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Secondary freshwater salinization, a common anthropogenic alteration, has

detrimental, lethal and sub-lethal effects on aquatic biota. Ions from secondary

salinization can become toxic to terrestrial and aquatic organisms when

exposed to salinized runoff that causes periodic high-concentration pulses.

Gradual, low-level (less than 1000 ppm salinity) increases in salt concentrations

are also commonly documented in regions with urbanization, agriculture, dril-

ling and mining. Despite widespread low-level salt increases, little is known

about the biological and ecological consequences in coupled riparian–stream

systems. Recent research indicates lethal and even sub-lethal levels of ions

can subsidize or stress microbial decomposer and macroinvertebrate detriti-

vores that could lead to alterations of three riparian–stream pathways:

(i) salinized runoff that changes microbial decomposer and macroinvertebrate

detritivore and algae performance leading to changes in composition and

processing of detrital pools; (ii) riparian plant salt uptake and altered litter

chemistry, and litterfall for riparian and aquatic detritivores and their

subsequent enrichment, stimulating decomposition rates and production of

dissolved and fine organic matter; and (iii) salt consumption in salinized

soils could increase riparian detritivore growth, decomposition and dissolved

organic matter production. Subsidy–stress and reciprocal flows in coupled

riparian–stream connections provide frameworks to identify the extent and

magnitude of changes in detrital processing from salinization.

This article is part of the theme issue ‘Salt in freshwaters: causes,

ecological consequences and future prospects’.
1. Introduction
An increase in one of the four cations (Mgþ, Caþ, Kþ, Naþ) and anions (HCO�

3 ,

CO3�
2 , SO4�

2 , Cl2) has resulted in global freshwater and watershed salinization

[1–4]. Human activities that include salts added or immobilized from road dei-

cing [5,6], urban infrastructure that leach ions [7], irrigation and fertilizers from

cultivated crops [8–10], soil erosion [11–13], mining [14,15] and drilling

(i.e. resource extraction, [16–19]), and rising sea levels and drought [3] result in

widespread and gradual salinity increases [2,20]. Dissolved salt concentrations

are measured as salinity (salt concentration (mg l21)), total dissolved solids

(TDS; mass of all dissolved solids (mg l21)) and conductivity (ability to conduct

electrical current (EC) (mS cm21)). For context, major ions vary naturally by

orders of magnitude across regions from local geology and precipitation but

are typically under 1000 mg l21 salinity (seawater—35 000 mg l21 [20]). In tem-

perate regions, road salting, urbanization, discharged treated wastewater and

agriculture lead to intermediate elevated levels (100–500 mg l21 TDS) and

highly elevated concentrations (greater than 500 mg l21 TDS [21,22]) that can

have detrimental effects on aquatic organisms according to the USA and
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Australian water quality regulators. Irrigation, treated and dis-

charged wastewater, resource extraction and climate change

(i.e. rising sea levels/drought) are also common causes of sal-

inization in neotropical, arid and semi-arid regions [1,23–25].

Drought and irrigation practices can reduce stream and

groundwater flow to concentrate ions [26,27]; resource extrac-

tion exposes more rock to weathering [20], adds roads or

impervious surfaces near extraction sites and risks accidental

release or improper treatment of disposal or produced waste-

water (e.g. hydraulic fracturing of shale to get oil and gas)

that can elevate salinity to intermediate and high levels in

nearby freshwaters [16,18,28]. In fact, chloride concentrations

across much of the world surpass or are predicted to surpass

the only aquatic life chloride criterion of 120 (Canada [29])

and 230 mg l21 Cl (USA [1,30]).

