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Abstract—We study the known techniques for design-
ing Matrix Multiplication algorithms. The two main
approaches are the Laser method of Strassen, and the
Group theoretic approach of Cohn and Umans. We define
a generalization based on zeroing outs which subsumes
these two approaches, which we call the Solar method,
and an even more general method based on monomial
degenerations, which we call the Galactic method.

We then design a suite of techniques for proving
lower bounds on the value of ω, the exponent of matrix
multiplication, which can be achieved by algorithms using
many tensors T and the Galactic method. Some of our
techniques exploit ‘local’ properties of T , like finding a
sub-tensor of T which is so ‘weak’ that T itself couldn’t
be used to achieve a good bound on ω, while others exploit
‘global’ properties, like T being a monomial degeneration
of the structural tensor of a group algebra.

Our main result is that there is a universal constant
� > 2 such that a large class of tensors generalizing
the Coppersmith-Winograd tensor CWq cannot be used
within the Galactic method to show a bound on ω better
than �, for any q. We give evidence that previous lower-
bounding techniques were not strong enough to show this.
We also prove a number of complementary results along
the way, including that for any group G, the structural
tensor of C[G] can be used to recover the best bound on
ω which the Coppersmith-Winograd approach gets using
CW|G|−2 as long as the asymptotic rank of the structural
tensor is not too large.

Keywords-matrix multiplication; lower bound;
Coppersmith-Winograd tensor; monomial degeneration;

I. INTRODUCTION

A fundamental problem in theoretical computer sci-

ence is to determine the time complexity of Matrix

Multiplication (MM), one of the most basic linear

algebraic operations. The question typically translates to

determining the exponent of matrix multiplication: the

smallest real number ω such that the product of two n×n
matrices over a field F can be determined using nω+o(1)
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operations over F. Trivially, 2 ≤ ω ≤ 3. Many have

conjectured over the years that ω = 2. This conjecture

is extremely attractive: a near-linear time algorithm for

MM would immediately imply near-optimal algorithms

for many problems.

Almost 50 years have passed since Strassen [1] first

showed that ω ≤ 2.81 < 3. Since then, an impressive

toolbox of techniques has been developed to obtain

faster MM algorithms, culminating in the current best

bound ω < 2.373 [2], [3]. Unfortunately, this bound

is far from 2, and the current methods seem to have

reached a standstill. Recent research has turned to

proving limitations on the two main MM techniques: the

Laser method of Strassen [4] and the Group theoretic

method of Cohn and Umans [5].

Both Coppersmith and Winograd [6] and Cohn et

al. [7] proposed conjectures which, if true, would imply

that ω = 2. The first conjecture works in conjunction

with the Laser method, and the second with the Group-

theoretic method. The first “technique limitation” result

was by Alon, Shpilka and Umans [8] who showed that

both conjectures would contradict the widely believed

Sunflower conjecture of Erdös and Rado.

Ambainis, Filmus and Le Gall [9] formalized the

specific implementation of the Laser method proposed

by Coppersmith and Winograd [6] which is used in the

recent papers on MM. They gave limitations of this

implementation, and in particular showed that the exact

approach used in [6], [10], [2], [3] cannot achieve a

bound on ω better than 2.3078. The analyzed approach,

the “Laser Method with Merging”, is a bit more general

than the approaches in [6], [10], [2], [3]: in a sense

it corresponds to a dream implementation of the exact

approach.

Blasiak et al. [11] considered the group theoretic

framework for developing MM algorithms proposed by

Cohn and Umans [5], and showed that this approach

cannot prove ω = 2 using any fixed abelian group. In

follow-up work, Sawin [12] extended this to any fixed

non-abelian group, and Blasiak et al. [13] extended it
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to a host of families of non-abelian groups.

Alman and Vassilevska W. [14] considered a gener-

alization of the Laser method and proved limitations

on this generalization when it is applied to any tensor

which is a monomial degeneration of the structure tensor

of the group algebra C[Cq] of the cyclic group Cq of

order q. (See Section III for the definitions.) The bounds

on ω achieved by known implementations of the Laser

method [4], [6], [10], [2], [3] can all be obtained from

tensors of this form. The formalization also subsumes

the group theoretic approach applied to Cq. The main

result of [14] is that this generalized approach cannot

achieve ω = 2 for any fixed q.

All limitations proven so far, however, suffer from

several weaknesses:

• All three of [11], [13] and [14] show how some
approach that can yield the current best bounds on

ω cannot give ω = 2. None of the three works

actually prove that one cannot use the particular

tensor CWq used in recent work [6], [10], [3], [2]

to show ω = 2. [14] proved this limitation for

a rotated version of CWq, but only for small q.

Although [11] and [13] do not say which version

their proofs apply to, in this paper we give evidence

that CWq does not embed easily in a group tensor.

Moreover, even for the Coppersmith-Winograd-like

tensors for which the known limitations do apply,

it is only shown that for a fixed q one cannot derive

ω = 2. In particular, the lower bounds ωq on the

ω one can achieve for a value q approached 2.

This left open the possibility to prove ω = 2 by

analyzing CWq in the limit as q → ∞.

• All limitations proven so far are for very specific

attacks on proving ω = 2. While the proofs of

[9] apply directly to CWq, they only apply to

the restricted Laser Method with Merging, and no

longer apply to slight changes to this. The proofs

in [11] and [13] are tailored to the group theoretic

approach and do not apply (for instance) to the

Laser method on “non-group” tensors. While the

limits in [14] do apply to a more general method

than both the group theoretic approach and the

Laser method, they only work for specific types of

tensors, which in particular do not include CWq .

Our Results.

All known approaches to matrix multiplication follow

the following outline. First, obtaining a bound on ω
corresponds to determining the asymptotic rank of the

matrix multiplication tensor 〈n, n, n〉 (see the Preliminar-

ies for a formal definition). Because getting a handle on

this asymptotic rank seems difficult, one typically works

with a tensor t (or a tensor family) whose asymptotic

rank r is known. Then, to analyze the asymptotic rank of

matrix multiplication, one considers large tensor powers

t⊗n of t and attempts to embed 〈N,N,N〉 into t⊗n for

large N . In effect, one is showing that the recursive

O(rn) time algorithm for computing t⊗n can be used to

multiply N×N matrices. This gives a bound on ω from

Nω ≤ rn. The larger N is in terms of n, the smaller

the bound on ω.

Now, an embedding of matrix multiplication into a

tensor power t⊗n produces a new tensor from t, and

to get a bound on ω, this tensor should ideally have

asymptotic rank no more than rn. The most general

type of embedding that preserves asymptotic rank is

a so called degeneration of the tensor t⊗n. A more

restricted type of rank-preserving embedding is a so

called monomial degeneration. The embeddings used in

all known approaches for upper bounding ω so far are

even more restricted zeroing outs. The laser method is a

restricted type of zeroing out that has only been applied

so far to tensors that look like matrix multiplication

tensors or to ones related to the Coppersmith-Winograd

tensor. The group theoretic approach gives clean defi-

nitions that imply the existence of a zeroing out of a

group tensor into a matrix multiplication tensor. (See

the preliminaries for formal definitions.)

