

Review



**Cite this article:** Entrekin SA, Clay NA, Mogilevski A, Howard-Parker B, Evans-White MA. 2019 Multiple riparian–stream connections are predicted to change in response to salinization. *Phil. Trans. R. Soc. B* **374:** 20180042.  
<http://dx.doi.org/10.1098/rstb.2018.0042>

Accepted: 10 September 2018

One contribution of 23 to a theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.

**Subject Areas:**  
ecology, environmental science

**Keywords:**  
carbon cycling, detritivores, decomposition, terrestrial-aquatic connections, subsidy–stress, reciprocal flows

**Author for correspondence:**  
Sally A. Entrekin  
e-mail: [sallye@vt.edu](mailto:sallye@vt.edu)

Electronic supplementary material is available online at <https://dx.doi.org/10.6084/m9.figshare.c.4272068>.

# Multiple riparian–stream connections are predicted to change in response to salinization

Sally A. Entrekin<sup>1,2</sup>, Natalie A. Clay<sup>3</sup>, Anastasia Mogilevski<sup>1</sup>,  
Brooke Howard-Parker<sup>4</sup> and Michelle A. Evans-White<sup>4</sup>

<sup>1</sup>Department of Biology, University of Central Arkansas, Conway, AR 72035, USA

<sup>2</sup>Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

<sup>3</sup>School of Biological Sciences, Louisiana Tech University, Ruston, LA 71272, USA

<sup>4</sup>Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA

SAE, 0000-0002-8276-7832

Secondary freshwater salinization, a common anthropogenic alteration, has detrimental, lethal and sub-lethal effects on aquatic biota. Ions from secondary salinization can become toxic to terrestrial and aquatic organisms when exposed to salinized runoff that causes periodic high-concentration pulses. Gradual, low-level (less than 1000 ppm salinity) increases in salt concentrations are also commonly documented in regions with urbanization, agriculture, drilling and mining. Despite widespread low-level salt increases, little is known about the biological and ecological consequences in coupled riparian–stream systems. Recent research indicates lethal and even sub-lethal levels of ions can subsidize or stress microbial decomposer and macroinvertebrate detritivores that could lead to alterations of three riparian–stream pathways: (i) salinized runoff that changes microbial decomposer and macroinvertebrate detritivore and algae performance leading to changes in composition and processing of detrital pools; (ii) riparian plant salt uptake and altered litter chemistry, and litterfall for riparian and aquatic detritivores and their subsequent enrichment, stimulating decomposition rates and production of dissolved and fine organic matter; and (iii) salt consumption in salinized soils could increase riparian detritivore growth, decomposition and dissolved organic matter production. Subsidy–stress and reciprocal flows in coupled riparian–stream connections provide frameworks to identify the extent and magnitude of changes in detrital processing from salinization.

This article is part of the theme issue 'Salt in freshwaters: causes, ecological consequences and future prospects'.

## 1. Introduction

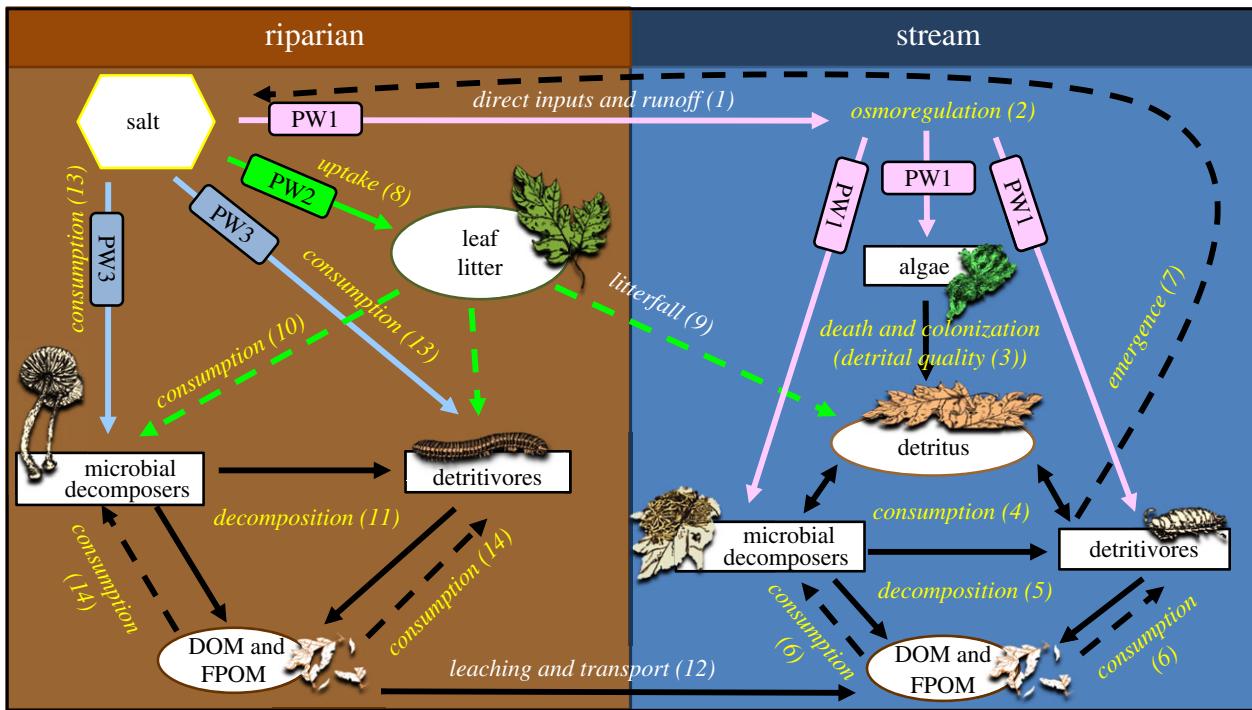
An increase in one of the four cations ( $Mg^+$ ,  $Ca^+$ ,  $K^+$ ,  $Na^+$ ) and anions ( $HCO_3^-$ ,  $CO_3^{2-}$ ,  $SO_4^{2-}$ ,  $Cl^-$ ) has resulted in global freshwater and watershed salinization [1–4]. Human activities that include salts added or immobilized from road deicing [5,6], urban infrastructure that leach ions [7], irrigation and fertilizers from cultivated crops [8–10], soil erosion [11–13], mining [14,15] and drilling (i.e. resource extraction, [16–19]), and rising sea levels and drought [3] result in widespread and gradual salinity increases [2,20]. Dissolved salt concentrations are measured as salinity (salt concentration ( $mg\ l^{-1}$ )), total dissolved solids (TDS; mass of all dissolved solids ( $mg\ l^{-1}$ ))) and conductivity (ability to conduct electrical current (EC) ( $\mu S\ cm^{-1}$ ))). For context, major ions vary naturally by orders of magnitude across regions from local geology and precipitation but are typically under  $1000\ mg\ l^{-1}$  salinity (seawater— $35\ 000\ mg\ l^{-1}$  [20]). In temperate regions, road salting, urbanization, discharged treated wastewater and agriculture lead to intermediate elevated levels ( $100$ – $500\ mg\ l^{-1}$  TDS) and highly elevated concentrations (greater than  $500\ mg\ l^{-1}$  TDS [21,22]) that can have detrimental effects on aquatic organisms according to the USA and

Australian water quality regulators. Irrigation, treated and discharged wastewater, resource extraction and climate change (i.e. rising sea levels/drought) are also common causes of salinization in neotropical, arid and semi-arid regions [1,23–25]. Drought and irrigation practices can reduce stream and groundwater flow to concentrate ions [26,27]; resource extraction exposes more rock to weathering [20], adds roads or impervious surfaces near extraction sites and risks accidental release or improper treatment of disposal or produced wastewater (e.g. hydraulic fracturing of shale to get oil and gas) that can elevate salinity to intermediate and high levels in nearby freshwaters [16,18,28]. In fact, chloride concentrations across much of the world surpass or are predicted to surpass the only aquatic life chloride criterion of 120 (Canada [29]) and 230 mg l<sup>-1</sup> Cl (USA [1,30]).

Salts are essential biochemical micronutrients used for cellular signalling and energy metabolism for microbes and invertebrate animals [31,32]. Salt micronutrients occur in very low concentrations in autotrophs and can limit consumer growth [33]. However, salinization (i.e. increasing salt concentrations) can impair freshwater biological communities via sub-lethal (e.g. growth, reproductive and feeding and assimilation changes) and lethal effects [34]. Excess ions, often 2–4 orders of magnitude above ambient concentrations or 2000 µS cm<sup>-1</sup> EC (or approx. 1280 mg l<sup>-1</sup> TDS) that result in ion and osmotic imbalances between microbes and macroinvertebrates and their environment [35]. This ion stress could result in mortality from the increased energy expenditure and investment in morphological structures that are required to maintain homeostasis [23,36–39]. Whereas aquatic and terrestrial fungal activity may not show measureable changes until intermediate or highly elevated salinities occur and thus buffer ecosystem effects [40–42]. However, the mechanisms responsible for the biological response remain uncertain [35,43,44] and ion concentrations below those that result in species loss (e.g. 192 mg l<sup>-1</sup> TDS, [45]) can still fail to be protective of aquatic life by changing organism performance (i.e. growth, emergence and resource consumption) and associated ecosystem processes [34,46,47]. A better understanding of how sub-lethal increases in ion concentrations impact freshwater biota, communities and ecosystem function is needed [46]. If sub-lethal salinization changes freshwater productivity or other functions, then ion, ion mixtures and concentration-specific management protocols may need to be re-evaluated and new standards set (e.g. [48]).

