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Abstract—We study the known techniques for design-
ing Matrix Multiplication algorithms. The two main
approaches are the Laser method of Strassen, and the
Group theoretic approach of Cohn and Umans. We define
a generalization based on zeroing outs which subsumes
these two approaches, which we call the Solar method,
and an even more general method based on monomial
degenerations, which we call the Galactic method.

We then design a suite of techniques for proving
lower bounds on the value of w, the exponent of matrix
multiplication, which can be achieved by algorithms using
many tensors 7' and the Galactic method. Some of our
techniques exploit ‘local’ properties of 7', like finding a
sub-tensor of 7" which is so ‘weak’ that T itself couldn’t
be used to achieve a good bound on w, while others exploit
‘global’ properties, like 7" being a monomial degeneration
of the structural tensor of a group algebra.

Our main result is that there is a universal constant
¢ > 2 such that a large class of tensors generalizing
the Coppersmith-Winograd tensor CW, cannot be used
within the Galactic method to show a bound on w better
than ¢, for any q. We give evidence that previous lower-
bounding techniques were not strong enough to show this.
We also prove a number of complementary results along
the way, including that for any group G, the structural
tensor of C[G] can be used to recover the best bound on
w which the Coppersmith-Winograd approach gets using
CW)g|-2 as long as the asymptotic rank of the structural
tensor is not too large.
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I. INTRODUCTION

A fundamental problem in theoretical computer sci-
ence is to determine the time complexity of Matrix
Multiplication (MM), one of the most basic linear
algebraic operations. The question typically translates to
determining the exponent of matrix multiplication: the
smallest real number w such that the product of two n xn
matrices over a field F can be determined using n®*°(1)
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operations over F. Trivially, 2 < w < 3. Many have
conjectured over the years that w = 2. This conjecture
is extremely attractive: a near-linear time algorithm for
MM would immediately imply near-optimal algorithms
for many problems.

Almost 50 years have passed since Strassen [1] first
showed that w < 2.81 < 3. Since then, an impressive
toolbox of techniques has been developed to obtain
faster MM algorithms, culminating in the current best
bound w < 2.373 [2], [3]. Unfortunately, this bound
is far from 2, and the current methods seem to have
reached a standstill. Recent research has turned to
proving limitations on the two main MM techniques: the
Laser method of Strassen [4] and the Group theoretic
method of Cohn and Umans [5].

Both Coppersmith and Winograd [6] and Cohn et
al. [7] proposed conjectures which, if true, would imply
that w = 2. The first conjecture works in conjunction
with the Laser method, and the second with the Group-
theoretic method. The first “technique limitation” result
was by Alon, Shpilka and Umans [8] who showed that
both conjectures would contradict the widely believed
Sunflower conjecture of Erdos and Rado.

Ambainis, Filmus and Le Gall [9] formalized the
specific implementation of the Laser method proposed
by Coppersmith and Winograd [6] which is used in the
recent papers on MM. They gave limitations of this
implementation, and in particular showed that the exact
approach used in [6], [10], [2], [3] cannot achieve a
bound on w better than 2.3078. The analyzed approach,
the “Laser Method with Merging”, is a bit more general
than the approaches in [6], [10], [2], [3]: in a sense
it corresponds to a dream implementation of the exact
approach.

Blasiak et al. [11] considered the group theoretic
framework for developing MM algorithms proposed by
Cohn and Umans [5], and showed that this approach
cannot prove w = 2 using any fixed abelian group. In
follow-up work, Sawin [12] extended this to any fixed
non-abelian group, and Blasiak et al. [13] extended it
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to a host of families of non-abelian groups.
Alman and Vassilevska W. [14] considered a gener-
alization of the Laser method and proved limitations
on this generalization when it is applied to any tensor
which is a monomial degeneration of the structure tensor
of the group algebra C[C,] of the cyclic group C, of
order g. (See Section III for the definitions.) The bounds
on w achieved by known implementations of the Laser
method [4], [6], [10], [2], [3] can all be obtained from
tensors of this form. The formalization also subsumes
the group theoretic approach applied to C,. The main
result of [14] is that this generalized approach cannot
achieve w = 2 for any fixed q.
All limitations proven so far, however, suffer from
several weaknesses:
e All three of [11], [13] and [14] show how some
approach that can yield the current best bounds on
w cannot give w = 2. None of the three works
actually prove that one cannot use the particular
tensor C'W, used in recent work [6], [10], [3], [2]
to show w = 2. [14] proved this limitation for
a rotated version of C'W,, but only for small g.
Although [11] and [13] do not say which version
their proofs apply to, in this paper we give evidence
that CW, does not embed easily in a group tensor.
Moreover, even for the Coppersmith-Winograd-like
tensors for which the known limitations do apply,
it is only shown that for a fixed ¢ one cannot derive
w = 2. In particular, the lower bounds w, on the
w one can achieve for a value ¢ approached 2.
This left open the possibility to prove w = 2 by
analyzing C'W, in the limit as ¢ — oo.

o All limitations proven so far are for very specific
attacks on proving w = 2. While the proofs of
[9] apply directly to C'W,, they only apply to
the restricted Laser Method with Merging, and no
longer apply to slight changes to this. The proofs
in [11] and [13] are tailored to the group theoretic
approach and do not apply (for instance) to the
Laser method on “non-group” tensors. While the
limits in [14] do apply to a more general method
than both the group theoretic approach and the
Laser method, they only work for specific types of
tensors, which in particular do not include CW,,.

Our Results.

All known approaches to matrix multiplication follow
the following outline. First, obtaining a bound on w
corresponds to determining the asymptotic rank of the
matrix multiplication tensor (n, n,n) (see the Preliminar-
ies for a formal definition). Because getting a handle on
this asymptotic rank seems difficult, one typically works

with a tensor ¢ (or a tensor family) whose asymptotic
rank r is known. Then, to analyze the asymptotic rank of
matrix multiplication, one considers large tensor powers
t®" of ¢ and attempts to embed (N, N, N) into t®™ for
large N. In effect, one is showing that the recursive
O(r™) time algorithm for computing t™ can be used to
multiply N x N matrices. This gives a bound on w from
N¢ < r™ The larger N is in terms of n, the smaller
the bound on w.