We define three very general methods of analyzing

tensors. There are no known techniques to analyze

tensors in this generality.

• The Solar Method applied to a tensor t of asymp-

totic rank r considers t⊗n for large n, finds the

largest N for which there is a zeroing out of t⊗n

into 〈N,N,N〉, and gives a bound ω ≤ n logN r.

This method already subsumes both the group

theoretic method and the laser method. It is also

much more general, as it is unclear whether the

two known techniques produce the best possible

zeroing outs even for specific tensors.

• The Galactic Method applied to a tensor t of

asymptotic rank r considers t⊗n for large n, finds

the largest N for which there is a monomial
degeneration of t⊗n into 〈N,N,N〉, and gives a

bound ω ≤ n logN r.

• The Universal Method applied to a tensor t of

asymptotic rank r considers t⊗n for large n, finds

the largest N for which there is some degeneration
of t⊗n into 〈N,N,N〉, and gives a bound ω ≤
n logN r.

We note that the methods only differ when they are

applied to the same tensor t. Trivially, any one of the

methods can find the best bound on ω if it is “applied”
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to t = 〈n, n, n〉 itself. Starting with the same tensor

t, however, the Universal method can in principle give

much better bounds on ω than the Solar or Galactic

methods applied to the same t.

For a tensor T , let ωg(T ) be the best bound on ω
that one can obtain by applying the Galactic method to

T . We define a class of generalized CWq tensors that

contain CWq and many more tensors related to it, such

as the rotated tensor used in [14]. Our main result is:

Theorem I.1 (Informal). There is a universal constant
� > 2 independent of q so that for every one of the
generalized CWq tensors T , ωg(T ) ≥ �.

Thus, if one uses a generalized CW tensor, even
in the limit and even if one uses the Galactic method
subsuming all known approaches, one cannot prove
ω = 2.

To prove this result, we develop several tools for

proving lower bounds on ωg(T ) for structured tensors.

Most are relatively simple combinatorial arguments but

are still powerful enough to show strong lower bounds

on ωg(T ).

We also study the relationship between the generalized

CW tensors and the structure tensors of group algebras.

We show several new results:

1) A Limit on the Group-Theoretic Approach. The

original CWq tensor is not a sub-tensor (and hence

also not a monomial degeneration) of the structure

tensor TG of C[G] for any G of order < 2q when

(a) G is abelian and q arbitrary, or (b) G is non-

abelian and q ∈ {3, 4, 5, 6, 7, 8, 9}. Note that CWq

for these small values of q are of particular interest:

the best known bounds on ω have been proved using

q < 7. This shows that lower bound techniques

based on tri-colored sum-free sets and group tensors

cannot be easily applied to CWq .

2) All Finite Groups Suffice for Current ω Bounds.
Every finite group G has a monomial degeneration

to some generalized CW tensor of parameter q =
|G| − 2. Thus, applying the Galactic method on

TG for every G (with sufficiently small asymptotic

rank) can yield the current best bounds on ω.

3) New Tri-Colored Sum-Free Set Constructions.
For every finite group G, there is a constant c|G| >
2/3 depending only on |G| such that its nth tensor

power Gn has a tri-colored sum-free set of size at

least |G|c|G|n−o(n). For moderate |G|, the constant

c|G| is quite a bit larger than 2/3. To our knowledge,

such a general result was not known until now.

For more details on our results, see Section II below.

II. OVERVIEW OF RESULTS AND PROOFS

In this section, we give an outline of our techniques

which are used to prove our main result: that there exists

a universal constant c > 2 such that the Galactic method,

when applied to any generalized Coppersmith-Winograd

tensor, cannot prove a better upper bound on ω than c.
We will assume familiarity with standard notions and

notation about tensors related to matrix multiplication

algorithms in this section; we refer the reader to the

Preliminaries, in Section III, where these are defined.

For a tensor T , we will write ωg(T ) to denote the best

upper bound on ω which can be achieved using the

Galactic method applied to T .

Step 1: The Relationship Between Matrix Multiplication
and Independent Tensors.

In Section IV, we begin by laying out the main

framework for proving lower bounds on ωg(T ). The key

is to consider a different property of T , the asymptotic
independence number of T , denoted Ĩ(T ). Loosely,

Ĩ(T ) gives a measure of how large of an independent

tensor T⊗n can monomial degenerate into for large n.

From the definition, we will get a simple upper bound

Ĩ(T ) ≤ R̃(T ), the asymptotic rank of T . By constructing

upper bounds on Ĩ(T ), we will show in Corollary IV.1

that:

• For any tensor T , if ωg(T ) = 2, then Ĩ(T ) = R̃(T ),
and moreover,

• For every constant s < 1, there is a constant w > 2
(which is increasing as s decreases), such that if

Ĩ(T ) < R̃(T )s, then ωg(T ) ≥ w.

Hence, upper bounds on Ĩ(T ) give lower bounds on

ωg(T ). We will thus present a number of different ways

to prove upper bounds on Ĩ(T ) in the next steps.

Step 2: Partitioning Tools for Upper Bounding Ĩ .

In Section V, we present our first suite of tools for

proving upper bounds on Ĩ(T ). These tools are based

on finding ‘local’ combinatorial properties of the tensor

T which imply that Ĩ(T ) can’t be too large. They are

loosely summarized as follows:

• Theorem V.1: Let S be any subset of the x-variables

of T , and let A be the tensor T restricted to S (i.e.

T with all the variables in X \ S zeroed out). If

Ĩ(A) is sufficiently smaller than |S|, then Ĩ(T ) <
|X| ≤ R̃(T ).
In other words, if A has a sufficiently small Ĩ(A)
so that it is relatively far away from being able to

prove ωg(A) = 2, then no matter how we complete

A to get to T , the tensor T will still not be able

to prove ωg(T ) = 2.

582



• Theorem V.2: If T is a tensor such that Ĩ(T ) is close

to R̃(T ), then there is a probability distribution on

the terms of T such that each X , Y , and Z variable

is assigned almost the same probability mass.

For many tensors of interest, one or more of the

variables ‘behave differently’ from the rest, and

this can be used to prove that such a probability

distribution cannot exist. For one example, we prove

in Corollary V.1 that if T is a tensor with two

‘corner terms’ – terms xqy1z1, x1yqz1 ∈ T such

that no other term in T contains either xq or yq –

then, Ĩ(T ) < R̃(T ).
These ‘corner terms’ are actually quite common

in tensors which have been analyzed with the

Laser Method. For instance, one of the main

improvements of Coppersmith-Winograd [6] over

Strassen [4] was noticing that the border rank

expression of Strassen could be augmented by

adding in three corner terms, resulting in the

Coppersmith-Winograd tensor.

• Theorem V.3: For a tensor T over variables X,Y, Z,

where each of these variables appears in the support

of T , we define the measure of T , denoted μ(T ),
by μ(T ) := |X| · |Y | · |Z|. Suppose the terms of T
can be partitioned1 into tensors T1, . . . , Tk. Then,

Ĩ(T ) ≤ (μ(T1))
2/3 + · · ·+ (μ(Tk))

2/3.