Biological responses to watershed salinization can include more salty soils [49], altered aquatic and terrestrial detritivore activity [50,51], changes in or mortality of riparian plant communities [15,52] and greater mortality rates of terrestrial and aquatic plants and animals into the detrital pool [11,53,54]. Because over 95% of all fixed carbon in a watershed becomes part of the detrital pool (brown web) changes in riparian soil and vegetation alter aquatic detrital processing [55,56]. Beyond leaves, detritus includes dead wood, fine particulate organic matter (FPOM) and dissolved organic matter (DOM) and dead organisms all colonized by fungi, bacteria and often algae. Riparian detrital inputs to adjacent aquatic systems are impacted by terrestrial microbial decomposer (bacterial and fungal) and macroinvertebrate detritivore (i.e. soil macrofauna and shredders) activity and plant chemistry [57]. In aquatic systems, riparian inputs, retention and microbial decomposers (i.e. fungi and bacteria) and detritivore physiology (i.e. growth, respiration and osmoregulation processes)

mediate decomposition rates [58–60]. Microbial-conditioned detritus (i.e. leaves, wood and FPOM) is often the dominant energy source for aquatic detritivores. These same detritivores are sensitive to oxygen and ion changes; thus, detrital-based ecosystems are predicted to exhibit measurable changes from salinization [50,61–63]. If increased low-level salinization changes the quantity and quality of detritus by reducing fungal and bacterial enzymatic activity and production, or by changing microbial community identity, then changes would probably occur in the macroinvertebrate detritivore consumption and assimilation [64]. Subsequent changes in processing rates and possible shifts in community composition could have measurable effects on detrital processes that support secondary production in downstream [65,66] and riparian habitats through the transformation and transfer of energy across riparian and stream boundaries (i.e. reciprocal flows [67,68]). Cumulatively, riparian–stream changes could alter energy flow that supports watershed diversity and production.


## 2. Predicted detrital alterations from salinization

We review how elevated common salt concentrations could change key detrital linkages in and across the riparian–stream interface, although most pathways have not been tested and even fewer linkages among pathways have been established. Three main pathways (figure 1) predicted to change with salinization are: pathway 1 (PW1) salt runoff changes microbial decomposer [41,62] and macroinvertebrate detritivore [50,69] and algae [70] performance that could lead to changes in the composition and processing rates of detrital pools; pathway 2 (PW2) riparian plant salt uptake [71], altered litter chemistry [72] and litterfall for riparian and aquatic detritivores and their subsequent enrichment (e.g. senesced leaves, insects or corpses) could stimulate decomposition rates and production of DOM and FPOM; and pathway 3 (PW3) direct consumption of salts in salinized soils could increase riparian detritivore growth [51], decomposition and DOM production [73].

### (a) Pathway 1: direct salt inputs and salty runoff could alter the osmoregulation of aquatic organisms to change microbial decomposers and detritivore growth

Direct inputs (e.g. waste water treatment) and runoff with elevated salts (*direct input and runoff* (1)) could increase or decrease the energy required for *osmoregulation* (2) (figure 1; PW1). For example, low-level increases in ions in freshwater result in a less hypotonic environment for ion-limited freshwater organisms, thus reducing energy expenditures associated with osmoregulation [23,38,43]. However, once ion limitations are met and external salt inputs continue to rise, more energy is predicted to go towards osmoregulation, which could reduce biological performance down the falling limb of the perturbation gradient [74].

When salts enter the riparian zone, they leach from riparian soils and enter stream systems to increase water salinity, EC and TDS values [75]. The detrital responses to salinization in streams are not well studied [46,50,76,77]. Based on the few studies conducted, relatively high levels of water salinization (greater than 500 mg l<sup>-1</sup> TDS) may have lethal or sub-lethal detrimental effects on fungi [41,78–80] and bacteria [23] that



**Figure 1.** Riparian–stream interactions that could be altered by salt additions. Direct pathways are solid lines, indirect pathways are dashed, shapes are pools and arrows are processes. Hexagons represent inorganic salt pools. Circles represent detrital pools. Squares represent living biotic pools. White text represents abiotic processes, yellow text represents biotic processes. Numbers next to text are for reference to the specific processes connecting pools. Pathway 1 (PW1: pink arrows) demonstrates how salts can impact stream detrital processing through direct salt inputs and runoff (*runoff* (1)) and subsequent increased stream salinity that may impact osmoregulation of aquatic biota (microbial decomposers, detritivores and algae) (*osmoregulation* (2)); the quality of detritus (*detrital quality* (3)), aquatic biota consumption of detritus and associated microbial decomposers and algae (*consumption* (4)) also interact to mediate the amount and quality of detritus (double-headed arrows). Decomposition of detritus (*decomposition* (5)) changes the quality and quantity of fine particulate (FPOM) and dissolved organic matter (DOM) that is consumed (6) by microbial decomposers and detritivores to then influence the timing and emergence (7) of aquatic insects. Pathway 2 (PW2: green arrows) demonstrates how salts may indirectly impact detrital processing from plant uptake of salt in riparian systems (*uptake* (8)). The resulting salt-enriched plant tissue and leaf litterfall (*litterfall* (9)) are then deposited to aquatic or terrestrial systems, which impact terrestrial biota (microbial decomposers and detritivores) by altering consumption (*consumption* (10)) and decomposition in riparian systems (*decomposition* (11)). Altered consumption and decomposition of leaf litter changes the quantity and quality of FPOM and DOM that can enter stream systems (*leaching & transport* (12)). Pathway 3 (PW3: blue arrows) demonstrates how salt can directly impact terrestrial detrital processing by increasing salt consumption by microbial decomposers and detritivores (*consumption* (13)) and then alters their growth and decomposition (*decomposition* (14)) and the subsequent generation and quantity of FPOM and DOM input to riparian and stream systems (*leaching and transport* (12)) or consumption by terrestrial microbial decomposers and detritivores (*consumption* (14)). Lastly, these three pathways may ultimately impact microbial decomposers and detritivore emergence timing and quantity (*emergence* (7)) that generates positive or negative feedback loops between riparian and stream systems. Drawings by Natalie Clay.

could alter diversity and function in currently unpredictable ways [41,81]. Rising salinity can increase fungal sporulation supporting the hypothesis that fungi allocate more energy to reproduction in the presence of some salts, in this case  $\text{HCO}_3^-$  [82]. Conversely, rising salinity from  $\text{NaCl}$  may also induce fungal sporulation for some species and a decline in extracellular cellulolytic activity in others [41,83]. The effects of low-level salinization are even less understood [69]. If salinization is lethal to microbial decomposers (e.g. greater than  $2000 \text{ mg l}^{-1}$  salinity, [84]), then detritivores most likely also suffer from ion stress, thus increasing the amount, changing the composition of and reducing the quality of the detrital pool, for example, from more allochthonous to more autochthonous (*detrital quality* (3)). Detrital quality, defined by the interactions among chemical and microbial colonization and composition and detritivores (figure 1, double arrows), would decline resulting in more recalcitrant leaf litter and possibly harmful blue-green algae [85], making detritus less palatable and nutritious for detritivores and thus indirectly slowing *consumption* (4) and *decomposition* (5) [60,86]. Severe soil salinization that results in the decline in riparian vegetation would reduce detrital inputs and increase light in the stream