Now, an embedding of matrix multiplication into a
tensor power t©™ produces a new tensor from ¢, and
to get a bound on w, this tensor should ideally have
asymptotic rank no more than . The most general
type of embedding that preserves asymptotic rank is
a so called degeneration of the tensor t®". A more
restricted type of rank-preserving embedding is a so
called monomial degeneration. The embeddings used in
all known approaches for upper bounding w so far are
even more restricted zeroing outs. The laser method is a
restricted type of zeroing out that has only been applied
so far to tensors that look like matrix multiplication
tensors or to ones related to the Coppersmith-Winograd
tensor. The group theoretic approach gives clean defi-
nitions that imply the existence of a zeroing out of a
group tensor into a matrix multiplication tensor. (See
the preliminaries for formal definitions.)

We define three very general methods of analyzing
tensors. There are no known techniques to analyze
tensors in this generality.

o The Solar Method applied to a tensor ¢ of asymp-
totic rank r considers t®" for large n, finds the
largest N for which there is a zeroing out of t"
into (N, N, N), and gives a bound w < nlogy 7.
This method already subsumes both the group
theoretic method and the laser method. It is also
much more general, as it is unclear whether the
two known techniques produce the best possible
zeroing outs even for specific tensors.

o The Galactic Method applied to a tensor ¢ of
asymptotic rank 7 considers ¢t®" for large n, finds
the largest N for which there is a monomial
degeneration of t*™ into (N, N, N), and gives a
bound w < nlogy r.

e The Universal Method applied to a tensor ¢ of
asymptotic rank 7 considers t®" for large n, finds
the largest N for which there is some degeneration
of t®™ into (N, N, N), and gives a bound w <
nlogy r.

We note that the methods only differ when they are

applied to the same tensor t. Trivially, any one of the
methods can find the best bound on w if it is “applied”



to t = (n,n,n) itself. Starting with the same tensor
t, however, the Universal method can in principle give
much better bounds on w than the Solar or Galactic
methods applied to the same <.

For a tensor T, let w,(T") be the best bound on w
that one can obtain by applying the Galactic method to
T'. We define a class of generalized CW, tensors that
contain C'W, and many more tensors related to it, such
as the rotated tensor used in [14]. Our main result is:

Theorem 1.1 (Informal). There is a universal constant
£ > 2 independent of q so that for every one of the
generalized CW, tensors T, wy(T) > £.

Thus, if one uses a generalized CW tensor, even
in the limit and even if one uses the Galactic method
subsuming all known approaches, one cannot prove
w=2.

To prove this result, we develop several tools for
proving lower bounds on w,(7") for structured tensors.
Most are relatively simple combinatorial arguments but
are still powerful enough to show strong lower bounds
on wy(T).

We also study the relationship between the generalized
CW tensors and the structure tensors of group algebras.
We show several new results:

1) A Limit on the Group-Theoretic Approach. The
original C'W, tensor is not a sub-tensor (and hence
also not a monomial degeneration) of the structure
tensor T of C[G] for any G of order < 2¢ when
(a) GG is abelian and ¢ arbitrary, or (b) G is non-
abelian and ¢ € {3,4,5,6,7,8,9}. Note that CW,,
for these small values of g are of particular interest:
the best known bounds on w have been proved using
q < 7. This shows that lower bound techniques
based on tri-colored sum-free sets and group tensors
cannot be easily applied to CW,,.

All Finite Groups Suffice for Current w Bounds.
Every finite group G has a monomial degeneration
to some generalized CW tensor of parameter ¢ =
|G| — 2. Thus, applying the Galactic method on
T¢ for every G (with sufficiently small asymptotic
rank) can yield the current best bounds on w.
New Tri-Colored Sum-Free Set Constructions.
For every finite group G, there is a constant ¢|g| >
2/3 depending only on |G| such that its nth tensor
power G has a tri-colored sum-free set of size at
least |G|¢161"=°(") For moderate |G/, the constant
c|| is quite a bit larger than 2/3. To our knowledge,
such a general result was not known until now.

2)

3)

For more details on our results, see Section II below.
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II. OVERVIEW OF RESULTS AND PROOFS

In this section, we give an outline of our techniques
which are used to prove our main result: that there exists
a universal constant ¢ > 2 such that the Galactic method,
when applied to any generalized Coppersmith-Winograd
tensor, cannot prove a better upper bound on w than c.
We will assume familiarity with standard notions and
notation about tensors related to matrix multiplication
algorithms in this section; we refer the reader to the
Preliminaries, in Section III, where these are defined.
For a tensor 7', we will write w,(T) to denote the best
upper bound on w which can be achieved using the
Galactic method applied to 7T'.

Step 1: The Relationship Between Matrix Multiplication
and Independent Tensors.

In Section IV, we begin by laying out the main
framework for proving lower bounds on wy(7"). The key
is to consider a different property of 7', the asymptotic
independence number of T, denoted I(T). Loosely,
I(T) gives a measure of how large of an independent
tensor T'®™ can monomial degenerate into for large n.
From the definition, we will get a simple upper bound
I(T) < R(T), the asymptotic rank of T. By constructing
upper bounds on (7)), we will show in Corollary IV.1
that:

o For any tensor 7', if w,(T) = 2, then I(T) = R(T),

and moreover,

« For every constant s < 1, there is a constant w > 2
(which is increasing as s decreases), such that if
I(T) < R(T)*, then w,(T) > w.

Hence, upper bounds on I (T) give lower bounds on
wq(T'). We will thus present a number of different ways
to prove upper bounds on I (T) in the next steps.

Step 2: Partitioning Tools for Upper Bounding I.

In Section V, we present our first suite of tools for
proving upper bounds on I(7T'). These tools are based
on finding ‘local’ combinatorial properties of the tensor
T which imply that I(T') can’t be too large. They are
loosely summarized as follows:

o Theorem V.1: Let S be any subset of the z-variables

of T, and let A be the tensor T restricted to .S (i.e.
T with all the variables in X \ S zeroed out). If
I(A) is sufficiently smaller than |S|, then I(T) <
|X| < R(T).
In other words, if A has a sufficiently small I(A)
so that it is relatively far away from being able to
prove w,(A) = 2, then no matter how we complete
A to get to T, the tensor 1" will still not be able
to prove wy(7T') = 2.



o Theorem V.2: If T is a tensor such that I(T) is close
to R(T), then there is a probability distribution on
the terms of 7" such that each X, Y, and Z variable
is assigned almost the same probability mass.

For many tensors of interest, one or more of the
variables ‘behave differently’ from the rest, and
this can be used to prove that such a probability
distribution cannot exist. For one example, we prove
in Corollary V.1 that if T is a tensor with two
‘corner terms’ — terms xqy121,%1Yq21 € 1 such
that no other term in 7" contains either z, or y, —
then, I(T) < R(T).

