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We introduce NURBS-Python, an object-oriented, open-source, Pure Python NURBS evaluation library
with no external dependencies. The library is capable of evaluating single or multiple NURBS curves and
surfaces, provides a customizable visualization interface, and enables importing and exporting data using
popular CAD file formats. The library and the implemented algorithms are designed to be portable and
extensible via their abstract base interfaces. The design principles used in NURBS-Python allows users to
access, use, and extend the library without any tedious software compilation steps or licensing concerns.
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1. Introduction

Non-Uniform Rational B-Splines (NURBS) are accepted as the

industry standard for the representation of geometry in mechan-

ical computer-aided design (CAD) systems. In addition, they are

used inmany other fields such as robotics and self-driving cars that

require dealing with geometric elements for trajectory generation

and smoothing. Traditionally, NURBS algorithms are developed

using compiled languages, such as C [1] or C++ [2,3] in order to

achieve better performance over interpreted languages. However,

running simple geometrical queries using compiled libraries re-

quire tedious and complicated setup that depends primarily on

the operating system and computer architecture. A NURBS library

written using an interpreted language can considerably reduce the
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overhead of compiling the library, and lead to widespread usage of
the NURBS algorithms in different applications.

In order to develop a widely accessible NURBS library, we
have implemented it using Python. Python [4] is an interpreted
high-level programming language that is widely used by non-
programmers and scientists. By design, Python code can work on
most modern platforms. The reference implementation, CPython
provides a well-designed C programming interface for interacting
with different libraries. As a result, modern libraries, such as
Theano, TensorFlow, Cognitive Toolkit (CNTK), provide user inter-
faces implemented in Python to reduce the programming interface
learning effort and development time, while using Python’s C
programming interface for accessing low level libraries, such as
nVidia’s CUDA and cuDNN.

This paper describes the NURBS-Python package and its pro-
gramming interface. NURBS-Python is a computational geome-
try library specifically designed for evaluating rational and non-
rational B-Spline curves and surfaces. NURBS-Python is an open-
source library designed to have minimum external dependencies.
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The library provides a fully extensible object-oriented data struc-
ture, evaluation, and visualization capabilities implemented using
the Python programming language. The library can be utilized
using a direct object-oriented application programming interface
(API). It does not contain elements that could restrain its flexibil-
ity, such as a graphical user interface (GUI) or a domain-specific
language implementation. Instead, it allows users implement any
graphical user interface using its abstract base classes. The optional
visualization component included in the package implements this
abstract base and can be used for plotting the curves and surfaces.
The abstract base, data API, and evaluation capabilities are self-
contained with no external module dependencies. On the other
hand, the visualization components implement most commonly
used plotting and visualization libraries, such as Matplotlib and
Plotly.

This paper presents the different components of the NURBS-
Python library. The main contributions of this paper include:

• An object-oriented and self-contained NURBS framework
providing easy-to-use data structures and extensible algo-
rithms.

• A pure Python NURBS computational library with no extra
dependencies or compilation requirements.

• Utilizing existing plotting libraries to visualize NURBS curves
and surfaces.

• A free and open-source extensible framework without any
licensing concerns.

This paper is arranged as follows. In Section 2, we highlight our
design considerations and compare NURBS-Python with existing
packages and In Section 3 we outline the NURBS formulations.
In Section 4, we discuss the components of the framework and
their the implementation details including the different algorithms
used. Finally, in Section 5we provide some code examples describ-
ing the framework with different curve and surface examples.

2. Design considerations

NURBS-Python is an object-oriented NURBS evaluation library
with data structures suited for geometric operations. NURBS have
a compact definition any NURBS shape (curve or surface) can be
defined by its degrees, knot vectors, and a set of control points.
These are usually input by the user, however, the library is also
capable of automatically generating a uniform knot vector, partly
simplifying the knot vector input for someuse cases. The geometric
output variables are computed after evaluating the shape. The
curve and surface objects are interactive; it is possible to change
any input variable at runtime and the library re-evaluates the
shapes automatically.

In order to achieve the best compatibility, NURBS-Python is
designed to only use modules that come with the core Python
distribution [4], also called as Python Standard Library including
the mathematical evaluation libraries. Having no external depen-
dencies allows users to have a lightweight and portable package
that can be integrated with different architectures with minimal
effort. A self-containedpurepython library also protects users from
binary interface incompatibilities and eliminates extra compilation
steps and installation of third-party software for running a simple
code segment. Due to its modular and object-oriented nature, the
evaluation capability of NURBS-Python is easily extensible to a
variety of platforms, such as HPC clusters or GPUs. Moreover, it
can be used for various use cases such as integration with CAD,
CAM, robotics, and machine learning libraries and for educational
purposes for teaching geometric modeling concepts.

