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Abstract Most behaviors such as making tea are not stereotypical but have an obvious

structure. However, analytical methods to objectively extract structure from non-stereotyped

behaviors are immature. In this study, we analyze the locomotion of fruit flies and show that this

non-stereotyped behavior is well-described by a Hierarchical Hidden Markov Model (HHMM).

HHMM shows that a fly’s locomotion can be decomposed into a few locomotor features, and odors

modulate locomotion by altering the time a fly spends performing different locomotor features.

Importantly, although all flies in our dataset use the same set of locomotor features, individual flies

vary considerably in how often they employ a given locomotor feature, and how this usage is

modulated by odor. This variation is so large that the behavior of individual flies is best understood

as being grouped into at least three to five distinct clusters, rather than variations around an

average fly.

DOI: https://doi.org/10.7554/eLife.41235.001

Introduction
There are many approaches to the study of neural underpinnings of behavior: One large body of

work is rooted in the psychophysical literature where an animal is forced to choose between a few

discrete behaviors (Green and Swets, 1974). This approach allows stimulus control and rigorous

analysis of behavior based on an established framework (Gold and Shadlen, 2000), but sacrifices a

full analysis of behavioral dynamics, leaving critical issues unexplored. Other studies have focused on

behaviors that are reflexive (albeit with some flexibility) such as saccades (Laurutis and Robinson,

1986) and collision avoidance in insects (Tammero and Dickinson, 2002). Another large body of

work has focused on the control processes involved in goal-directed behaviors such as reaching

movements and has revealed many fundamental principles of motor control. Yet, another popular

behavioral motif that has received much attention is behaviors that require meticulous sequencing

(Graybiel, 2008). Finally, much work has been done to elucidate the workings of central pattern

generators that underlie the rhythmic motor activity during walking and running (Grillner, 1979).

Although many of these relatively stereotypical behavioral motifs are at play during most behaviors,

they are not helpful in describing the structure underlying most everyday activities such as making a

cup of coffee or a peanut-butter sandwich or walking to a car which consist of a sequence of actions,

but neither the sequence nor each sub-action is stereotyped. These activities and their underlying

sub-actions cannot be described either as sensorimotor reflexes or as behaviors that arise out of

meticulous sequencing. An important example of such a behavior is an animal’s locomotion. While

tracks of a mouse or a fly exploring a chamber are not stereotypical there is an obvious structure to

it.

Uncovering the structure within non-stereotyped behaviors such as locomotion requires sophisti-

cated analytical tools. These tools can be applied to two complementary representations of an ani-

mal’s behavior which can be described in the shape/posture space or in the world coordinate
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system. Recently much progress has been made in employing analytical tools that describe behav-

iors as a sequence of transformations in the shape/posture space using both supervised

(Branson et al., 2009; Kabra et al., 2013), and unsupervised (Berman et al., 2016; Berman et al.,

2014; Wiltschko et al., 2015; Vogelstein et al., 2014) algorithms. These studies provided remark-

able insights by showing that much of an animal’s behavioral repertoire can be described as transi-

tions between few postures. While behavioral descriptions as transformations in posture space

accurately classify the type of behavior (such as locomotion vs. grooming), because an animal’s posi-

tion in the world coordinate system is ignored, the structure within an animal’s trajectory in world

coordinates remains relatively unexplored.

Much of the work in extracting structure from an organism’s trajectory is derived from the ‘run

and tumble model’ which was originally employed in the context of bacterial chemotaxis (Berg and

Brown, 1972). In this model, the organism is assumed to travel in relatively straight lines (runs) of

exponentially distributed run lengths until they make sharp turns (tumble) to choose another direc-

tion at random. It is tempting to consider the motion of larger animals as roughly approximated by a

run-and-tumble model, and many studies (explicitly and implicitly) employ a run-and-tumble frame-

work with increasing sophistication as an analytical framework for locomotion (Kim and Dickinson,

2017; Pierce-Shimomura et al., 1999; Schulze et al., 2015). One obvious well-documented limita-

tion of this framework is that animals do not turn at discrete times (Stephens et al., 2010;

Ohashi et al., 2014; Iino and Yoshida, 2009; Jung et al., 2015; Gomez-Marin and Louis, 2014;

eLife digest Many behaviors that we perform everyday, including something as familiar as

making a peanut-butter sandwich, consist of a sequence of recognizable acts. These acts may

include, for example, holding a knife and opening a jar. Yet often neither the sequence nor the

individual acts are always performed in the exact same way. For example, there are many ways to

hold a knife and there are many ways to open a jar, meaning neither of these actions could be called

“stereotyped”.

A lack of stereotypy makes it difficult for a computer to automatically recognize the individual

acts in a sequence. This same problem would apply to other common behaviors, such as walking

around somewhere you have not visited before. While we easily recognize it when we see it, walking

is not a stereotyped behavior. It consists of a series of movements that differ between individuals,

and even in the same individual at different times. So how can someone automatically recognize the

individual acts in a non-stereotyped behavior like walking?

To begin to find out, Tao et al. developed a mathematical model that can recognize the walking

behavior of a fruit fly. Existing recordings of fruit flies walking were analyzed using a type of

mathematical model called a Hierarchical Hidden Markov Model (often shortened to HHMM). Such

models assume that there are hidden states that influence the behaviors we can see. For example,

someone’s chances of going skiing (an observable behavior) depend on whether or not it is winter (a

hidden state).

The HHMM revealed that the seemingly random wanderings of a fly consist of ten types of

movement. These include the “meander”, the “stop-and-walk”, as well as right turns and left turns.

Exposing the flies to a pleasant odor – in this case, apple cider vinegar – altered how the flies

walked by changing the time they spent performing each of the different types of movement. All

flies in the dataset used the same ten movements, but in different proportions. This means that each

fly showed an individual pattern of movement. In fact, the differences between flies are so great that

Tao et al. argue that there is no such thing as an average walk for a fruit fly.

The model represents a complete description of how fruit flies walk. It thus provides clues to the

processes that transform an animal’s sensory experiences into behavior. But it also has potential

clinical applications. Similar models for human behaviors could help reveal behaviors that are

abnormal because of disease. Normal behaviors also show variability, and some diseases increase or

decrease this variability. By making it easier to detect these changes, mathematical models could

support earlier diagnosis of medical conditions.

DOI: https://doi.org/10.7554/eLife.41235.002
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Straub and Heisenberg, 1990), and therefore, their locomotion cannot be described using a run-

and-tumble framework. More generally, larger animals are likely to exert greater control over speed

and direction of their locomotion and a better model is necessary to understand the resulting struc-

ture in their trajectory.

The lack of a model for locomotion makes it difficult to quantify the effect of stimuli on locomo-

tion and is a critical missing piece in understanding the underlying sensorimotor transformations. For

example, in many studies of odor modulation of locomotion, odors are primarily described as attrac-

tive or repulsive; this description is based on the end result, and does not consider the navigational

maneuvers that underlie these end-results. Ignoring the underlying navigational maneuvers has led

to a fundamental misunderstanding of odor modulation of locomotion. In a recent detailed analysis

of a fly’s locomotion, we demonstrated that it’s navigational maneuvers in response to similarly

attractive odors are quite distinct (Jung et al., 2015); the analysis used was based on an ad-hoc

parametrization of locomotion, and not on a generative model of locomotion, making it difficult to

determine whether our chosen parameter set was appropriate. A model of locomotion also makes it

possible to compare how locomotion is affected by a given stimuli, and also how different individuals

differ in their locomotion and in their response to stimuli.

In this study, we employ a hierarchical statistical model, Hierarchical Hidden Markov Model

(HHMM) to describe the structure in the fly’s locomotion (Fine et al., 1998). We show that fly loco-

motion is well-structured and an HHMM is an elegant representation of this structure. HHMM pro-

vides a simple and intuitive description of both a fly’s locomotion and the effect of odors on the

same. Surprisingly, different flies employ different strategies in their locomotion both before odor

onset and in response to odors. Our data are, thus, inconsistent with the idea that the behavior of

different flies represent variations around an ‘average’ fly. Rather, our data are most consistent with

the idea that flies employ three to five different strategies, at a minimum, to explore a small circular

arena and a similar number in their response to odors.

Results

Rationale for the choice of HHMM as the model and the model
architecture
We model the locomotion of wild-type flies exploring a circular arena (Jung et al., 2015) whose cen-

ter (odor-zone) consists of a fixed concentration of odor (Figure 1A). The arena and the experimen-

tal procedure was previously described (Jung et al., 2015). Briefly, locomotion of each of the 34

flies in our dataset was measured 3 min before an odor (apple cider vinegar or ACV) was turned on,

and 3 min during the presence of ACV. Sample trajectories are shown in Figure 1B.

We first attempted to model the fly’s locomotion using Hidden Markov Model (HMM)

(Gallagher et al., 2013; Isakov, 2016). HMMs create discrete states based on a time series of

observables such as position, speed or acceleration. The advantage of using HMMs in modeling

locomotion is well described in earlier studies (Gallagher et al., 2013) (see Materials and methods).

In this study, we use observables that describe the change of position as a function of time, and

hence our analysis will focus on behavioral states in the velocity space. Speed and angular speed are

commonly used measures of velocity. But, because it is difficult to measure angular speed accurately

at low speeds (Gallagher et al., 2013) (see Materials and methods section 2 for details), we fit the

model to the component of speed parallel (bvjj) and perpendicular (bv?) to its movement during the

previous time point (Figure 1C, Materials adn methods section 2). If the fly walks straight ahead,

bv? would be zero, therefore, bvjj and bv?are closely related to speed and angular speed. We fit a time

series of bvjj and bv? to an HMM. The HMM architecture is shown in Figure 1D. We employed models

with 24 to 50 states. HMM was only modestly successful because it was never able to classify >70%

of the tracks into one of the states with >85% confidence.