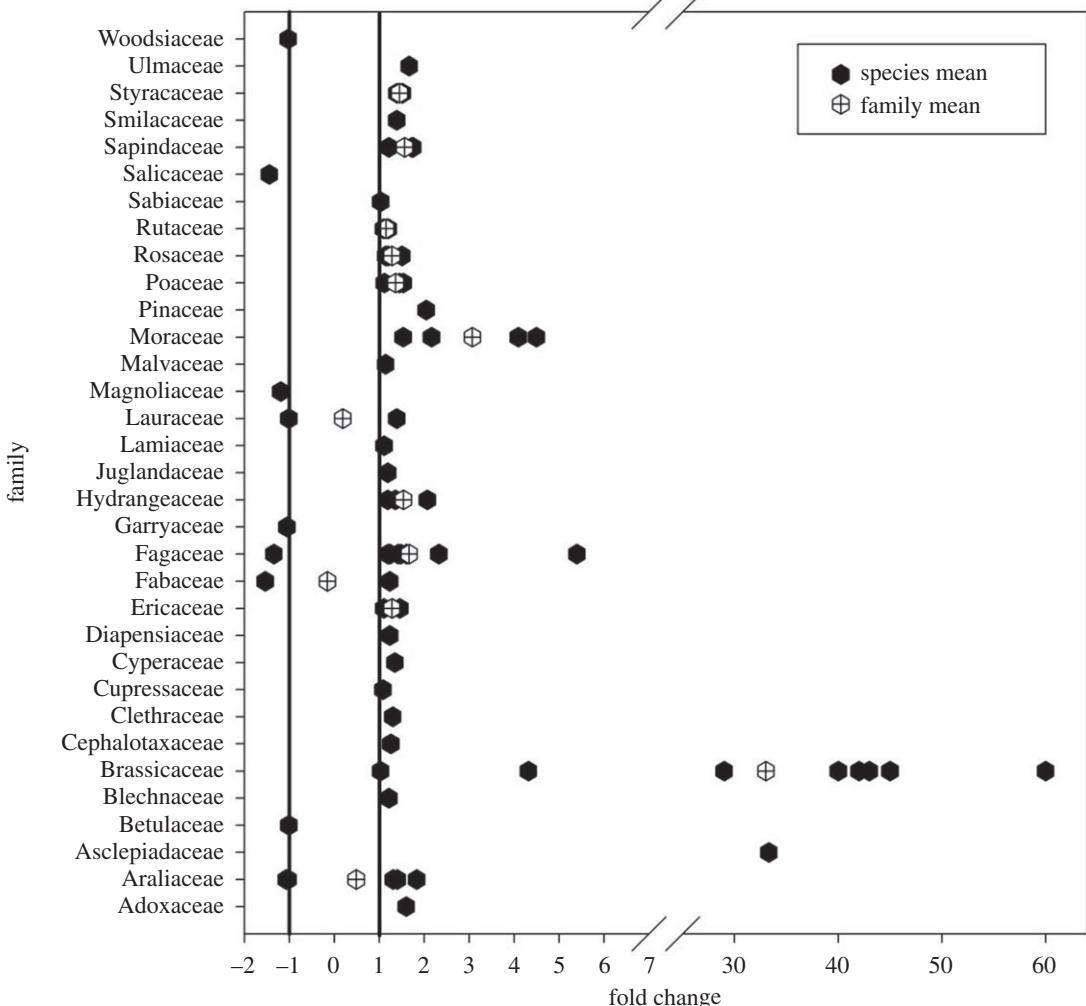
channel. Together, algae would probably increase and serve as the basis of consumer production [87]. In naturally saline streams, diatoms and cyanobacteria that dominate as producers tend to be less palatable to the aquatic consumer and that can reduce trophic diversity [87,88].

Algae also influence detrital quality and quantity because they occur along with fungi and bacteria in biofilms on most substrates that when exposed to rising salts could alter decomposition by stimulating microbial enzymatic activity [89–92]. Algal photosynthetic activity can be reduced by elevated salt concentrations (e.g. approx.  $14\,000 \text{ mg Na l}^{-1}$ ), and respiration can decline at low salt concentrations ( $3\text{--}14 \text{ mg Na l}^{-1}$ ) [70]. Moderate salinity levels ( $260\text{--}1000 \text{ mg l}^{-1}$ ) can promote algal growth and even harmful algal blooms [85,93,94], but higher concentrations (e.g.  $2260 \text{ mg l}^{-1}$ ) may induce osmotic stress and reduce growth [84]. Microbial responses to salinization may vary taxonomically, *Chlamydomonas reinhardtii*, display reduced cell density, growth and photosynthesis when exposed to extremely high  $\text{NaCl}$  ( $1160\text{--}17\,400 \text{ g l}^{-1}$ ) and even greater declines in performance when exposed to  $\text{NaHCO}_3$  ( $840\text{--}12\,600 \text{ g l}^{-1}$ ) [95]. By contrast, some green algae, cyanobacteria and fungi can respond to osmotic stress, induced at much

lower concentrations, by increasing osmoprotective carbohydrates. For example, at NaCl treatments above 2299 mg l<sup>-1</sup> [96,97] less diverse and more saline-tolerant diatom communities shifted to or were correlated with greater salinity [10,98]. As with other biota, microbes differ in their ability to adapt to salinity, so allocation to reproduction, growth and community composition and/or nutritional element composition are expected to change with ion type, concentrations and their interactions [99,100]. Natural and experimental gradients in the concentrations of several ions in freshwaters are needed to predict and test these changes [101].

Macroinvertebrate detritivores selectively feed on detrital biofilms, particularly different algal [102] and fungal species [103,104] that often confer lower litter carbon : nitrogen : phosphorus (C : N : P); therefore, we predict lower detritivore consumption of less palatable food resources for growth when salts reduce biofilm activity. Litter type could mediate the magnitude of the functional response; more labile litter could support even greater alterations in detrital processing [81]. Because decomposition generates FPOM and DOM production, resource recycling (*consumption* (6)) would also decline [105,106], cumulatively causing a decline in secondary production [61,107] and insect *emergence* (7) [108,109]. Lethal and sub-lethal salt concentrations may result in an aquatic community indicative of impaired aquatic life and will surely result in a limited capacity to process organic matter [110].

However, salt concentrations that do not induce osmotic stress could induce a subsidy response that stimulates detrital processing up to a threshold [74]. Growth optima, which can provide a mechanistic explanation for subsidy–stress dynamics, are observed for both environmental conditions (e.g. temperature), and elemental resources [74,111,112]. If the presence of salt optima, whereby energy expenditure for osmoregulation is relieved, can be predicted across phylogeny, salt type growth optima would provide a needed framework to predict microbial population, community and ecosystem responses to rising salts across concentration gradients. If microbial decomposers are tolerant to rising salt concentrations, but the same concentrations reduce detritivore growth and abundance, then *consumption* (4) may or may not decline at the system-level and the impacts to the detrital processing could increase from greater microbial decomposer activity [41] or decline from a loss of a dominant detritivore species or altered biotic interactions [100,113]. Mounting evidence suggests that even relatively low-level increases at similar concentrations across different salt types can alter macroinvertebrate performance and has even been measured as changes in macroinvertebrate communities and associated traits [114,115]. Therefore, low-level salt increases to relatively low concentrations not only directly affect macroinvertebrate community structure indicative of impaired aquatic life [116,117], but rises could also lead to altered detrital processing [50,98,118].


How rising salinities affect freshwater systems have been tested in micro/mesocosms with manipulated water salt concentrations (e.g. [69,119–123]), and/or by measuring salts in stream observational field studies (e.g. [14,50,114,124,125]). These studies demonstrate four principle results for how salinization could alter detrital processing. First, microbial and macroinvertebrate detritivores can display negative or positive growth responses depending on ion concentrations, rate of increase and identity (PW1, *osmoregulation* (2)). *Detrital quality*

(3) could then change to alter the microbial decomposer and detritivore *consumption* (4) [50,69]. Second, fungi and macroinvertebrates display variable thresholds at which they show signs of stress [23]. Third, microbial biofilms change. Finally, algae bloom in some salts and not others. Changes in consumption and growth would probably alter overall *decomposition* (5) depending on the magnitude and directional responses by the microbial decomposers and detritivores.

## (b) Pathway 2: riparian plants can become salt-enriched and may change the quality and quantity of detrital inputs for terrestrial and aquatic detritivores

Ion identity and concentration in riparian soils may change the quantity and quality of organic matter available to the riparian detritivores and transported between terrestrial and stream systems (figure 1, PW2). At sub-lethal salt levels, terrestrial plants can incorporate ions from soil into their leaf vacuoles where enough storage can change live and abscised leaf tissue chemistry (*uptake* (8), figure 2) [126–128]. The majority of the limited research is on how soil Na content alters plant chemistry under controlled laboratory conditions, natural gradients from coastlines [129,130] or salted roads [71], and agriculture-related [131] research. These studies demonstrate that salinization can, in some cases, drastically increase plant tissue Na content, which is typically positively correlated with soil salt levels, and the magnitude of plant Na change is highly context- and species-specific (figure 2; electronic supplementary material, table S1 and citations therein). Despite the inextricable link between riparian and stream systems, relatively few studies have examined riparian salinization impacts on plant chemistry. The exceptions are studies of halophytes like *Tamarix* or riparian plants for phytoremediation of toxic soils [49,132]. However, plants exposed to low-level salt increases often have reduced photosynthesis and biomass, higher rates of senescent leaves and altered timing of leaf dropping [126,128]. Together, these changes in *litterfall* (9) quantity and deposition to aquatic systems may decrease aquatic detritivore diversity and production to alter stream ‘brown webs’ [62,133].