Development of NURBS date back to 1950s and therefore, it
would be unwise to think that NURBS-Python is the only library of
its kind. However, we are not aware of any pure Python standalone
NURBS evaluation library for direct comparison. Nevertheless, we

would like to compare our library with some of the existing open-
source libraries containing NURBS components. We would like to
note that the following libraries are not stand-alone NURBS evalu-
ation libraries and mostly designed to support other uses such as
isogeometric analysis. One of themost famous and commonly used
Python library for isogeometric analysis is igakit [5]. Although
igakit has a complete NURBS evaluation implementation, it is
heavily dependent on third-party libraries and require compila-
tion for usage. Additionally, igakit does not provide a separate
package for its NURBS evaluation module. Moreover, the software
design approach between igakit and NURBS-Python is different.
The NURBS evaluation component of igakit uses a mathematical
approach, which does not differentiate between the dimension
of the NURBS shapes. On the other hand, NURBS-Python’s design
approach is focused specifically on curves and surfaces, and can
be extended to volumes. Although, this is just a matter of design
preference, we believe that our approach improves the usability of
the library. There are also several NURBS libraries developed using
MATLAB/Octave [6–8]. These implementations are also mainly de-
signed to support isogeometric analysis, however, they are devel-
oped in programming languages that are considered proprietary or
closed-source.

3. A brief introduction to NURBS

A NURBS shape is defined as a vector-valued function of one
or more parameters which maps a k-dimensional space into, at
minimum, a k + 1-dimensional space. This function is simply the
vector product (or a tensor product, depending on the k value)
of basis or blending functions by a set of n-dimensional control
points [9,10].

The basis functions in NURBS are evaluated using the
Cox–de Boor recursion algorithm as described in Eq. (1), where ξ

is the parameter value, Ni,p is the ith order basis function and p is
the degree of the shape defined for the parametric dimension in

consideration [9].

Ni,0(ξ ) =

{

1 if ξi ≤ ξ < ξi+1

0 otherwise
(1a)

Ni,p(ξ ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ ) +

ξi+p − ξ

ξi+p+1 − ξi+1

Ni+1,p−1(ξ ) (1b)

The derivatives of the basis functions can be evaluated using

Eq. (2) [9].

dk

dkξ
Ni,p(ξ ) =

p!

(p − k)!

k
∑

j=0

αk,jNi+j,p−k(ξ ) (2a)

α0,0 = 1 (2b)

αk,0 =
αk−1,0

ξi+p−k+1 − ξi
(2c)

αk,j =
αk−1,0 − αk−1,j−1

ξi+p+j−k+1 − ξi+j

, (2d)

αk,k =
−αk−1,k−1

ξi+p+1 − ξi+k

(2e)

where j = 1, . . . , k − 1. The derivatives are used to compute
tangents, normals, and binormals of the NURBS shapes.

After computing the basis functions, a single point on the
curve corresponding to the parameter ξ is evaluated by simply
multiplying the basis functions with the corresponding control
points, Bi,j and summing up themultiplication results, as described
in Eq. (3) [9].

C(ξ ) =

n
∑

i=1

Ni,p(ξ )Pi (3)
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Fig. 1. Class diagram showing the inheritance of Curve classes.

The same evaluation method also applies to the surfaces. Sur-

faces are defined on a 2-dimensional parametric space described

using (ξ, η), To calculate a single point corresponding to these

parameters, the basis functions on each parametric dimension,

Ni,p(ξ ),Mi,q(η), need to be evaluated and multiplied with the con-

trol points, Pi,j, and summed up as described in Eq. (4) [9].

S(ξ, η) =

n
∑

i=1

m
∑

j=1

Ni,p(ξ )Mj,q(η)Pi,j (4)

These equations are also applicable to Bézier curves and sur-

faces, since NURBS are a superset of Bézier shapes.

NURBS shapes can be divided into two types with respect to

their knot vector structure: clamped and unclamped. A clamped

shape can be understood from the repetitions of the knots at the

beginning or at the end of its knot vectors. In an unclamped shape,

there would be no repeating knots on both ends of the knot vector.

Unclamped shapes still followall NURBSproperties and they canbe

evaluated using the same equations. For instance, the knot vector

in Eq. (5) defines a clamped shape at both ends, where p is the

degree and m + 1 corresponds to the number of knots in the knot

vector [9].

U = {a, . . . , a
  

p+1

, up+1, . . . , um−p−1, b, . . . , b
  

p+1

} (5)

All knot vectors obey the following equation:

m = p + n + 1 (6)

where p is the degree, m + 1 is the number of knots in the knot

vector and n + 1 is the number of control points [9]. The values in

the knot vectors are non-decreasing. These properties are used to

validate the knot vectors.