These ‘corner terms’ are actually quite common
in tensors which have been analyzed with the
Laser Method. For instance, one of the main
improvements of Coppersmith-Winograd [6] over
Strassen [4] was noticing that the border rank
expression of Strassen could be augmented by
adding in three corner terms, resulting in the
Coppersmith-Winograd tensor.

Theorem V.3: For a tensor I" over variables X,Y, Z,
where each of these variables appears in the support
of T, we define the measure of T, denoted pu(T),
by u(T) :=|X|-|Y|-|Z|. Suppose the terms of T
can be partitioned! into tensors T, ..., T). Then,
L(T) < (u(T))25 + -+ (u(T0)) 2.

This gives a generalization of the basic inequality
that I(T) < min{|X|,|Y],|Z|}. Whenever T can
be partitioned up into parts which each do not have
many of one or more type of variable, we can get
a nontrivial upper bound on I(7T'). Many natural
border rank expressions naturally give rise to such
partitions, as do the ‘blockings’ used in the Laser
method.

As we will see, I is neither additive nor multiplicative,
i.e. there are tensors A and B such that [(A + B) >
I(A)+I(B), and tensors C and D such that [(C®D) >
I(C)-I(D). One of the main components of the proofs
of correctness of each of the three tools above will be
narrowing in on classes of tensors A and B such that
I(A + B) is not too much greater than I(A) + I(B),
or classes of tensors C' and D such that I(C' ® D) is
not too much greater than I(C') - I(D). Our proofs will
then manipulate our tensors using partitionings so that
they fall into these classes.

The Main Result.
The three partitioning tools are designed to be useful
for proving nontrivial upper bounds on I for general

'We mean ‘partitioned’ as in a set partition, not any restricted notion
like the ‘block partitions’ of the Laser Method.
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classes of tensors. They are especially well-suited to
tensors which have structures that make them amenable
to known techniques like the Laser Method. In par-
ticular, we will ultimately show that any generalized
Coppersmith-Winograd tensor has all three of these
properties. Indeed, our main result, Theorem VII.1,
follows from these tools: For any generalized CW tensor
T, a lower bound on wy(7") for small ¢ will follow from
Corollary V.1, and a lower bound on wy(T") as ¢ gets
large (but such that the bound gets larger as ¢ increases,
not smaller) will follow from either Theorem V.1 or
Theorem V.3.

Bounds on I for Group Tensors.

In addition to the above, we also study group tensors.
For a finite group G, we call the structural tensor T¢(g
of the group algebra C[G| the group tensor T of G.
We are able to achieve both nontrivial upper bounds and
lower bounds on [ (T¢) for any finite group G, including
non-abelian groups.

Upper Bounds on I(Tg).

We first show that for any finite group G, we have
I(Te) < |G| < R(Tg), and hence wy(Tg) > 2. In
other words, no fixed group G can yield w = 2 by using
the Galactic method applied to Tz. By comparison,
the Group Theoretic approach for G can be viewed
as analyzing T using a particular technique within
the Solar method (see Section III-D for more details).
This therefore generalizes a remark which is already
known within the Group Theoretic community [13]:
that the Group Theoretic approach (using the so-called
‘Simultaneous Triple Product Property’) cannot yield
w = 2 using any fixed finite group G. It does not,
however, rule out using a sequence of groups whose
lower bounds approach 2.

Our proof begins by proving a generalization of a
remark from [14]: that lower bounds on I(T¢) give rise
to constructions of ‘tri-colored sum-free sets’ in G™ for
sufficiently large integer n ([14] proved this when G is
a cyclic group, although our proof is almost identical).
Tri-colored sum-free sets are objects from extremal
combinatorics which have been studied extensively
recently. We will, in particular, use a recent result of
Sawin [12], who showed that for any finite group G,
there is a sufficiently large n such that G™ does not have
particularly large tri-colored sum-free sets.

We give this proof in Section VI. In that section,
we also show that there are natural tensors, like the
Coppersmith-Winograd tensors used to give the best
known upper bounds on w, which cannot even be written
as sub-tensors of relatively small group tensors. In other



words, the high-powered hammer that w,(Tg) > 2
cannot be used to give lower bound for every tensor
of interest, and other techniques like the combinatorial
partitioning techniques from step 2 above are needed.

Lower Bounds on I(Tg)

Although our main framework involves proving upper
bounds on I(T') for tensors T in order to prove lower
bounds on wy(7T'), step 1 of our proof actually involves
constructing lower bounds on I(T) when T has a
monomial degeneration to a matrix multiplication tensor.
In the full version of this paper, we use this to give
lower bounds on I(T¢) for any finite group G.

We show there that for any finite group G, there
is a monomial degeneration of T into a generalized
Coppersmith-Winograd tensor of parameter |G| — 2. We
will see that the Laser method applies just as well to any
generalized Coppersmith-Winograd tensor of parameter
|G| — 2 as it does to the original C'W|¢|_2, and so the
best-known approach for finding matrix multiplication
tensors as monomial degenerations of a tensor can be
applied to any group tensor T as well. Two important
consequences of this are:

1) For any group G such that R(Tg) = |G|, we can
use the Galactic method to achieve the best known
upper bound on w (that is known from CW,g|_2)
by using T as the underlying tensor instead of
the Coppersmith-Winograd tensor. We think this
has exciting prospects for designing new matrix
multiplication algorithms; see the full version of
this paper for further discussion about this.

Once T has been monomial degenerated into a
Coppersmith-Winograd tensor, and thus a matrix
multiplication tensor, we can then apply the tools
from step 1 above to show that Tz has a monomial
degeneration to a relatively large independent tensor.
In particular, we show that for any group G,
I(Tg) > |G|9¢l for some constant ca > 2/3
which depends only on |G|. Combining this with
the connection between I(T¢) and tri-colored sum-
free sets in G, we see that for any finite group
G, G™ has a tri-colored sum-free set of size at
least |G|¢c1"=°(")  See the full version of this
paper for the details. We will find that ¢ is much
bigger than 2/3 for reasonable |G|; for instance,
that gl > 3/4 for |G| < 250.

2)

A. Comparison with Full Version

In this extended abstract, we focus on proving our
main result, Theorem 1.1. The full version of this paper
contains all the additional results, as well all the proof
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details which are omitted here, and a more detailed
preliminaries section.
III. PRELIMINARIES
A. Tensor Notation and Definitions
Let X = {z1,...,24}, Y ={y1,...,y-}, and Z =
{z1,...,2s} be three sets of formal variables. A tensor
over X,Y,Z is a trilinear form

r- ¥

z,€X,y; €Y,z €Z

Tkl 2k,

where the Tj;;, coefficients come from an underlying
field F. One writes T' € F? ® F” ® F*, and the triads
x;Yj %) are typically written x; @ y; @ 2;; we omit the ®
for ease of notation. When X,Y, and Z are clear from
context, we will just call T" a tensor. The support of a
tensor 1" are all triples (4, j, k) for which T}, # 0. The
size of a tensor T', denoted |T'|, is the size of its support.
We will write z;y,2; € T to denote that (i, j, k) is in
the support of T', and in this case we call x;y;2; a term
of T'. We will call elements of X the ‘z-variables of 77,
and similarly for Y and Z.