This gives a generalization of the basic inequality

that Ĩ(T ) ≤ min{|X|, |Y |, |Z|}. Whenever T can

be partitioned up into parts which each do not have

many of one or more type of variable, we can get

a nontrivial upper bound on Ĩ(T ). Many natural

border rank expressions naturally give rise to such

partitions, as do the ‘blockings’ used in the Laser

method.

As we will see, Ĩ is neither additive nor multiplicative,

i.e. there are tensors A and B such that Ĩ(A + B) 	
Ĩ(A)+Ĩ(B), and tensors C and D such that Ĩ(C⊗D) 	
Ĩ(C) · Ĩ(D). One of the main components of the proofs

of correctness of each of the three tools above will be

narrowing in on classes of tensors A and B such that

Ĩ(A + B) is not too much greater than Ĩ(A) + Ĩ(B),
or classes of tensors C and D such that Ĩ(C ⊗D) is

not too much greater than Ĩ(C) · Ĩ(D). Our proofs will

then manipulate our tensors using partitionings so that

they fall into these classes.

The Main Result.

The three partitioning tools are designed to be useful

for proving nontrivial upper bounds on Ĩ for general

1We mean ‘partitioned’ as in a set partition, not any restricted notion
like the ‘block partitions’ of the Laser Method.

classes of tensors. They are especially well-suited to

tensors which have structures that make them amenable

to known techniques like the Laser Method. In par-

ticular, we will ultimately show that any generalized

Coppersmith-Winograd tensor has all three of these

properties. Indeed, our main result, Theorem VII.1,

follows from these tools: For any generalized CW tensor

T , a lower bound on ωg(T ) for small q will follow from

Corollary V.1, and a lower bound on ωg(T ) as q gets

large (but such that the bound gets larger as q increases,

not smaller) will follow from either Theorem V.1 or

Theorem V.3.

Bounds on Ĩ for Group Tensors.

In addition to the above, we also study group tensors.

For a finite group G, we call the structural tensor TC[G]

of the group algebra C[G] the group tensor TG of G.

We are able to achieve both nontrivial upper bounds and

lower bounds on Ĩ(TG) for any finite group G, including

non-abelian groups.

Upper Bounds on Ĩ(TG).

We first show that for any finite group G, we have

Ĩ(TG) < |G| ≤ R̃(TG), and hence ωg(TG) > 2. In

other words, no fixed group G can yield ω = 2 by using

the Galactic method applied to TG. By comparison,

the Group Theoretic approach for G can be viewed

as analyzing TG using a particular technique within

the Solar method (see Section III-D for more details).

This therefore generalizes a remark which is already

known within the Group Theoretic community [13]:

that the Group Theoretic approach (using the so-called

‘Simultaneous Triple Product Property’) cannot yield

ω = 2 using any fixed finite group G. It does not,

however, rule out using a sequence of groups whose

lower bounds approach 2.

Our proof begins by proving a generalization of a

remark from [14]: that lower bounds on Ĩ(TG) give rise

to constructions of ‘tri-colored sum-free sets’ in Gn for

sufficiently large integer n ([14] proved this when G is

a cyclic group, although our proof is almost identical).

Tri-colored sum-free sets are objects from extremal

combinatorics which have been studied extensively

recently. We will, in particular, use a recent result of

Sawin [12], who showed that for any finite group G,

there is a sufficiently large n such that Gn does not have

particularly large tri-colored sum-free sets.

We give this proof in Section VI. In that section,

we also show that there are natural tensors, like the

Coppersmith-Winograd tensors used to give the best

known upper bounds on ω, which cannot even be written

as sub-tensors of relatively small group tensors. In other
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words, the high-powered hammer that ωg(TG) > 2
cannot be used to give lower bound for every tensor

of interest, and other techniques like the combinatorial

partitioning techniques from step 2 above are needed.

Lower Bounds on Ĩ(TG)

Although our main framework involves proving upper

bounds on Ĩ(T ) for tensors T in order to prove lower

bounds on ωg(T ), step 1 of our proof actually involves

constructing lower bounds on Ĩ(T ) when T has a

monomial degeneration to a matrix multiplication tensor.

In the full version of this paper, we use this to give

lower bounds on Ĩ(TG) for any finite group G.

We show there that for any finite group G, there

is a monomial degeneration of TG into a generalized
Coppersmith-Winograd tensor of parameter |G| − 2. We

will see that the Laser method applies just as well to any

generalized Coppersmith-Winograd tensor of parameter

|G| − 2 as it does to the original CW|G|−2, and so the

best-known approach for finding matrix multiplication

tensors as monomial degenerations of a tensor can be

applied to any group tensor TG as well. Two important

consequences of this are:

1) For any group G such that R̃(TG) = |G|, we can

use the Galactic method to achieve the best known

upper bound on ω (that is known from CW|G|−2)

by using TG as the underlying tensor instead of

the Coppersmith-Winograd tensor. We think this

has exciting prospects for designing new matrix

multiplication algorithms; see the full version of

this paper for further discussion about this.

2) Once TG has been monomial degenerated into a

Coppersmith-Winograd tensor, and thus a matrix

multiplication tensor, we can then apply the tools

from step 1 above to show that TG has a monomial

degeneration to a relatively large independent tensor.

In particular, we show that for any group G,

Ĩ(TG) ≥ |G|c|G| for some constant c|G| > 2/3
which depends only on |G|. Combining this with

the connection between Ĩ(TG) and tri-colored sum-

free sets in G, we see that for any finite group

G, Gn has a tri-colored sum-free set of size at

least |G|c|G|n−o(n). See the full version of this

paper for the details. We will find that c|G| is much

bigger than 2/3 for reasonable |G|; for instance,

that c|G| > 3/4 for |G| < 250.

A. Comparison with Full Version

In this extended abstract, we focus on proving our

main result, Theorem I.1. The full version of this paper

contains all the additional results, as well all the proof

details which are omitted here, and a more detailed

preliminaries section.

III. PRELIMINARIES

A. Tensor Notation and Definitions
Let X = {x1, . . . , xq}, Y = {y1, . . . , yr}, and Z =

{z1, . . . , zs} be three sets of formal variables. A tensor
over X,Y, Z is a trilinear form

T =
∑

xi∈X,yj∈Y,zk∈Z

Tijkxiyjzk,

where the Tijk coefficients come from an underlying

field F. One writes T ∈ F
q ⊗ F

r ⊗ F
s, and the triads

xiyjzk are typically written xi⊗yj ⊗zk; we omit the ⊗
for ease of notation. When X,Y , and Z are clear from

context, we will just call T a tensor. The support of a

tensor T are all triples (i, j, k) for which Tijk �= 0. The

size of a tensor T , denoted |T |, is the size of its support.

We will write xiyjzk ∈ T to denote that (i, j, k) is in

the support of T , and in this case we call xiyjzk a term
of T . We will call elements of X the ‘x-variables of T ’,

and similarly for Y and Z.
If A ∈ F

k ⊗F
m⊗F

n and B ∈ F
k′ ⊗F

m′ ⊗F
n′

, then

the tensor product of A and B, denoted A ⊗ B, is a

tensor in F
k×k′ ⊗ F

m×m′ ⊗ F
n×n′

over new variables

X̄, Ȳ , Z̄ given by

A⊗B =
∑

(i,i′)∈[k]×[k′]
(j,j′)∈[m]×[m′]
(k,k′)∈[n]×[n′]

AijkBi′j′k′ x̄ii′ ȳjj′ z̄kk′ .