Salts are essential biochemical micronutrients used for cel-

lular signalling and energy metabolism for microbes and

invertebrate animals [31,32]. Salt micronutrients occur in very

low concentrations in autotrophs and can limit consumer

growth [33]. However, salinization (i.e. increasing salt con-

centrations) can impair freshwater biological communities

via sub-lethal (e.g. growth, reproductive and feeding and

assimilation changes) and lethal effects [34]. Excess ions,

often 2–4 orders of magnitude above ambient concentrations

or 2000 mS cm21 EC (or approx. 1280 mg l21 TDS) that result

in ion and osmotic imbalances betweenmicrobes andmacroin-

vertebrates and their environment [35]. This ion stress could

result in mortality from the increased energy expenditure

and investment in morphological structures that are required

to maintain homeostasis [23,36–39]. Whereas aquatic and ter-

restrial fungal activity may not show measureable changes

until intermediate or highly elevated salinities occur and thus

buffer ecosystem effects [40–42]. However, the mechanisms

responsible for the biological response remain uncertain

[35,43,44] and ion concentrations below those that result in

species loss (e.g. 192 mg l21 TDS, [45]) can still fail to be pro-

tective of aquatic life by changing organism performance

(i.e. growth, emergence and resource consumption) and associ-

ated ecosystem processes [34,46,47]. A better understanding

of how sub-lethal increases in ion concentrations impact

freshwater biota, communities and ecosystem function is

needed [46]. If sub-lethal salinization changes freshwater

productivity or other functions, then ion, ion mixtures and

concentration-specific management protocols may need to be

re-evaluated and new standards set (e.g. [48]).

Biological responses to watershed salinization can include

more salty soils [49], altered aquatic and terrestrial detritivore

activity [50,51], changes in or mortality of riparian plant

communities [15,52] and greater mortality rates of terrestrial

and aquatic plants and animals into the detrital pool

[11,53,54]. Because over 95% of all fixed carbon in a watershed

becomes part of the detrital pool (brownweb) changes in ripar-

ian soil and vegetation alter aquatic detrital processing [55,56].

Beyond leaves, detritus includes dead wood, fine particulate

organic matter (FPOM) and dissolved organic matter (DOM)

and dead organisms all colonized by fungi, bacteria and

often algae. Riparian detrital inputs to adjacent aquatic systems

are impacted by terrestrial microbial decomposer (bacterial

and fungal) and macroinvertebrate detritivore (i.e. soil macro-

fauna and shredders) activity and plant chemistry [57]. In

aquatic systems, riparian inputs, retention and microbial

decomposers (i.e. fungi and bacteria) and detritivore physi-

ology (i.e. growth, respiration and osmoregulation processes)
mediate decomposition rates [58–60]. Microbial-conditioned

detritus (i.e. leaves, wood and FPOM) is often the dominant

energy source for aquatic detritivores. These same detritivores

are sensitive to oxygen and ion changes; thus, detrital-based

ecosystems are predicted to exhibit measurable changes from

salinization [50,61–63]. If increased low-level salinization

changes the quantity and quality of detritus by reducing

fungal and bacterial enzymatic activity and production, or by

changing microbial community identity, then changes would

probably occur in the macroinvertebrate detritivore consump-

tion and assimilation [64]. Subsequent changes in processing

rates and possible shifts in community composition could

have measurable effects on detrital processes that support

secondary production in downstream [65,66] and riparian

habitats through the transformation and transfer of energy

across riparian and stream boundaries (i.e. reciprocal flows

[67,68]). Cumulatively, riparian–stream changes could alter

energy flow that supports watershed diversity and production.
2. Predicted detrital alterations from salinization
We review how elevated common salt concentrations could

change key detrital linkages in and across the riparian–stream

interface, although most pathways have not been tested and

even fewer linkages among pathways have been established.

Threemain pathways (figure 1) predicted to changewith salini-

zation are: pathway 1 (PW1) salt runoff changes microbial

decomposer [41,62] and macroinvertebrate detritivore [50,69]

and algae [70] performance that could lead to changes in the

composition and processing rates of detrital pools; pathway

2 (PW2) riparian plant salt uptake [71], altered litter chemistry

[72] and litterfall for riparian and aquatic detritivores and

their subsequent enrichment (e.g. senesced leaves, insects or

corpses) could stimulate decomposition rates and production

of DOM and FPOM; and pathway 3 (PW3) direct consumption

of salts in salinized soils could increase riparian detritivore

growth [51], decomposition and DOM production [73].