If Ac F*@F"®@F" and B € F¥ @ F™ @F", then
the tensor product of A and B, denoted A ® B, is a
tensor in F**K' @ Fmxm’ @ Frxn’ gver new variables

X,Y,Z given by

AR B=
(i,i") €[k] x [K']

(4,57 €lm]x[m’]
(k,k")En]x[n']

AijiBirjri Tii Y0 Zioker -

The nth tensor power of a tensor A, denoted A®™,
is the result of tensoring n copies of A together, so
A®L = A and A®" = A @ A®" 1,

Intuitively, if A is over X,Y,Z and B is over
X' Y',Z', then the variables Z;y,y;;7, 2z of A ®
B can be viewed as pairs of the original variables
(i, 23) (Y5, Y5 ) (2K, 2, ). We will use this view in some
of our proofs. For instance, when considering A®" we
will often view the x,y and z variables of A®" as ordered
n-tuples of x,y and z variables of A. Then we can discuss
for instance, in how many positions of an = variable of
A®" the variable x; of A appears.

1) Tensor Rank: A tensor T has rank one if there are
values a; € F for each z; € X, b; € F foreach y; € Y,
and ¢;, € IF for each z;, € Z, such that T};;, = a;b;cy,
or in other words,

>

z, €Xy; €Y, 2EZ

(500)

xz;eX

aibjcr - Yz

(

> by

ijY

§ Ck 2k

2LE€EZ



More generally, the rank of T, denoted R(T), is the
smallest nonnegative integer m such that 7' can be
written as the sum of m rank-one tensors.

Let A\ be a formal variable, and suppose 7' is a tensor
over X,Y,Z. The border rank of T, denoted> R(T),
is the smallest r such that there is a tensor 7 with
coefficients 7;j5 in F[A] (polynomials in ), so that for
every setting of A\ € IF, T evaluated at A has rank r, and

so that there is an integer h > 0 for which:
N'T =T + O\,

The above notation means that for every i,j,k, the
polynomial 7;;5 over A has no monomials with A/ with
j < h, and the coefficient in front of A" in 73, is exactly
T;ji. In a sense, the family of rank r tensors TAh for
A # 0 can get arbitrarily close to T' — if F = R, then
we could think of taking A — 0 and then TA~" — T.

The asymptotic rank of a tensor T is defined as
R(T) := lim,, 00 (R(T®™))'/™. The limit exists and
equals inf,, oo (R(T®™))}/™. It is known that for any
tensor 1,

R(T) > R(T) > R(T),

and that each of these inequalities can be strict’. One of
the most common ways to show asymptotic rank upper
bounds is to give border rank upper bounds, frequently
using a tool called a ‘monomial degeneration’ which we
will define shortly.

The tensor (r) in F” @ F” @ F” is defined as follows:
for all i € {1,...,7}, (r)ii; = 1 and for all other
entries (r); jr = 0. (r) clearly has rank r; it is the
natural generalization of an identity matrix. If a tensor
T is equivalent to (r) up to permutation of the indices,
we say that T is an independent tensor of size |T| = r.

2) Sub-Tensors and Degenerations: We call a tensor
t a sub-tensor of a tensor t', denoted by ¢ C t/, if ¢ can
be obtained from ¢’ by removing triples from its support,
i.e. for every 1, j, k, either ¢; ; 1 —t”k, or t; jr = 0.

A tensor t € FF ® F™ ® F™ is a restriction of a
tensor ¢ € F¥ @ F™' @ F"' , written ¢t < ¢/, if there are
homomorphisms « : F* — F¥ | 8 : F™ s F™, and
v :F" s F", so that t = (& ® B ® y)t'.* The rank of

2Much of the literature uses R for border rank; we instead use R
for ease of notation.

3For example, the first inequality is strict for the Coppersmith-
Winograd tensor, and the second inequality is strict for the 2 X 2 x 2
matrix multiplication tensor. Both of these tensors will be defined
shortly.

4The notation (o

Sim1 (30 afad) (32, 05w3) (S czw) =

® B ® )t means the followmg Let ¢

-1t 2) (b y)(c*

“II

z) be any decomposltlon of ¢ into a sum of rank 1 tensors where af =
(af,...,a%) e FF, b = (bf, ... bL,) € F™, cf = (cf, ..., fl) €
. Then (04®5®7)t —Z( 1(a(a?) - 2)(BY) - y) (v () 2)

is well-defined.
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t is <r if and only if t < (r).

A special type of restriction is the so called zeroing out
(also called combinatorial restriction): let t be a tensor
over X,Y, Z; t' is a zeroing out of ¢ if it is obtained by
selecting X' C X, Y’ CY,Z' C Z and setting to zero
all z; e X\ X', y; e Y\Y', 2z, € Z\ Z'; thus, t' is a
tensor over X', Y’ 7’ and it equals ¢ on all triples over
these sets.

A degeneration t' € F¥ @ F™ ® F" of a tensor
t € FF @ F™ @ F™, written t’ < t, is obtained as follows.
Similarly to the definition of border rank, let A be a
formal variable. We say that ¢’ <0t if there exist ¢ € N,
A(N) € F¥' <k B(X) € F™ ™ C()\) € F* %" matrices
with entries which are polynomials in A (i.e. in F[A]),
so that

Mt = (A(N) @ B(A) @ C(A\)t + O(XTHh).

Similarly to the relationship between rank and restriction,
the border rank of ¢ is at most r if and only if ¢ < (r).

A special type of degeneration is the so called
monomial degeneration (also called combinatorial de-
generation or toric degeneration), in which the matrices
A(N), B(A),C(X\) have entries that are monomials in
A. An equivalent definition of monomial degeneration
[14] is as follows: suppose that ¢’ is a tensor over
FF @ F™ @ F™, t C ' is a sub-tensor, and there are

functions a : [k] = Z,b:[m] > Z,and ¢ : [n] —» Z
such that (1) whenever ;, # 0, a(i) + b(j) + c(k) > 0,
(2) if a(i) +0(j) + (k)—O thent”kft”k,and@)

if t;;1 # 0, then a(i) + b(j) + c(k) = 0.