The transition probability matrix for the HMM was sparse (Figure 1—figure supplement 1) sug-

gesting that from each state there are transitions to only a handful of other states. One method to

improve upon HMM performance is to cluster the states obtained by HMM according to the transi-

tion probability matrix. A common approach to clustering is to block-diagonalize the transition prob-

ability matrix (Berman et al., 2016). Tracks corresponding to the 10 states obtained by clustering

are shown in Figure 1—figure supplement 1. Some of these states appear to describe recognizable
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features in the data such as left (state 10) or right turn (state 9). But efforts to block-diagonalize the

transition probability matrix were only partially successful. The most obvious failure corresponds to

the states with little movement. These states – describing the absence of movement – can occur in

many different contexts, such as the fully stopped state or intermittent runs. When the same state is

used in different contexts, an approximate block diagonalization of the transition probability matrix

fails because the same state belongs to two blocks. In these cases, the different states that corre-

spond to the absence of movement did not cluster, and appeared alone even after block-diagonal-

ization (Figure 1—figure supplement 1). Thus, the existence of the same state in different contexts

is one important reason for the modest success of HMM (Marco et al., 2017; Wonjoon et al., 2010;

Michele Weiland and Nelson, 2005; Nguyen et al., 2005; Murphy and Paskin, 2001;

Chou, 2006).
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Figure 1. Experimental setup and HMM architecture. (A) Top view of the chamber. (B) Tracks of an example fly in a circular arena (3.2 cm in radius). The

central region (1.2 cm radius) has no odor during the first 3 min (before period) and is odorized in the last 3 min (during odor). The odor zone is

shaded. (C) The observables - bvjj and bv? at time point t = 0 are schematized. bvjj is the component of the fly’s velocity along the velocity vector at the

previous time point; bv? is the component perpendicular to the velocity vector at the previous time point. (D). HMM Model Architecture: A single

layered model with n states each defined by a joint probablity distribution of the observables. The probability of transitioning from the ith state to the

jth state is given by Tij.

DOI: https://doi.org/10.7554/eLife.41235.002

The following figure supplement is available for figure 1:

Figure supplement 1. Block clustering of HMM states suggests a small number of locomotor features.

DOI: https://doi.org/10.7554/eLife.41235.003
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We employed a two-layered Hierarchical Hidden Markov model (HHMM) to model the data

(Figure 2A). We reasoned that the low-level states (LL states) would be represented by Gaussian dis-

tributions on the observables, and the high-level states (HL states) would therefore be a mixture of

Gaussians and would be able to model the experimental data better. Moreover, these HL states

would have longer duration than the states discovered by HMM allowing it to more naturally model

composite states.

Figure 2. HHMM architecture. (A) Model architecture: The model consists of two layers; there are 10 high level

states (HL states) each of which have five low level (LL) states. The probability of transitioning from the ith HL state

to the jth HL state is given by Tij. At the lower level, each HL state has its own transition probability matrix that

describes transitions between its LL states. The shaded boxes represent the terminal states. (B) As a measure of

the model’s ability to fit the data for individual flies in our dataset - the percentage of timepoints for which the

model had >85% confidence is plotted. Black line is the median. (C) HL state assignment for a single fly. The 10

high level states, each coded using a different color are overlayed on the tracks of a fly..

DOI: https://doi.org/10.7554/eLife.41235.004

The following figure supplements are available for figure 2:

Figure supplement 1. Longer duration of HHMM states allows it to discover structure in the data over longer

times.

DOI: https://doi.org/10.7554/eLife.41235.005

Figure supplement 2. HL states have a longer duration than LL states because of multiple transitions among low-

level states/transition between HL states.

DOI: https://doi.org/10.7554/eLife.41235.006

Figure supplement 3. Transition probability matrices.

DOI: https://doi.org/10.7554/eLife.41235.007
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Indeed, in a Bayesian model comparison (see Materials and methods section 4), HHMMs outper-

formed HMMs with the same number of states. Since HMMs rarely used more than 35 states (even

when models with higher number of states were fit), to perform model comparisons, we used mod-

els with less number of states than the particular HHMM we eventually employed. We compared a

two-level HHMM with 6 HL states and 4 LL states to a single-level HMM with the same number of

states (4 � 6 = 24 states). We labeled the non-hierarchical model as the null model, and were able

to reject the null model using Bayesian model comparison at p < 0.0001, implying that a hierarchical

model is necessary. Another model comparison – a two-level model with 8 HL and 4 LL states com-

pared to a single-level model with 32 states – also yielded similar results. The objectively better per-

formance of an HHMM compared to an HMM suggests that a model that includes a hierarchical

structure is more consistent with a fly’s locomotion. It is important to note that, HHMMs are actually

simpler than HMMs with the same number of states. This simplicity comes from the fact that any

HHMM – which puts very specific constraints on the transition probability matrix – can be repre-

sented by an HMM but not vice-versa. HHMMs with the same number of states has far fewer param-

eters. Thus, for the two comparisons above, the HHMM has 62 + 6*42 + 6*4*5 = 252, and

82 + 8*42 + 8*4*5 = 352 parameters, and the HMM has 242 + 24*5 = 696 and 322 + 32*5 = 1184

parameters respectively; therefore, HHMM has fewer parameters. When a simpler model better

characterizes the data, we can conclude that the additional structure contained in that model pro-

vides a more accurate characterization of the structure within the data.

The model we chose has 10 HL states (Figure 2A) and 5 LL states for each HL state. The model

was fit to the entire dataset – both before and during the presence of the odors. The fitting process

initializes by fitting each fly’s tracks to its own HHMM and then clusters these 34 HHMMs – one for

each fly – using a Gaussian mixture model, resulting in a smaller number of models. Remarkably, a

single HHMM is an excellent fit for all the data suggesting that the behavior of wild-type flies is com-

posed of similar components. The model was able to successfully assign an HL state (defined

as >85% confidence) for >80% of the data points (Figure 2B, median 81%). This percentage was

consistently high for all flies in our dataset (Figure 2B). In comparison, an HMM with 50 states can

only classify 68% of the data with the same level of confidence. Tracks of a fly with each HL state

labeled with a different color are shown in Figure 2C.

To make the difference between HHMM and HMM clearer, we compare the HHMM above to a

HMM. As expected the time a fly spends in a HMM state is shorter than that in a HHMM state (Fig-

ure 2—figure supplement 1A). The longer time a fly spends in a HHMM state results from

its hierarchical structure, and allows a HHMM to more accurately assign states, and is illustrated with

two examples. First, consider a track that is assigned as a left turn by the HHMM, the HMM only

classifies parts of the track as a left turn because of the inability of HMMs to consider longer dura-

tion trends in the observables (Figure 2—figure supplement 1B1). Short-term inhomogeneity in the

data throws the HMM off; as soon as the bv? decreases, the HMM exits its left turn state. Another

example (Figure 2—figure supplement 1B2) shows that the HMM exits the stopped state as soon

as there is a small movement. The net result is that the HHMM can classify all long stops into a single

state while HMM needs four different stop states. HHMM also assigns more of the left turn as such

(6% compared to only 2% by HMM).

The duration of the LL states of a HHMM is shorter than the duration of the HL state state (Fig-

ure 2—figure supplement 2A). Moreover, as the duration of HL states becomes longer, the mean

number of transitions increase. The shorter duration of LL states compared to the HL states, and

increased number of transitions between LL states within each HL state transition support the idea

that there is structure at multiple timescales, and some of this structure is captured by the HHMM.

The limitations of HMM in describing phenomenon which have hierarchical and shared structure

because of the short duration of its states is well documented (Marco et al., 2017; Wonjoon et al.,

2010; Michele Weiland and Nelson, 2005; Nguyen et al., 2005; Murphy and Paskin, 2001;

Chou, 2006). Therefore, an HHMM is an objectively a better model of fly walking data than an

HMM.

HL states of the HHMM model describe locomotor features
Both the organized transitions between HL states, and the narrow range of observables associated

with each state shows that the fly’s locomotion is structured: The transition probability matrix is

sparse – a vast majority of transitions from each HL state were to 2-3 other HL states. When we
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reordered the states (see Materials and methods section 5) from low-speed-high-turn-states to high-

speed-low-turn states, we found that from any state the flies transitioned to the neighboring states

with a high probability (Figure 2—figure supplement 3) suggesting a gradual transition from low-

speed-high-turn states to high-speed-low-turn states. This gradual transition is not because flies can-

not make large transitions due to biomechanical limitations because 47/81 1 possible transitions

between HL states have a non-zero probability. Rather, transitions to states with similar kinematics

show that under our experimental conditions – locomotion in a dark, small circular arena - flies loco-

mote at similar bvjj and bv? for extended periods of time, and represent one way in which locomotion

is organized.

More important to the organization is the narrow distribution of observables - bvjj and bv?- associ-
ated with each HL-state. The distribution of observables for a HL state is a composite of the distribu-

tions of its LL states (Figure 3A). Both the model (solid line in Figure 3A1) and a random sample of

observables drawn from the time points assigned to a given LL state (gray markers) show that during

each LL state within HL state 10, the observables are limited to a narrow range of values. In each LL

state, bvjj is large and bv? is negative implying that in HL state 10, flies turn counter-clockwise at high

speeds as observed in sample tracks corresponding to a single transition to HL state 10 (Figure 3B).