Salt-enriched leaves may alter microbial decomposers and detritivore activity in both riparian and stream systems through altered detrital quality (*litterfall* (9)). Salt is often limiting for inland terrestrial plant consumers (including detritivores) [31]. In particular, Na tends to limit heterotrophic metabolic function, but not plant function because most plants do not require Na for growth and reproduction [134,135]. Terrestrial heterotrophs concentrate Na 10–100 times more than plants and must constantly balance Na intake with loss [134,136]. Consequently, even small increases in Na can stimulate decomposition in inland or Na-limited environments [51,137,138]. By contrast, too much salt reduces plant photosynthesis that means fewer carbohydrates relative to leaf tissue biomass and earlier abscission. Thus, Na-enriched riparian leaves could stimulate or suppress *consumption* (10) by terrestrial microbial decomposers, especially fungi, detritivores and *decomposition* (11) to then change DOM and FPOM available for heterotrophic recycling (*consumption* (14)) and *leaching and transport* (12) to streams [73,127,133,139].



**Figure 2.** Mean fold change of Na leaf concentration for plant species (closed hexagons) and plant families (open-crossed hexagons). Fold change was calculated based on mean Na leaf concentrations from plants in salty (greater than 100 km from the coast or salted road or experimental salt addition treatments) divided by non-salty (less than 100 km or controls) plant Na leaf concentrations (reversed for negative values). Values of 1 indicate no change. Positive values indicate plants in saltier areas had increased Na leaf content relative to non-salty areas. Negative values indicate plants in saltier areas had decreased Na leaf content relative to non-salty areas. Family mean values between  $-1$  and  $1$  indicate no consistent trend. Note scale on  $x$ -axis changes after the break. Data and sources are in the electronic supplementary material, table S1.

DOM includes all organic compounds passing through a 0.45  $\mu\text{m}$  filter like carbohydrates, amino acids and humic substances and dissolved organic carbon (DOC) is a significant portion of DOM [140]. DOC can constitute up to 98% of total organic matter inputs in stream systems [141] with the majority derived from riparian soils and riparian detritus [142]. Inputs depend on land use and cover, where typically more forested streams, streams close to wetlands, or water treatment facilities have higher DOC than urban or agricultural streams [143,144]. Riparian-derived DOC has increased in freshwater systems in the northern hemisphere since the early 1990s where road salting is prevalent and increased DOC can negatively impact freshwater water quality by decreasing transparency, increasing acidity and transporting metals [145–147]. However, DOC can also provide a nutrient source for freshwater microbial decomposers and detritivores, with bacteria and fungi benefiting in particular [61,148]. Increased watershed salinization may be responsible, in part, for rising riverine DOC from organic matter leaching from watershed soils [73,139,149]. However, the mechanisms driving increased DOC remains poorly understood [140,150].

Salt-enriched leaves may enter stream systems through litterfall (9) and alter the aquatic microbial and macroinvertebrate detritivore community composition, production and decomposition rates. Terrestrial-aquatic altered connections and reciprocal flows from salt-enriched leaves and salt-enriched insects represent an overlooked pathway by which stream ecosystems may change from rising salts (*emergence* (7)). Probably, the natural co-occurrence of salty leaves (PW2) with low-level increases in stream salinization (PW1) will have synergistic interactions on algal growth, *death and colonization* (3) and microbial decomposers and detritivores through patterns of *consumption* (4), (6) to change *decomposition* (5) and insect production that will alter reciprocal flows (*emergence* (7)).

(c) Pathway 3: salts can directly stimulate microbial decomposer and detritivore growth in riparian areas to alter riparian carbon cycling

Soil salts can be consumed by terrestrial microbial decomposers and detritivores (*consumption* ((13)) [33]. Increased

salinization of riparian soils may alter the DOM and FPOM quantity and quality entering streams (figure 1, PW3). If salt additions stimulate microbial decomposer and detritivore activity leading to faster *decomposition* (11), then riparian–stream detrital linkages are also probably altered from greater DOM and FPOM production, recycling (*consumption* 14) and *leaching* and *transport* (12). Therefore, increased riparian–stream salinization could increase the quantity of organic matter transported to streams and may be responsible, in part, for rising DOC in freshwater ecosystems [133].

### 3. Future directions

We present three conceptual frameworks for further understanding the direct and indirect pathways by which salinization may change ‘brown webs’ (figure 1): subsidy–stress [74], reciprocal flows [67] and more broadly, riparian–stream connections [108]. Subsidy–stress responses were predicted for biotic pools in terrestrial and aquatic systems; yet, salt concentration thresholds for autotrophs and heterotrophs are currently unavailable. Subsidy–stress thresholds would provide predictive directional changes in detrital quality, quantity and decomposition and subsequent fluxes within and across ecosystem boundaries. The contribution of and controls on reciprocal energy and matter flowing from riparian to stream [151] and stream to riparian [152] areas has been documented in ‘brown webs’ under limited environmental context.

Even less is known about how contaminants will change the composition and magnitude of energy and nutrient flux across boundaries (e.g. [153–155]). Reciprocal flows occur

among riparian–stream connections (upstream–downstream, surface–hyporheic–groundwater, riparian–stream–wetland) that connect the watershed with currencies measured as elemental and organism flux. Virtually nothing is known about how these watershed connections will change from salinization (be it sub-lethal or lethal), despite the global potential for shifts in riparian and stream autotroph composition and production and detrital processing. Interdisciplinary research teams will have to work at multiple spatial scales and across large geographical gradients of salt deposition, land use and climate to fully address how salinization is altering ‘brown webs’. At the watershed scale, multiple interacting stressors are the norm [156,157], where riparian composition and nutrients from fertilizers are interacting with salts in soils and freshwater, and rising water temperatures and altered hydrology all act to change detrital processing. Initial unravelling of some of these interactions has already resulted in unexpected synergistic effects driven by detrital composition and salt concentrations and identity in riparian [49], stream [14] and wetland communities [158]. We provide here a framework to support future studies.

**Data accessibility.** Data are available as part of the electronic supplementary material.

**Competing interests.** We declare we have no competing interests.

**Funding.** Funding was provided by USGS grant no. 2016AR387B.

**Acknowledgements.** We thank Johnny Armstrong for support for the collection of plants on Wafer Creek Ranch, and we thank Connor Gruntz for field and laboratory work for this collection. Two anonymous reviewers improved the clarity and breadth of the manuscript.

## References

1. Canedo-Arguelles M *et al.* 2016 Ion-specific standards are needed to protect biodiversity. *Science* **351**, 914–916. (doi:10.1126/science.aad3488)
2. Kaushal SS *et al.* 2017 Human-accelerated weathering increases salinization, major ions, and alkalization in fresh water across land use. *Appl. Geochem.* **83**, 121–135. (doi:10.1016/j.apgeochem.2017.02.006)
3. Williams W. 2001 Salinization: unplumbed salt in a parched landscape. *Water Sci. Technol.* **43**, 85–91. (doi:10.2166/wst.2001.0186)
4. Nielsen D, Brock M, Rees G, Baldwin DS. 2003 Effects of increasing salinity on freshwater ecosystems in Australia. *Aust. J. Bot.* **51**, 655–665. (doi:10.1071/BT02115)
5. Backstrom M, Karlsson S, Backman L, Folkeson L, Lind B. 2004 Mobilisation of heavy metals by deicing salts in a roadside environment. *Water Res.* **38**, 720–732. (doi:10.1016/j.watres.2003.11.006)
6. Löfgren S. 2001 The chemical effects of deicing salt on soil and stream water of five catchments in southeast Sweden. *Water Air Soil Pollut.* **130**, 863–868. (doi:10.1023/A:1013895215558)
7. Moore J, Bird DL, Dobbins SK, Woodward G. 2017 Nonpoint source contributions drive elevated major ion and dissolved inorganic carbon concentrations in urban watersheds. *Environ. Sci. Tech. Lett.* **4**, 198–204. (doi:10.1021/acs.estlett.7b00096)
8. Freitas EC, Rocha O. 2011 Acute and chronic effects of sodium and potassium on the tropical freshwater cladoceran *Pseudosida ramosa*. *Ecotoxicology* **20**, 88–96. (doi:10.1007/s10646-010-0559-z)
9. Anning DW, Flynn ME. 2014 Dissolved-solids sources, loads, yields, and concentrations in streams of the conterminous United States. USGS Scientific Investigations Report, p. 113.
10. Blinn DW, Bailey PC. 2001 Land-use influence on stream water quality and diatom communities in Victoria, Australia: a response to secondary salinization. *Hydrobiologia* **466**, 231–244. (doi:10.1023/A:1014541029984)
11. Kaushal SS, Groffman PM, Likens GE, Belt KT, Stack WP, Kelly VR, Band LE, Fisher GT. 2005 Increased salinization of fresh water in the northeastern United States. *Proc. Natl. Acad. Sci. USA* **102**, 13 517–13 520. (doi:10.1073/pnas.0506414102)
12. El-Ashry MT, van Schilfgaarde J, Schiffman S. 1985 Salinity pollution from irrigated agriculture. *J. Soil Water Cons.* **40**, 48–52.
13. Duncan RA, Bethune MG, Thayalakumaran T, Christen EW, McMahon TA. 2008 Management of salt mobilisation in the irrigated landscape: a review of selected irrigation regions. *J. Hydrol.* **351**, 238–252. (doi:10.1016/j.jhydrol.2007.12.002)
14. Timpano AJ, Schoenholtz SH, Soucek DJ, Zipper CE. 2018 Benthic macroinvertebrate community response to salinization in headwater streams in Appalachia USA over multiple years. *Ecol. Indicat.* **91**, 645–656. (doi:10.1016/j.ecolind.2018.04.031)
15. Ladrera R, Canedo-Argüelles M, Prat i Fornells N. 2017 Impact of potash mining in streams: the Llobregat basin (northeast Spain) as a case study. *J. Limnol.* **76**, 343–354.
16. Olmstead SM, Muehlenbachs LA, Jhii-Shyang S, Chu ZY, Krupnick AJ. 2013 Shale gas development impacts on surface water quality in Pennsylvania. *Proc. Natl. Acad. Sci. USA* **110**, 4962–4967. (doi:10.1073/pnas.1213871110)
17. Cozzarelli IM *et al.* 2017 Environmental signatures and effects of an oil and gas wastewater spill in the Williston Basin, North Dakota. *Sci. Total Environ.* **579**, 1781–1793. (doi:10.1016/j.scitotenv.2016.11.157)
18. Brittingham MC, Maloney KO, Farag AM, Harper DD, Bowen ZH. 2014 Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats. *Environ. Sci. Technol.* **48**, 11 034–11 047. (doi:10.1021/es5020482)