(a) Pathway 1: direct salt inputs and salty runoff
could alter the osmoregulation of aquatic
organisms to change microbial decomposers
and detritivore growth

Direct inputs (e.g. waste water treatment) and runoff with

elevated salts (direct input and runoff (1)) could increase or

decrease the energy required for osmoregulation (2) (figure 1;

PW1). For example, low-level increases in ions in freshwater

result in a less hypotonic environment for ion-limited

freshwater organisms, thus reducing energy expenditures

associated with osmoregulation [23,38,43]. However, once

ion limitations are met and external salt inputs continue to

rise, more energy is predicted to go towards osmoregulation,

which could reduce biological performance down the falling

limb of the perturbation gradient [74].

When salts enter the riparian zone, they leach from riparian

soils and enter stream systems to increase water salinity, EC

and TDS values [75]. The detrital responses to salinization in

streams are not well studied [46,50,76,77]. Based on the few

studies conducted, relatively high levels of water salinization

(greater than 500 mg l21 TDS) may have lethal or sub-lethal

detrimental effects on fungi [41,78–80] and bacteria [23] that
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Figure 1. Riparian–stream interactions that could be altered by salt additions. Direct pathways are solid lines, indirect pathways are dashed, shapes are pools and
arrows are processes. Hexagons represent inorganic salt pools. Circles represent detrital pools. Squares represent living biotic pools. White text represents abiotic
processes, yellow text represents biotic processes. Numbers next to text are for reference to the specific processes connecting pools. Pathway 1 (PW1: pink arrows)
demonstrates how salts can impact stream detrital processing through direct salt inputs and runoff (runoff (1)) and subsequent increased stream salinity that may
impact osmoregulation of aquatic biota (microbial decomposers, detritivores and algae) (osmoregulation (2)); the quality of detritus (detrital quality (3)), aquatic
biota consumption of detritus and associated microbial decomposers and algae (consumption (4)) also interact to mediate the amount and quality of detritus
(double-headed arrows). Decomposition of detritus (decomposition (5)) changes the quality and quantity of fine particulate (FPOM) and dissolved organic
matter (DOM) that is consumed (6) by microbial decomposers and detritivores to then influence the timing and emergence (7) of aquatic insects. Pathway 2
(PW2: green arrows) demonstrates how salts may indirectly impact detrital processing from plant uptake of salt in riparian systems (uptake (8)). The resulting
salt-enriched plant tissue and leaf litterfall (litterfall (9)) are then deposited to aquatic or terrestrial systems, which impact terrestrial biota (microbial decomposers
and detritivores) by altering consumption (consumption (10)) and decomposition in riparian systems (decomposition (11)). Altered consumption and decomposition
of leaf litter changes the quantity and quality of FPOM and DOM that can enter stream systems (leaching & transport (12)). Pathway 3 (PW3: blue arrows) demon-
strates how salt can directly impact terrestrial detrital processing by increasing salt consumption by microbial decomposers and detritivores (consumption (13)) and
then alters their growth and decomposition (decomposition (14)) and the subsequent generation and quantity of FPOM and DOM input to riparian and stream
systems (leaching and transport (12)) or consumption by terrestrial microbial decomposers and detritivores (consumption 14). Lastly, these three pathways may
ultimately impact microbial decomposers and detritivore emergence timing and quantity (emergence (7)) that generates positive or negative feedback loops between
riparian and stream systems. Drawings by Natalie Clay.
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could alter diversity and function in currently unpredictable

ways [41,81]. Rising salinity can increase fungal sporulation

supporting the hypothesis that fungi allocate more energy to

reproduction in the presence of some salts, in this case HCO�
3

[82]. Conversely, rising salinity from NaCl may also induce

fungal sporulation for some species and a decline in extra-

cellular cellulolytic activity in others [41,83]. The effects of

low-level salinization are even less understood [69]. If saliniza-

tion is lethal to microbial decomposers (e.g. greater than

2000 mg l21 salinity, [84]), then detritivores most likely also

suffer from ion stress, thus increasing the amount, changing

the composition of and reducing the quality of the detrital

pool, for example, from more allochthonous to more auto-

chthonous (detrital quality (3)). Detrital quality, defined by the

interactions among chemical and microbial colonization and

composition and detritivores (figure 1, double arrows),

would decline resulting inmore recalcitrant leaf litter and poss-

ibly harmful blue-green algae [85], making detritus less

palatable and nutritious for detritivores and thus indirectly

slowing consumption (4) and decomposition (5) [60,86]. Severe
soil salinization that results in the decline in riparian vegetation