4. Components of the framework

We describe the main components and the features of NURBS-

Python on the following sections. More details can be found in

Appendix A.

4.1. Core components and data structures

The core component involves the data structures for represent-

ing the shapes in the form of curves and surfaces and the evalu-

ation functionality as well as the abstraction layer for providing

extensibility. It includes input validationmethods, which validates

all user inputs with respect to the mathematical description of

NURBS discussed in Section 3, and a caching system, which is

directly integrated to improve interactivity of the library. NURBS-

Python provides abstraction via the Abstractmodule. This mod-

ule provides templates for future extension of the library and tries

to maintain the programming interface as standard as possible

between the current and the extended modules.

The data structure and the evaluation operations are available

in NURBS and BSpline modules representing rational and non-

rational versions of the non-uniform basis splines, respectively.

The only difference between these modules is the structure of the

control points. Evaluation functionality in NURBSmodule requires

weighted control points, whereas BSpline requires no weights.

The logic behind this design is generating an easy-to-understand

environment by logically separating rational and non-rational al-

gorithms and eliminating the need for extra information, such

as weights, for users who only prefer to work with non-rational

surfaces and curves.

The BSpline and NURBS modules contain two classes for rep-

resenting the geometrical shapes. Curve class represents a single-

manifold n-dimensional curve shape and Surface class repre-

sents a two-manifold 3-dimensional surface shape. All NURBS and

B-Spline classes implement evaluate method for shape evalu-

ation and evalpts property to retrieve evaluated points. These

classes automatically evaluate the shape when required, such as

plotting the shapes or retrieving the evaluated points from the

object instance; therefore, it is not needed to explicitly evaluate the

shape before any operation that requires the evaluated shape. The

class diagrams of BSpline and NURBS modules showing their in-

heritance are shown in Figs. 1 and 2. Moreover, the Multimodule

contains two classes,MultiCurve andMultiSurface, for storing
and evaluating multiple curves and surfaces simultaneously.

4.2. Curve and surface evaluation

The curve and surface evaluation is handled by the Evaluator
module and the abstract base class used is AbstractEvalua-
tor. The class diagram showing the inheritance of the included

Evaluator modules are shown in Fig. 3. This module contains

knot vector span finding algorithms using linear and binary search

techniques, basis function and point evaluation algorithms as sug-

gested by Piegl and Tiller [9]. The Evaluator modules are de-

signed to allow users to extend algorithms easily or use them as

an evaluation strategy, i.e. change them at runtime without need

of re-creating the object instance. Therefore, it makes easier to

compare, mix and reuse different evaluation algorithms with the

same shape data.

In order to evaluate a shape (a curve or a surface), the user

first sets the degrees, the knot vectors, the control points and

the sample size or evaluation delta which corresponds to the

number of points to be evaluated by NURBS-Python. The included

evaluation algorithms can handle clamped and unclamped shapes.

The evaluation interval delta, or the delta property, should be

between 0.0 and 1.0, otherwise the library warns the user to pick

a value between the interval. Sample size, represented by the

sample_size property, can be any number bigger than 1 and it

should be an integer value. NURBS-Python is designed to fix any
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Fig. 2. Class diagram showing the inheritance of Surface classes.

Fig. 3. Class diagrams showing the inheritance of abstract Evaluator, surface generator and visualization classes.

discrepancies by applying type castingwhen a value could properly

be converted into the correct type without additional user input.

The following equation shows the relation between delta (d)

and the sample_size (S):

S =
1

d
+ 1 (7)

The evaluation of 1
d
mostly results in a floating point value;

therefore its result is type-casted to the integer type. The type

casting operation rounds the result of the division to the lower

integer value. The delta property is set to 0.01, by default. The
main steps in evaluating curves and surfaces are:

1. Find spans on the given knot interval which are determined
via the input sample size.

2. Compute basis functions for the spans using Eq. (1).

3. Evaluate the shape by finding all the control points that
belong to the given knot interval andperforming themultipli-
cation with the basis functions and summation using Eqs. (3)
or (4).

After evaluation, the evaluated points are automatically cached
and can then be accessed using the evalpts property. The internal
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cache is used to speed up the responsiveness of the library, since

the evaluated points could only change if any of the evaluation

variables (degree, knot vector, control points, or the evaluation

delta) changes. If any change occurs in these variables, the cache

is reset and the shape is re-evaluated.