19. Entrekin S, Evans-White M, Johnson B, Hagenbuch E. 2011 Rapid expansion of natural gas development poses a threat to surface waters. *Front. Ecol. Environ.* **9**, 503–511. (doi:10.1890/110053)

20. Griffith MB. 2014 Natural variation and current reference for specific conductivity and major ions in wadeable streams of the conterminous USA. *Freshwater Sci.* **33**, 1–17. (doi:10.1086/674704)

21. ANZECC, ARMCANZ. 2000 *Australian and New Zealand guidelines for freshwater and marine water quality*, vol. 1, The guidelines (ANZECC and ARMCANZ).

22. U.S. Environmental Protection Agency. 2002 *National recommended water quality criteria: 2002 EPA 822-R-02-047*, office of water. Washington, DC: EPA.

23. Hart BT, Bailey P, Edwards R, Horte K, James K, McMahon A, Meredith C, Swadling K. 1991 A review of the salt sensitivity of the Australian freshwater biota. *Hydrobiologia* **210**, 105–144. (doi:10.1007/BF00014327)

24. Hart BT, Bailey P, Edwards R, Horte K, James K, McMahon A, Meredith C, Swadling K. 1990 Effects of salinity on river, stream and wetland ecosystems in Victoria, Australia. *Water Res.* **24**, 1103–1117. (doi:10.1016/0043-1354(90)90173-4)

25. Castillo AM, Sharpe DM, Ghalambor CK, De León LF. 2018 Exploring the effects of salinization on trophic diversity in freshwater ecosystems: a quantitative review. *Hydrobiologia* **807**, 1–17. (doi:10.1007/s10750-017-3403-0)

26. Davis J *et al.* 2015 When trends intersect: the challenge of protecting freshwater ecosystems under multiple land use and hydrological intensification scenarios. *Sci. Total Environ.* **534**, 65–78. (doi:10.1016/j.scitotenv.2015.03.127)

27. Williams WD. 1999 Salinisation: a major threat to water resources in the arid and semi-arid regions of the world. *Lakes Reserv. Res. Manage.* **4**, 85–91. (doi:10.1046/j.1440-1770.1999.00089.x)

28. Patterson LA *et al.* 2017 Unconventional oil and gas spills: risks, mitigation priorities, and state reporting requirements. *Environ. Sci. Technol.* **51**, 2563–2573. (doi:10.1021/acs.est.6b05749)

29. Canadian Council of Ministers of the Environment. 1999 *Canadian water quality guidelines for the protection of aquatic life*, in *Canadian environmental quality guidelines*. Winnipeg, Canada: CCME.

30. USEPA. 1999 *National recommended water quality criteria*. United States Environmental Protection Agency – correction, EPA 822-Z-99-001. Office of Water, US Environmental Protection Agency, Washington, DC, USA.

31. Kaspari M, Yanoviak SP, Dudley R, Yuan M, Clay NA. 2009 Sodium shortage as a constraint on the carbon cycle in an inland tropical rainforest. *Proc. Natl Acad. Sci. USA* **106**, 19 405–19 409. (doi:10.1073/pnas.0906448106)

32. Kaspari M, Clay NA, Donoso DA, Yanoviak SP. 2014 Sodium fertilization increases termites and enhances decomposition in an Amazonian forest. *Ecology* **95**, 795–800. (doi:10.1890/13-1274.1)

33. Clay NA, Yanoviak SP, Kaspari M. 2014 Short-term sodium inputs attract microbi-detritivores and their predators. *Soil Biol. Biochem.* **75**, 248–253. (doi:10.1016/j.soilbio.2014.04.021)

34. Kefford BJ, Schäfer RB, Metzeling L. 2012 Risk assessment of salinity and turbidity in Victoria (Australia) to stream insects' community structure does not always protect functional traits. *Sci. Total Environ.* **415**, 61–68. (doi:10.1016/j.scitotenv.2011.05.056)

35. Kefford BJ. 2019 Why are mayflies (Ephemeroptera) lost following small increases in salinity? Three conceptual osmophysiological hypotheses. *Phil. Trans. R. Soc. B* **374**, 20180021. (doi:10.1098/rstb.2018.0021)

36. Buchwalter DB, Jenkins JJ, Curtis LR. 2003 Temperature influences on water permeability and chlorpyrifos uptake in aquatic insects with differing respiratory strategies. *Environ. Toxicol. Chem.* **22**, 2806–2812. (doi:10.1897/02-350)

37. Kefford B, Dunlop J, Nugegoda D, Choy S. 2007 Understanding salinity thresholds in freshwater biodiversity: freshwater to saline transition. In *Salt, nutrient, sediment and interactions: findings from the National River Contaminants Program* (eds S Lovett, P Price, B Edgar), pp. 9–40. Canberra, Australia: Land & Water Australia.

38. Scheibener S, Richardi V, Buchwalter D. 2016 Comparative sodium transport patterns provide clues for understanding salinity and metal responses in aquatic insects. *Aquat. Toxicol.* **171**, 20–29. (doi:10.1016/j.aquatox.2015.12.006)

39. Buchwalter D, Scheibener S, Chou H, Soucek D, Elphick J. 2019 Are sulfate effects in the mayfly *Neocloeon triangulifer* driven by the cost of ion regulation? *Phil. Trans. R. Soc. B* **374**, 20180013. (doi:10.1098/rstb.2018.0013)

40. Juniper S, Abbott L. 1993 Vesicular-arbuscular mycorrhizas and soil salinity. *Mycorrhiza* **4**, 45–57. (doi:10.1007/BF00204058)

41. Canhoto C, Simões S, Gonçalves AL, Guilhermino L, Bärlocher F. 2017 Stream salinization and fungal-mediated leaf decomposition: a microcosm study. *Sci. Total Environ.* **599**, 1638–1645. (doi:10.1016/j.scitotenv.2017.05.101)

42. Gonçalves AL, Carvalho A, Bärlocher F, Canhoto C. 2019 Are fungal strains from salinized streams adapted to salt-rich conditions? *Phil. Trans. R. Soc. B* **374**, 20180018. (doi:10.1098/rstb.2018.0018)

43. Griffith MB. 2017 Toxicological perspective on the osmoregulation and ionoregulation physiology of major ions by freshwater animals: teleost fish, Crustacea, aquatic insects, and Mollusca. *Environ. Toxicol. Chem.* **36**, 576–600. (doi:10.1002/etc.3676)

44. Dowse R, Palmer CG, Hills K, Torpy F, Kefford B. 2017 The mayfly nymph *Austrophlebioides pusillus* Harker defies common osmoregulatory assumptions. *R. Soc. open sci.* **4**, 160520. (doi:10.1098/rsos.160520)

45. U.S. EPA. 2011 *A field-based aquatic life benchmark for conductivity in central Appalachian streams (final report)*. EPA/600/R-10/023F. Washington, DC: U.S. Environmental Protection Agency.

