHT-splines) [17] for adaptive
geometric design would be a nice path for further extension of the
library to support engineering applications, such as isogeometric
analysis for structural mechanics [18].

Acknowledgments

We would like to express our deepest gratitudes to all NURBS-
Python users and contributors around the world for their time and

efforts in testing NURBS-Python, reporting the bugs and
commenting on the features. These contributions helped us to
develop a solid NURBS evaluation framework for Python. As a cour-
tesy, we have included their names in CONTRIBUTING.rst file on
our GitHub repository. Adarsh Krishnamurthy is partly funded by
the National Science Foundation under the grant numbers 1644441
and 1750865.

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix A. Additional components of the framework

A.1. Surface generator customization

Although generating a planar surface grid in desired size and
exporting it as a text file for further customizations could be
enough for most users, NURBS-Python also provides facilities to
manipulate the shape of the generated surface. The bumps method
includes an algorithm that allows users to generate hills (or bumps)
on the surface. This algorithm generates 2 random numbers cor-
responding to width and height on the interval of the generated
surface. These numbers correspond to the location (coordinates)
of the peak of the hill to be generated. Then, the algorithm checks
for surrounding locations for existing hills (i.e. non-zero z value).
If there are no hills generated previously, then the method ap-
plies the z value, which is a user input argument named as bump
height, to the peak location and the surroundings are generated
by gradually dividing z value to value computed by another input
argument base_extent which simply generates a gradient from
the peak of the hill to the base. In addition, the users can input
a padding value using base_adjust argument which confines
(i.e. a negative base_adjust value) or extends (i.e. a positive
base_adjust value) the area on the x-y plane of the grid where
the hills are generated. The algorithm can pick either +z or —z
direction to generate the hill. Since the algorithm depends on
random value generation, it could get stuck on an infinite loop.
Therefore, the algorithm stops after 25 hill generation trials by de-
fault, and number of trials can be changed using the max_trials
input argument.

In addition to the hill generation algorithm, the surface genera-
tor also provides geometric operators for rotating the surface on x,
y, and z axes about the input angle, and translation of the surface
center to the input 3-dimensional position using the translate
method.

Users can query the bounding box of the shape using bbox
property. This property, when called by the user, automatically
computes the bounding box of the evaluated shape and caches the
values to eliminate excess bounding box computations. After the
first computation, the values are always returned from the internal
cache.

A.2. Visualization customization

The visualization component can be set or changed at runtime
using the vis property of the Curve and Surface classes. The
plotting of the shape takes place when the user calls render
method of the these classes. The plotting behavior can be con-
trolled with additional input keyword arguments of the render

https://github.com/orbingol/NURBS-Python_Examples
https://github.com/orbingol/NURBS-Python_Examples
https://github.com/orbingol/NURBS-Python_Examples
https://github.com/orbingol/NURBS-Python
http://www.pypi.org
http://www.anaconda.org

O.R. Bingol and A. Krishnamurthy / SoftwareX 9 (2019) 85-94 93

method. For instance; the user can save the plot with or without
opening the plotting window or change the color of the control
points and shape plots.

The library allows re-using all possible visualization options on
the designated shape element. This means that a single VisSur-
face instance can be used to plot different surfaces contained in
different Surface instances in BSpline or NURBS modules. The
same applies to the Curve classes. However, it is not possible to
use a surface visualization object with a curve class instance, or
vice versa, due to inherent differences in the data structures.

Appendix B. Additional code examples

The following code listing demonstrates the surface gener-
ator module, CPGen and its interoperation with the BSpline
module.

from geomdl import BSpline, CPGen, utilities
from geomdl.visualization import VisMPL as vis
from geomdl import exchange

Generate a plane with the dimensions 50x100
surfgrid = CPGen.Grid(50, 100)

Generate a 10x10 grid
surfgrid.generate(10, 10)

Generate 1 bump at the center of the grid
surfgrid .bumps(num_bumps=1, all_positive=True, bump_height=45,
base_extent=4, base_adjust=—1)

Create a BSpline surface instance
surf = BSpline.Surface()

