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Abstract—By using wireless connectivity through cellular base
stations (BSs), swarms of unmanned aerial vehicles (UAVs) can
provide a plethora of services ranging from delivery of goods
to surveillance. In particular, UAVs in a swarm can utilize
wireless communications to collect information, like velocity and
heading angle, from surrounding UAVs for coordinating their
operations and maintaining target speed and intra-UAV distance.
However, due to the uncertainty of the wireless channel, wireless
communications among UAVs will experience a transmission
delay which can impair the swarm’s ability to stabilize system
operation. In this paper, the problem of joint communication
and control is studied for a swarm of three cellular-connected
UAVs positioned in a triangle formation. In particular, a novel
approach is proposed for optimizing the swarm’s operation while
jointly considering the delay of the wireless network and the
stability of the control system. Based on this approach, the
maximum allowable delay required to prevent the instability of
the swarm is determined. Moreover, by using stochastic geometry,
the reliability of the wireless network is derived as the probability
of meeting the stability requirement of the control system. The
simulation results validate the effectiveness of the proposed joint
strategy, and help obtain insightful design guidelines on how to
form a stable swarm of UAVs.

I. INTRODUCTION

The deployment of unmanned aerial vehicles (UAVs), pop-
ularly known as drones, is rapidly increasing and will lead to
the introduction of numerous application services ranging from
delivery of goods to surveillance and smart city monitoring [1].
In particular, driven by the ever-decreasing cost of manufacture
components and the emergence of new services, the use of
UAV swarms is rapidly gaining popularity [2]–[7].

In addition, by using swarms of UAVs, one can complete
more sophisticated missions in an uncertain and possibly
hostile environment. For example, swarms of drones have
been used for Amazon’s prime air drone delivery services and
emergency medicine delivery services [2]. Also, in [4], groups
of UAVs have been used to create a reconfigurable antenna
array in the sky so as to provide wireless service to ground
users. Moreover, swarms of micro drones are being actively
investigated by DAPRA’s VisiBuilding program to complete
reconnaissance missions inside buildings [5]. Furthermore, the
authors in [6] and [7] proposed to deploy multiple UAVs,
which function as wireless base stations (BSs) or relays, so
as to maximize the wireless coverage.
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In particular, to complete their assigned missions, the UAVs
in the swarm will have to communicate with BSs via cellular
links for various purposes such as sending collected surveil-
lance and monitoring information back to the BSs. Moreover,
to guarantee a safe operation and avoid collisions between
UAVs within the swarm, the UAVs will use the information
received from the intra-swarm wireless network as an input
of the control system. That is, each UAV can first use intra-
swarm communications to obtain information of other UAVs
in the swarm, such as their velocity and heading angle. Then,
the control system of each UAV will use sensor data and
the information received from the wireless links to coordinate
UAV’s movements. However, due to the uncertainty of the
wireless channel and the presence of wireless interference,
the received information from wireless links will inevitably
suffer from transmission delay, and the delayed information
can impair the ability of the control system to coordinate the
UAVs’ movements [8]. As a result, when designing a swarm
of UAVs, we need to jointly consider the control system and
wireless network to guarantee a stable formation.

The prior art working on wirelessly connected swarms
of UAVs can be grouped into two categories. In particular,
the first category focuses on the intra-swarm communication
network design [9] and [10]. For example, the authors in
[9] proposed a multicluster flying ad-hoc network to reduce
the power consumption while maintaining an acceptable level
of communication latency for UAV swarms. Furthermore, a
wireless mesh network is proposed in [10] to improve the
connectivity of a swarm of UAVs and build a pervasive
networking environment. However, prior works, such as [9]
and [10], ignore the impact of wireless system on the stability
of the UAV and solely focus on the communication system
design. The second category focuses on coordination and
control for effective task planning for UAVs [11] and [12].
For example, in [11], a heuristic multi-UAV task planning
algorithm is proposed to enable a swarm of cellular connected
UAVs to visit all target points in a minimum time. In addition,
the authors in [12] proposed a behavioral flocking algorithm
for distributed flight coordination of multiple UAVs. Note that,
such control-centric works, like [11] and [12], assume a fixed
wireless performance or just ignore the transmission delay
generated by communication links when designing the control
system. Such an assumption is certainly not practical for UAV



Fig. 1. A swarm of three UAVs where each UAV can communicate with the
BS. UAV 1 is the leader, and UAVs 2 and 3 are followers.

swarms that use a cellular network due to the uncertainty

of wireless channels and interference generated by coexisting

wireless links.