46. Berger E, Frör O, Schäfer RB. 2019 Salinity impacts on river ecosystem processes: a critical mini-review. *Phil. Trans. R. Soc. B* **374**, 20180010. (doi:10.1098/rstb.2018.0010)

47. Olson JR, Hawkins CP. 2017 Effects of total dissolved solids on growth and mortality predict distributions of stream macroinvertebrates. *Freshw. Biol.* **62**, 779–791. (doi:10.1111/fwb.12901)

48. Bogart SJ, Azizishirazi A, Pyle GG. 2019 Challenges and future prospects for developing Ca and Mg water quality guidelines: a meta-analysis. *Phil. Trans. R. Soc. B* **374**, 20180364. (doi:10.1098/rstb.2018.0364)

49. Jesus JM, Danko AS, Fiúza A, Borges M.-T. 2015 Phytoremediation of salt-affected soils: a review of processes, applicability, and the impact of climate change. *Environ. Sci. Pollut. Res.* **22**, 6511–6525. (doi:10.1007/s11356-015-4205-4)

50. Sauer FG, Bundschuh M, Zubrod JP, Schäfer RB, Thompson K, Kefford BJ. 2016 Effects of salinity on leaf breakdown: dryland salinity versus salinity from a coalmine. *Aquat. Toxicol.* **177**, 425–432. (doi:10.1016/j.aquatox.2016.06.014)

51. Clay NA, Donoso DA, Kaspari M. 2015 Urine as an important source of sodium increases decomposition in an inland but not coastal tropical forest. *Oecologia* **177**, 571–579. (doi:10.1007/s00442-014-3183-4)

52. Chhabra R. 1996 *Soil salinity and water quality*. Brookfield, VT: AA Balkema Publishers.

53. Wilcox DA. 1986 The effects of deicing salts on vegetation in Pinhook Bog, Indiana. *Can. J. Bot.* **64**, 865–874. (doi:10.1139/b86-113)

54. Canedo-Arguelles M, Sala M, Peixoto G, Prat N, Faria M, Soares AM, Barata C, Kefford B. 2016 Can salinity trigger cascade effects on streams? A mesocosm approach. *Sci. Total Environ.* **540**, 3–10. (doi:10.1016/j.scitotenv.2015.03.039)

55. Moore JC *et al.* 2004 Detritus, trophic dynamics and biodiversity. *Ecol. Lett.* **7**, 584–600. (doi:10.1111/j.1461-0248.2004.00606.x)

56. Gregory SV, Swanson FJ, McKee WA, Cummins KW. 1991 An ecosystem perspective of riparian zones. *BioScience* **41**, 540–551. (10.2307/1311607)

57. Gregory SV, Lamberti GA, Kelly M, Moore S. 1989 Influence of valley floor landforms on stream ecosystems. In *Proc. California riparian systems conference: protection, management and restoration for the 1990s*, 22–24 September 1998, Davis, CA. Gen. Tech Rep. PSW-GTR-110, Berkeley, CA: Pacific Southwest Forest and Range Exp. Station, US Dep of Agriculture, pp. 3–8. vol. 110.

58. Hieber M, Gessner MO. 2002 Contribution of stream detritivores, fungi, and bacteria to leaf breakdown based on biomass estimates. *Ecology* **83**, 1026–1038. (doi:10.1890/0012-9658(2002)083[1026:COSDFA]2.0.CO;2)

59. Wallace JB, Webster JR. 1996 The role of macroinvertebrates in stream ecosystem function. *Annu. Rev. Entomol.* **41**, 115–139. (doi:10.1146/annurev.en.41.010196.000555)

60. Santonja M, Pellan L, Piscart C. 2018 Macroinvertebrate identity mediates the effects of litter quality and microbial conditioning on leaf litter recycling in temperate streams. *Ecol. Evol.* **8**, 2542–2553. (doi:10.1002/ece3.3790)

61. Wallace JB, Eggert SL, Meyer JL, Webster JR. 1997 Multiple trophic levels of a forest stream linked to terrestrial litter inputs. *Science* **277**, 102–104. (doi:10.1126/science.277.5322.102)

62. Swan CM, DePalma CA. 2012 Elevated chloride and consumer presence independently influence processing of stream detritus. *Urban Ecosyst.* **15**, 625–635. (doi:10.1007/s11252-011-0210-7)

63. Velasco J, Gutiérrez-Cánovas C, Botella-Cruz M, Sánchez-Fernández D, Arribas P, Carbonell JA, Millán A, Pallarés S. 2019 Effects of salinity changes on aquatic organisms in a multiple stressor context. *Phil. Trans. R. Soc. B* **374**, 20180011. (doi:10.1098/rstb.2018.0011)

64. Anderson NH, Sedell JR. 1979 Detritus processing by macroinvertebrates in stream ecosystems. *Annu. Rev. Entomol.* **24**, 351–377. (doi:10.1146/annurev.en.24.010179.002031)

65. Cross WF, Wallace JB, Rosemond AD, Eggert SL. 2006 Whole-system nutrient enrichment increases secondary production in a detritus-based ecosystem. *Ecology* **87**, 1556–1565. (doi:10.1890/0012-9658(2006)87[1556:WNEISP]2.0.CO;2)

66. Eggert SL, Wallace JB. 2003 Litter breakdown and invertebrate detritivores in a resource-depleted Appalachian stream. *Archiv Fur Hydrobiologie* **156**, 315–338. (doi:10.1127/0003-9136/2003/0156-0315)

67. Baxter CV, Fausch KD, Carl Saunders W. 2005 Tangled webs: reciprocal flows of invertebrate prey link streams and riparian zones. *Freshw. Biol.* **50**, 201–220. (doi:10.1111/j.1365-2427.2004.01328.x)

68. Rosi-Marshall EJ, Wallace JB. 2002 Invertebrate food webs along a stream resource gradient. *Freshw. Biol.* **47**, 129–141. (doi:10.1046/j.1365-2427.2002.00786.x)

69. Tyree M, Clay N, Polaskey S, Entrekin S. 2016 Salt in our streams: even small sodium additions can have negative effects on detritivores. *Hydrobiologia* **775**, 109–122. (doi:10.1007/s10750-016-2718-6)

70. Cook LJ, Francoeur SN. 2013 Effects of simulated short-term road salt exposure on lotic periphyton function. *J. Freshw. Ecol.* **28**, 211–223. (doi:10.1080/02705060.2012.722066)

71. Devitt D, Wright L, Landau F, Apodaca L. 2014 Deicing salts; assessing distribution, ion accumulation in plants and the response of plants to different loading rates and salt mixtures. *Environ. Nat. Resour. Res.* **4**, 73. (doi:10.5539/enrr.v4n1p73)

72. Greenway H, Munns R. 1980 Mechanisms of salt tolerance in nonhalophytes. *Annu. Rev. Plant Physiol.* **31**, 149–190. (doi:10.1146/annurev.pp.31.060180.001053)

73. Green SM, Machin R, Cresser MS. 2009 Does road salting induce or ameliorate DOC mobilisation from roadside soils to surface waters in the long term? *Environ. Monit. Assess.* **153**, 435–448. (doi:10.1007/s10661-008-0369-4)

74. Odum EP, Finn JT, Franz EH. 1979 Perturbation theory and the subsidy-stress gradient. *Bioscience* **29**, 349–352. (doi:10.2307/1307690) (doi:10.1016/j.jaridenv.2010.12.010)

75. Gardner KM, Royer TV. 2010 Effect of road salt application on seasonal chloride concentrations and toxicity in south-central Indiana streams. *J. Environ. Qual.* **39**, 1036–1042. (doi:10.2134/jeq2009.0402)

76. Swan CM, Palmer MA. 2006 Preferential feeding by an aquatic consumer mediates non-additive decomposition of speciose leaf litter. *Oecologia* **149**, 107–114. (doi:10.1007/s00442-006-0436-x)

77. Schäfer RB, Bundschuh M, Rouch DA, Szöcs E, Peter C, Pettigrove V, Schulz R, Nugegoda D, Kefford BJ. 2012 Effects of pesticide toxicity, salinity and other environmental variables on selected ecosystem functions in streams and the relevance for ecosystem services. *Sci. Total Environ.* **415**, 69–78. (doi:10.1016/j.scitotenv.2011.05.063)

78. Snronan K, Kavr K. 1988 Occurrence and survival of aquatic hyphomycetes in brackish and sea water. *Arch Hydrobiol.* **113**, 153–160.