Set order of the surface
surf.order_u = 4
surf.order_v = 4

Get the control points from the generated grid
surf.ctrlpts2d = surfgrid.grid

Set knot vectors

surf.knotvector_u = utilities.generate_knot_vector(surf.
degree_u, surf.ctrlpts_size_u)

surf.knotvector_v = utilities.generate_knot_vector(surf.
degree_v, surf.ctrlpts_size_v)

Set sample size of the surface
surf.sample_size = 30

Visualization component and its configuration
conf = vis.VisConfig(ctrlpts=False,legend=False)
surf.vis = vis.VisSurface(conf)

Plot the surface
surf.render()

Export the surface as a .stl file
exchange.export_stl(surf, "surface.stl")

In this example, we have generated the control points grid using
the surface generator module, represented by CPGen. Then, we
generate a bi-cubic surface and automatically generate uniform
knot vectors on each parametric direction. The generated surface
is plotted using the Matplotlib component of the visualization
module and finally, saved as a .stl file.

The following example illustrates the control points import fa-
cility of NURBS-Python along with Bézier decomposition and trans-
lation functionalities. The control points file ex_surface03.cptw is an
ASCII text file and it can be found on the examples repository.

from geomdl import NURBS

from geomdl import exchange

from geomdl import operations

from geomdl.visualization import VisMPL

Create a NURBS surface instance
surf = NURBS. Surface ()

Set degrees
surf.degree_u = 1
surf.degree_v = 2

Set control points
surf.set_ctrlpts(xexchange.import_txt("ex_surface03.cptw",
two_dimensional=True))

Set knot vector

surf.knotvector_u = [0, 0, 1, 1]
surf.knotvector_v = [0, 0, 0, 0.25, 0.25, 0.5, 0.5, 0.75, 0.75,
1, 1, 1]

Decompose the surface
surfaces = operations.decompose_surface(surf)

Translate one of the surface patch
operations.translate(surfaces[1], (—0.25, 0.25, 0), inplace=
True)

Set number of samples for all split surfaces
surfaces.sample_size = 50

Plot decomposed surfaces

vis_comp = VisMPL. VisSurfWireframe ()
surfaces.vis = vis_comp
surfaces.render ()

As described in the previous examples, we generate a NURBS
surface instance using a control points file. The initial surface
is decomposed into Bézier patches and right after the decom-
position, one of the Bézier patches is translated by the vector
[—0.25, —0.25, 0]. Finally, decomposed surfaces are plotted via
Matplotlib implementation of the visualization module.

Appendix C. Performance metrics

It would not be possible to reach any conclusions from the
running time of the interpreted code. However we have used
a performance improvement method using an external module
called Cython [19]. Cython corresponds to a compiler specifically
designed for wrapping external code into a compiled Python mod-
ule.

To assess the performance difference between the interpreted
and the compiled versions, we compiled NURBS-Python with the
Cython compiler and tested using a sample curve and a surface. We
used a sample size (i.e. number of evaluated points) S = 16384
for the curves and S = 1024 for both parametric directions of the
surface, resulting in a total of 1048576 evaluated surface points
for each surface. Table C.1 shows our evaluation results in the
format of mean + standard deviation obtained from a computer
with Intel Core i7-7700HQ CPU and 16 GB of RAM. The results are
measured by applying IPython’s % timeit magic on the evaluate
method with 7 runs. The software versions used for the analysis
are Python v3.6.6 and IPython v6.5.0.

As expected, we were able to get faster evaluation speeds using
the compiled version. The speed increase we obtained by direct

Table C.1
Comparison of evaluation time between interpreted and Cython-compiled versions
of NURBS-Python. Sample sizes: Scyrye = 16384 and Sgyface = 1048576.

Library type Curve Surface
Interpreted 167 ms £ 6.97 ms 185+ 10.8s
Compiled 89 ms + 2.55 ms 6.41s 4+ 263 ms

94 O.R. Bingol and A. Krishnamurthy / SoftwareX 9 (2019) 85-94

Cython compilation was around 2 and 3 times on curves and
surfaces, respectively. The most important thing to consider while
performing the Cython compilation is that due to NURBS-Python
being a pure Python library with no external dependencies, the
compilation and linking requires no additional libraries other than
the Python standard library.

References

[1] SINTEF. The SINTEF Spline Library; 2018. URL https://github.com/SINTEF-
Geometry/SISL. [Accessed June 2018].