The main contribution of this paper is a novel approach

to jointly design the control and communication system for a

cellular-connected swarm of UAVs. In particular, we first ana-

lyze the stability of the control system which can guarantee a

stable triangle formation for a swarm of three UAVs. Then, we

determine the maximum transmission delay that the considered

swarm can tolerate without jeopardizing its control system’s

stability. This threshold can, in turn, be used to identify the

reliability requirement for the wireless communication system.

In particular, we use stochastic geometry to mathematically

characterize the reliability of the wireless network. Simulation

results validate the effectiveness of the proposed integrated

communication and control strategy, and help obtain new

design guidelines on how to create a stable formation for

a swarm of UAVs. For example, our results provide clear

guideline on how to choose the target spacing for the swarm so

as to guarantee a target reliability performance for the wireless

network.

The rest of this paper is organized as follows. Section

II presents the system model. In Section III, we perform a

stability analysis for the control system for the swarm of UAVs

and derive the mathematical expression for the reliability of

the wireless network by using stochastic geometry. Section IV

provides the simulation results and conclusions are drawn in

Section V.

II. SYSTEM MODEL

Consider a swarm of three UAVs flying at the same altitude.

In this swarm, two UAVs are following a third, leading UAV

to form and maintain a triangle formation, as shown in Fig.

1. In this model, we assume that UAV 1 is the leading UAV

that always flies with a target velocity and heading direction,

while UAVs 2 and 3 are followers. Note that, when following

the leading UAV, UAVs 2 and 3 will also need to keep a

certain target distance with each other and with the leader. For

each UAV, an embedded radar sensor can sense the distance

to the nearby UAVs. Moreover, each following UAV can

communicate with the two other UAVs in the swarm, via

wireless cellular links, to obtain information of the velocity

and heading angle. In addition, each UAV will communicate

with the BSs through cellular links to report its movement

and location or to complete tasks, like sending the collected

surveillance information back to the BSs.

A. Control System Model

As shown in Fig. 1, we consider a Cartesian coordinate

system centered on an arbitrarily selected point, and the

location of each UAV at time t is denoted by (xi(t), yi(t)), i ∈
{1, 2, 3}. Also, by using the coordinate system, we can de-

compose the velocity of each UAV into two components: one

on the x-axis and the other one on the y-axis. Moreover, we

assume that the control laws of each following UAV over the

x-axis and y-axis depend on the difference between the actual

distance to the UAVs in the swarm and the target distance. For

example, if the actual distance between a following UAV and

other UAVs in the swarm exceeds the corresponding target

spacing, the following UAV needs to accelerate in order to

reduce the spacing and reach the target distance. To determine

the control law on each axis, we first take the component on

the x-axis as an example. In particular, we define the x-axis

distance difference by using the following spacing errors:

δx1,2(t)=x1(t)−x2(t)−x̄1,2, δ
x
1,3(t)=x1(t)−x3(t)−x̄1,3, (1)

δx2,3(t)=x2(t)−x3(t)−x̄2,3, δ
x
3,2(t)=x3(t)−x2(t)−x̄3,2, (2)

where x̄1,2, x̄1,3, x̄2,3, and x̄3,2 are the target x-axis spacing

between the corresponding UAVs. Note that xi(t) − xj(t) is

usually considered as the x-axis headway distance between

UAVs i and j with i, j ∈ {1, 2, 3}, at time t. Also, we can

define the x-axis velocity errors for following UAVs 2 and 3
as

zx2 (t) = vx2 (t)− v̄x, z
x
3 (t) = vx3 (t)− v̄x, (3)

where v̄x is the x-axis component of the target operating

velocity for the swarm of UAVs. Note that the spacing errors

and velocity errors on the y-axis can be derived as done in

(1)–(3) and are omitted due to space limitations.