The nth tensor power of a tensor A, denoted A⊗n,

is the result of tensoring n copies of A together, so

A⊗1 = A, and A⊗n = A⊗A⊗n−1.
Intuitively, if A is over X,Y, Z and B is over

X ′, Y ′, Z ′, then the variables x̄ii′ , ȳjj′ , z̄kk′ of A ⊗
B can be viewed as pairs of the original variables

(xi, x
′
i′)(yj , y

′
j′)(zk, z

′
k′). We will use this view in some

of our proofs. For instance, when considering A⊗n we

will often view the x,y and z variables of A⊗n as ordered

n-tuples of x,y and z variables of A. Then we can discuss

for instance, in how many positions of an x variable of

A⊗n, the variable xi of A appears.
1) Tensor Rank: A tensor T has rank one if there are

values ai ∈ F for each xi ∈ X , bj ∈ F for each yj ∈ Y ,

and ck ∈ F for each zk ∈ Z, such that Tijk = aibjck,

or in other words,

T =
∑

xi∈X,yj∈Y,zk∈Z

aibjck · xiyjzk

=

( ∑
xi∈X

aixi

)⎛
⎝ ∑

yj∈Y

bjyj

⎞
⎠( ∑

zk∈Z

ckzk

)
.
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More generally, the rank of T , denoted R(T ), is the

smallest nonnegative integer m such that T can be

written as the sum of m rank-one tensors.

Let λ be a formal variable, and suppose T is a tensor

over X,Y, Z. The border rank of T , denoted2 R̄(T ),
is the smallest r such that there is a tensor T with

coefficients Tijk in F[λ] (polynomials in λ), so that for

every setting of λ ∈ F, T evaluated at λ has rank r, and

so that there is an integer h ≥ 0 for which:

λhT = T +O(λh+1).

The above notation means that for every i, j, k, the

polynomial Tijk over λ has no monomials with λj with

j < h, and the coefficient in front of λh in Tijk is exactly

Tijk. In a sense, the family of rank r tensors T λ−h for

λ �= 0 can get arbitrarily close to T – if F = R, then

we could think of taking λ → 0 and then T λ−h → T .

The asymptotic rank of a tensor T is defined as

R̃(T ) := limn→∞(R(T⊗n))1/n. The limit exists and

equals infn→∞(R(T⊗n))1/n. It is known that for any

tensor T ,

R(T ) ≥ R̄(T ) ≥ R̃(T ),

and that each of these inequalities can be strict3. One of

the most common ways to show asymptotic rank upper

bounds is to give border rank upper bounds, frequently

using a tool called a ‘monomial degeneration’ which we

will define shortly.

The tensor 〈r〉 in F
r ⊗ F

r ⊗ F
r is defined as follows:

for all i ∈ {1, . . . , r}, 〈r〉i,i,i = 1 and for all other

entries 〈r〉i,j,k = 0. 〈r〉 clearly has rank r; it is the

natural generalization of an identity matrix. If a tensor

T is equivalent to 〈r〉 up to permutation of the indices,

we say that T is an independent tensor of size |T | = r.
2) Sub-Tensors and Degenerations: We call a tensor

t a sub-tensor of a tensor t′, denoted by t ⊆ t′, if t can

be obtained from t′ by removing triples from its support,

i.e. for every i, j, k, either ti,j,k = t′i,j,k, or ti,j,k = 0.

A tensor t ∈ F
k ⊗ F

m ⊗ F
n is a restriction of a

tensor t′ ∈ F
k′ ⊗ F

m′ ⊗ F
n′

, written t ≤ t′, if there are

homomorphisms α : Fk 
→ F
k′

, β : Fm 
→ F
m′

, and

γ : Fn 
→ F
n′

, so that t = (α⊗ β ⊗ γ)t′.4 The rank of

2Much of the literature uses R for border rank; we instead use R̄
for ease of notation.

3For example, the first inequality is strict for the Coppersmith-
Winograd tensor, and the second inequality is strict for the 2× 2× 2
matrix multiplication tensor. Both of these tensors will be defined
shortly.

4The notation (α ⊗ β ⊗ γ)t means the following. Let t =∑r
�=1(

∑
i a

�
ixi)(

∑
j b

�
jyj)(

∑
k c�kzk) =

∑r
�=1(a

� ·x)(b� ·y)(c� ·
z) be any decomposition of t into a sum of rank 1 tensors, where a� =
(a�1, . . . , a

�
k) ∈ Fk, b� = (b�1, . . . , b

�
m) ∈ Fm, c� = (c�1, . . . , c

�
n) ∈

Fn. Then (α⊗ β ⊗ γ)t :=
∑r

�=1(α(a
�) · x)(β(b�) · y)(γ(c�) · z)

is well-defined.

t is ≤ r if and only if t ≤ 〈r〉.
A special type of restriction is the so called zeroing out

(also called combinatorial restriction): let t be a tensor

over X,Y, Z; t′ is a zeroing out of t if it is obtained by

selecting X ′ ⊆ X,Y ′ ⊆ Y, Z ′ ⊆ Z and setting to zero

all xi ∈ X \X ′, yj ∈ Y \ Y ′, zk ∈ Z \ Z ′; thus, t′ is a

tensor over X ′, Y ′, Z ′ and it equals t on all triples over

these sets.

A degeneration t′ ∈ F
k′ ⊗ F

m′ ⊗ F
n′

of a tensor

t ∈ F
k⊗F

m⊗F
n, written t′ � t, is obtained as follows.

Similarly to the definition of border rank, let λ be a

formal variable. We say that t′ � t if there exist q ∈ N,

A(λ) ∈ F
k′×k, B(λ) ∈ F

m′×m, C(λ) ∈ F
n′×n matrices

with entries which are polynomials in λ (i.e. in F[λ]),
so that

λqt′ = (A(λ)⊗B(λ)⊗ C(λ))t+O(λq+1).

Similarly to the relationship between rank and restriction,

the border rank of t is at most r if and only if t � 〈r〉.
A special type of degeneration is the so called

monomial degeneration (also called combinatorial de-
generation or toric degeneration), in which the matrices

A(λ), B(λ), C(λ) have entries that are monomials in

λ. An equivalent definition of monomial degeneration

[14] is as follows: suppose that t′ is a tensor over

F
k ⊗ F

m ⊗ F
n, t ⊆ t′ is a sub-tensor, and there are

functions a : [k] → Z, b : [m] → Z, and c : [n] → Z

such that (1) whenever t′ijk �= 0, a(i)+ b(j)+ c(k) ≥ 0,

(2) if a(i)+ b(j)+ c(k) = 0, then ti,j,k = t′i,j,k, and (3)

if tijk �= 0, then a(i) + b(j) + c(k) = 0.