Eason Kang. libnurbs; 2018. URL https://github.com/yiskang/libnurbs. [Ac-
cessed June 2018].

Robert McNeel & Associates. OpenNURBS; 2018. URL https://www.rhino3d.
com/opennurbs.

Rossum G. Python reference manual. Tech. rep., Amsterdam, The Netherlands,
The Netherlands: CWI (Centre for Mathematics and Computer Science); 1995.
Dalcin L, Collier N. igakit; 2018. URL https://bitbucket.org/dalcinl/igakit. [Ac-
cessed October 2018].

de Falco C, Reali A, Vazquez R. GeoPDEs: a research tool for isogeometric
analysis of PDEs. Adv Eng Softw 2011;42(12):1020-34.

Véazquez R. A new design for the implementation of isogeometric analysis in
Octave and Matlab: GeoPDEs 3.0. Comput Math Appl 2016;72(3):523-54.
Nguyen VP, Anitescu C, Bordas SP, Rabczuk T. Isogeometric analysis: an
overview and computer implementation aspects. Math Comput Simulation
2015;117:89-116.

2

[3

[4

5

[6

(7

[8

[9]
(10]
[11]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

Piegl L, Tiller W. The NURBS book. Springer Science & Business Media; 2012.
Cottrell JA, Hughes TJ, Bazilevs Y. [sogeometric analysis: toward integration
of CAD and FEA. John Wiley & Sons; 2009.

Bingol OR, Schiefelbein B, Grandin R], Holland SD, Krishnamurthy A. An
integrated framework for solid modeling and structural analysis of layered
composites with defects. Comput Aided Des 2019;106:1-12.

Xu F, Morganti S, Zakerzadeh R, Kamensky D, Auricchio F, Reali A, Hughes TJ,
Sacks MS, Hsu M-C. A framework for designing patient-specific bioprosthetic
heart valves using immersogeometric fluid-structure interaction analysis. Int
J. Numer Methods Biomed Eng. 2018;34(4). e2938.

Herrema AJ, Wiese NM, Darling CN, Ganapathysubramanian B, Krishna-
murthy A, Hsu M-C. A framework for parametric design optimization using
isogeometric analysis. Comput Methods Appl Mech Engrg 2017;316:944-65.
Krishnamurthy A, Gonzales M], Sturgeon G, Segars WP, McCulloch AD. Biome-
chanics simulations using cubic hermite meshes with extraordinary nodes for
isogeometric cardiac modeling. Comput Aided Geom Design 2016;43:27-38.
Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng
2007;9(3):90-5.

Plotly Technologies Inc.. Plotly visualization library; 2015. URL https://plot.ly.
Nguyen-Thanh N, Zhou K, Zhuang X, Areias P, Nguyen-Xuan H, Bazilevs Y,
Rabczuk T. Isogeometric analysis of large-deformation thin shells using rht-
splines for multiple-patch coupling. Comput Methods Appl Mech Engrg
2017;316:1157-78.

Hughes TJ, Cottrell JA, Bazilevs Y. Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement. Comput Methods Appl Mech
Engrg 2005;194(39-41):4135-95.

Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn DS, Smith K. Cython: The
best of both worlds. Comput Sci Eng 2011;13(2):31-9.

https://github.com/SINTEF-Geometry/SISL
https://github.com/SINTEF-Geometry/SISL
https://github.com/SINTEF-Geometry/SISL
https://github.com/yiskang/libnurbs
https://www.rhino3d.com/opennurbs
https://www.rhino3d.com/opennurbs
https://www.rhino3d.com/opennurbs
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb4
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb4
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb4
https://bitbucket.org/dalcinl/igakit
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb6
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb6
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb6
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb7
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb7
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb7
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb8
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb8
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb8
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb8
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb8
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb9
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb10
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb10
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb10
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb11
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb11
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb11
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb11
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb11
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb12
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb12
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb12
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb12
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb12
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb12
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb12
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb13
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb13
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb13
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb13
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb13
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb14
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb14
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb14
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb14
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb14
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb15
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb15
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb15
https://plot.ly
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb17
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb17
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb17
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb17
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb17
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb17
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb17
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb18
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb18
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb18
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb18
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb18
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb19
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb19
http://refhub.elsevier.com/S2352-7110(18)30177-8/sb19