3) Structural Properties of Tensors: We say that a
tensor 1" is partitioned into tensors 1, ..., Ty, if T =
T'+...+T*, and for every triple 7, j, k, there is a w such
thatT“’k—T”kandforallw #w, T k_OIn
other words the triples in the support of T’ are partltloned
into ¢ parts, forming ¢ tensors summing to 7.

A direct sum of two tensors ¢ and ¢’ over disjoint
variable sets X, Y, Z and X', Y', Z', t ©t' is the tensor
on variable sets X UX’ YUY’ ZUZ’ which is exactly
t on triples in X x Y x Z, exactly t' on triples in
X' xY'x Z', and is 0 on all other triples. In contrast,
a regular sum ¢ + ¢’ could have ¢ and ¢’ share variables.

All the explicit tensors ¢ we will discuss throughout
this paper, including the tensor of matrix multiplication,
and the Coppersmith-Winograd tensor, are concise,
which implies that R(t) > max{|X|,|Y],|Z|}. We defer
to the full version of this paper for the technical definition
of a concise tensor.

SNote that this notion of partitioning is more general than ‘block
partitioning’ from the Laser Method (which we define shortly),
although ‘block partitioning’ is occasionally referred to as just

“partitioning’ in the literature.



B. The Matrix Multiplication Tensor and Methods for
Analyzing w

Let m,n,p > 1 be integers. The tensor of m X n by
n X p matrix multiplication over a field [F, denoted by
(m,n,p), lies in F™*" @ F"*P @ FP*™ and in trilinear
notation looks like this:

m

<m7 n,p) = Z

K2

P
E LijYjkki-

1 k=1

=1 j=

The theory of matrix multiplication algorithms is
concerned with determining the value w, defined as
w:=inf{c € R | R({(n,n,n)) < O(n°)}. (As shown
by Coppersmith and Winograd [15], w is a limit point
that cannot be achieved by any single algorithm.)

Getting a handle on w has been difficult. Over the
years various methods have been developed to obtain
better understanding of the rank of (n,n,n). The basic
idea of all methods is as follows: Although we do not
know what the true rank of (n,n,n) is, as n grows,
there are many other tensors for which we know their
rank and even their asymptotic rank exactly. Hence,
the approach is, take a tensor ¢ whose asymptotic rank
]:B(t) we understand, take a large tensor power ¢ of
t, and “embed” (f(N), f(N), f(N)) into t*V so that
the embedding shows that R((f(N), f(N), f(N))) <
R(t)N. From this inequality we can get a bound on w.

The way in which the approaches differ is mainly in
how the embedding into t®V is obtained. All known
approaches to embed a matrix multiplication tensor into a
tensor power t®V of some other tensor ¢ actually all zero
out variables in t®V and argue that after the zeroing out,
the remaining tensor is a matrix multiplication tensor.

There are two main approaches for obtaining good
bounds on w via zeroing out t*V: the laser method and
the group theoretic approach. We will describe them
both shortly.

Zeroing out is a very restricted border-rank preserving
operation on a tensor. The most general embedding of
a matrix multiplication tensor into t®V would be a
potentially complicated degeneration of t®V. In fact,
in this case, since every border rank ¢ tensor is a
degeneration® of the structure tensor for addition modulo
q. T, = 3;01 Z?;é TiYjZi+j mod g» it would suffice to
find a degeneration of leg’” into a large matrix multipli-
cation tensor, for large n. Unfortunately, we currently
do not have techniques to find good degenerations. We
call this hypothetical method the Universal method.

Instead of considering arbitrary degenerations of t®",
we could instead consider monomial degenerations of

This folklore fact follows from inverting the DFT over cyclic
groups; see eg. [14, Section 3.1].
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t®" into a large matrix multiplication tensor. This
approach would subsume both the Laser Method and
the Group Theoretic approach. Although again there
are no known techniques to obtain better monomial
degenerations than zeroing outs, monomial degenerations
seem easier to argue about than arbitrary degenerations.
We call the method of finding the optimal (with respect
to bounding w) monomial degeneration of a tensor power
into a matrix multiplication tensor, the Galactic method.
(Reaching the end of our Galaxy is more feasible than
seeing the entire Universe.) To complete the analogy,
we can call the method using zeroing outs the Solar
method (i.e. exploring the Solar System).

The Solar method subsumes the Group Theoretic
Approach and the Laser Method, but is more general,
and current techniques do not suffice to find the optimal
zeroing-out of t®™ into matrix multiplication even for
simple tensors. Our lower bounds will be not only for
the Solar method, but also for the Galactic method
which is even more out of reach for the current matrix
multiplication techniques.

To be clear, the Solar method, Galactic method, and
Universal method, give us successively more power when
analyzing specific tensors. For example, it may be the
case that for a specific tensor 7', the Solar method
applied to T cannot get as low an upper bound on
w as the Universal method applied to 7T can. This
captures the known methods to get bounds on w by
using tensors like the Coppersmith-Winograd tensor or
a group tensor, which we will define shortly. The three
different methods will trivially give the same bound, w,
when applied to matrix multiplication tensors themselves,
but this is not particularly interesting: the entire point
of these different methods is that the asymptotic rank
of matrix multiplication tensors is not well-understood,
and applying the methods to other tensors can help us
get better bounds on it.

We will now describe the two approaches that follow
the Solar method.

C. The Laser Method

We give a very brief overview of the Laser Method
here; a much more detailed overview is given in the full
version of this paper. Strassen [4] proposed a method for
embedding a matrix multiplication tensor into a large
tensor power of a starting tensor. He called it the Laser
Method. This method is particularly effective when the
starting tensor can be partitioned into ‘blocks’ which
are each smaller matrix multiplication tensors.

In a large power of the starting tensor, products of
these blocks make up larger matrix multiplication tensors.
Then one uses a clever zeroing out to remove blocks



which share variables with each other, combined with the
asymptotic sum inequality of Schonhage [16] to obtain
a bound on w:

Theorem III.1 (Asymptotic Sum Inequality [16]). If
P (ki,m;,n;) has border rank < r, and r > p, then
w < 37, where Y % (kim;n;)™ = r.

We now turn to the most successful implementation
of the Laser Method: the Coppersmith-Winograd ap-
proach. The Coppersmith-Winograd (CW) family of
tensors is as follows: Let ¢ > 1 be an integer.

CWy = ToY02¢+1 + Tg+1Y020 + ToYq+120
q
+ Z(xiyozi + Toyizi + TiYizo)-
i=1
CW, is a concise tensor over F112 @ FI12 @ FIT2, of
border rank (and hence also asymptotic rank) q + 2.