3) Structural Properties of Tensors: We say that a

tensor T is partitioned into tensors T1, . . . , T�, if T =
T 1+. . .+T �, and for every triple i, j, k, there is a w such

that Tw
i,j,k = Ti,j,k and for all w′ �= w, Tw

i,j,k = 0. In

other words, the triples in the support of T are partitioned

into � parts, forming � tensors summing to T .5

A direct sum of two tensors t and t′ over disjoint

variable sets X,Y, Z and X ′, Y ′, Z ′, t⊕ t′ is the tensor

on variable sets X ∪X ′, Y ∪Y ′, Z∪Z ′ which is exactly

t on triples in X × Y × Z, exactly t′ on triples in

X ′ × Y ′ × Z ′, and is 0 on all other triples. In contrast,

a regular sum t+ t′ could have t and t′ share variables.

All the explicit tensors t we will discuss throughout

this paper, including the tensor of matrix multiplication,

and the Coppersmith-Winograd tensor, are concise,

which implies that R̄(t) ≥ max{|X|, |Y |, |Z|}. We defer

to the full version of this paper for the technical definition

of a concise tensor.

5Note that this notion of partitioning is more general than ‘block
partitioning’ from the Laser Method (which we define shortly),
although ‘block partitioning’ is occasionally referred to as just
‘partitioning’ in the literature.
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B. The Matrix Multiplication Tensor and Methods for
Analyzing ω

Let m,n, p ≥ 1 be integers. The tensor of m× n by

n× p matrix multiplication over a field F, denoted by

〈m,n, p〉, lies in F
m×n⊗F

n×p⊗F
p×m, and in trilinear

notation looks like this:

〈m,n, p〉 =
m∑
i=1

n∑
j=1

p∑
k=1

xijyjkzki.

The theory of matrix multiplication algorithms is

concerned with determining the value ω, defined as

ω := inf{c ∈ R | R(〈n, n, n〉) ≤ O(nc)}. (As shown

by Coppersmith and Winograd [15], ω is a limit point

that cannot be achieved by any single algorithm.)

Getting a handle on ω has been difficult. Over the

years various methods have been developed to obtain

better understanding of the rank of 〈n, n, n〉. The basic

idea of all methods is as follows: Although we do not

know what the true rank of 〈n, n, n〉 is, as n grows,

there are many other tensors for which we know their

rank and even their asymptotic rank exactly. Hence,

the approach is, take a tensor t whose asymptotic rank

R̃(t) we understand, take a large tensor power t⊗N of

t, and “embed” 〈f(N), f(N), f(N)〉 into t⊗N so that

the embedding shows that R̃(〈f(N), f(N), f(N)〉) ≤
R̃(t)N . From this inequality we can get a bound on ω.

The way in which the approaches differ is mainly in

how the embedding into t⊗N is obtained. All known

approaches to embed a matrix multiplication tensor into a

tensor power t⊗N of some other tensor t actually all zero

out variables in t⊗N and argue that after the zeroing out,

the remaining tensor is a matrix multiplication tensor.

There are two main approaches for obtaining good

bounds on ω via zeroing out t⊗N : the laser method and

the group theoretic approach. We will describe them

both shortly.

Zeroing out is a very restricted border-rank preserving

operation on a tensor. The most general embedding of

a matrix multiplication tensor into t⊗N would be a

potentially complicated degeneration of t⊗N . In fact,

in this case, since every border rank q tensor is a

degeneration6 of the structure tensor for addition modulo

q, Tq =
∑q−1

i=0

∑q−1
j=0 xiyjzi+j mod q , it would suffice to

find a degeneration of T⊗n
q into a large matrix multipli-

cation tensor, for large n. Unfortunately, we currently

do not have techniques to find good degenerations. We

call this hypothetical method the Universal method.

Instead of considering arbitrary degenerations of t⊗n,

we could instead consider monomial degenerations of

6This folklore fact follows from inverting the DFT over cyclic
groups; see eg. [14, Section 3.1].

t⊗n into a large matrix multiplication tensor. This

approach would subsume both the Laser Method and

the Group Theoretic approach. Although again there

are no known techniques to obtain better monomial

degenerations than zeroing outs, monomial degenerations

seem easier to argue about than arbitrary degenerations.

We call the method of finding the optimal (with respect

to bounding ω) monomial degeneration of a tensor power

into a matrix multiplication tensor, the Galactic method.

(Reaching the end of our Galaxy is more feasible than

seeing the entire Universe.) To complete the analogy,

we can call the method using zeroing outs the Solar
method (i.e. exploring the Solar System).

The Solar method subsumes the Group Theoretic

Approach and the Laser Method, but is more general,

and current techniques do not suffice to find the optimal

zeroing-out of t⊗n into matrix multiplication even for

simple tensors. Our lower bounds will be not only for

the Solar method, but also for the Galactic method

which is even more out of reach for the current matrix

multiplication techniques.

To be clear, the Solar method, Galactic method, and

Universal method, give us successively more power when

analyzing specific tensors. For example, it may be the

case that for a specific tensor T , the Solar method

applied to T cannot get as low an upper bound on

ω as the Universal method applied to T can. This

captures the known methods to get bounds on ω by

using tensors like the Coppersmith-Winograd tensor or

a group tensor, which we will define shortly. The three

different methods will trivially give the same bound, ω,

when applied to matrix multiplication tensors themselves,

but this is not particularly interesting: the entire point

of these different methods is that the asymptotic rank

of matrix multiplication tensors is not well-understood,

and applying the methods to other tensors can help us

get better bounds on it.

We will now describe the two approaches that follow

the Solar method.

C. The Laser Method

We give a very brief overview of the Laser Method

here; a much more detailed overview is given in the full

version of this paper. Strassen [4] proposed a method for

embedding a matrix multiplication tensor into a large

tensor power of a starting tensor. He called it the Laser
Method. This method is particularly effective when the

starting tensor can be partitioned into ‘blocks’ which

are each smaller matrix multiplication tensors.

In a large power of the starting tensor, products of

these blocks make up larger matrix multiplication tensors.

Then one uses a clever zeroing out to remove blocks
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which share variables with each other, combined with the

asymptotic sum inequality of Schönhage [16] to obtain

a bound on ω:

Theorem III.1 (Asymptotic Sum Inequality [16]). If⊕p
i=1〈ki,mi, ni〉 has border rank ≤ r, and r > p, then

ω ≤ 3τ , where
∑p

i=1(kimini)
τ = r.

We now turn to the most successful implementation

of the Laser Method: the Coppersmith-Winograd ap-

proach. The Coppersmith-Winograd (CW) family of

tensors is as follows: Let q ≥ 1 be an integer.

CWq = x0y0zq+1 + xq+1y0z0 + x0yq+1z0

+

q∑
i=1

(xiy0zi + x0yizi + xiyiz0).

CWq is a concise tensor over Fq+2 ⊗ F
q+2 ⊗ F

q+2, of

border rank (and hence also asymptotic rank) q + 2.

Coppersmith and Winograd [6], as well as the later

improvements by Stothers [10], Vassilevska W. [3] and

Le Gall [2], all apply the Laser Method to powers of

CWq for q = 5 or q = 6.

Since the Laser Method only relies on certain sub-

tensors of CWq being matrix multiplication tensors, we

define a family of generalized CW tensors, CW q as

follows, to which the Laser Method applies equally

well.