Similar to the dynamical system model introduced in [13],

the acceleration and deceleration of each UAV will depend on

the spacing errors and velocity errors. In particular, the x-axis

control law for each following UAV can be given by:

ux
i (t)=aiδ

x
1,i+bi[v

x
1 (t−τ1,i(t))−vi(t)]+âiδ

x
j,i+

b̂i[vj(t−τj,i(t))−vi(t)], i �=j, i, j∈{2, 3}, (4)

where ai, bi, âi, and b̂i are the associated gains for each

corresponding term, while τj,i captures the delay for the

wireless link from UAV j to UAV i. Note that the associated

gains essentially capture the sensibility of the control system to

changes in distance and velocity. Also, since the leading UAV

always flies with the target velocity and heading angle, then

the solution to vx1 (t − τ1,i(t)) = v̄x always exists. Similarly,

we can also derive the control law over the y-axis for each

following UAV. Therefore, based on the x-axis and y-axis

control laws for the velocity components, we can determine



how the velocity and heading angle of each following UAV
should change.

B. Wireless Communication System
For the wireless communication links between UAVs inside

the swarm, we consider an orthogonal frequency-division
multiple access (OFDMA) scheme where each communication
link does not share the frequency resource with other links in
the swarm. In this case, the wireless links in the swarm can
coexist without suffering from interference from each other.
However, the wireless links in one swarm can experience
interference when other UAVs at the same altitude that are
using the same frequency resource to transmit information
with each other or with BSs via cellular links. To have a
general interference model, we assume that the distribution of
interfering UAVs at the same altitude with the swarm follows
a 2-dimensional Poisson point process (2-D PPP) with density
λ. Also, similar to [14], we consider the wireless communi-
cation channels inside the swarm as independent Nakagami
channels with parameter β, and we also model the wireless
channels from interfering UAVs to UAVs inside the swarm
as independent Rayleigh fading channels. Thus, the channel
gain between a receiving UAV i and a transmitter j at time
t will be gj,i(t) = hj,i(t)(dj,i(t))

−α, where hj,i(t) captures
the fading gain, dj,i(t) is the distance between UAVs j and i,
and α is the path loss exponent. Moreover, we can obtain the
received signal at UAV i as Pj,i(t) = Ptgj,i(t), where Pt is
the transmission power. Also, the signal-to-interference-plus-
noise-ratio (SINR) can be given by γj,i(t) =

Pj,i(t)
σ2+Ii(t)

, where
σ2 is the variance of the Gaussian noise, and Ii(t) captures the
interference experienced by UAV i. Then, the data rate will
be: Rj,i(t) = ω log2(1 + γj,i(t)), where ω is the bandwidth
of the frequency resource. Whenever all packets are of equal
size S bits, the transmission delay of the wireless link between
UAVs j and i can be derived as

τj,i(t) =
S

ω log2(1 + γj,i(t))
. (5)

In the following section, we take into account the time-varying
wireless transmission delay in (5) and analyze its effect on the
stability of the control system in the swarm of UAVs.

III. STABILITY ANALYSIS FOR THE SWARM OF UAVS

For the swarm of UAVs, the delayed information received
from the wireless links can negatively impact the control
system’s ability to coordinate the movements. As a result, the
target formation for the swarm of UAVs may fail to form.
Here, we perform a stability analysis for the swarm under the
influence of the transmission delay. In particular, we determine
the transmission delay threshold which can guarantee that the
following UAVs will fly at the same speed and heading angle
with the leading UAV and keep the target distance to the
other UAVs in the swarm. Based on the stability analysis, we
employ stochastic geometry to mathematically characterize the
reliability of the wireless system, defined as the probability
that the wireless system can meet the control system’s delay
requirements.

A. Stability Analysis
To guarantee that each following UAV operates at the same

speed and heading angle as the leading UAV and keeps a
target distance to UAVs in the swarm, both spacing errors
and velocity errors on the x-axis should converge to zero. To
this end, we take the first-order derivative of (1), (2), and (3)
as follows:

δ̇x1,2(t) =− zx2 (t), δ̇x1,3(t) = −zx3 (t), (6)

δ̇x2,3(t) =− δ̇x1,2(t) + δ̇x1,3(t), δ̇x3,2(t) = δ̇x1,2(t)− δ̇x1,3(t), (7)

żx2 (t) =(a2 + â2)δx1,2(t) + (−â2)δx1,3(t)+

(−b2 − b̂2)(zx2 (t)) + b̂2z
x
3 (t− τ3,2(t)), (8)