NURBS-Python also has capabilities to evaluate derivatives of

the curves and surfaces using the algorithms suggested by Piegl

and Tiller [9]. The method derivatives is designed to evaluate

nth order derivatives of the curves and surfaces. The geometric

interpretation of the derivatives, such as tangents, normals, and

binormals, have their ownmethods, tangent, normal, binormal
respectively. Curve tangents are computed from the 1st deriva-

tive at the given parametric value, normals are computed from

the 2nd derivative, and binormals are computed by vector cross-

product of tangents and normals. These vectors correspond to the

Frenet–Serret Frame which is a right-handed system of a pair-

wise orthonormal vectors that follow the curve. In a Frenet–Serret

frame, the tangent (T ), normal (N) and binormal (B) vectors are

perpendicular to each other and can be computed from 1st deriva-

tives, 2nd derivatives, and via the equality B = T ×N , respectively.

Surface tangents are computed from the1st derivativewith respect

to each parametric direction, and the surface normal is computed

by vector cross-product of the tangents in each direction.

4.3. Shape splitting and knot insertion

The Multimodule has capabilities to evaluate multiple curves

and surfaces. NURBS-Python uses Multi objects to return split

or decomposed shapes. Curve classes have split and surface

classes have split_u and split_v methods corresponding to

each parametric direction. Both curve and surface classes have

decompose methods for Bézier decomposition. Both shape split-

ting and decomposition can be achieved by using an evaluator

method insert_knotwhich is implemented using the algorithm

suggested by Piegl and Tiller [9].

The splitting algorithm takes a parameter value u between 0.0

and 1.0, finds the multiplicity s of the parameter over the knot

vector in the chosen parametric direction and inserts r number of

knots (calculatedusing the equation r = p−s, where p is the degree

of the shape in the chosen parametric direction). Although this

operation is simply considered as splitting [9], it is not enough to

generate 2 different shapes with separate knot vectors and control

points arrays. In order to generate two different shapes, NURBS-

Python needs to find the exact span on the knot vector which

defines the split point. The split knot span in consideration can be

found by adding 1 to the input parameter value, u + 1. NURBS-

Python then splits the knot vector using the split knot span into 2

separate vectors. Since the generated shapes are always clamped,

the u value is added to the end of the first knot vector and to the

beginning of the second knot vector to satisfy the rules discussed

in Section 3. The control points array is separated into two arrays

at the split location by adding the span of the input parameter, u

and the number of knots inserted, r . Finally, the separated knot

vectors and control points arrays are saved into the MultiCurve
or MultiSurface container object.

Bézier decomposition is performed by applying tree expansion

on the shapes. The shape is split at the middle knot locations.

i.e. the ones that are not 0.0 or 1.0s. The split shapes can be con-

sidered as the leaf nodes. If any leaf node is still splittable (i.e. not

a Bézier segment or a patch), the algorithm continues splitting

at the middle knot locations until no middle knots remain in the

knot vectors. For curves, the decomposition algorithm is directly

applied as they are described with one parametric direction. The

resultant curve segments are stored in a MultiCurve container

object. For surfaces, the decomposition algorithm is applied on first

v parametric direction and then u parametric direction. Similar to

the decomposed curves, the resultant Bézier surface patches are

stored in a MultiSurface container object.

4.4. Surface generator

We initially designed the surface generator module to gen-

erate sample surfaces for testing our work on incorporation of

defects on layered composite structures [11]. The classes Grid and

GridWeighted are used to generate surfaces that are compatible

with BSpline and NURBS, respectively. The class diagrams are

displayed on Fig. 3. Both classes are initialized with width, x and

height, y with zero thickness. The grid mesh is generated by in-

putting number of divisions in both width and height directions.

These divisions define the control points locations and they are

uniformly distributed over the generated surface. These steps are

enough for generating a planar surface in desired dimensions with

desired number of control points. Additional details on surface

generation can be found in Appendix A.1.

4.5. Exporting and importing data

Despite being designed as a low-level library, NURBS-Python

includes a CAD interoperability and exchange module for extend-

ing its usability with the other software. The interoperability mod-

ule provides control points grid manipulation operations, such

as changing the array structures from weighted to unweighted,

extracting and replacing weights and changing the row order. The

exchange module provides support for exporting control points

and evaluated points as CSV andVTK polydata formats, and export-

ing surfaces using common CAD formats, such as OBJ, STL, and OFF.

Since the CAD formats defined here require a triangulated sur-

face, NURBS-Python includes a simple triangulation functionality

(Fig. 4). This functionality uses the parametric correspondence

of the 3-dimensional surface points using the delta or sam-
ple_size property as described using Eq. (7) to generate the

triangle mesh. These properties determine the distance between

the surface points on the parametric space and this information

Fig. 4. Generating a triangulated surface with NURBS-Python using delta = 0.25.