The sample tracks also show that within each transition to a HL state there are multiple transitions

between LL states, a signature of the hierarchical organization in our data. Fast, counter-clockwise

turns represent a locomotor feature which describes a fly’s locomotion in HL state 10. To better
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Figure 3. Structure of a HL state. (A1) 85% confidence bounds of the model (black ellipse) and a random sample of observables (gray dots)

corresponding to data points assigned to the LL states underlying HL state 10. Percentage of time spent in a given LL state is also shown. (A2)

Distribution of observables for the HL state. (B) Example tracks denoting a single transition to HL state 10 show that the fly is turning counterclockwise.

LL states were color coded. (C1) Each track is rotated and translated for visualization. (C2) All 20 tracks in B were transformed as shown in C1.

Transformation reveals that all HL state 10 trajectories represent left turns.

DOI: https://doi.org/10.7554/eLife.41235.008

The following figure supplement is available for figure 3:

Figure supplement 1. LL states corresponding to each HL statest: The same plot as Figure 3A for all the states. State 10’s distribution has been

replicated for completeness.

DOI: https://doi.org/10.7554/eLife.41235.009
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visualize this feature, we translated each track such that it began at the origin and rotated the tracks

so that the initial velocity vector pointed along the y-axis (Figure 3C1, see Materials and methods).

These transformations make it apparent that the locomotor feature for state 10 is turning left at high

speeds (Figure 3C2).

Rotated and translated (as in Figure 3C) tracks for each of the 10 HL states are shown in Figure 4.

The distribution of the observables for each HL state is also plotted. HL state 1 represents very slow
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DOI: https://doi.org/10.7554/eLife.41235.010
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walking with frequent changes in direction. In state 2, flies are either completely stopped or they

walk at a speed about twice the speed of the fly in state 1; state 2 represents stop and start locomo-

tion. The subtle, but important differences between state 1 and state 2 show an instance in which

the HHMM is successful at extracting an unexpected feature in the velocity profile in a fly’s locomo-

tion. During state 3, the fly is exhibiting a sharp turn that is reflected in the increase in bv? with a con-

comitant decrease in bvjj. These three states together represent slow locomotion.

In states 4-7, flies are walking at a medium-speed. In contrast to the clear drop in bvjj with

increases in bv? in state 3, bvjj remains strikingly constant irrespective of bv?. These states are different

from each other because bvjj is slightly different.

States 8–10 are high-speed states; each of these states is also characterized by their turn direc-

tion. During states 8 and 9, the fly turns right; the fly’s speed is higher during state 9 than during

state 8. During state 10, the fly turns left. States 9 and 10 are mirror-symmetric versions of each

other.

Flies spend 60% of time performing a locomotor feature for >300 ms, and >10% of their time

performing a single locomotor feature for >3 s (Figure 2—figure supplement 2). Thus, flies spend

extended time in the same state.

Odors affect locomotion by altering the occupancy of HL states
In the absence of ACV, the state occupancy inside and outside the odor-zone are quite similar: The

fly spends 30% of its time in state 2 and roughly equal time in all other HL states. Introducing ACV

changes the fly’s locomotor behavior both inside and outside the odor-zone, but with opposite

effects on the HL state occupancy in the two zones. Inside the odor-zone, in the presence of ACV,

the fly spends more time in HL states 1 and 3 at the expense of time spent in HL states 7–10

(Figure 5A). These changes from high-speed states to low-speed states suggest that in the presence

of ACV the fly is performing a local search, presumably to find food. Outside the odor-zone

(Figure 5B), the fly spends more time in the high-speed states (HL states 8–10), with a decrease in

the occupancy of HL state 2 (which includes stopping). Decreased stopping and increased high-

speed walking with turning is likely to represent a different search strategy, wherein the fly might be

attempting to re-find the odor it has recently lost. We also investigated whether there were changes

in the LL state composition of the HL states and found no changes (Figure 5—figure supplement

1). Overall, these results showed that odors affect locomotion not by creating new locomotor fea-

tures, but by altering the frequency with which existing locomotor features are used.

The divergent effect of ACV on the probability of HL states inside and outside the odor-zone is

consistent with our previous analysis (Jung et al., 2015) and shows that the effect of ACV can be

described by the change in the probability of the fly occupying HL states. To assess whether there is

a more fine-grained spatial structure to the effect of ACV on a fly’s behavior, we divided the arena

into a 60-by-60 grid and measured the ACV-induced changes in the probability of occupying a given

HL state at each of the 3600 locations (Figure 6). The probability that a fly is in HL state 1 increases

dramatically only at the edge of the odor-zone (Figure 6A), and not throughout the odor-zone

where the odor concentration is uniform throughout, showing that the effect of odor on locomotion

has a fine-grained spatial structure. Location-specific change in the probability of each HL state are

shown in Figure 6B. The fine-grained modulation of locomotion is observed in other states as well -

increases in state 2 are largest in an annular region just inside the odor-zone and increases in state 3

are largest at the very center of the arena. A similar specificity is observed in the increase in the

probability of HL states outside the odor-zone. Increases in the occupancy of state 8 are uniform

across the entire chamber outside the odor-zone; in contrast, the occupancy of states 9 and 10

increases in the region close to the odor-zone.

The structure that we observe represents the time-average over the entire duration of the odor

period, and ignores the time evolution of the behavior (Figure 6—figure supplement 1 and discus-

sion). We were unable to explore the spatio-temporal evolution of behavior because of substantial

fly-to-fly differences in locomotion and how it is modulated by odor.

Both locomotion and an odor’s effect on locomotion is fly dependent
Given that ACV affects the occupancy of HL states, it should be possible to do the reverse, that is

decode the presence of ACV based on the distribution of HL states. Surprisingly, a variety of
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different decoding techniques failed to decode the presence of ACV based on the distribution of HL

states. One such method (Figure 7—figure supplement 1) in which we employed logistic regression

to classify each one second of every fly’s track into ‘ACV present’ or ‘ACV absent’ failed. Even more

surprisingly, population decoding based on HL states did not perform any better than decoding

based on the observables (Figure 7—figure supplement 1). One possibility that the logistic regres-

sion approach failed is because the average behavior represented in Figure 5 does not accurately

encapsulate individual fly behavior. Large fly-to-fly differences, where different individuals have fun-

damentally different basal locomotion or response to odor, might doom decoding methods aimed

at discovering a single set of regressors that captures individual fly behavior.

Consistent with large fly-to-fly differences in behavior, we found that the distances between

empirical flies are much larger than the distances between the synthetic flies (Figure 7A). Synthetic

flies were generated as described in Figure 7—figure supplement 7–2. It is statistically impossible

(p < 10�131) that the observed Euclidean distance represents variations around the same average fly.

The same conclusion applied to the fly’s behavior in the other three conditions (before-inside, dur-

ing-outside and during-inside: Figure 7—figure supplement 3).

Because the data in Figure 7A is inconsistent with individual flies being variations around a single

average fly. We assessed whether the observed variability can be approximated based on a small

number of discrete locomotor-types. X-means clustering (see Materials and methods section 6)

showed that there are 4 clusters of flies based on their locomotion outside the odor-zone, before

odor onset (Figure 7B). Although the identity of flies that cluster together changed, a similar num-

ber of clusters was found in each of the four conditions (Before odor/inside odor-zone, during odor/

inside odor-zone, before-outside and during-outside, Figure 7 and Figure 7—figure supplement

3). Importantly, X-means clustering on a set of 34 randomly sampled points from a uniform distribu-

tion in the probability simplex space that the data reside in found no clusters. The Euclidean
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Figure 5. Odors modulate locomotion by altering the time spent in different HL states. (A) Odor-induced changes in the occupancy of HL states inside

the odor-zone. Bar graphs showing the probability distribution of the 10 HL states during odor, before odor, the difference between the two and the

fractional change in the distributions when the fly is inside. Red lines show ±bootstrapped 95% confidence intervals. Asterisks indicate significance at

0.05 with Bonferroni-Holm correction (**) and 0.01 (*) without correction based on bootstrapped hypothesis testing for equality of means. (B) Same as in

A, but for outside the odor-zone.

DOI: https://doi.org/10.7554/eLife.41235.011

The following figure supplement is available for figure 5:

Figure supplement 1. For each HL state, the composition of LL states remain the same .

DOI: https://doi.org/10.7554/eLife.41235.012
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DOI: https://doi.org/10.7554/eLife.41235.013

The following figure supplement is available for figure 6:

Figure supplement 1. Temporal structure underlying HL state occupancy in response to odor.

DOI: https://doi.org/10.7554/eLife.41235.014
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distances between synthetic flies drawn from the four different clusters were similar to the distances

between empirical flies (Figure 7B and Figure 7—figure supplement 3). Since X-means clustering

tends to underestimate the actual number of clusters in data (Pelleg and Moore, 2000), the analy-

ses in Figure 7 and Figure 7—figure supplement 3 suggest that there are at least three to four fly-

types based on the frequency with which they use the HL states.
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Figure 7. A fly’s locomotion cannot be explained as variations around an average fly and is well-described on the basis of three to four locomotor

types. (A) Histogram of distances between flies in the 10-dimensional space formed by the HL states. The distance between 100 iterations of 34

synthetic flies based on the average distribution of states is much smaller (gray line, Wilcoxon rank sum test, p < 10�131). The distance between

synthetic flies drawn from four clusters of flies (red line) has a distribution more similar to the empirical distribution. (B) X-means clustering (a variant of

K-means) in the 10-dimensional HL state space. Only the first two PCs are shown.. Each cluster is represented by a different color. (C) Left: KL
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DOI: https://doi.org/10.7554/eLife.41235.015

The following figure supplements are available for figure 7:

Figure supplement 1. HL state distributions of the population are poor predictors for the presence of odor.