żx3 (t) =(a3 + â3)δx1,3(t) + (−â3)δx1,2(t)+

(−b3 − b̂3)(zx3 (t)) + b̂3z
x
2 (t− τ2,3(t)), (9)

where δ̇x1,2(t), δ̇x1,3(t), δ̇x2,3(t), δ̇x3,2(t), żx2 (t), and żx3 (t) are vari-
ables differentiated with respect to time t. Additionally, since
the channel gains of the wireless links between UAVs 2 and
3 and between UAVs 3 and 2 follow the same distribution,
we assume τ2,3(t) = τ3,2(t) = 4τ(t). After collecting the
spacing and velocity errors for all following UAVs, we can
find the augmented error state vector at the x-axis ex(t) =
[δx1,2(t), δx1,3(t), zx2 (t), zx3 (t)]T and obtain

ėx(t) = M1e
x(t) + M2e

x(t−4τ(t)), (10)

where

M1 =


0 0 −1 0
0 0 0 −1

a2 + â2 −â2 −b2 − b̂2 0

−a3 (a3 + â3) 0 −b3 − b̂3

 , (11)

and

M2 =


0 0 0 0
0 0 0 0

0 0 0 b̂2
0 0 b̂3 0

 . (12)

Since the stability of the swarm of UAVs requires the x-
axis spacing and velocity errors of all following UAVs to
approach zero, the error vector ex(t) = 04×1 should be at
least asymptotically stable.

Guaranteeing the stability for a wireless-connected swarm
will hence require a small wireless transmission delay. There-
fore, next, as a direct result of [15, Theorem 1], we can char-
acterize the maximum transmission delay needed to support
the convergence of error vector ex(t) to the zero vector in
following corollary.

Corollary 1. The convergence of the error vector ex(t) in (10)
to the zero vector is asymptotically stable if the transmission
delay 4τ(t) of the wireless links between these two following
UAVs in the swarm satisfies:

4τ(t) ≤ τx =

1

λmax(CM2M1M
T
1 M

T
2 C

T +CM2M2M
T
2 M

T
2 C

T +2kI)
,

(13)



where k>1, C is a positive definitive matrix meeting C(M1+
M2) + (M1+M2)

TC=−I4×4, and λmax(·) represents the
maximum eigenvalue of the corresponding matrix.

Similar to the analysis in Corollary 1, we can find the delay

requirement τy which can guarantee that the convergence of

error terms at y-axis to the zero vector is asymptotically stable.

In this case, to guarantee that the error terms of the following

UAVs on x and y axes converge to zero and the swarm of

UAVs forms the target formation, the maximum allowable

wireless transmission delay experienced by the receiving UAV

should be min(τx, τy).

B. Reliability Analysis of the Wireless System
To characterize the performance of the wireless system,

we introduce a notion of reliability for the wireless system.

In particular, we can use stochastic geometry to derive the

mathematical expression for the reliability of the wireless

network. Different from our work in [16], we consider that

the distribution of the interfering UAVs follows a 2D-PPP. In

the following lemma, we use stochastic properties from the

2D-PPP and calculate the reliability.

Lemma 1. If the distribution of the interfering UAV follows
a 2-D PPP with density λ, the reliability of the wireless link
from UAV j to UAV i, i �=j, i, j∈{2, 3}, can be defined as

Prj,i≈
β∑

k=1

(−1)k+1

(
β

k

)
exp

⎛
⎝−kη

(
2

S
ω min(τx,τy)−1

)
d−α
j,i

Pt
σ2

⎞
⎠

Li

⎛
⎝kη

(
2

S
ω min(τx,τy)−1

)
d−α
j,i

Pt

⎞
⎠ , (14)

where η = β(β!)−1/β , and

Li(n) = exp

(
−2πλ

∫ ∞

0

(
1− 1

1 + nPtr−α

)
rdr

)
. (15)

Proof: The basics of the proof follow from [16] and are

omitted here due to space constraints. However, the proof

of the Laplace transform in (15) is different and provided as

follows:

Li(n) =EΦ

[
exp

(
−n

∑
c∈Φ

Ptgc,i(t)(dc,i(t))
−α

)]

=EΦ

[∏
c∈Φ

Egc,i

(
exp

(−nPtgc,i(t)(dc,i(t))
−α

))]

(a)
=EΦ

[∏
c∈Φ

1

1 + nPtd
−α
c,i

]

(b)
= exp

[
−2πλ

∫ ∞

0

(
1− 1

1 + nPtr−α

)
rdr

]
, (16)

where Φ denotes the set of interfering UAVs around the swarm,

(a) follows from the assumption of Rayleigh fading channel

and the channel gain gc,i(t) ∼ exp(1), and the probability

generating function (PGFL) of 2D-PPP [17] is used to prove

the changes in (b) .