Coppersmith and Winograd [6], as well as the later
improvements by Stothers [10], Vassilevska W. [3] and
Le Gall [2], all apply the Laser Method to powers of
CW, for ¢ =5 or ¢ = 6.

Since the Laser Method only relies on certain sub-
tensors of C'W, being matrix multiplication tensors, we
define a family of generalized CW tensors, CW. g as
follows, to which the Laser Method applies equally
well.

Definition IIL.1. The family CW , of tensors includes,
for every permutation o € S, the tensor

CW{ = (xoYoZq+1 + ToYq+120 + Tq+140%0)

q
+ Z(xiya(i)zo + Tiyozi + ToYizi)-
i=1

We remark that the family above contains all ten-
sors obtained from C'W, by replacing > 7_, (@;y;z0 +
TiYoZi+Toyiz;) with Zgzl(l‘r(z‘)ya(i)ZoJran(i)onﬁ(i)+
ToY~(i)2s(i)) for any choice of «, 3,7,0,0,7 € S;.

For any such tensor from the family CW @ if its border
rank is g+ 2, the Coppersmith-Winograd approach would
give exactly the same bound on w, as with CW,,.

D. Group-theoretic approach

We now give a very brief overview of the Group-
theoretic approach; again, a more detailed overview
is given in the full version of this paper. Cohn and
Umans [5] pioneered a new group-theoretic approach
for matrix multiplication. The idea is as follows. Take
a group GG and consider its group tensor defined below.
(Throughout this paper, we write groups in multiplicative
notation.)
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Definition IIL.2. For any finite group G, the group tensor
of G, denoted Tg, is a tensor over Xg,Yq, Zg where
Xeg ={zy | g € G}, Yo :={yy | g € G}, and
Zag :={z4 | g € G}, given by

TG = Z LgYhZgh-
g9,heG

(Note that the group tensor of G is really the structure
tensor of the group algebra C[G], often written as Tt ¢
We use T for ease of notation.)

Cohn and Umans show how the asymptotic rank of Tz
can be expressed using representation theory. They then
defined a property of subsets of GG, the ‘sumultaneous
triple product property’, such that any subset of G
satisfying this property leads to a zeroing out of T
into a direct sum of matrix multiplication tensors, after
which the Asumptotic Sum Inequality can be applied.
In summary, they give extremely clean group-theoretic
definitions for how to upper bound w using 7.

In addition to the full version of this paper, we refer
the reader to [17, Section 3.5] for more exposition on
the Group-theoretic approach and its interpretation as
finding a zeroing out of group tensors.

E. Independent Tensors

In this paper, we will be especially interested in
zeroing outs and monomial degenerations from tensors
T to independent tensors (r). We give a few relevant
definitions here.

For a tensor T" over X, Y, Z, its independence number,
I(T), is the maximum size of an independent tensor
which can result from a zeroing out of 7". We similarly
can define the asymptotic independence number of T by

I(T) := limsup [1(T®™)] i
neN

Since a zeroing out cannot increase the number of x-
variables, y-variables, or z-variables, we get a simple
upper bound I(T) < min{|X|,|Y],|Z|}. It similarly
follows that I(T) < min{|X|,|Y|,|Z|}. Throughout
this paper, we will see a number of tensors which achieve
equality in this bound, including all matrix multiplication
tensors. In Section IV, we will prove this and many other
properties of I.

IV. MATRIX MULTIPLICATION AND INDEPENDENT
TENSORS

In this section, we will lay out our main framework
for proving lower bounds on what values of w can
be achieved using different tensors 7" in the Galactic
Method. The main idea is that, to prove such a lower
bound for tensor T, it is sufficient to give an upper
bound on I(T).



Definition IV.1. For a tensor T, let wy(T') > 2 denote
the best bound on w that one can achieve using the
Galactic Method with T. Hence, for all tensors T, we
have w < wy(T).

Lemma IV.1. Let T be any tensor. For each positive
integer m, let (ay,by,c,) be the dimensions of the
largest matrix multiplication tensor which can result
from a monomial degeneration of T®™ (i.e. the one
which maximizes anbncy,). Then,

- n

w(T) = 3log(R(T)) - lim inf log(anbnen)’

Proof: If T®" has a monomial degeneration
to (ap,bn,cn), this shows that R((an,bn,cn)) <
R(T®") = (R(T))", which yields wy(T) <
3log((R(T))™)/1og(anbncy), as desired. [ |

We use the following monomial degeneration of
matrix multiplication tensors which slightly generalizes

Strassen’s (from [4, Theorem 4]).

Lemma IV.2. For any positive integers a, b, ¢, there is a
monomial degeneration of (a,b,c) into an independent

. 3 abc
tensor Of size 1 m.

Using this, we can prove the main idea behind our
lower bound framework:

Theorem IV.1. For any concise tensor T,

K(T) > RT)=™ 2,
Corollary IV.1. For any tensor T, if wy(T) = 2, then
I(T) = R(T). Moreover, for every constant s < 1,
there is a_constant w > 2 such that every tensor T" with
I(T) < R(T')® must have wy(T) > w.

We defer the proof details of Theorem IV.1 and the
intermediate results to the full version of this paper.

V. PARTITIONING TOOLS FOR PROVING LOWER
BOUNDS

The goal of this section is to show some ‘local’
properties of tensors 7" which imply upper bounds on
I(T) (and hence, they will be ultimately used to prove
lower bounds on wg (7). The general idea is that we will
be finding partitions 7' = A+ B of our tensors, such that
at least one of I(A) and I(B) is low, and using this to
show that I(T) is itself low. If I were additive, i.e. if it
were the case that I(T)) = I(A)+I(B) for any partition
T = A+ B, then this would be relatively straightforward.
Unfortunately, I is not additive in general, and even in
many natural situations:

Example V.1. Let g be any positive integer, and define
the tensors 1] := Z?:O ToYiZi, 1o = Z;]:ll TiY0Zis

and T3 := Zf:ll TiYiZq+1. We can see that T7 has only
one z-variable, T5 has only one y-variable, and 75 has
only one z-variable, and so I(T}) = I(Ty) = I(T3) = 1.
However, T +15>+15 = CW,, so the three tensors give
a partition of the Coppersmith-Winograd tensor! Since
CWq®” is known to zero out into fairly large matrix
multiplication tensors for a large enough constant n, we
see that I(Ty +T5 +T3) can grow unboundedly large as
we increase ¢ (in particular, we will see in the full version
of this paper that I(Ty +Ts+T3) > (¢+2)%/?). We can
similarly see that I (Th ® Ty ® T3) grows unboundedly
with ¢, and so I is not multiplicative either.