(a) Positions of the evaluated points on the parametric space, (b) triangulated

surface on the parametric space, (c) A scatter plot on the 3-dimensional space

illustrating the positions of the individual evaluated surface points. (d) Triangulated

surface.
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Fig. 5. NURBS curves and surfaces generated by the library and plotted using Matplotlib implementation of the visualization component. (a) A circular NURBS shape

generated from 7 control points, (b) Bézier decomposition of the circular shape, each curve segment is colored differently, (c) A cylindrical NURBS surface, (d) Bézier

decomposition of the cylindrical surface, each surface patch is colored differently. The colors on the decomposed shapes are randomly generated.

Fig. 6. An unclamped curve plotted usingMatplotlib implementation of the visual-

ization component. Blue dotted–dashed line shows the control points polygon and

the black solid line shows the evaluated curve.

can be used to pick the closest points that could generate non-
overlapping triangles. The size of the triangles, and therefore the
smoothness of the surface can be fine-tuned by the user input.

NURBS-Python is designed to work with Python’s default con-
tainer classes, such as list and tuple to import new shapes.
We implement some importing functionality from text files and
libconfig-type files out-of-the-box; however, we prefer not to
invent another file format and instead make the package work
with Python’s default container classes. Any class or package that
can output the data as list or tuple is compatible with NURBS-
Python for data import. For libraries that output the control points
in different formats, such as (x, y, z, w) in OpenNURBS [3] or sep-
arate (x, y, z) and w arrays, where x, y, z are the coordinates of
the control points and w is the weight value, NURBS-Python’s
compatibilitymodule can be used to convert the control points
into the format that NURBS-Python can read aswell as saving them
as text files.

Importing from the CAD exchange formats, which directly sup-

port NURBS data structures, such as IGES and X3D, is still work in

progress and will be released in the next major version of NURBS-

Python.

4.6. Visualization components

NURBS-Python implements 2 common python visualization li-

braries, Matplotlib [15] and Plotly [16] using its abstract base

classes, VisAbstract for general plotting and VisAbstract-
Surf for surface plotting customizations. These provide native

ability to visualize the NURBS shapes. Their class diagrams are

illustrated on Fig. 3. Moreover, Figs. 5 and 7 illustrate single and

multi surface visualization capabilities using different plotting li-

braries. Fig. 6 illustrates a 2-dimensional curve unclamped on the

both sides and plotted using Matplotlib implementation of the

visualization component.

The curve visualization classes VisCurve2D and VisCurve3D
directly uses the line plots and surface visualization class VisSur-
face uses the triangulation method discussed in Section 4.5. To

plot the control points grid mesh, VisSurface uses an algorithm

that connects the closest 4 control points to generate quads. The

closest points are identified from the structure of the control points

array.

Each visualization class can be configured using a configuration

class. The abstract base of the configuration classes is VisConfi-
gAbstract as referred in Fig. 3. The configuration class can only

make visual changes to the output curve or surface plot, such as

changing the figure size and the resolution, hiding legend from

the plot as illustrated in Fig. 8. In our design, it is only possible to

configure at the visualization instance generation step, otherwise

it will use the default configuration implementation with optimal

Fig. 7. NURBS multi-surfaces (MultiSurface class) generated by the library and plotted using Plotly implementation of the visualization component. (a) Heart valve

modeled from 3 surface patches [12]. (b) Wind turbine blade modeled from 28 surface patches [13]. (c) Human heart modeled from 297 surface patches [14].
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values (i.e. everything is visible on a screenwith 1280× 720 pixels

resolution) set inside the visualization modules.

4.7. Testing and algorithm validation

To test the library and validate the results of the geometrical

algorithms, we have implemented unit and functional tests for

NURBS-Python using pytest and all tests are connected to a

continuous integration (CI) system for automated testing of the

library. We have achieved the geometrical evaluation validity by

implementingmultiple tests with different inputs for checking the

complete shape evaluatedwith a relatively large delta value or only

specific regions (e.g. only validating the affected region after the

knot insertion operation).

The automated tests included cover all the algorithms, python

properties (getters and setters) and most of the helper function-

ality. We were able to achieve full code coverage via the tests on

the algorithms validation excluding the input checking and data

validity parts of the methods. At the time of this writing, we were

able to achieve around 70% code coverage with 257 automated

tests.