DOI: https://doi.org/10.7554/eLife.41235.016

Figure supplement 2. The process for generation of synthetic HL state sequences.

DOI: https://doi.org/10.7554/eLife.41235.017

Figure supplement 3. Flies can be clustered into three to four types based on their locomotion.

DOI: https://doi.org/10.7554/eLife.41235.018

Figure supplement 4. Cluster assignments are stable over time.

DOI: https://doi.org/10.7554/eLife.41235.019

Figure supplement 5. Locomotion before odor onset is only weakly predictive of locomotion during the presence of odor.

DOI: https://doi.org/10.7554/eLife.41235.020
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Consistent with the analysis with Euclidean distances above, the KL divergences (Figure 7C, left

set of data points) show a large range indicating that some, but not all, flies are well-represented by

the population average while others are not. Employing three to four fly-types defined as average

distribution of their respective cluster decreased the information loss (Figure 7C, right).

How was the behavior of the flies in the four clusters different from each other? The average

occupancy of the HL states for flies in each cluster and one example from each cluster is shown in

Figure 7D. Cluster two was distinct from the others because flies move at markedly slower speed

and spent >60% of their time in State 2 (Figure 7D) during which the fly was often stopped. Loco-

motion of flies in the largest cluster (cluster 1) was characterized by an alternation between medium-

and slow-speed states. Flies in this cluster employed states 5 and 7 with a high frequency while mak-

ing radially inward forays into the center of the arena. Similar behavior was observed in cluster 3,

except that the flies employed the slower medium-speed states (states 4 and 5). Finally, the fourth

cluster of flies demonstrated a different locomotor strategy. Flies in cluster four traversed the arena

in concentric circles using the high-speed states (states 8–10). Thus, X-means performed on the HL

state distributions appear to identify different locomotor strategies employed by the fly.

How similar is the locomotion of a fly at different times during a trial? To investigate this issue we

first examined whether the mean behavior of flies from different clusters are different enough that

they can be accurately clustered based on a small sample of the HL states (Figure 7—figure supple-

ment 4A). We limited the analysis to before-outside and during-inside scenarios because the fly

spent much of its time in these two scenarios. Only a one-second chunk of data is sufficient for bet-

ter than chance clustering , and just 30 s of sampling is enough to accurately classify >85% of the

flies into their respective clusters. We performed two analyses to test whether a fly’s behavior is per-

sistent: First, we divided the tracks into bins of different length, and asked whether cluster assign-

ments based on small bin sizes is stable (Figure 7—figure supplement 4B). We found that state

distribution within each bin was highly predictive of the cluster they belonged to. Second, we

repeated the same analysis, but with bins of varying size starting from the first data point or ending

at the last data point (Figure 7—figure supplement 4C). These analyses show that within the admit-

tedly short timeframe of our experiments, the cluster assignments are stable.

Apart from the fly-to-fly variability, another reason why decoding based on the average fly fails is

that the behavior of the fly before odor onset is only weakly predictive of its behavior during the

presence of odor. Some flies exhibited similar behavior in the before odor/outside odor-zone, but

were divided into separate clusters in the presence of odor because their locomotion differed (e.g.

flies 11 and 33, and 17 and 27;Figure 7—figure supplement 5A, see the distributions of HL states).

A similar trend is observed inside the odor-zone (Figure 7—figure supplement 5B). These examples

imply that behavior before odor onset is unlikely to be strongly predictive of behavior during the

presence of odor. This conclusion is supported by the weak correlation between Euclidean distances

between pair of flies in the before and during periods (Figure 7—figure supplement 5A and Fig-

ure 7—figure supplement 5B).

A small number of strategies can explain the variability in flies’
response to odor
The analysis presented above suggests that individual differences explain why the logistic regression

approach based on the average HL state distribution across flies failed to decode the presence of

ACV from its absence based on the HL states usage by individual flies. If so, individualized logistic

regression should be more successful. Logistic regression based on individual flies to decode the

presence or absence of odor based on HL state occupancy during a 1s-interval was able to classify

odor-no odor at better than chance level for every single fly (Figure 8A, see Materials and methods

section seven and Figure 8—figure supplement 1 for details). Moreover, as expected, logistic

regression using the HL states performed significantly better than did the observables (Figure 8B)

which indicate that HL states are more predictive of the presence of ACV than the observables.

The analysis in Figure 8A shows that the occupancy of HL states is predictive of the presence or

absence of odor when the analysis is performed at the level of individual flies. Does this mean that

each fly follows an individualistic strategy? To evaluate whether a fly’s response to ACV cluster into a

small number of response types, we once again started with X-means clustering based on the

change in state occupancy before and during odor. X-means clustering found five clusters inside the

odor-zone and four clusters outside the odor-zone (Figure 8C). Using these clusters as a starting
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point, we could reconfigure the clusters such that the logistic regression on flies in each cluster per-

formed at a better than chance level for each fly in the cluster (Figure 8C, see

Materials and methods section seven for details), thus implying that a fly’s response to odors can be

approximated as a choice between few response-types.

Based on their behavior inside the odor-zone, the flies were divided into five clusters, four of

these clusters have more than three flies (Figure 9A). Flies in cluster 5 five, just like the average fly

(in Figure 5), slow down inside the odor-zone. Flies in cluster 3also demonstrate a strategy similar to

flies in cluster five except that ACV causes a large decrease in the time a fly spends in the medium-

speed states rather than the high-speed states. In contrast to clusters 3 and 5 during which the fly

slows down inside the odor-zone, flies in cluster two demonstrate a fundamentally different strategy

in which there is a large decrease in state 2 in favor of states 1, 3 and 4. The flies in this cluster go

from stop-start locomotion to locomotion in which they either meander at slow speeds or walk

slowly with many sharp turns. Finally, for the flies in cluster 1, there is no dramatic change in state.

These different strategies represent diametrically different effects of ACV on some HL states – the

most striking example is the opposing effects of the odor on HL state 2 occupancies in different clus-

ters – a large decrease in cluster 2, and an increase in clusters 3 and 5. These differences explain the

odor-induced increase in usage of all the slow states in the average fly inside the odor-zone, except

state 2 (Figure 6A).

Based on how odors modulate their behavior outside the odor-zone, there were four clusters..

Behaviors that represent three of these clusters are shown in Figure 9B. Flies in cluster 1 decrease

the time they spend in slow-states (state 1–2) and instead spend time in the fast states (states 8–10)

resembling the behavior of the average fly. Cluster 2) shows a large decrease in HL state 2
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DOI: https://doi.org/10.7554/eLife.41235.021

The following figure supplement is available for figure 8:

Figure supplement 1. Schematic showing how logistic regression for a single fly was performed.

DOI: https://doi.org/10.7554/eLife.41235.022
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occupancy similar to the behavior of flies in inside odor-zone cluster 2 while exhibiting a large

increase in medium-speed states (state 4–6). Cluster 3 showed no dramatic change in state.

Discussion
A cornerstone of neuroethology is that behavior unfolds in discrete packets, that is, behavior can be

temporally segmented into natural units (Barlow, 1977; Tinbergen, 1996; Baerends, 1976). In

some behaviors, these discrete packets are readily recognizable. But, in most daily behaviors, there

is enough variability in these discrete packets to make the underlying natural units unrecognizable

without the help of sophisticated analytical tools. Recently, there has been significant progress in

discovering structure in sequences of posture in C. elegans (Stephens et al., 2010), Drosophila

(Berman et al., 2016; Vogelstein et al., 2014) and mice (Wiltschko et al., 2015). Here we describe

structure in a fly’s locomotion in the velocity space.

Our salient results are:

. A fly moves at a relatively constant bvjj and bv? for an extended time that can last tens of steps.

Therefore, a fly’s locomotion can be decomposed into a few locomotor features – 10 features
in the case of the model we present. The same 10 locomotor features could describe the
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behavior of all flies in our dataset. The effect of odors on locomotion, and the differences in
behavior across flies can be described in terms of these 10-locomotor features..

. Using this analytical framework, we show that odors affect locomotion by altering the time
that a fly spends performing a given locomotor feature (instead of creating new features). The
odor-induced change in locomotion has a fine spatial scale – the fly’s response to odor
changes as it moves from the border of the odor-zone to its center, and as it moves away from
the odor border.

. The HHMM framework also allowed us to show that flies used the same 10 locomotor features,
but in different proportions. The variation is so large that the fly’s behavior cannot be under-
stood as variations around the same average fly. Instead, the flies employ a minimum of at
least 3–4 different strategies.

Below we discuss the limitation and implication of these findings.

Model limitations
The model presented here is a model of locomotion and not the model of locomotion. The choice

of observables and model strongly influences the features of the structure that is discovered. Our

particular model reveals the structure of locomotion in the velocity space.

In choosing the observables, we employ a common method for describing locomotion, that is we

treat the fly as a point object and measure the instantaneous change in the position of this point

object; therefore, much of the insights from the model relate to how the fly changes its position in

time. Apart from bvjj and bv?, another similar and more commonly used representation of the change

in fly’s position: instantaneous speed and angular speed yielded similar locomotor features (data not

shown). Ultimately, we used bvjj and bv? because this representation is more closely related to move-

ment representation within the insect brain (Green et al., 2017; Heinze, 2017; Turner-Evans and

Jayaraman, 2016), and because the measurement errors associated with angular speed are particu-

larly large when flies moves slowly (Gallagher et al., 2013).