Throughout this section, we will nonetheless describe
a number of general situations where, if T is partitioned
into T = A + B, then bounds on I(A) and I(B) are
sufficient to give bounds on I(7T).

We begin with some useful terminology and notation
about partitioning tensors. Let D be a sub-tensor of
a tensor 7, that is, it is obtained by removing triples
from the support of T'. If T is over variable sets X =

{‘Tla"wxa}7y = {ylu‘”ayb}vz = {Zla;"lzc}’
then T®™, and hence D®", is over variable sets X,Y, 7,
where the variables in X are indexed by n-length
sequences over [a], the variables in Y are indexed by n-
length sequences over [b], the variables in Z are indexed

by n-length sequences over [c].

Definition V.1. Let T be a partitioned tensor T =
Zi P;, and let D be a sub-tensor of T®".Consider
some j € {1,...,n}. We say that D has an entry of P,
in the jth coordinate if there is a triple (o, 8,7) in the
support of D for which (o, 5;,7;) is in the support of
P,

Since the P; partition the triples in the support of 7T,
this is well-defined.

We begin with our first partitioning tool, which we
interpret after the Theorem statement.

Theorem V.1. Suppose T is a tensor over X,Y, Z with
|X| = q and x1 € X is any x-variable such that x;
is in at most q terms in T. Let B := T\X\{xl} be the
tensor over X \ {x1},Y, Z from zeroing out x1 in T,
and suppose that ¢ := I(B) satisfies

q—1
S G

Then,



where p € [0,1] is given by

_ log (%)
P log (q) + log (q;cl) '

Remark V.1. Before we prove Theorem V.1, let us briefly
interpret its meaning. Since B has only ¢ — 1 different
x-variables, we know that I (B) < q¢ — 1. The theorem
tells us that if, in fact, I (B) is mildly smaller than this,
then regardless of what terms in 7" involve x;, we still
get a nontrivial upper bound on I (T'). One can verify
that p = 1/q when ¢ = (¢ — 1)/¢"/(2=1), and for every
¢ less than this, p > 1/¢, which gives a resulting bound
on I(T) which is strictly less than g.

We defer the proof of Theorem V.1 to the full version
of this paper.

We next move on to our second tool. We show that
if a tensor 7" has a large asymptotic independence
number, then there must be a way to define a probability
distribution on the terms of 7' such that each variable is
assigned approximately the same probability mass.

Theorem V.2. Suppose q > 2 is an integer, and T is
a tensor over X,Y,Z with | X| = Y| =|Z| = q, and
o > 0 is such that f(T) = q'=%. Then, for every k > 0,
there is amap p: X @Y ® Z — [0, 1] such that:

. ZmiWkeTp(xiyjzk) =1, and
o For each fixed i, fixed j, or fixed k,

> iy e P@iys2K) > 2 = /(6 + 1) In(g).

Before proving Theorem V.2, we first prove a key
Lemma:

Lemma V.1. For any integers n > 1 and q > 2, any
real § > 0, and any tensor T over X, Y, Z with | X| = q
and x1 € X, suppose T®" has a zeroing out into an
independent tensor D of size |D| = q1=0", Let Sx C
X™ be the set of all x-variables used in terms in D,
and let € = \/51n(q). Then, at least ¢(*=™ — g(1=20)n
of the elements x € Sx have x1 appear in between
(1/q —€)n and (1/q + €)n of the entries of x.

Proof: Notice that the number of different n-tuples
of variables of X which contain x; exactly ¢ times is
() -(g—1)""". Hence, the number of elements z € X"

i
which do not have x; appear in between 1=57, and 1%;871

of the entries of z is
n .

(Y 3

i:%n
We will bound the sum (1) using Hoeffding’s in-

>

1=0

€
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equality’. Let A,..., A, be n independent random
variables taking on the value 1 with probability 1/q
and 0 otherwise, and let A = """ | A;,. We can see
that (1) is equal to ¢" - Pr[|A — n/q| > en]. By
Hoeffding’s inequality, if we pick ¢ = 1/ In(q), then
Pr[|A — n/q| > en] < ¢~2°". Thus, (1) is at most
q" - q~ 29" = ¢(1=29" and the result follows. [

Theorem V.2 can be proved using Lemma V.1; we
defer the proof details to the full version of this paper.

For one simple but interesting Corollary, we will show
that in any tensor 7' which has two ‘corner terms’ (see
the Corollary statement for the precise meaning; we will
see later that many important tensors have these corner
terms), then no matter what the remainder of 1" looks
like, T still does not have too large of an asymptotic
independence number.

Corollary V.1. Suppose q > 2 is an integer, and T
is a tensor over X,Y,Z with |X| = |Y| = |Z| = g,
such that v,z € X, y1,yq €Y, 21 € Z, and T
contains the triples xqy121 and x1yq21, and neither x,
nor y, appears in any other triples in T'. Then, there
is a constant ¢, < q depending only on q such that
I(T) < ¢,
Proof: Suppose I(T) = ¢'~%, and for any & > 0,
let p be the probability distribution on the terms of T’
which is guaranteed by Theorem V.2. For any fixed ¢,
define p(x;) := inijkeTp(wiyjzk), and define p(y;)
and p(zj) similarly. Since z,y121 and z1y,2; are the
only terms containing x, or ¥, and they each contain z1,
it follows that p(z1) > p(z4) + p(yq). This, combined
with Theorem V.2, implies the desired result; we defer
the remaining details to the full version of this paper. W
Finally, we move on to our third partitioning tool. This
tool is a substantial generalization of the fact that if 7" is
a tensor over X, Y, Z, then I(T) < min{|X|,|Y,|Z|},
i.e. I(T) must be small if 7" does not have many of one
type of variable. We will show that, even if 7" can be
partitioned into tensors which each do not have many
of one type of variable, then I(7") must be small. We
will formalize this idea by introducing the notion of the
measure of a tensor:

Definition V.2. Let T be a tensor over X, Y, Z. We say
that X' C X, Y' CY, Z/ C Z are minimal for T
if X' is the minimal (by inclusion) subset of X such
that for each x; € X \ X', for all j,k, T; j r =0, and
similarly, Y’ is the minimal subset of Y such that for
each y; € Y \Y', for all i,k, T; j, =0 and Z' is the

"Hoeffding’s inequality states that if X7, ..., X, are independent
random variables taking on values in [0, 1], then for any t € [0,1],
we have Pr[>°7 | X; —E[}0, X;] > tn] <e™2nt",



minimal subset of Z such that for each z, € Z\ Z', for
all i, §, T; ;1 = 0.