5. Code examples

The following examples illustrate how to generate a curve and

a surface, and then visualize it using NURBS-Python. We start with

a 3-dimensional curve example.

from geomdl import BSpline , u t i l i t i e s

from geomdl . v i sua l i za t ion import VisMPL

# Create a curve instance

crv = BSpline . Curve ( )

# Set curve degree

crv . degree = 3

# Set control points

crv . c t r l p t s = [ [10 , 5 , 10] , [10 , 20 , −30],

[40 , 10 , 25] , [−10, 5 , 0] ]

# Auto−generate the knot vector

crv . knotvector = u t i l i t i e s . generate_knot_vector ( curve . degree ,

len ( curve . c t r l p t s ) )

# Evaluate the curve

crv . evaluate ( )

# Set the v i sua l i za t ion component

crv . v i s = VisMPL . VisCurve3D ( )

# Plot the curve

crv . render ( )

The code listing starts with importing themodules and thenwe

create a curve instance, controlled by the variable crv . We set the

curve degree and input control points using the property ctrlpts.
The control points are represented as list of n-dimensional co-

ordinates using Python lists. Using the utilities module, we

generate a uniform knot vector automatically and set it using the

knotvectorproperty. Finally,we evaluate the curve, although the

librarywould automatically evaluate the curve or the surfacewhen

the evaluated points are requested by an internal component or a

user. The evaluation method computes the curve points using the

default Evaluator algorithm. For the visualization part, we set the

visualization module designed for plotting 3-dimensional curves

using the vis property and executing rendermethod of the Curve

class will plot the curve by calling Matplotlib functions.

Fig. 8. The generated surface is visualized using Matplotlib implementation of the

visualization component. The control points polygon and the legend are removed

from the figure using the visualization configuration class.

The following code listing generates a surface using NURBS-
Python and plots the surface using the Plotly implementation of
the visualization component.

from geomdl import BSpline , u t i l i t i e s

from geomdl . v i sua l i za t ion import V i sP lo t ly

# Create a surface instance

sur f = BSpline . Surface ( )

# Set degrees

sur f . degree_u = 3

surf . degree_v = 2

# L i s t of control points

control_points = [ [0 , 0 , 0 ] , [0 , 4 , 0 ] , [0 , 8 , −3],

[2 , 0 , 6 ] , [2 , 4 , 0 ] , [2 , 8 , 0 ] ,

[4 , 0 , 0 ] , [4 , 4 , 0 ] , [4 , 8 , 3 ] ,

[6 , 0 , 0 ] , [6 , 4 , −3], [6 , 8 , 0 ] ]

# Set control points

sur f . s e t _ c t r l p t s ( control_points , 4 , 3)

# Auto−generate knot vectors

sur f . knotvector_u = u t i l i t i e s . generate_knot_vector ( sur f .

degree_u , sur f . c t r lp t s_s i ze_u )

sur f . knotvector_v = u t i l i t i e s . generate_knot_vector ( sur f .

degree_v , sur f . c t r lp t s _ s i ze_v )

# Set sample s ize

sur f . sample_size = 25

# Evaluate surface

sur f . evaluate ( )

# Set the v i sua l i za t ion component

vis_component = V i sP lo t ly . VisSurface ( )

sur f . v i s = vis_component

# Plot the surface

sur f . render ( )

The surface generation example is similar to the curve genera-
tion example. The main difference is in setting the control points.
The control points shown with the variable control_points on
the above example are stored in a list of 3-dimensional coordinates.
However, a surface is defined over a 2-dimensional parametric
space and therefore, requires a grid of control points. To allow
user input as a single dimensional array of coordinates, we im-
plemented a structure only applicable to the surfaces. On this
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structure, the v index varies first. That is, a row of v control points

for the first u value is found first. Then, the rowof v control points is

found for the next u value. This variation is controlled by a separate

function, set_ctrlpts as Python properties cannot be arranged

to accept multiple variables as the same time. We also did not

want to confuse the users by implementing structures, such as

Python dictionaries as the input. The set_ctrlpts function takes

the control points and the number of control points in u and v

directions as the input.

It would not be possible to provide examples for all the features

of NURBS-Python in this paper, and hence we have also released

a set of example scripts publicly on Github with the intention of

providing templates to the NURBS-Python users. We constantly

add more examples for the new features, integration and usage

scenarios that we encounter while using the library.We encourage

NURBS-Python users to refer to the examples repository (https://

github.com/orbingol/NURBS-Python_Examples) for more possible

usage and integration scenarios.

6. Conclusions and future work

We have introduced an open-source object-oriented geometric

modeling library with visualization options. We have publicly re-

leased the library on https://github.com/orbingol/NURBS-Python

and in addition, we provide over 40 example scripts that illustrate

the features of the library and some sample usage scenarios on

a separate GitHub repository. The scripts to generate some of the

figures illustrated on this paper can also be found in that repository.