A fly’s position can also be described using the actual position of the animal as observables rather

than the change in the position, as employed in a recent study in rats (Shan and Mason, 2017) Using

the instantaneous position as an observable would reveal different aspects of the structure underly-

ing an animal’s locomotion. Consider the trajectories of flies in Clusters 1 and 3 (Figure 7). They

cross similar spatial positions, but are classified into different states because the flies travel at differ-

ent speeds. In terms of the sequence of position in space, flies in both clusters have a similar behav-

ior – they explore the outer arena border and make occasional radial forays inside the odor-zone. An

analysis based on position would likely place these two clusters of flies together whereas our analy-

sis, in the velocity space, placed them in different clusters.

Model architecture is also important. A hierarchical model performed better than a non-hierarchi-

cal model. The current model has state durations of <3 s. It is clear to human observers that there is

structure in the data that is >3 s long. Flies sometime explore the outer border of the arena using

characteristic paths that can last up to a minute. The short duration of states in our model cannot

capture structure on these long-time scales. One possibility is choosing a deeper-layered architec-

ture. Given the structured transitions between the HL states in our model, it is likely that if we used a

deeper-layered architecture, we would likely uncover structure on a longer timescale.

Locomotor features and implications for neural control of behavior
During both HL states 1 and 2, the fly’s locomotion is quite slow, but in state 2 the fly stops and runs

intermittently while in state 1, the fly is continuously in motion, albeit slowly. Similarly, in each of the

HL states 4, 5 and 7, bvjj lies within a narrow range, which is distinct for each of these three states,

implying a tight control over forward speed. These locomotor characteristics can persist over 3 sec-

onds (Figure 2—figure supplement 2) – a time period during which a fly takes 30 steps on average

(given a step frequency of 10 Hz; Mendes et al., 2013). This tight control over bvjj over many steps

strongly suggests that locomotion unfolds in blocks. The HHMM presented here or the states

revealed by it may not reflect the actual states employed by neurons in the brain. In fact, there is an

ongoing debate whether behavior and its control is better represented as a continuum than by dis-

crete states. The presence of long-lasting states that are employed repeatedly by all flies in our data-

set implies that either locomotion does consists of transition between discrete states, or that these
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states represent fixed points or peaks of a dynamical system around which the animal spends most

of its time (Berman, 2018).

Another surprising result is that the same set of locomotor features describes the behavior of all

the flies in the dataset. This result is particularly surprising given that our model explicitly allows

each fly its own set of locomotor features. The fact that all flies can be reasonably modeled by the

same model implies that within a given environment all flies construct their locomotion from the

same building blocks, and differences in locomotion amongst flies or the effect of sensory stimula-

tion can be quantified as changes in the frequency with which these building blocks are employed.

An important avenue for future research is to assess whether these locomotor features are fixed or

flexible.

Odors affect behavior on a fine spatial scale
In nature, animals encounter odors in a cluttered and dynamic sensory environment (Riffell et al.,

2014). Discriminating between odors, navigating towards the chosen odor source and pinpointing

the odor source requires a flexible deployment of multiple different motor programs. It is difficult to

replicate the complex natural environment in the laboratory. Therefore, laboratory studies are typi-

cally aimed at different subsets of the complex environment experienced by animals. In insects,

much research has focused on an environment in which it experiences odors in a highly structured

odor plume often within a high-contrast visual environment (Budick and Dickinson, 2006; Ken-

nedy, 1983; Vickers, 2000; van Breugel and Dickinson, 2014; Álvarez-Salvado et al., 2018).

Recently, similar experiments have been repeated for flies walking towards an odor source (Bell and

Wilson, 2016). These experiments model an insect’s behavior under one specific condition wherein

the fly tries to locate an odor source at a distance using strong directional information from wind

and vision. The experiments described here explore a fly’s behavior in a small, dark circular arena. At

most locations in the arena, the air speed was 0.07 m/s; the highest wind-speed was 0.11 m/s

(Jung et al., 2015), a value lower than has been employed in most studies. . Therefore, non-olfactory

directional cues from vision or wind are minimized (Jung et al., 2015). Consistent with this idea,

there was no change in the distribution of the flies when wind was completely eliminated.

We find that this behavior near the odor source can be described by changes in the HL states.

The clearest evidence that changes in HL states are a good description of the fly’s behavior is the

analysis in which we measured the spatial distribution of odor-evoked changes in HL states (Fig-

ure 6), and observed a pattern that strongly resembles the odor-zone. This analysis shows that the

HL state description is accurate enough to facilitate discovery of arena structure. However, because

we averaged HL state distribution over the entire 3 min of odor exposure, the analysis misses some

details. The flies first detect odor slightly outside the odor-zone as defined in this study (Jung et al.,

2015), and their behavior during the first 10 s after odor encounter differs from their behavior during

the rest of the odor period (Figure 6—figure supplement 1A). Moreover, at least some of the spa-

tial structure results from the change in the radial density of the fly as a function of time (Figure 6—

figure supplement 1B). A fly’s interaction with odor is dynamic and that HL states are a good analyt-

ical framework to extract the spatiotemporal patterning of fly’s behavior by odor. This spatiotempo-

ral pattern likely differs among flies; a full description of this pattern requires a larger dataset and

represents an important avenue for future research.

Flies show considerable variability in locomotion despite employing the
same locomotor features
Even single-cell organisms and animals with simple nervous systems display substantial individuality

(Jordan et al., 2013; Gallagher et al., 2013). Animals with larger nervous systems are likely to dis-

play even greater individuality, in the case of adult flies this individuality was demonstrated in the

context of locomotor handedness (Buchanan et al., 2015) in a choice assay. The nature and extent

of individuality is harder to assess in more complex behaviors because of the difficulty in assessing

individuality in a large behavioral space; differences in behavior can simply be different instantiation

of the same behavior, or reflect fundamental differences in behavior. In this study, we find that differ-

ent flies employ the same locomotor features but use them in vastly different proportions. The

observed variability between the flies is inconsistent with a single type of locomotor behavior but

can be approximated by invoking 3–4 clusters of flies. Because the clustering framework we
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employed (X-means) underestimates the number of clusters, and because there were only 34 flies in

our dataset, it remains to be seen whether there are a few locomotor-types or a whole continuum of

locomotor-types. Another limitation of this study is that we have not yet ascertained whether a fly’s

behavior persists over a longer time frame. Despite these limitations, this study makes two important

contribution to the study of individuality. First, we develop a statistical framework to study complex

behaviors. This method can be extended to examine whether the differences we observe

truely represent individuality. Second, in many behavioral studies, researchers focus on the effect of

some stimuli on behavior and make conclusions based on the average fly. In this study, we provide a

framework for testing whether the description based on an average fly is appropriate, and ways to

proceed if such an approach is inadequate.

The diversity of odor responses observed here is consistent with work done on moths where

(Willis and Arbas, 1998) but in sharp contrast to recent work on walking Drosophila (Bell and Wil-

son, 2016) in which the authors reported that attraction to odors results from a stereotypical motor

pattern. The authors of that study claimed that the relatively simple response to odors in their study

is likely a result of their simple behavioral arena. Another possibility is that in their study there is a

strong, directional wind cue. In the presence of a steady wind cue in a narrow arena, it is likely that

the flies’ locomotor behavior is dominated by upwind walking and suppresses other elements of

their behavior. It is well-established that a fly’s response to odor is strongly influenced by context, as

was demonstrated recently by comparing the response to odors in different visual and air flow con-

ditions (Saxena et al., 2018).

When considered from the viewpoint of an individual animal, this variability is hard to understand:

A hungry fly in search of food should respond with a singular, hardwired behavior which represents

an optimal strategy for locating food. However, species evolve as large populations of individuals,

and a successful species should be able to adapt to fluctuating environmental condition. Recent

work has shown that - bet hedging - a process by which the same genotype shows considerable phe-

notypic variation is important for adaptation to fluctuating environments (Kain et al., 2015). Having

a diversity of phenotypes ensures that some individuals would thrive in any condition and behavioral

variability is a feature not a bug and its careful consideration is critical.

Studying individual behavioral responses is also important to understand the mechanism underly-

ing both the control of locomotion and how odors control locomotion. Analyzing behavior at the

population level can provide important insights into an animal’s response but does not provide the

resolution necessary for understanding the neural mechanism underlying the moment-by-moment

control of behavior at the level of individual flies. In this context, it is instructive to take a closer look

at the average response to odors in the light of clusters of response to odors. The average response

(Figure 5A) was surprising: the occupancy of all the slow states except state 2 is increased. The lack

of increase in occupancy of state two results from a cluster of flies in which the occupancy of state

two is strongly decreased (Figure 9A). A similar effect is observed in the response of the average fly

to the medium-speed states – states 4–7. The occupancy of these states decreases in some flies and

increases in others. Thus, the average fly is an aggregate of these different clusters of flies, each of

which has a distinct response to odor. Disaggregation is an essential first step to understanding neu-

ral control of behavior.

Materials and methods
All the code required to fit the HHMM model, and perform all the analysis in this manuscript can be

found on Github (Tao et al., 2018; copy archived at https://github.com/elifesciences-publications/

HHMM). The dataset can be found on Dryad (doi:10.5061/dryad.m930f2m).

Collection of behavioral data
The methods used to collect the behavioral data were reported in a previous study (Jung et al.,

2015). Briefly, flies were raised in a sparse culture. Flies that were 3–5 days post-eclosion were

starved for 14–18 hr. Locomotion of a single fly was recorded for a 3 min period before odor was

introduced (before period) and a 3-min period during odor (during period), using a video camera at

a rate of 30 frames per second. The coordinates of the fly were extracted using a custom Matlab

program (https://github.com/bhandawat/fly-walking-behavior/tree/master/tracking).
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Extracting observables from the trajectory
The behavioral arena was normalized to a unit circle centered at the origin. The raw coordinates of

the centroid of the fly were smoothed using wavelet denoising followed by a locally weighted (low-

ess) filter. Speed and curvature were defined exactly as in the previous study.