79. Sridhar K, Bärlocher F. 1997 Water chemistry and sporulation by aquatic hyphomycetes. *Mycol. Res.* **101**, 591–596. (doi:10.1017/S0953756296003024)

80. Müller-Haeckel A, Marvanová L. 1979 Freshwater hyphomycetes in brackish and sea water. *Bot. Mar.* **22**, 421–424. (doi:10.1515/botm.1979.22.7.421)

81. Stoler AB, Hintz WD, Jones DK, Lind L, Mattes BM, Schuler MS, Relyea RA. 2017 Leaf litter mediates the negative effect of road salt on forested wetland communities. *Freshw. Sci.* **36**, 415–426. (doi:10.1086/692139)

82. Bencherif K, Boutekrabt A, Fontaine J, Laruelle F, Dalpè Y, Sahraoui AL-H. 2015 Impact of soil salinity on arbuscular mycorrhizal fungi biodiversity and microflora biomass associated with *Tamarix articulata* Vahl rhizosphere in arid and semi-arid Algerian areas. *Sci. Total Environ.* **533**, 488–494. (doi:10.1016/j.scitotenv.2015.07.007)

83. Franco E, Troncozo MI, Baez M, Mirifco MV, Robledo GL, Balatti PA, Saparrat MC. 2018 *Fusarium equiseti* LPSC 1166 and its *in vitro* role in the decay of *Heterostachys ritteriana* leaf litter. *Folia Microbiol.* **63**, 169–179. (doi:10.1007/s12223-017-0541-8)

84. Silva ED, Ribeiro R, Ferreira-Silva S, Viégas R, Silveira J. 2010 Comparative effects of salinity and water stress on photosynthesis, water relations and growth of *Jatropha curcas* plants. *J. Arid Environ.* **74**, 1130–1137. (doi:10.1016/j.jaridenv.2010.05.036)

85. Brooks BW *et al.* 2016 Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems? *Environ. Toxicol. Chem.* **35**, 6–13. (doi:10.1002/etc.3220)

86. Tank JL, Rosi-Marshall EJ, Griffiths NA, Entrekin SA, Stephen ML. 2010 A review of allochthonous organic matter dynamics and metabolism in streams. *J. North. Am. Benthol. Soc.* **29**, 118–146. (doi:10.1899/08-170.1)

87. East JL, Wilcut C, Pease AA. 2017 Aquatic food-web structure along a salinized dryland river. *Freshw. Biol.* **62**, 681–694. (doi:10.1111/fwb.12893)

88. Millán A, Velasco J, Gutiérrez-Cánovas C, Arribas P, Picazo F, Sánchez-Fernández D, Abellán P. 2011 Mediterranean saline streams in southeast Spain: what do we know? *J. Arid Environ.* **75**, 1352–1359. (doi:10.1016/j.jaridenv.2010.12.010)

89. Odum WE, Zieman JC, Heald EJ. 1973 The importance of vascular plant detritus to estuaries. In *Proc. coastal marsh and estuary management symposium*, pp. 91–114. Baton Rouge, Louisiana: Louisiana State University Division of Continuing Education.

90. Dudgeon D, Wu KKY. 1999 Leaf litter in a tropical stream: food or substrate for macroinvertebrates? *Arch Hydrobiol.* **146**, 65–82. (doi:10.1127/archiv-hydrobiol/146/1999/65)

91. Brett MT *et al.* 2017 How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems? *Freshw. Biol.* **62**, 833–853. (doi:10.1111/fwb.12909)

92. Kuehn KA, Francoeur SN, Findlay RH, Neely RK. 2014 Priming in the microbial landscape: periphytic algal stimulation of litter-associated microbial decomposers. *Ecology* **95**, 749–762. (doi:10.1890/13-0430.1)

93. Paerl HW, Huisman J. 2008 Blooms like it hot. *Science* **320**, 57. (doi:10.1126/science.1155398)

94. Schulz C-J, Cañedo-Argüelles M. 2019 Lost in translation: the German literature on freshwater salinization. *Phil. Trans. R. Soc. B* **374**, 20180007. (doi:10.1098/rstb.2018.0007)

95. Zuo Z-J, Zhu Y-R, Bai Y-L, Wang Y. 2012 Volatile communication between *Chlamydomonas reinhardtii* cells under salt stress. *Biochem. Syst. Ecol.* **40**, 19–24. (doi:10.1016/j.bse.2011.09.007)

96. Moore DJ, Reed RH, Stewart DP. 1985 Responses of cyanobacteria to low level osmotic stress: implications for the use of buffers. *J. Gen. Microbiol.* **131**, 1267–1272.

97. Joset F, Jeanjean R, Hagemann M. 1996 Dynamics of the response of cyanobacteria to salt stress: deciphering the molecular events. *Physiol. Plant* **96**, 738–744. (doi:10.1111/j.1399-3054.1996.tb00251.x)

98. Cañedo-Argüelles M, Bundschuh M, Gutiérrez-Cánovas C, Kefford BJ, Prat N, Trobajo R, Schäfer RB. 2014 Effects of repeated salt pulses on ecosystem structure and functions in a stream mesocosm. *Sci. Total Environ.* **476–477**, 634–642. (doi:10.1016/j.scitotenv.2013.12.067)

99. Muylaert K, Sabbe K, Vyverman W. 2009 Changes in phytoplankton diversity and community composition along the salinity gradient of the Schelde estuary (Belgium/The Netherlands). *Estuar. Coast. Shelf Sci.* **82**, 335–340. (doi:10.1016/j.ecss.2009.01.024)

100. Bray JP, Reich J, Nichols SJ, Kon Kam King G, Mac Nally R, Thompson R, O'Reilly-Nugent A, Kefford BJ. 2019 Biological interactions mediate context and species-specific sensitivities to salinity. *Phil. Trans. R. Soc. B* **374**, 20180020. (doi:10.1098/rstb.2018.0020)

101. Potapova M, Charles DF. 2003 Distribution of benthic diatoms in US rivers in relation to conductivity and ionic composition. *Freshw. Biol.* **48**, 1311–1328. (doi:10.1046/j.1365-2427.2003.01080.x)

102. Guo F, Kainz MJ, Valdez D, Sheldon F, Bunn SE. 2016 High-quality algae attached to leaf litter boost invertebrate shredder growth. *Freshw. Sci.* **35**, 1213–1221. (doi:10.1086/688667)

103. Arsuffi T, Suberkropp K. 1989 Selective feeding by shredders on leaf-colonizing stream fungi: comparison of macroinvertebrate taxa. *Oecologia* **79**, 30–37. (doi:10.1007/BF00378236)

104. Barlocher F. 1985 The role of fungi in the nutrition of stream macroinvertebrates. *Bot. J. Linn. Soc.* **91**, 83–94. (doi:10.1111/j.1095-8339.1985.tb01137.x)

105. Bundschuh M, McKie BG. 2016 An ecological and ecotoxicological perspective on fine particulate organic matter in streams. *Freshw. Biol.* **61**, 2063–2074. (doi:10.1111/fwb.12608)

106. Wotton RS, Malmqvist B, Muotka T, Larsson K. 1998 Fecal pellets from a dense aggregation of suspension-feeders in a stream: an example of ecosystem engineering. *Limnol. Oceanogr.* **43**, 719–725. (doi:10.4319/lo.1998.43.4.0719)

107. Cuffney TF, Wallace JB, Lugthart GJ. 1990 Experimental-evidence quantifying the role of benthic invertebrates in organic-matter dynamics of headwater streams. *Freshw. Biol.* **23**, 281–299. (doi:10.1111/j.1365-2427.1990.tb00272.x)

108. Lamberti GA, Chaloner DT, Hershey AE. 2010 Linkages among aquatic ecosystems. *J. North. Am. Benthol. Soc.* **29**, 245–263. (doi:10.1899/08-166.1)

109. Jackson JK, Fisher SG. 1986 Secondary production, emergence, and export of aquatic insects of a Sonoran desert stream. *Ecology* **67**, 629–638. (doi:10.2307/1937686)

110. Handa IT *et al.* 2014 Consequences of biodiversity loss for litter decomposition across biomes. *Nature* **509**, 218. (doi:10.1038/nature13247)

111. Boersma M, Elser JJ. 2006 Too much of a good thing: on stoichiometrically balanced diets and maximal growth. *Ecology* **87**, 1325–1330. (doi:10.1890/0012-9658(2006)87[1325:TMOAGT]2.0.C0;2)

112. Bullejos FJ, Carrillo P, Gorokhova E, Medina-Sánchez JM, Balseiro EG, Villar-Argaiz M. 2014 Shifts in food quality for herbivorous consumer growth: multiple golden means in the life history. *Ecology* **95**, 1272–1284. (doi:10.1890/13-0410.1)

113. Creed RP, Cherry RP, Pflaum JR, Wood CJ. 2009 Dominant species can produce a negative relationship between species diversity and ecosystem function. *Oikos* **118**, 723–732. (doi:10.1111/j.1600-0706.2008.17212.x)

114. Schaefer RB, Kefford BJ, Metzeling L, Liess M, Burgett S, Marchant R, Pettigrove V, Goonan P, Nugegoda D. 2011 A trait database of stream invertebrates for the ecological risk assessment of single and combined effects of salinity and pesticides in South-East Australia. *Sci. Total Environ.* **409**, 2055–2063. (doi:10.1016/j.scitotenv.2011.01.053)