would reduce detrital inputs and increase light in the stream
channel. Together, algae would probably increase and serve

as the basis of consumer production [87]. In naturally saline

streams, diatoms and cyanobacteria that dominate as produ-

cers tend to be less palatable to the aquatic consumer and

that can reduce trophic diversity [87,88].

Algae also influence detrital quality and quantity because

they occur along with fungi and bacteria in biofilms on

most substrates that when exposed to rising salts could alter

decomposition by stimulating microbial enzymatic activity

[89–92].Algalphotosynthetic activity canbe reducedbyelevated

salt concentrations (e.g. approx. 14 000 mg Na l21), and respir-

ation can decline at low salt concentrations (3–14 mg Na l21)

[70]. Moderate salinity levels (260–1000 mg l21) can promote

algal growth and even harmful algal blooms [85,93,94], but

higher concentrations (e.g. 2260 mg l21) may induce osmotic

stress and reduce growth [84].Microbial responses to salinization

may vary taxonomically, Chlamydamonas reinhardtii, display

reduced cell density, growth and photosynthesis when expo-

sed to extremely high NaCl (1160–17 400 g l21) and even

greater declines in performance when exposed to NaHCO3

(840–12 600 g l21) [95]. By contrast, some green algae, cyanobac-

teria and fungi can respond to osmotic stress, induced at much
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lower concentrations, by increasing osmoprotective carbo-

hydrates. For example, at NaCl treatments above 2299 mg l21

[96,97] less diverse andmore saline-tolerant diatomcommunities

shifted to orwere correlatedwith greater salinity [10,98]. Aswith

other biota, microbes differ in their ability to adapt to salinity, so

allocation to reproduction, growth and community composition

and/or nutritional element composition are expected to change

with ion type, concentrations and their interactions [99,100].

Natural and experimental gradients in the concentrations of sev-

eral ions in freshwaters are needed to predict and test these

changes [101].

Macroinvertebrate detritivores selectively feed on detrital

biofilms, particularly different algal [102] and fungal species

[103,104] that often confer lower litter carbon : nitrogen :

phosphorus (C : N : P); therefore, we predict lower detritivore

consumption of less palatable food resources for growth

when salts reduce biofilm activity. Litter type could mediate

the magnitude of the functional response; more labile litter

could support even greater alterations in detrital processing

[81]. Because decomposition generates FPOM and DOM pro-

duction, resource recycling (consumption (6)) would also

decline [105,106], cumulatively causing a decline in second-

ary production [61,107] and insect emergence (7) [108,109].

Lethal and sub-lethal salt concentrations may result in an

aquatic community indicative of impaired aquatic life and

will surely result in a limited capacity to process organic

matter [110].

However, salt concentrations that do not induce osmotic

stress could induce a subsidy response that stimulates detrital

processing up to a threshold [74]. Growth optima, which

can provide a mechanistic explanation for subsidy–stress

dynamics, are observed for both environmental conditions

(e.g. temperature), and elemental resources [74,111,112]. If

the presence of salt optima, whereby energy expenditure for

osmoregulation is relieved, can be predicted across phylogeny,

salt type growth optimawould provide a needed framework to

predict microbial population, community and ecosystem

responses to rising salts across concentration gradients. If

microbial decomposers are tolerant to rising salt concen-

trations, but the same concentrations reduce detritivore

growth and abundance, then consumption (4) may or may not

decline at the system-level and the impacts to the detrital pro-

cessing could increase from greater microbial decomposer

activity [41] or decline from a loss of a dominant detritivore

species or altered biotic interactions [100,113]. Mounting evi-

dence suggests that even relatively low-level increases at

similar concentrations across different salt types can alter

macroinvertebrate performance and has even been measured

as changes in macroinvertebrate communities and associated

traits [114,115]. Therefore, low-level salt increases to relatively

low concentrations not only directly affect macroinvertebrate

community structure indicative of impaired aquatic life

[116,117], but rises could also lead to altered detrital processing

[50,98,118].