To quantify the behavior of the 34 flies, we computed the speed of the fly along the original

direction of movement (bvjj) and the speed of the fly perpendicular to the original direction of move-

ment (bv?). bvjj at time t was defined as the component of the velocity at time t in the direction of

velocity of the fly at time t � 1. bv? was defined as the component of the velocity at time

t perpendicular to velocity of the fly at time t � 1 (Figure 1C). These values were calculated as

follows:

bv? tð Þ ¼ dyt�1dxt � dytdxt�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2t�1

þ dy2t�1

p

bvjj tð Þ ¼
dxtdxt�1þ dytdyt�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dx2t�1
þ dy2t�1

p

Values of bvjj and bv? found to be further than 4 standard deviations away from the average were

set to values drawn from a normally distributed distribution (s¼ 1) centered at the 4 standard devia-

tion mark. The resulting bvjj and bv? were then set as the observables used in fitting a 2-level Hierarchi-

cal Hidden Markov model (HHMM).

We employed bvjj and bv? instead of speed and curvature because curvature is very noisy at low

speeds because the calculation of curvature requires division by the third-power of speed. bvjj and bv?
are directly related to speed and curvature as follows

Speed ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bv2? þbv2jj

q

Curvature¼ bv?
dx2t�1

þ dy2t�1

HHMM modeling
HMMs are widely used in a variety of fields for modeling time series data. An HMM is a Markov

model which assumes that a given sequence of observations may be explained by a set of states

that are not observed (or hidden states), and the time independent probability of transitioning

between these states. The model processes which produce the observations in an HMM are hidden

to the researcher and thus, the goal of fitting an HMM is to uncover the highest likelihood probabil-

ity model parameters that can generate the data. Baum and others developed the core theory of

HMMs (Baum and Petrie, 1966). Since then there has been much exploration of model architecture,

and fitting procedure.

HMMs have been shown to be effective in modeling behavior because instantaneous measures of

an observable are variable; therefore, behavioral states inferred by the application of simple thresh-

olding to instantaneous measures of the observables are likely to be erroneous. HMM remedies this

problem by inferring states based not only on the value of the observable at the current time point

but also on the previous and following time points, and allows a more accurate determination of

state (this idea is well-explained in Figure 2 in ref 17). Specifically, the assumption of Markov dynam-

ics with a sparse prior on state transitions penalizes the consideration of unlikely state transitions

based upon recent history (forward filtering) and future destinations (backward smoothing).

The HHMM is an extension to the HMM which applies hierarchical structure in the form that

higher level state is itself an HMM composed of its lower level states (Fine et al., 1998). The

approach we take in exploring and fitting the HHMM closely follows the approach developed by

Matt Beal in which he applied variational algorithms to fit HHMM to a time series of observables

(Beal, 2003).

This section is divided into three parts. First is the description of the model, second is the details

of the process by which the model is fit, and third is the thought process behind our model

selection.
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Model description
The model we describe here has 10 hidden states at the higher level (HL) and 5 hidden states at the

lower level (LL) (Figure 2A). The empirical data to which the model is fit is a time series of the two

observables - bvjj and bv?. In building the model, the aim is to assign each instant in this time series to

a LL and HL state. Each LL state is associated with a joint probability distribution on the observables.

Each HL state is described by the transition probability matrix of its LL states. Therefore, while fitting

a HHMM, we are determining three sets of quantities: First, the distribution of bvjj and bv? which

describes each LL states (Figure 3-S1A/B). Second, the transition probabilities (TP) between the LL

states which describe each HL state (Figure 2-S3B). Finally, the transition probabilities between the

HL states (Figure 2-S2A). Based on the values of bvjj and bv?, the model assigns a sequence of HL and

LL states which best describes the data.

TP matrix for the HL states and the LL states associated with each HL states is shown in Figure 2—

figure supplement 3. In each case, the TP matrix describes the probability (Pij) that a fly in a given

state detailed in the jth column will transition to a different high-level state detailed in the ith row.

The high-level states are arranged in ascending order of mean speed/variance in curvature ratio.

Because of this arrangement, the TP for the HL states appears well-structured. From any state, there

is a strong tendency to transition to one of the neighboring state. This tendency implies that flies

transition to states which have a similar speed/curvature ratio. LL states that belong to the same HL

state often have more similar speed/curvature ratios. Thus, there is less of a tendency for LL states

to transition to the LL state with the closest speed/curvature ratio. Nevertheless, the LL state transi-

tion probability matrices, too, are sparse; signifying a distinct pattern of transition between LL states

(Figure 2—figure supplement 3B).

Figure 3—figure supplement 1A and B shows the joint distribution for bvjj - bv? for each state.

Each row represents one HL state and its low-level children. In each panel, the solid line represents

the model predictions and dots represent empirical values. Each LL state is modeled as a multi-vari-

ate normal distribution of observables. The solid line represents the bound within which the model

predicts 85% of the data points corresponding to a given LL state lie. The empirical data points rep-

resent randomly selected subset of data corresponding to instants which the model assigns to a

given LL state. The close agreement between the two for most LL states implies that the model is an

excellent descriptor of the observables. The few exceptions where either the model distribution is

too broad or where the model is not a good descriptor of the data reflect cases in which there are

not too many data points in the concerned state (See for example, LL state 1 for HL state 6, Fig-

ure 3—figure supplement 1A ). Each HL state is a composite of the 5 LL state because for every

time instance the fly is in a given HL state, the model assigns a LL state. Therefore, we can consider

the probability density function of a HL state as the sum of the probability density functions of its LL

states. From this, we can calculate the 85th percentile contour for the corresponding probability den-

sity function for the HL states (Figure 3A2 , Figure 4). Again there is a strong agreement between

model and empirical data.

Fitting process
We will first formally define a HMM as follows:

Variable Description

st 2 [1,2,. . .N] Indicates which of the N states is occupied at time t 2 [1,2,. . .T]

A = (aij) A NxN transition matrix where aij represents the probability of transitioning from state i to state j.

O = o1,o2,. . .oT A sequence of observables composing of the two-dimensional data set: bvjj and bv?

Bti = P(ot|st = i) Emission probability describing the probability of an observation ot t 2 [1,2,. . .T] being generated from a state st = i;
Assumed to be Gaussian.

p= p1, p 2,. . . p N The initial probability distribution of states.

For our two layered HHMM, we chose a structure composing of 10 high-level states (HL state) on

the top level with each HL state being associated with five low-level states (LL states) on the bottom

level (Figure 2). Each LL state is modeled as a multivariate normal (MVN) distribution on the
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observables, and the HL states as being fully described by the mixture of LL state distributions asso-

ciated with the HL state.

Now we will define our two layered HHMM as follows:

Variable Description

st [1,2,. . .NHL] Indicates which high level state is occupied at time t 2 [1,2,. . .T]

ut2 [1,2,. . .NLL] Indicates which low level state is occupied

Q ¼ qkl½ � High level state transition probability matrix, qkl represents the probability of transitioning from high level state k to
high level state l.

Ak= (akij) The low level state transition probability matrix. Here akij represents the probability of transitioning from low level

state i to low level state j given that the high level state is k

O = o1,o2,. . .oT A sequence of observables composing of the two-dimensional data set: bvjj and bv?

Btki = P(ot|st ; ut ) Emission probability describing the probability of an observation ot t2[1,2,. . .T] being generated from a HLS st=k
and associated low level state ut ¼ i. Assumed to be Gaussian.

p
0

p
k

The initial probability distribution of HLS.
The initial probability distribution of LLS for HLS k.

We can henceforth refer to the set of model parameters as � ¼ p;A;B½ � and the latent state varia-

bles as Z ¼ s1; u1; s2; u2; s3; u3 . . . sT ; uT
� �

. For a given set of observations, the goal is to obtain a poste-

rior probability distribution over the parameters and latent state variables. We approximate this

posterior distribution as a factorized distribution over latent variables and parameters, that is

p �; Zð Þ» q �ð Þq Zð Þ, and use the Variational Bayesian Expectation Maximization (VBEM) algorithm to

find the best approximation. q(Z) is obtained using the forward-backward algorithm which provides

sufficient statistics needed to update the approximate posterior distributions over the parameters.

In this setting, posterior probability distributions over rows of transition probability matrices are

assumed to be Dirichlet, and the prior is chosen to favor self-transition parameters, aii > 1, while dis-

couraging the use of unneeded states that is ,aij < 1 for, i 6¼ j. Initial state distributions were also

assumed to be Dirichlet with ai < 1.

The emissions probability distributions associated with each state were assumed to be Normal

inverse Wishart with a prior favoring zero mean and unit variance. For each computational run, the

initial parameters of these posterior distributions were randomized.

The priors used for fitting were such that within state transitions (i-th HL state to i-th HL state)

was six times higher than transitions across HL states ((i-th HL state to j-th HL state). The prior for all

i-to-j transitions were same. The Dirichlet prior over state transitions which we used was very weak.

Specifically, in strength, the prior we used corresponds to the equivalent of two observations relative

to the >10,000 observations that we used to fit the model for each fly.