We also provide a complete class documentation with more ex-

amples and figures. The documentation is automatically generated

and published on ReadTheDocs, a free documentation generation

and publishing website. Users can also access to the other reports,

such as continuous integration system logs and code coverage

graphs via project’s GitHub page. To increase the accessibility of

the library on different platforms and reduce the user effort for

installation, we have uploaded NURBS-Python to Python Package

Index (pypi.org) and Anaconda Cloud (anaconda.org), allowing

users to download the library using the packagemanagers pip and

conda.
NURBS-Python is designed to be an extensible and open-source

framework for geometric modeling. Since it is freely available

on a public domain, developers can extend the library in their

own liking or integrate it in their own works. Nevertheless, we

would like to add some comments on our current work and some

possible extension paths for the NURBS-Python library. We will be

adding additional spline algorithms, such as knot removal, degree

elevation and reduction, as well as fitting, trimming, offsetting

and volume parameterizations. We are currently developing a

module called shapes for allowing users to generate commonly

used NURBS shapes, such as circles, cylinders, torus, etc. Finally,

extending the framework to support truncated hierarchical B-

splines (THB-splines), T-splines, and polynomial/rational splines

over hierarchical T-meshes (PHT/RHT-splines) [17] for adaptive

geometric design would be a nice path for further extension of the

library to support engineering applications, such as isogeometric

analysis for structural mechanics [18].
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Appendix A. Additional components of the framework

A.1. Surface generator customization

Although generating a planar surface grid in desired size and

exporting it as a text file for further customizations could be

enough for most users, NURBS-Python also provides facilities to

manipulate the shape of the generated surface. The bumpsmethod

includes an algorithm that allowsusers to generate hills (or bumps)

on the surface. This algorithm generates 2 random numbers cor-

responding to width and height on the interval of the generated

surface. These numbers correspond to the location (coordinates)

of the peak of the hill to be generated. Then, the algorithm checks

for surrounding locations for existing hills (i.e. non-zero z value).

If there are no hills generated previously, then the method ap-

plies the z value, which is a user input argument named as bump

height, to the peak location and the surroundings are generated

by gradually dividing z value to value computed by another input

argument base_extent which simply generates a gradient from

the peak of the hill to the base. In addition, the users can input

a padding value using base_adjust argument which confines

(i.e. a negative base_adjust value) or extends (i.e. a positive

base_adjust value) the area on the x-y plane of the grid where

the hills are generated. The algorithm can pick either +z or −z

direction to generate the hill. Since the algorithm depends on

random value generation, it could get stuck on an infinite loop.

Therefore, the algorithm stops after 25 hill generation trials by de-

fault, and number of trials can be changed using the max_trials
input argument.

In addition to the hill generation algorithm, the surface genera-

tor also provides geometric operators for rotating the surface on x,

y, and z axes about the input angle, and translation of the surface

center to the input 3-dimensional position using the translate
method.

Users can query the bounding box of the shape using bbox
property. This property, when called by the user, automatically

computes the bounding box of the evaluated shape and caches the

values to eliminate excess bounding box computations. After the

first computation, the values are always returned from the internal

cache.

A.2. Visualization customization

The visualization component can be set or changed at runtime

using the vis property of the Curve and Surface classes. The

plotting of the shape takes place when the user calls render
method of the these classes. The plotting behavior can be con-

trolled with additional input keyword arguments of the render

https://github.com/orbingol/NURBS-Python_Examples
https://github.com/orbingol/NURBS-Python_Examples
https://github.com/orbingol/NURBS-Python_Examples
https://github.com/orbingol/NURBS-Python
http://www.pypi.org
http://www.anaconda.org
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method. For instance; the user can save the plot with or without

opening the plotting window or change the color of the control

points and shape plots.

The library allows re-using all possible visualization options on

the designated shape element. This means that a single VisSur-

face instance can be used to plot different surfaces contained in

different Surface instances in BSpline or NURBS modules. The

same applies to the Curve classes. However, it is not possible to

use a surface visualization object with a curve class instance, or

vice versa, due to inherent differences in the data structures.