Definition III.1. The family CW q of tensors includes,
for every permutation σ ∈ Sq , the tensor

CWσ
q = (x0y0zq+1 + x0yq+1z0 + xq+1y0z0)

+

q∑
i=1

(xiyσ(i)z0 + xiy0zi + x0yizi).

We remark that the family above contains all ten-

sors obtained from CWq by replacing
∑q

i=1(xiyiz0 +
xiy0zi+x0yizi) with

∑q
i=1(xτ(i)yσ(i)z0+xα(i)y0zβ(i)+

x0yγ(i)zδ(i)) for any choice of α, β, γ, δ, σ, τ ∈ Sq .

For any such tensor from the family CW q , if its border

rank is q+2, the Coppersmith-Winograd approach would

give exactly the same bound on ω, as with CWq .

D. Group-theoretic approach

We now give a very brief overview of the Group-

theoretic approach; again, a more detailed overview

is given in the full version of this paper. Cohn and

Umans [5] pioneered a new group-theoretic approach

for matrix multiplication. The idea is as follows. Take

a group G and consider its group tensor defined below.

(Throughout this paper, we write groups in multiplicative

notation.)

Definition III.2. For any finite group G, the group tensor

of G, denoted TG, is a tensor over XG, YG, ZG where
XG := {xg | g ∈ G}, YG := {yg | g ∈ G}, and
ZG := {zg | g ∈ G}, given by

TG :=
∑

g,h∈G

xgyhzgh.

(Note that the group tensor of G is really the structure

tensor of the group algebra C[G], often written as TC[G].

We use TG for ease of notation.)

Cohn and Umans show how the asymptotic rank of TG

can be expressed using representation theory. They then

defined a property of subsets of G, the ‘sumultaneous

triple product property’, such that any subset of G
satisfying this property leads to a zeroing out of TG

into a direct sum of matrix multiplication tensors, after

which the Asumptotic Sum Inequality can be applied.

In summary, they give extremely clean group-theoretic

definitions for how to upper bound ω using TG.

In addition to the full version of this paper, we refer

the reader to [17, Section 3.5] for more exposition on

the Group-theoretic approach and its interpretation as

finding a zeroing out of group tensors.

E. Independent Tensors

In this paper, we will be especially interested in

zeroing outs and monomial degenerations from tensors

T to independent tensors 〈r〉. We give a few relevant

definitions here.

For a tensor T over X,Y, Z, its independence number,

I(T ), is the maximum size of an independent tensor

which can result from a zeroing out of T . We similarly

can define the asymptotic independence number of T by

Ĩ(T ) := lim sup
n∈N

[
I(T⊗n)

]1/n
.

Since a zeroing out cannot increase the number of x-

variables, y-variables, or z-variables, we get a simple

upper bound I(T ) ≤ min{|X|, |Y |, |Z|}. It similarly

follows that Ĩ(T ) ≤ min{|X|, |Y |, |Z|}. Throughout

this paper, we will see a number of tensors which achieve

equality in this bound, including all matrix multiplication

tensors. In Section IV, we will prove this and many other

properties of Ĩ .

IV. MATRIX MULTIPLICATION AND INDEPENDENT

TENSORS

In this section, we will lay out our main framework

for proving lower bounds on what values of ω can

be achieved using different tensors T in the Galactic

Method. The main idea is that, to prove such a lower

bound for tensor T , it is sufficient to give an upper

bound on Ĩ(T ).
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Definition IV.1. For a tensor T , let ωg(T ) ≥ 2 denote
the best bound on ω that one can achieve using the
Galactic Method with T . Hence, for all tensors T , we
have ω ≤ ωg(T ).

Lemma IV.1. Let T be any tensor. For each positive
integer n, let 〈an, bn, cn〉 be the dimensions of the
largest matrix multiplication tensor which can result
from a monomial degeneration of T⊗n (i.e. the one
which maximizes anbncn). Then,

ωg(T ) = 3 log(R̃(T )) · lim inf
n∈N

n

log(anbncn)
.

Proof: If T⊗n has a monomial degeneration

to 〈an, bn, cn〉, this shows that R̃(〈an, bn, cn〉) ≤
R̃(T⊗n) = (R̃(T ))n, which yields ωg(T ) ≤
3 log((R̃(T ))n)/ log(anbncn), as desired.

We use the following monomial degeneration of

matrix multiplication tensors which slightly generalizes

Strassen’s (from [4, Theorem 4]).

Lemma IV.2. For any positive integers a, b, c, there is a
monomial degeneration of 〈a, b, c〉 into an independent
tensor of size 3

4 · abc
max{a,b,c} .

Using this, we can prove the main idea behind our

lower bound framework:

Theorem IV.1. For any concise tensor T ,

Ĩ(T ) ≥ R̃(T )
6

ωg(T )
−2

.

Corollary IV.1. For any tensor T , if ωg(T ) = 2, then
Ĩ(T ) = R̃(T ). Moreover, for every constant s < 1,
there is a constant w > 2 such that every tensor T with
Ĩ(T ) ≤ R̃(T )s must have ωg(T ) ≥ w.

We defer the proof details of Theorem IV.1 and the

intermediate results to the full version of this paper.

V. PARTITIONING TOOLS FOR PROVING LOWER

BOUNDS

The goal of this section is to show some ‘local’

properties of tensors T which imply upper bounds on

Ĩ(T ) (and hence, they will be ultimately used to prove

lower bounds on ωg(T )). The general idea is that we will

be finding partitions T = A+B of our tensors, such that

at least one of Ĩ(A) and Ĩ(B) is low, and using this to

show that Ĩ(T ) is itself low. If Ĩ were additive, i.e. if it

were the case that Ĩ(T ) = Ĩ(A)+ Ĩ(B) for any partition

T = A+B, then this would be relatively straightforward.

Unfortunately, Ĩ is not additive in general, and even in

many natural situations:

Example V.1. Let q be any positive integer, and define

the tensors T1 :=
∑q

i=0 x0yizi, T2 :=
∑q+1

i=1 xiy0zi,

and T3 :=
∑q+1

i=1 xiyizq+1. We can see that T1 has only

one x-variable, T2 has only one y-variable, and T3 has

only one z-variable, and so Ĩ(T1) = Ĩ(T2) = Ĩ(T3) = 1.

However, T1+T2+T3 = CWq , so the three tensors give

a partition of the Coppersmith-Winograd tensor! Since

CW⊗n
q is known to zero out into fairly large matrix

multiplication tensors for a large enough constant n, we

see that Ĩ(T1+T2+T3) can grow unboundedly large as

we increase q (in particular, we will see in the full version

of this paper that Ĩ(T1+T2+T3) ≥ (q+2)2/3). We can

similarly see that Ĩ(T1 ⊗ T2 ⊗ T3) grows unboundedly

with q, and so Ĩ is not multiplicative either.

Throughout this section, we will nonetheless describe

a number of general situations where, if T is partitioned

into T = A + B, then bounds on Ĩ(A) and Ĩ(B) are

sufficient to give bounds on Ĩ(T ).