TABLE I
SIMULATION PARAMETERS.

Parameter Meaning Value
a2, b2, â2, b̂2 Associated gains of UAV 2 1, 1, 1.5, 1.5

a3, b3, â3, b̂3 Associated gains of UAV 2 1, 1, 1.5, 1.5
k Coefficient of nondecreasing function 1.01
m Nakagami parameter 3
α Path loss exponent 3
σ2 Noise variance −174 dBm/Hz

S Packet size 3200 bits

ω Bandwidth 20 MHz

(a) Spacing errors over time.

(b) Velocity errors over time.

Fig. 2. Stability validation for a swarm of three UAVs when using the
maximum allowable transmission delay derived in Corollary 1.

IV. SIMULATION RESULTS AND ANALYSIS

For our simulations, we first validate the results derived in

Corollary 1. Based on Lemma 1, we then study the impact

of interference on the reliability performance of the wireless

network and finally obtain the design guideline of formulating

a stable triangle formation for a swarm of three UAVs. All

simulation parameters are summarized in Table I. Without

loss of generality, we assume that the two following UAVs

have the same control gains, given in Table I. Using the

parameter settings in Table I for Corollary 1, we can find

that the maximum allowable transmission delay to avoid the

instability of the control system is 18.2 ms.

We first corroborate the analytical result in Corollary 1

on the stability of the control system under the derived

transmission delay threshold. In particular, we model the

uncertainty of the wireless channel pertaining to the wireless



Fig. 3. Reliability performance of systems with different densities of
interfering UAV when spacing target increases.

communication links in the swarm of UAVs as a time-varying

delay in the range (0, 18.2 ms). The following UAVs are

initially assigned with different velocities from the target

velocity and random locations. Here, the leading UAV flies

with speed components v̄x = 5 m/s and v̄y = 5 m/s, and the

target spacing between UAVs are x̄1,2 = 3 m, x̄1,3 = 4 m,

x̄2,3 = 1 m, ȳ1,2 = 4 m, ȳ1,3 = 3 m, and ȳ2,3 = −1 m. Fig.

2(a) shows the time evolution of the spacing errors. We can

observe that the spacing errors at x-axis and y-axis for both

following UAVs will eventually converge to 0. Also, in Fig.

2(b), we can observe that the velocity errors will converge to

0 when time passes by. Thus, by choosing the maximum delay

derived in Corollary 1, we can ensure that the stability of the

swarm of UAVs is guaranteed and the target formation can be

formulated.

Fig. 3 shows the reliability performance of the wireless

network with different densities of interfering UAVs when

the spacing target increases. As observed from Fig. 3, when

the spacing target between two following UAVs increases,

the reliability of the wireless network will decrease. For

example, for a system with density of interfering UAVs

λ = 5×10−2 UAV/m2, the reliability is around 35% when the

spacing target is 10 m. However, when the spacing target is

4 m, the reliability is 90.1%. Moreover, we can obtain a design

guideline on how to guarantee a stable UAV formation from

the results shown in Fig. 3. In particular, to guarantee that the

reliability of the wireless system exceeds a threshold, we need

to properly choose the target spacing between two following

UAVs in the swarm. As shown in Fig. 3, for a system with

λ = 10×10−2 UAV/m2, the target spacing should be chosen a

smaller value than 2.8 m so that the reliability performance can

exceed 90%. Also, for a system with λ = 5× 10−2 UAV/m2,

the corresponding target spacing value should be smaller than

4 m to reach a reliability of 90%. Moreover, when the density

is chosen as λ = 1×10−2 UAV/m2, the spacing target should

be smaller than 9 m. This is due to the fact that the strength

of the receiving signal will decrease and the delay of the

communication link will increase when the spacing increases.

V. CONCLUSION

In this paper, we have proposed a novel approach to jointly

design the control and communication system of a cellular-

connected swarm of UAVs. Based on the integrated commu-

nication and control strategy, we have performed a control

system stability analysis and derived the delay threshold which

can prevent the instability of the swarm of UAVs. We have

used stochastic geometry to derive the mathematical expres-

sion for the reliability of the wireless system, defined as the

probability of meeting the control system’s delay requirements.

Simulation results have shown that leveraging the synergies

between control and wireless systems can result in a stable

operation of a swarm of UAVs.
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