How rising salinities affect freshwater systems have been

tested in micro/mesocosms with manipulated water salt con-

centrations (e.g. [69,119–123]), and/or by measuring salts in

stream observational field studies (e.g. [14,50,114,124,125]).

These studies demonstrate four principle results for how salini-

zation could alter detrital processing. First, microbial and

macroinvertebrate detritivores can display negative or positive

growth responses depending on ion concentrations, rate of

increase and identity (PW1, osmoregulation (2)). Detrital quality
(3) could then change to alter the microbial decomposer and

detritivore consumption (4) [50,69]. Second, fungi and macro-

invertebrates display variable thresholds at which they show

signs of stress [23]. Third, microbial biofilms change. Finally,

algae bloom in some salts and not others. Changes

in consumption and growth would probably alter overall

decomposition (5) depending on the magnitude and directional

responses by the microbial decomposers and detritivores.
(b) Pathway 2: riparian plants can become salt-
enriched and may change the quality and quantity
of detrital inputs for terrestrial and aquatic
detritivores

Ion identity and concentration in riparian soils may change

the quantity and quality of organic matter available to the

riparian detritivores and transported between terrestrial and

stream systems (figure 1, PW2). At sub-lethal salt levels, ter-

restrial plants can incorporate ions from soil into their leaf

vacuoles where enough storage can change live and abscised

leaf tissue chemistry (uptake (8), figure 2) [126–128]. The

majority of the limited research is on how soil Na content

alters plant chemistry under controlled laboratory conditions,

natural gradients from coastlines [129,130] or salted roads

[71], and agriculture-related [131] research. These studies

demonstrate that salinization can, in some cases, drastically

increase plant tissue Na content, which is typically positively

correlated with soil salt levels, and the magnitude of plant Na

change is highly context- and species-specific (figure 2;

electronic supplementary material, table S1 and citations

therein). Despite the inextricable link between riparian and

stream systems, relatively few studies have examined riparian

salinization impacts on plant chemistry. The exceptions are

studies of halophytes like Tamarix or riparian plants for

phytoremediation of toxic soils [49,132]. However, plants

exposed to low-level salt increases often have reduced photo-

synthesis and biomass, higher rates of senescent leaves and

altered timing of leaf dropping [126,128]. Together, these

changes in litterfall (9) quantity and deposition to aquatic

systems may decrease aquatic detritivore diversity and pro-

duction to alter stream ‘brown webs’ [62,133].

Salt-enriched leaves may alter microbial decomposers and

detritivore activity in both riparian and stream systems

through altered detrital quality (litterfall (9)). Salt is often

limiting for inland terrestrial plant consumers (including det-

ritivores) [31]. In particular, Na tends to limit heterotrophic

metabolic function, but not plant function because most

plants do not require Na for growth and reproduction

[134,135]. Terrestrial heterotrophs concentrate Na 10–100

times more than plants and must constantly balance Na

intake with loss [134,136]. Consequently, even small increases

in Na can stimulate decomposition in inland or Na-limited

environments [51,137,138]. By contrast, too much salt reduces

plant photosynthesis that means fewer carbohydrates

relative to leaf tissue biomass and earlier abscission. Thus,

Na-enriched riparian leaves could stimulate or suppress

consumption (10) by terrestrial microbial decomposers,

especially fungi, detritivores and decomposition (11) to then

change DOM and FPOM available for heterotrophic recycling

(consumption (14)) and leaching and transport (12) to streams

[73,127,133,139].
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DOM includes all organic compounds passing through a