VBEM algorithm
The Variational Bayesian Expectation Maximization algorithm functions by iteratively updating the

two components of our factorized approximation to the true posterior over parameters and latent

variables and exploits conditional conjugacy to identify explicit update rules for all distributions over

parameters. The goal of the VBEM algorithm is described alternatively as minimizing model error as

given by the Kullback-Leibler divergence between the approximate and true posterior distributions;

or maximizing a lower bound on the marginal probability of the data given the model. It is perhaps

easiest to see how the algorithm works by considering the KL(q,p) instantiation. Under our factorized

approximation, this objective function takes the form

KL¼�
Z

q �ð Þq Zð Þ logp Z; �jOð Þd�dZþ
Z

q �ð Þq Zð Þ logq Zð Þq �ð Þd�dZ

The VBEM algorithm minimizes this objective function using coordinate ascent in the q(q) q(z)

function space. That is we obtain iterative update rules by simply taking the functional derivative if

the KL with respect to q(Z) for fixed q(q) and then solving for q(Z). This results in the so-called E step

where we update the posterior distribution over latent variables by averaging the true joint distribu-

tion of observations, parameters, and latent variables over our current estimate of the posterior on

parameters:
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logq Zð Þ~Eq �ð Þ logp O;Z; �ð Þ½ �

In the so called M step, the roles are reversed:

logq �ð Þ~Eq Zð Þ logp O;Z; �ð Þ½ �

Here, the tilde indicates equality up to an additive constant. This two-step procedure is repeated

until convergence. The simplicity of these equations belies the complexity of the actual calculation of

the posterior distribution over latent state variables. This is accomplished using the well-known for-

ward-backward algorithm. The particular implementation of the forward-backward algorithm used in

VB differs from the traditional EM implementation in that the parameters of the transition probability

matrix are obtained by exponentiation of the geometric mean of the transition probability matrices:

A�
ij ¼ exp Eq �ð Þ logAij

� �� �

Based on the current posterior over parameters instead of simply using a maximum likelihood or

MAP estimate. Because we assumed the rows of the transition probability matrix to be sparse, this

further encourages the model to leave un-needed states unused.

Regardless, based on the assignments of observable tracks to HHMM models, we can iteratively

update model parameters for each cluster to maximize the probability of observing the observables

given the model parameters and the initial LL state probability density using the forward-backward

algorithm. This operation can be thought of as the maximization step where we are calculating the

best set of model parameters (�) that maximizes the Q function.

Although the EM algorithm is guaranteed to get a better fit on every iteration, it often does not

converge to a global optimum of the likelihood function. As such, we implemented a system of clus-

ter pruning, splitting, and reassignment to perturb the system in the case of reaching a local minimal

fit. In the pruning step, unused clusters are removed until we are left with at most two unused clus-

ters. In the splitting step, one cluster was selected based on a pseudorandom selection weighted by

the size of the clusters (number of flies best fit to the cluster). The flies are then clustered into two

clusters using k-means clustering based on the expected distribution of lower level state usage. Indi-

vidual HHMMs were fit to each of these new clusters. In the cluster reassignment step, we filled each

unused cluster(s) with the fly(s) that had the worst fit to the current cluster assignment. After each

step, we conducted 10 iterations of the EM algorithm. The sequence of perturbations was con-

ducted for 10 iterations before a final fit using the EM algorithm was conducted until convergence.

Mixture Model
To account for differing search strategies that may be utilized by different flies we also fit a mixture

of HHMMs to our multi-fly data set. The goal of this model is to identify a small set of different

HHMMs that can describe our entire data set by clustering flies according to the similarity in their

locomotion. In this context, two flies are said to behave similarly if the same HHMM provides a good

description of their behavior. To model this scenario, we added another layer to our Bayesian model

of the fly movement dataset. In this topmost layer, we instantiate a Dirichlet process which proba-

bilistically assigns a label, zn, to the nth fly. When zn = k, it indicates that the kth HHMM under consid-

eration governs the fly’s movement. Therefore, in addition to identifying the posterior distribution

over high and low-level states, we also infer a probability distribution over cluster assignments.

These probability distributions are then used to determine how much we should weight each fly’s

movement data when updating the parameters of the different HHMM’s.

Model selection
In this study, we experimented with models with a varying number of HL states (6-16), and low-level

states (4-6). One limitation of our fitting procedure is that it is not possible to compare models with

a different number of states objectively, and thus the choice of model depends on the investigator.

We chose a model with 10 HL states for two reasons: The most compelling reason is that different

model runs with 10 HL states produced results that were more similar to each other than did model

runs with either lower or higher number of states. Another reason is that as the number of HL states

in the model is increased, many HL states are sparsely used.
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We think that the range 6–12 is a fairly narrow range. One important point is that within this nar-

row range of states, the state duration in all the models we tried were very similar.

One important limitation of our modeling approach (which we realized in hindsight) is that it is

difficult to compare across models because everything changes slightly– LL states change, HL states

change. We are currently revising the model to keep the LL states fixed so that the modeling

approach would mostly focus on how the HL select the LL states. This process will make it much eas-

ier to compare across models.

Comparison of HMM with HHMM
Block clustering of HMM
For a given HMM fit, we may obtain the transition probability matrix (A). To obtain higher level struc-

ture from the states fit to a HMM, we may cluster the states based on their likelihood to transition to

each other. One method of sorting and clustering the transition matrix into a block diagonal struc-

ture involves the use of information bottleneck formalism (Berman et al., 2016; Naftali Tishby and

Bialek, 1999). We used this method to search for a given K=10 clusters with an inverse temperature

b from 1 to 300 and time lag values of between 1 to 45 (33 ms to 1500 ms). We found that b from

100-200 with time lags of 10-40 showed some of the same structure as the HHMM. We showed one

solution using a time lag of 10 and a b of 100 on an HMM fit of 50 states with 31 used states (Fig-

ure 1—figure supplement 1 ).

Bayesian model comparison
Given an HMM and an HHMM model with equal number of total states and observables O, we wish

to calculate the probability of the HHMM model given the observations (P(HHMM|O)). Using Bayes

theorem, we can calculate this with:

P HMMMjOð Þ ¼ P OjHHMMð ÞP HHMMð Þ
P Oð Þ

Utilizing a flat prior and Bayes factor:

K ¼ P OjHHMMð Þ
P OjHMMð Þ

We now obtain:

P HHMMjOð Þ ¼ 1

1þ 1

K

¼ 1

1þ e�log Kð Þ

We utilized the evidence lower bound to approximate P OjHHMMð Þ and P OjHMMð Þ. From this we

can interpret the P HMMMjOð Þ as 1 – p-values where H0 = the HMM model is a better model fit. We

obtain a P HMMMjOð Þ > 0.9999 indicating that we can reject the HMM model at p < 0.0001.

Parameter comparison
To define an HMM, we need the transition probability(pðxj j xiÞ for and the description for the proba-

bility distributions defining each state. This means that there will be K2 þ Knp parameters where

K designates the total number of states and np designates the number of parameters defining the

distributions. To define a HHMM, we need the transition probabilities at each level p xjjxi
� �

l
for

1 � i; j � Kl; 1 � l � L and the probability distributions defining each state. This means that in a

model architecture in which each state at a level (l) is composed of equal numbers of states one level

lower (l� 1), there will be K2

L þ KL KL�1ð Þ2þ . . .þ K2 K1ð Þ2þnp
QL

l¼1

Kl parameters. The distributions used

in this report consisted of two-dimensional multivariate Gaussians, which are described by five

parameters (�1; �2;s1;s2; �). The model that we employ in the manuscript has 102+10*52+50*5 =

600 parameters.

Tao et al. eLife 2019;8:e41235. DOI: https://doi.org/10.7554/eLife.41235 23 of 30

Research article Neuroscience



Post-hoc analyses based on the HHMM model
Pre-processing of the model output
For each time point, the model assigns the probability that the fly is in each of the 10 HL states. We

only included time instances where the model assigned a probability of >0.85 for one of the 10

states; this condition was satisfied for 81% of all data points (Figure 2B). Instances during which the

flies transitioned from one HL state to another HL state and back to the same initial state in less than

five frames (~170 ms) were reassigned to the initial HL state. Furthermore, instances during which

the fly only spends one frame (~30 ms) in a certain HL state before changing states were removed.

These corrections were done because such short transitions are likely to arise from noise in the

observables rather than rapid transitions. Tracks of HL and LL states were extracted to compute the

empirical distribution of the observables (gray dots in Figures 3A and 4 and Figure 3—figure sup-

plement 1A/B).

Each HL state track was translated to begin at the origin by subtracting the position of the first

point in the track. Then we rotated each track such that the fly is moving in the forward direction

(positive y axis) at the start of the track. We considered the overall vector of the 10 frames (330 ms)

before each track as the vector defining the fly’s directional intent prior to starting a track. We

defined the angle of rotation as the angle between this vector and the forward direction. These

translated and rotated tracks allow us to visualize the distinct types of locomotion defined by the HL

states (trajectories in Figures 3C and 4).

Sorting of the HL states
The model output numbers the HL state in a random order with respect to the underlying distribu-

tion of observables. To better understand the structure underlying transitions between HL states, we

rearranged the states from low-speed-high-turn states to high-speed-low-turn-states by sorting the

HL states of the model based on the ratio of their mean speed over the variance in curvature.

Analysis of the effect of odors on the HL states
The nominal radius of the odor-zone defined by the radius of the odor tube was

1.25 cm (Jung et al., 2015). However, because there was some spread of the odor outside the

odor-zone, the actual radius of the odor-zone was 1.5cm (Jung et al., 2015). A fly was considered to

be inside the odor-zone when it was within the 1.5 cm radius. Although the odor was turned on 3

min following the start of the recording period, because the odor was only present inside the odor-

zone, we considered the first time the fly entered the odor-zone after 3 min (first entry) as the start

of the odor period. Based on a combination of the presence of odor and the location of the fly, we

parsed the data into four categories: These were defined as inside odor-zone before first entry (BI),

inside odor-zone following first entry (DI), outside odor-zone before first entry (BO), and outside

odor-zone following first entry (DO). The standard deviation (SD) of the probability of HL states (P) in

each scenario were calculated as follows:

SDj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pjð1�PjÞ
N� 1

r

8 j 2 1;2;3; . . .10f g HL state

where N is the total number of data points in the scenario.