If T is a tensor, then the measure of T, denoted p(T),
is given by p(T) := |X|-|Y|-|Z|, where X,Y, Z are
minimal for T.

Lemma V.2. For any tensor T, we have I(T) <
p(T)M3,

Proof: Suppose X,Y,Z are the smallest sets of
variables such that 7" is a tensor over X, Y, Z. Hence,

[(T) < min(IX],[Y],|12)) < (IX}-]Y [ 2])/° =

|
For our main tool, we can generalize this to partitioned
tensors:

Theorem V.3. Suppose T is a tensor which is partitioned
into k parts T = P, + P, —|— -+ Py for any positive
integer k. Then, I(T) < ZZ 1( (Py))/3.

Proof: Let s := Y, (u(P;))/3, and for each i €
{1,2,...,k}, let p; := (u(P;))/3/s, so that p; € [0, 1]
and Zle p; = 1. For any positive integer n, let D,, be
the biggest independent tensor which can result from a
zeroing out of T®™,

Set T/ = T®", and D' = D,,, and then for j from 1
to n do the following process:

Currently 77 = Q1 ® Q2 ® -+ ® Q1 @ T"IT1,
and |D'| > q1¢2---qj—1 - |Dy|, and moreover, D’ is
a zeroing out of 7T”. Pick an 7 such that at least a p;
fraction of the independent triples in D’ have an entry
of P; in their jth coordinate; since Zj p; = 1, such
an ¢ exists. Set Q; = P; and g; = p;. Recall that there
is a zeroing out z such that 2(7") = D’. Now, replace
the jth tensor in the product defining 7”7 by @, i.e. set

=Q1®Q2®---®Q; ®T"I. By our choice of Q;,
we know that if we apply the same zeroing out z to the
new T’, we get at least a g; fraction of the number of
independent triples we had before, i.e. |2(T")| > ¢;|D’|.
Let D’ be this new independent tensor z(7").

Once we have done this for all j, we are left with a ten-
sor ®j 1 @; which has a zeroing out into |D|- H] 145
independent triples. Note that measure is multiplicative,
and so in particular, u(@j_; Q;) = [, u(Q;)-
Hence, by Lemma V.2,

1@ < ][ua) " = s Lo
j=1 j=1 7=1

Since D’ is a zer(T)Ling out of @7_, Qj, it f(;llows
/ /

that [D'| < s" - [;_; ¢;- But, [D'| > [D|-][;_ g5-

Combining the two, we get that |D,,| < s™, as desired.

|

n

= 1ta =

u(T)M?.
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VI. LOWER BOUNDS FOR GROUP TENSORS

In contrast with the previous section, in this section
we will show a ‘global’ property of tensors 7' which
imply upper bounds on I (T) (and hence lower bounds on
wg(T')). In particular, we will see that if 7" is the group
tensor of any finite group GG, or a monomial degeneration
of any such group tensor with the same measure, then
I(T) < R(T) and so w,(T') > 2. In this section, we also
study the Coppersmith-Winograd tensor CW,, and show
that it cannot be found as a sub-tensor of group tensors
of relatively small groups, giving evidence that lower
bounds on the group-theoretic approach are insufficient
to imply strong lower bounds on wy(CW,). We defer
the details to the full version of this paper.

VII. APPLICATIONS OF OUR LOWER BOUND
TECHNIQUES

In this section, we use the lower bounding techniques
that we have developed throughout the paper for a
number of applications to tensors of interest.

A. Generalized CW tensors

We begin by proving our main result:

Theorem VIL.1. There is a universal constant ¢ > 2
such that for any generalized Coppersmith-Winograd
tensor T' (with any parameter q), we have wy(T) > c.

Proof: This follows from Lemmas VII.1 and VIIL.2,
which we state and prove below. ]

Lemma VIL.1. For every nonnegative integer q, there
is a constant c¢q > 2 such that for any generalized
Coppersmith-Winograd tensor T' with parameter q, we
have wy(T) > cq.

Lemma VIL2. There is a constant ¢ > 2 and a
positive integer q' such that for any integer q > ¢,
and any generalized Coppersmith-Winograd tensor T
with parameter q, we have wy(T) > c'.

Proof of Lemma VIL.1: For each ¢, and each
generalized Coppersmith-Winograd tensor 7" with pa-
rameter ¢, the tensor T is of the form described by
Corollary V.1, which says that I(T) < s, for some
constant s,12 < g+ 2 which depends only on g. It then
follows from Corollary IV.1 that wy(T) > ¢, for some
constant ¢, > 2 determined by s,, as desired. u

The proof above of Lemma VII.1 used Corollary V.1,
which follows from Theorem V.2, as its main tool. We
will next give two different proofs of Lemma VIL.2; the
first will showcase Theorem V.3, and the second will
showcase Theorem V.1. Each of Theorems V.1, V.2, and
V.3 describes a different property of a tensor 7" which is



enough to imply that w,(7") > 2. Throughout these three
proofs, we are showing that the Coppersmith-Winograd
tensor has all three of these properties!

First proof of Lemma VII.2: Suppose T' is a gener-
alized Coppersmith-Winograd tensor with parameter q.
Hence, T can be written as

T =x0Y020 + ToYq+12g+1 + Tq+1Y0Zq+1

q
+ ) (woyizi + TiYozi + Tilo(i) 2g 1),
i=1
for some permutation o on {1,2,...,q}. We partition
T into three parts 1%, 75, T3 as follows:

q q+1
T = E ToYiZi,
i=0

1 = E TiYoZi,
i=1

q
T3 = ToYg+12q+1 + Z TiYo (i) Zq+1-
i=1

Note that 7 has only one z-variable, 75 has only one y-
variable, and T3 has only one z-variable. Hence, u(7}) =
w(Ty) = p(Ts) = ¢%. It follows from Theorem V.3 that
I(T) < 3¢*/3. When q > 28, we have 3¢*/3 < ¢9%7,
and so by Corollary IV.1, there is a fixed constant ¢’ > 2
independent of ¢ such that wy(7") > ¢/, as desired. H

Our second proof, which will use Theorem V.1 instead
of Theorem V.3 as our primary tool, can be found in
the full version of this paper.

B. Further Applications

Further applications can be found in the full version
of this paper, including
« For every finite group G, a monomial degeneration
of T into a generalized Coppersmith-Winograd
tensor with parameter |G| — 2, and
e A characterization of I(T) for lower triangular
tensors 7.
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