0.45 mm filter like carbohydrates, amino acids and humic

substances and dissolved organic carbon (DOC) is a signifi-

cant portion of DOM [140]. DOC can constitute up to 98%

of total organic matter inputs in stream systems [141] with

the majority derived from riparian soils and riparian detritus

[142]. Inputs depend on land use and cover, where typically

more forested streams, streams close to wetlands, or

water treatment facilities have higher DOC than urban or

agricultural streams [143,144]. Riparian-derived DOC has

increased in freshwater systems in the northern hemisphere

since the early 1990s where road salting is prevalent and

increased DOC can negatively impact freshwater water qual-

ity by decreasing transparency, increasing acidity and

transporting metals [145–147]. However, DOC can also pro-

vide a nutrient source for freshwater microbial decomposers

and detritivores, with bacteria and fungi benefiting in par-

ticular [61,148]. Increased watershed salinization may be

responsible, in part, for rising riverine DOC from organic

matter leaching from watershed soils [73,139,149]. However,

the mechanisms driving increased DOC remains poorly

understood [140,150].
Salt-enriched leaves may enter stream systems through

litterfall (9) and alter the aquatic microbial and macroinverte-

brate detritivore community composition, production and

decomposition rates. Terrestrial–aquatic altered connections

and reciprocal flows from salt-enriched leaves and salt-

enriched insects represent an overlooked pathway by which

stream ecosystems may change from rising salts (emergence
(7)). Probably, the natural co-occurrence of salty leaves

(PW2) with low-level increases in stream salinization (PW1)

will have synergistic interactions on algal growth, death and
colonization (3) and microbial decomposers and detritivores

through patterns of consumption (4), (6) to change decompo-
sition (5) and insect production that will alter reciprocal

flows (emergence (7)).
(c) Pathway 3: salts can directly stimulate microbial
decomposer and detritivore growth in riparian areas
to alter riparian carbon cycling

Soil salts can be consumed by terrestrial microbial decompo-

sers and detritivores (consumption ((13)) [33]. Increased
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salinization of riparian soils may alter the DOM and FPOM

quantity and quality entering streams (figure 1, PW3). If salt

additions stimulate microbial decomposer and detritivore

activity leading to faster decomposition (11), then riparian–

stream detrital linkages are also probably altered from greater

DOM and FPOM production, recycling (consumption 14) and
leaching and transport (12). Therefore, increased riparian–

stream salinization could increase the quantity of organic

matter transported to streams and may be responsible, in

part, for rising DOC in freshwater ecosystems [133].
 g
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3. Future directions
We present three conceptual frameworks for further under-

standing the direct and indirect pathways by which salinization

may change ‘brown webs’ (figure 1): subsidy–stress [74],

reciprocal flows [67] and more broadly, riparian–stream

connections [108]. Subsidy–stress responses were predicted

for biotic pools in terrestrial and aquatic systems; yet, salt con-

centration thresholds for autotrophs and heterotrophs are

currently unavailable. Subsidy–stress thresholds would pro-

vide predictive directional changes in detrital quality,

quantity and decomposition and subsequent fluxes within

and across ecosystem boundaries. The contribution of and con-

trols on reciprocal energy and matter flowing from riparian to

stream [151] and stream to riparian [152] areas has been docu-

mented in ‘brown webs’ under limited environmental context.

Even less is known about how contaminants will change

the composition and magnitude of energy and nutrient flux

across boundaries (e.g. [153–155]). Reciprocal flows occur
among riparian–stream connections (upstream–downstream,

surface–hyporheic–groundwater, riparian–stream–wetland)

that connect the watershed with currencies measured as

elemental and organism flux. Virtually nothing is known

about how these watershed connections will change from sali-

nization (be it sub-lethal or lethal), despite the global potential

for shifts in riparian and stream autotroph composition and

production and detrital processing. Interdisciplinary research

teams will have to work at multiple spatial scales and across

large geographical gradients of salt deposition, land use and

climate to fully address how salinization is altering ‘brown

webs’. At the watershed scale, multiple interacting stressors

are the norm [156,157], where riparian composition and nutri-

ents from fertilizers are interacting with salts in soils and

freshwater, and rising water temperatures and altered hydrol-

ogy all act to change detrital processing. Initial unravelling of

some of these interactions has already resulted in unexpected

synergistic effects driven by detrital composition and salt con-

centrations and identity in riparian [49], stream [14] and

wetland communities [158]. We provide here a framework to

support future studies.
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