For each fly, we measured the probability distribution of HL states occupancy for each of our four

scenarios. Figure 5 shows the average probability distribution of these HL state occupancy with

error bars denoting 95% confidence intervals calculated by bootstrap resampling using the BCa

method (Efron and Tibshirani, 1993). We then conducted a bootstrap test for testing equal means in

order to determine significance in the change in HL state distribution after odor onset for inside and

outside the odor region separately Efron and Tibshirani, 1993 . Briefly, we first consider a given HL

state probability of occurrence inside the odor zone for before (B) and after first entry (A). Our null

hypothesis was that there was no change in the mean probability of observing the HL state. To test

the null hypothesis, we first constructed populations F and G by translating populations A and B
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respectively such that F and G share a common mean. We then drew bootstrap samples of flies F’

from population F and G’ from population G and calculate the test statistic as follows:

TS F0;G0ð Þ ¼ F0 �G0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

F0
n
þ s2

G0
n

q

s2

F
0 ¼

Xn

i¼1

F
0
i �F

0

n� 1

s2

G0 ¼
Xn

i¼1

G0
i�G0

n� 1

We repeated this process 10,000 times to generate a distribution of the test statistic that we

would expect from the null hypothesis. We then calculated the empirical statistic using the same for-

mulation as the test statistic: TS(A,B). Using the distribution of test statistic and our empirical statis-

tic, we conducted a two-tailed test with alpha = 0.05 and 0.01. As our data included multiple

statistical tests (one for each HL state), we corrected for multiple comparisons by applying the Holm-

Bonferroni procedure. This process was repeated for outside the odor zone.

X-Means clustering
X-means clustering is an extension of K-means clustering. K-means clustering is an iterative algorithm

that assigns data points to one of K groups based on the distance between points and the cluster

centers; in most versions of K-means clustering, the number of clusters is specified by the user.

X-means extends the K-means algorithm by computing the Bayesian information criterion (BIC)

scores associated with a given K-means model fit, and, therefore allows a better assessment of the

appropriate number of clusters in the data (Pelleg and Moore, 2000). Following Raftery et al. (Raf-

tery, 1995), we computed the t-score based on the change in BIC given an increase in the number

of clusters for N = 34 flies as follows:

BICK�BICKþ1 » t
2� log Nð Þ

In this case, the t statistic and the corresponding p values represent the likelihood that k-means

with a given cluster size will do significantly better than one with smaller cluster size. We chose the

maximum cluster K that fulfilled t > 3.86 (p < 0.05) and within 5% of the minimum BIC.

In the analyses in Figure 7 and Figure 7—figure supplement 3, we clustered flies based on a 10-

dimensional representation of the fractional time a fly spends in each of the 10 HL states. We also

employ X-means clustering in Figure 8 to cluster a fly’s response to odors. In this analysis, the clus-

tering was performed on odor-evoked change in HL state occupancy: For inside the odor-zone, DI-BI

was computed for each fly and was the input to the X-means. For outside the odor-zone, Do-Bo was

computed for each fly and was the input to the X-means (Figure 8).

The clustering was performed on the 10-dimensional representation; but, for visual representa-

tion, we conducted PCA on the HL state distributions in each of the four scenarios to obtain a 2-

dimensional representation of the clusters of flies (Figure 7 and Figure 7—figure supplement 3).

The first two principal components explain less than 90% of the variance.

The 10-dimensional HL state probability distributions used in Figure 7 and Figure 7—figure sup-

plement 3 reside on a 9-dimensional probability simplex:

x2Rkþ1 : x0 þ . . .þ xk ¼ 1;xi � 0; i¼ 0; . . . ;k
� 	

To assess whether the x-means clusters found in our data set are valid, we conducted x-means on

a set of 34 points sampled randomly from the uniformly distributed 9-simplex space our data resides

in. To sample from this simplex, we used a flat Dirichlet distribution marked by the following density

function.
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f x1; . . . ;xK�1;að Þ ¼ G aKð Þ
G að ÞK

YK

i¼1

xa�1

i ;where a¼ 1

where K = the number of dimensions. We found that x-means did not cluster these sampled data

points into clusters.

Logistic regression model
We employed logistic regression (logit) models (Cox, 1958; Dobson and Barnett, 2008) – a gener-

alized linear model which can be used to describe the relationship between independent observa-

tions and a binary dependent variable. In this study, we analyzed whether the distribution of HL

states in a one-second window is predictive of whether the fly is inside the odor-zone or outside it.

Because of the difference in a fly’s behavior inside and outside the odor zone, we separately per-

formed this analysis inside and outside the odor-zone. We performed three different logistic regres-

sions in this study: The analysis process is the same; the only difference is how flies were grouped. In

the first analysis (Figure 7—figure supplement 1), a single regression was performed for all the flies.

In the second analysis (Figure 8A/B, Figure 8—figure supplement 1), we calculated regressions

individually for each fly so that there are 34 regressions –one for each fly. Finally, in Figure 8C, we

calculated logistic regression individually for each cluster of flies – five clusters inside the odor-zone

and four outside the odor-zone. The process for performing logistic regression is described below

and illustrated in Figure 7—figure supplements 1 and Figure 8—figure supplement 1.

First, we divide the data into 1 s time-bins. We also performed logistic regression on data subdi-

vided into 0.33, 0.66, and 3 s bins (corresponding to 10, 20 and 90 data points) with varying amounts

of time overlap and found no notable differences in model predictions. Because we want the chance

prediction to be 50% in each analysis, bins were randomly removed from either the before or during

case such that the total number of bins were the same for the before period and during period.

Next, we performed principal component analysis (PCA) on the distribution to obtain a smaller num-

ber of uncorrelated variables. We considered the smallest number of principal components that

cumulatively explained over 90% of the variance in our analysis.

The resulting principal components were used as predictors in fitting to a logarithmic regression

model. We used the MATLAB built-in function ‘glmfit.m’ to implement fitting to a generalized linear

model. For fitting to logit model, we used a binomial distribution (having experienced the odor or

not) and the ‘logit’ criterion. The resulting logistic function based on the population data was used

to predict if a fly was experiencing odor in any given 1 s bin.

To evaluate the predictive power of the raw observables (speed and curvature) on the behavior

of the flies, the GLM was fit using the speed and curvature as predictors instead of the distributions

of HL states. To compare the relative probability of correct predictions on for each fly between two

different types of GLM fits (M1, M2), we considered the perpendicular distance (D
!
j) of these fits

from the line of unity (indicating perfect correlation).

~Dj M1;M2ð Þ ¼M1 jð Þ�M2 jð Þffiffiffi
2

p

8 j2 1;2;3; . . .34½ �

To determine whether HL states performed better than the observables, a Wilcoxon matched

rank test was conducted on the 34 distances calculated for each of the model comparisons

(Figure 8B, Figure 7—figure supplement 1).

As X-means was conducted on the average distribution of HL states for each fly in each scenario,

the partitioning obtained will not necessarily reflect the optimal clustering of flies based on ability to

distinguish if the fly has encountered odor or not given a smaller (1 s) time bin observation of HLS

distribution. To better partition flies into clusters based on both the average difference across time

and smaller snapshots of difference across the 1 s time frame, we took X-means as the first partition-

ing of flies. Then we took a total of 6 flies from the largest clusters (n > 10) that had the worst pre-

dictive power given GLM fits based on clusters. We then redistributed these flies into clusters in

order to maximize the sum of the predictive power of individual flies across all clusters.
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Generation of synthetic flies
HHMM synthetic flies were generated based on the transition probabilities for each of the four sce-

narios (BI, BO, DI and DO) separately. To generate a synthetic track, an HL state was first chosen

based on the occurrence probability distribution of HL states. At this point, a new HL state was

assigned for the next time instance (xi) based on the HL transition probability matrix. Since the

empirical flies spent variable time in the four scenarios, in the creation of the tracks we chose the

median time spent. Therefore, each synthetic fly lasted until the total duration was reached for each

scenario (Figure 7—figure supplement 2). 100 sets of 34 synthetic flies were generated for each of

the four scenarios (Figure 7A, Figure 7—figure supplement 3). The resulting synthetic average dis-

tribution of HL states for each of the four scenarios was compared across the 100 iterations and

showed high consistency between iterations.

Prediction of clusters-based subsampling
Time points were sampled using four methods based on bin duration for each fly for the two scenar-

ios with the most data (Bo and Di) separately (Figure 7—figure supplement 4). In method one, for a

given scenario, segments of continuous repeated HL states were randomly sampled and stitched

together until the duration of the time bin was fulfilled. In the second method, a window lasting the

time bin was sampled from the HL states for the scenario. In method three, the segments were sam-

pled starting with the first time point of the scenarios. In method four, the segments were sampled

starting with the last time point of the scenarios and moving backwards in time. After sampling, the

average HL state distributions were calculated for each time bin and the Euclidean distance from the

distribution to the centroid of each X-means cluster for the given scenario were calculated. The clos-

est cluster was compared to the X-means cluster assignment based on all time points. This process

was repeated 100 times to generate a mean percentage of correctly labeled flies based on the sub-

sampling duration. Chance was calculated as the probability of choosing a fly for a given cluster and

being in the Voronoi cell of the cluster. This translates to:

E Xð Þ ¼
XK

i¼1

xipi

where xi is the probability of observing cluster i based on the number of flies in each cluster, pi is a

weighting based on the size of Voronoi cell in the simplex space, and K is the total number of

clusters.
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