Appendix B. Additional code examples

The following code listing demonstrates the surface gener-

ator module, CPGen and its interoperation with the BSpline

module.

from geomdl import BSpline , CPGen , u t i l i t i e s

from geomdl . v i sua l i za t ion import VisMPL as v is

from geomdl import exchange

# Generate a plane with the dimensions 50x100

sur fgr id = CPGen . Grid (50 , 100)

# Generate a 10x10 grid

sur fgr id . generate (10 , 10)

# Generate 1 bump at the center of the grid

sur fgr id . bumps(num_bumps=1 , a l l _po s i t i v e =True , bump_height=45 ,

base_extent =4 , base_adjust=−1)

# Create a BSpline surface instance

sur f = BSpline . Surface ( )

# Set order of the surface

sur f . order_u = 4

surf . order_v = 4

# Get the control points from the generated grid

sur f . c t r lpts2d = sur fgr id . gr id

# Set knot vectors

sur f . knotvector_u = u t i l i t i e s . generate_knot_vector ( sur f .

degree_u , sur f . c t r lp t s_s i ze_u )

sur f . knotvector_v = u t i l i t i e s . generate_knot_vector ( sur f .

degree_v , sur f . c t r lp t s _ s i ze_v )

# Set sample s ize of the surface

sur f . sample_size = 30

# Visua l i za t ion component and i t s conf igurat ion

conf = v is . VisConfig ( c t r l p t s =False , legend=False )

sur f . v i s = v i s . VisSurface ( conf )

# Plot the surface

sur f . render ( )

# Export the surface as a . s t l f i l e

exchange . export_st l ( surf , " surface . s t l " )

In this example,we have generated the control points grid using

the surface generator module, represented by CPGen. Then, we

generate a bi-cubic surface and automatically generate uniform

knot vectors on each parametric direction. The generated surface

is plotted using the Matplotlib component of the visualization

module and finally, saved as a .stl file.

The following example illustrates the control points import fa-

cility ofNURBS-Python alongwithBézier decomposition and trans-

lation functionalities. The control points file ex_surface03.cptw is an

ASCII text file and it can be found on the examples repository.

from geomdl import NURBS

from geomdl import exchange

from geomdl import operations

from geomdl . v i sua l i za t ion import VisMPL

# Create a NURBS surface instance

sur f = NURBS . Surface ( )

# Set degrees

sur f . degree_u = 1

surf . degree_v = 2

# Set control points

sur f . s e t _ c t r l p t s (∗exchange . import_txt ( " ex_surface03 . cptw" ,

two_dimensional=True ) )

# Set knot vector

sur f . knotvector_u = [0 , 0 , 1 , 1]

sur f . knotvector_v = [0 , 0 , 0 , 0 .25 , 0 .25 , 0 .5 , 0 .5 , 0 .75 , 0 .75 ,

1 , 1 , 1]

# Decompose the surface

surfaces = operations . decompose_surface ( sur f )

# Translate one of the surface patch

operations . t rans la te ( surfaces [1 ] , (−0.25 , 0 .25 , 0) , inplace=

True )

# Set number of samples for a l l s p l i t surfaces

surfaces . sample_size = 50

# Plot decomposed surfaces

vis_comp = VisMPL . VisSurfWireframe ( )

surfaces . v i s = vis_comp

surfaces . render ( )

As described in the previous examples, we generate a NURBS
surface instance using a control points file. The initial surface
is decomposed into Bézier patches and right after the decom-
position, one of the Bézier patches is translated by the vector
[−0.25, −0.25, 0]. Finally, decomposed surfaces are plotted via
Matplotlib implementation of the visualization module.

Appendix C. Performance metrics

It would not be possible to reach any conclusions from the
running time of the interpreted code. However we have used
a performance improvement method using an external module
called Cython [19]. Cython corresponds to a compiler specifically
designed for wrapping external code into a compiled Pythonmod-
ule.

To assess the performance difference between the interpreted
and the compiled versions, we compiled NURBS-Python with the
Cython compiler and tested using a sample curve and a surface.We
used a sample size (i.e. number of evaluated points) S = 16384
for the curves and S = 1024 for both parametric directions of the
surface, resulting in a total of 1048576 evaluated surface points
for each surface. Table C.1 shows our evaluation results in the
format of mean ± standard deviation obtained from a computer
with Intel Core i7-7700HQ CPU and 16 GB of RAM. The results are
measured by applying IPython’s %timeitmagic on the evaluate
method with 7 runs. The software versions used for the analysis
are Python v3.6.6 and IPython v6.5.0.

As expected, we were able to get faster evaluation speeds using
the compiled version. The speed increase we obtained by direct

Table C.1

Comparison of evaluation time between interpreted and Cython-compiled versions

of NURBS-Python. Sample sizes: SCurve = 16384 and SSurface = 1048576.

Library type Curve Surface

Interpreted 167 ms ± 6.97 ms 18 s ± 10.8 s

Compiled 89 ms ± 2.55 ms 6.41 s ± 263 ms
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Cython compilation was around 2 and 3 times on curves and
surfaces, respectively. The most important thing to consider while
performing the Cython compilation is that due to NURBS-Python
being a pure Python library with no external dependencies, the
compilation and linking requires no additional libraries other than
the Python standard library.
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