We begin with some useful terminology and notation

about partitioning tensors. Let D be a sub-tensor of

a tensor T , that is, it is obtained by removing triples

from the support of T . If T is over variable sets X =
{x1, . . . , xa}, Y = {y1, . . . , yb}, Z = {z1, . . . , zc},

then T⊗n, and hence D⊗n, is over variable sets X̄, Ȳ , Z̄,

where the variables in X̄ are indexed by n-length

sequences over [a], the variables in Ȳ are indexed by n-

length sequences over [b], the variables in Z̄ are indexed

by n-length sequences over [c].

Definition V.1. Let T be a partitioned tensor T =∑
i Pi, and let D be a sub-tensor of T⊗n.Consider

some j ∈ {1, . . . , n}. We say that D has an entry of Pi

in the jth coordinate if there is a triple (α, β, γ) in the
support of D for which (αj , βj , γj) is in the support of
Pi.

Since the Pi partition the triples in the support of T ,

this is well-defined.

We begin with our first partitioning tool, which we

interpret after the Theorem statement.

Theorem V.1. Suppose T is a tensor over X,Y, Z with
|X| = q, and x1 ∈ X is any x-variable such that x1

is in at most q terms in T . Let B := T |X\{x1} be the
tensor over X \ {x1}, Y, Z from zeroing out x1 in T ,
and suppose that c := Ĩ(B) satisfies

c ≤ q − 1

q1/(q−1)
.

Then,

Ĩ(T ) ≤
(
q − 1

1− p

)1−p

· 1

pp
,
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where p ∈ [0, 1] is given by

p :=
log

(
q−1
c

)
log (q) + log

(
q−1
c

) .
Remark V.1. Before we prove Theorem V.1, let us briefly

interpret its meaning. Since B has only q − 1 different

x-variables, we know that Ĩ(B) ≤ q − 1. The theorem

tells us that if, in fact, Ĩ(B) is mildly smaller than this,

then regardless of what terms in T involve x1, we still

get a nontrivial upper bound on Ĩ(T ). One can verify

that p = 1/q when c = (q − 1)/q1/(q−1), and for every

c less than this, p > 1/q, which gives a resulting bound

on Ĩ(T ) which is strictly less than q.

We defer the proof of Theorem V.1 to the full version

of this paper.

We next move on to our second tool. We show that

if a tensor T has a large asymptotic independence

number, then there must be a way to define a probability

distribution on the terms of T such that each variable is

assigned approximately the same probability mass.

Theorem V.2. Suppose q ≥ 2 is an integer, and T is
a tensor over X,Y, Z with |X| = |Y | = |Z| = q, and
δ ≥ 0 is such that Ĩ(T ) = q1−δ . Then, for every κ > 0,
there is a map p : X ⊗ Y ⊗ Z → [0, 1] such that:

•
∑

xiyjzk∈T p(xiyjzk) = 1, and
• For each fixed i, fixed j, or fixed k,∑

xiyjzk∈T p(xiyjzk) ≥ 1
q −

√
(δ + κ) ln(q).

Before proving Theorem V.2, we first prove a key

Lemma:

Lemma V.1. For any integers n ≥ 1 and q ≥ 2, any
real δ ≥ 0, and any tensor T over X,Y, Z with |X| = q
and x1 ∈ X , suppose T⊗n has a zeroing out into an
independent tensor D of size |D| = q(1−δ)n. Let SX ⊆
Xn be the set of all x-variables used in terms in D,
and let ε =

√
δ ln(q). Then, at least q(1−δ)n− q(1−2δ)n

of the elements x ∈ SX have x1 appear in between
(1/q − ε)n and (1/q + ε)n of the entries of x.

Proof: Notice that the number of different n-tuples

of variables of X which contain x1 exactly i times is(
n
i

)
·(q−1)n−i. Hence, the number of elements x ∈ Xn

which do not have x1 appear in between 1−ε
q n and 1+ε

q n
of the entries of x is

1−ε
q n∑
i=0

(
n

i

)
(q − 1)n−i +

n∑
i= 1+ε

q n

(
n

i

)
(q − 1)n−i. (1)

We will bound the sum (1) using Hoeffding’s in-

equality7. Let A1, . . . , An be n independent random

variables taking on the value 1 with probability 1/q
and 0 otherwise, and let A =

∑n
i=1 Ai. We can see

that (1) is equal to qn · Pr[|A − n/q| ≥ εn]. By

Hoeffding’s inequality, if we pick ε =
√
δ ln(q), then

Pr[|A − n/q| ≥ εn] ≤ q−2δn. Thus, (1) is at most

qn · q−2δn = q(1−2δ)n, and the result follows.

Theorem V.2 can be proved using Lemma V.1; we

defer the proof details to the full version of this paper.

For one simple but interesting Corollary, we will show

that in any tensor T which has two ‘corner terms’ (see

the Corollary statement for the precise meaning; we will

see later that many important tensors have these corner

terms), then no matter what the remainder of T looks

like, T still does not have too large of an asymptotic

independence number.

Corollary V.1. Suppose q ≥ 2 is an integer, and T
is a tensor over X,Y, Z with |X| = |Y | = |Z| = q,
such that x1, xq ∈ X , y1, yq ∈ Y , z1 ∈ Z, and T
contains the triples xqy1z1 and x1yqz1, and neither xq

nor yq appears in any other triples in T . Then, there
is a constant cq < q depending only on q such that
Ĩ(T ) ≤ cq .

Proof: Suppose Ĩ(T ) = q1−δ, and for any κ > 0,

let p be the probability distribution on the terms of T
which is guaranteed by Theorem V.2. For any fixed i,
define p(xi) :=

∑
xiyjzk∈T p(xiyjzk), and define p(yj)

and p(zk) similarly. Since xqy1z1 and x1yqz1 are the

only terms containing xq or y1, and they each contain z1,

it follows that p(z1) ≥ p(xq) + p(yq). This, combined

with Theorem V.2, implies the desired result; we defer

the remaining details to the full version of this paper.

Finally, we move on to our third partitioning tool. This

tool is a substantial generalization of the fact that if T is

a tensor over X,Y, Z, then Ĩ(T ) ≤ min{|X|, |Y |, |Z|},

i.e. Ĩ(T ) must be small if T does not have many of one

type of variable. We will show that, even if T can be

partitioned into tensors which each do not have many

of one type of variable, then Ĩ(T ) must be small. We

will formalize this idea by introducing the notion of the

measure of a tensor:

Definition V.2. Let T be a tensor over X,Y, Z. We say
that X ′ ⊆ X , Y ′ ⊆ Y , Z ′ ⊆ Z are minimal for T
if X ′ is the minimal (by inclusion) subset of X such
that for each xi ∈ X \X ′, for all j, k, Ti,j,k = 0, and
similarly, Y ′ is the minimal subset of Y such that for
each yj ∈ Y \ Y ′, for all i, k, Ti,j,k = 0 and Z ′ is the

7Hoeffding’s inequality states that if X1, . . . , Xn are independent
random variables taking on values in [0, 1], then for any t ∈ [0, 1],

we have Pr[
∑n

i=1 Xi − E[
∑n

i=1 Xi] ≥ tn] ≤ e−2nt2 .
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minimal subset of Z such that for each zk ∈ Z \Z ′, for
all i, j, Ti,j,k = 0.

If T is a tensor, then the measure of T , denoted μ(T ),
is given by μ(T ) := |X| · |Y | · |Z|, where X,Y, Z are
minimal for T .

Lemma V.2. For any tensor T , we have Ĩ(T ) ≤
μ(T )1/3.

Proof: Suppose X,Y, Z are the smallest sets of

variables such that T is a tensor over X,Y, Z. Hence,

Ĩ(T ) ≤ min(|X|, |Y |, |Z|) ≤ (|X|·|Y |·|Z|)1/3 = μ(T )1/3.

For our main tool, we can generalize this to partitioned

tensors:

Theorem V.3. Suppose T is a tensor which is partitioned
into k parts T = P1 + P2 + · · · + Pk for any positive
integer k. Then, Ĩ(T ) ≤ ∑k

i=1(μ(Pi))
1/3.

Proof: Let s :=
∑k

i=1(μ(Pi))
1/3, and for each i ∈

{1, 2, . . . , k}, let pi := (μ(Pi))
1/3/s, so that pi ∈ [0, 1]

and
∑k

i=1 pi = 1. For any positive integer n, let Dn be

the biggest independent tensor which can result from a

zeroing out of T⊗n.

Set T ′ = T⊗n, and D′ = Dn, and then for j from 1
to n do the following process:

Currently T ′ = Q1 ⊗ Q2 ⊗ · · · ⊗ Qj−1 ⊗ Tn−j+1,

and |D′| ≥ q1q2 · · · qj−1 · |Dn|, and moreover, D′ is

a zeroing out of T ′. Pick an i such that at least a pi
fraction of the independent triples in D′ have an entry

of Pi in their jth coordinate; since
∑

j pj = 1, such

an i exists. Set Qj = Pi and qj = pi. Recall that there

is a zeroing out z such that z(T ′) = D′. Now, replace

the jth tensor in the product defining T ′ by Qj , i.e. set

T ′ = Q1⊗Q2⊗· · ·⊗Qj ⊗Tn−j . By our choice of Qj ,

we know that if we apply the same zeroing out z to the

new T ′, we get at least a qj fraction of the number of

independent triples we had before, i.e. |z(T ′)| ≥ qj |D′|.
Let D′ be this new independent tensor z(T ′).

Once we have done this for all j, we are left with a ten-

sor
⊗n

j=1 Qj which has a zeroing out into |D| ·∏n
j=1 qj

independent triples. Note that measure is multiplicative,

and so in particular, μ(
⊗n

j=1 Qj) =
∏n

j=1 μ(Qj).
Hence, by Lemma V.2,

Ĩ(
n⊗

j=1

Qj) ≤
n∏

j=1

μ(Qj)
1/3 =

n∏
j=1

(s · qj) = sn ·
n∏

j=1

qj .

Since D′ is a zeroing out of
⊗n

j=1 Qj , it follows

that |D′| ≤ sn · ∏n
j=1 qj . But, |D′| ≥ |D| · ∏n

j=1 qj .

Combining the two, we get that |Dn| ≤ sn, as desired.

VI. LOWER BOUNDS FOR GROUP TENSORS

In contrast with the previous section, in this section

we will show a ‘global’ property of tensors T which

imply upper bounds on Ĩ(T ) (and hence lower bounds on

ωg(T )). In particular, we will see that if T is the group

tensor of any finite group G, or a monomial degeneration

of any such group tensor with the same measure, then

Ĩ(T ) < R̃(T ) and so ωg(T ) > 2. In this section, we also

study the Coppersmith-Winograd tensor CWq , and show

that it cannot be found as a sub-tensor of group tensors

of relatively small groups, giving evidence that lower

bounds on the group-theoretic approach are insufficient

to imply strong lower bounds on ωg(CWq). We defer

the details to the full version of this paper.

VII. APPLICATIONS OF OUR LOWER BOUND

TECHNIQUES

In this section, we use the lower bounding techniques

that we have developed throughout the paper for a

number of applications to tensors of interest.

A. Generalized CW tensors

We begin by proving our main result:

Theorem VII.1. There is a universal constant c > 2
such that for any generalized Coppersmith-Winograd
tensor T (with any parameter q), we have ωg(T ) ≥ c.

Proof: This follows from Lemmas VII.1 and VII.2,

which we state and prove below.

Lemma VII.1. For every nonnegative integer q, there
is a constant cq > 2 such that for any generalized
Coppersmith-Winograd tensor T with parameter q, we
have ωg(T ) ≥ cq .

Lemma VII.2. There is a constant c′ > 2 and a
positive integer q′ such that for any integer q ≥ q′,
and any generalized Coppersmith-Winograd tensor T
with parameter q, we have ωg(T ) ≥ c′.

Proof of Lemma VII.1: For each q, and each

generalized Coppersmith-Winograd tensor T with pa-

rameter q, the tensor T is of the form described by

Corollary V.1, which says that Ĩ(T ) < sq+2 for some

constant sq+2 < q+2 which depends only on q. It then

follows from Corollary IV.1 that ωg(T ) > cq for some

constant cq > 2 determined by sq , as desired.

The proof above of Lemma VII.1 used Corollary V.1,

which follows from Theorem V.2, as its main tool. We

will next give two different proofs of Lemma VII.2; the

first will showcase Theorem V.3, and the second will

showcase Theorem V.1. Each of Theorems V.1, V.2, and

V.3 describes a different property of a tensor T which is
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enough to imply that ωg(T ) > 2. Throughout these three

proofs, we are showing that the Coppersmith-Winograd

tensor has all three of these properties!

First proof of Lemma VII.2: Suppose T is a gener-

alized Coppersmith-Winograd tensor with parameter q.

Hence, T can be written as

T =x0y0z0 + x0yq+1zq+1 + xq+1y0zq+1

+

q∑
i=1

(x0yizi + xiy0zi + xiyσ(i)zq+1),

for some permutation σ on {1, 2, . . . , q}. We partition

T into three parts T1, T2, T3 as follows:

T1 =

q∑
i=0

x0yizi, T2 =

q+1∑
i=1

xiy0zi,

T3 = x0yq+1zq+1 +

q∑
i=1

xiyσ(i)zq+1.

Note that T1 has only one x-variable, T2 has only one y-

variable, and T3 has only one z-variable. Hence, μ(T1) =
μ(T2) = μ(T3) = q2. It follows from Theorem V.3 that

Ĩ(T ) ≤ 3q2/3. When q ≥ 28, we have 3q2/3 < q0.997,

and so by Corollary IV.1, there is a fixed constant c′ > 2
independent of q such that ωg(T ) ≥ c′, as desired.

Our second proof, which will use Theorem V.1 instead

of Theorem V.3 as our primary tool, can be found in

the full version of this paper.

B. Further Applications

Further applications can be found in the full version

of this paper, including

• For every finite group G, a monomial degeneration

of TG into a generalized Coppersmith-Winograd

tensor with parameter |G| − 2, and

• A characterization of Ĩ(T ) for lower triangular

tensors T .
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