115. Clements WH, Kotalik C. 2016 Effects of major ions on natural benthic communities: an experimental assessment of the US Environmental Protection Agency aquatic life benchmark for conductivity. *Freshw. Sci.* **35**, 126–138. (doi:10.1086/685085)

116. Pond GJ, Passmore ME, Pointon ND, Felbinger JK, Walker CA, Krock KJ, Fulton JB, Nash WL. 2014 Long-term impacts on macroinvertebrates downstream of reclaimed mountaintop mining valley fills in central Appalachia. *Environ. Manag.* **54**, 919–933. (doi:10.1007/s00267-014-0319-6)

117. Boehme EA, Zipper CE, Schoenholtz SH, Soucek DJ, Timpano AJ. 2016 Temporal dynamics of benthic macroinvertebrate communities and their response to elevated specific conductance in Appalachian coalfield headwater streams. *Ecol. Indicat.* **64**, 171–180. (doi:10.1016/j.ecolind.2015.12.020)

118. Timpano AJ, Schoenholtz SH, Soucek DJ, Zipper CE. 2015 Salinity as a limiting factor for biological condition in mining-influenced central Appalachian headwater streams. *JAWRA J. Am. Water Res. Assoc.* **51**, 240–250. (doi:10.1111/jawr.12247)

119. Hassell KL, Kefford BJ, Nugegoda D. 2006 Sub-lethal and chronic salinity tolerances of three freshwater insects: *Cloeon* sp. and *Centroptilum* sp. (Ephemeroptera: Baetidae) and *Chironomus* sp. (Diptera: Chironomidae). *J. Exp. Biol.* **209**, 4024–4032. (doi:10.1242/jeb.02457)

120. Nietch CT, Lazorchak JM, Mount D, Clements WH. 2016 Individual and community responses in stream mesocosms with different ionic compositions of conductivity and compared to field-based benchmarks. In *Annual meeting of the society of toxicology and chemistry*, Orlando, FL.

121. Soucek DJ. 2007 Comparison of hardness-and chloride-regulated acute effects of sodium sulfate on two freshwater crustaceans. *Environ. Toxicol. Chem.* **26**, 773–779. (doi:10.1897/06-229R.1)

122. Soucek DJ, Dickinson A. 2015 Full-life chronic toxicity of sodium salts to the mayfly *Neocloeon triangulifer* in tests with laboratory cultured food. *Environ. Toxicol. Chem.* **34**, 2126–2137. (doi:10.1002/etc.3038)

123. Piscart C, Kefford BJ, Beisel J.-N. 2011 Are salinity tolerances of non-native macroinvertebrates in France an indicator of potential for their translocation in a new area? *Limnol. Ecol. Manage. Inland Waters* **41**, 107–112. (doi:10.1016/j.limno.2010.09.002)

124. Szöcs E, Kefford BJ, Schäfer RB. 2012 Is there an interaction of the effects of salinity and pesticides on the community structure of macroinvertebrates? *Sci. Total Environ.* **437**, 121–126. (doi:10.1016/j.scitotenv.2012.07.066)

125. Blasius BJ, Merritt RW. 2002 Field and laboratory investigations on the effects of road salt (NaCl) on stream macroinvertebrate communities. *Environ. Pollut.* **120**, 219–231. (doi:10.1016/s0269-7491(02)00142-2)

126. Parida AK, Das AB. 2005 Salt tolerance and salinity effects on plants: a review. *Ecotoxicol. Environ. Saf.* **60**, 324–349. (doi:10.1016/j.ecoenv.2004.06.010)

127. Zalesny JA, Zalesny RS, Wiese AH, Sexton B, Hall RB. 2008 Sodium and chloride accumulation in leaf, woody, and root tissue of *Populus* after irrigation with landfill leachate. *Environ. Pollut.* **155**, 72–80. (doi:10.1016/j.envpol.2007.10.032)

128. Munns R, Termaat A. 1986 Whole-plant responses to salinity. *Funct. Plant Biol.* **13**, 143–160.

129. Doughty CE, Wolf A, Baraloto C, Malhi Y. 2016 Interdependency of plants and animals in controlling the sodium balance of ecosystems and the impacts of global defaunation. *Ecography* **39**, 204–212. (doi:10.1111/ecog.01589)

130. Bravo A, Harms KE. 2017 The biogeography of sodium in Neotropical figs (Moraceae). *Biotropica* **49**, 18–22. (doi:10.1111/btp.12398)

131. Gharaibeh MA, Eltaif NI, Shunnar OF. 2009 Leaching and reclamation of calcareous saline-sodic soil by moderately saline and moderate-SAR water using gypsum and calcium chloride. *J. Plant Nutr. Soil Sci.* **172**, 713–719. (doi:10.1002/jpln.200700327)

132. Adrover M, Forss A, Ramon G, Vadell J, Moya G, Taberner AM. 2008 Selection of woody species for wastewater enhancement and restoration of riparian woodlands. *J. Environ. Biol.* **29**, 357.

133. Steele MK, Aitkenhead-Peterson JA. 2012 Salt impacts on organic carbon and nitrogen leaching from senesced vegetation. *Biogeochemistry* **112**, 245–259. (doi:10.1007/s10533-012-9722-3)

134. Schulkin J. 1991 *Sodium hunger: the search for a salty taste*. Cambridge, UK: Cambridge University Press.

135. Subbarao G, Ito O, Berry W, Wheeler R. 2003 Sodium: a functional plant nutrient. *Crit. Rev. Plant Sci.* **22**, 391–416.

136. Schowalter T, Webb JW, Crossley D. 1981 Community structure and nutrient content of canopy arthropods in clearcut and uncut forest ecosystems. *Ecology* **62**, 1010–1019. (doi:10.2307/1937000)

137. Kaspari M. 2014 Road salt offers insights into the connections between diet and neural development. *Proc. Natl. Acad. Sci. USA* **111**, 10 033–10 034. (doi:10.1073/pnas.1408653111)

138. Jia Y *et al.* 2015 Sodium limits litter decomposition rates in a subtropical forest: additional tests of the sodium ecosystem respiration hypothesis. *Appl. Soil Ecol.* **93**, 98–104. (doi:10.1016/j.apsoil.2015.04.012)

139. Aitkenhead-Peterson JA, McDowell WH, Neff JC. 2003 Sources, production, and regulation of allochthonous dissolved organic matter inputs to surface waters. In *Aquatic ecosystems* (eds SEG Findlay, RL Sinsabaugh), pp. 25–70. Amsterdam, The Netherlands: Elsevier.

140. Evans C, Monteith D, Cooper D. 2005 Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. *Environ. Pollut.* **137**, 55–71. (doi:10.1016/j.envpol.2004.12.031)

141. Webster JR, Meyer JL. 1997 Stream organic matter budgets: introduction. *J. North. Am. Benthol. Soc.* **16**, 5–13.

142. Garzon-Garcia A, Laceby JP, Olley JM, Bunn SE. 2017 Differentiating the sources of fine sediment, organic matter and nitrogen in a subtropical Australian catchment. *Sci. Total Environ.* **575**, 1384–1394. (doi:10.1016/j.scitotenv.2016.09.219)

143. Kaplan LA, Newbold JD, Horn DJV, Dow C, Aufdenkampe A, Jackson J. 2006 Organic matter transport in New York City drinking-water-supply

watersheds. *J. North. Am. Benthol. Soc.* **25**, 912–927. (doi:10.1899/0887-3593(2006)025[0912:OMTINY]2.0.CO;2)

144. Fitzpatrick M, Long D, Pijanowski B. 2007 Exploring the effects of urban and agricultural land use on surface water chemistry, across a regional watershed, using multivariate statistics. *Appl. Geochem.* **22**, 1825–1840. (doi:10.1016/j.apgeochem.2007.03.047)

145. Reuter J, Perdue E. 1977 Importance of heavy metal-organic matter interactions in natural waters. *Geochim. Cosmochim. Acta* **41**, 325–334. (doi:10.1016/0016-7037(77)90240-X)

146. Eshleman K, Hemond H. 1985 The role of organic acids in the acid-base status of surface waters at Bickford Watershed, Massachusetts. *Water Resour. Res.* **21**, 1503–1510. (doi:10.1029/WR021i010p01503)

147. Davies-Colley R, Vant W. 1987 Absorption of light by yellow substance in freshwater lakes. *Limnol. Oceanogr.* **32**, 416–425. (doi:10.4319/lo.1987.32.2.0416)

148. Wilcox HS, Wallace JB, Meyer JL, Benstead JP. 2005 Effects of labile carbon addition on a headwater stream food web. *Limnol. Oceanogr.* **50**, 1300–1312. (doi:10.4319/lo.2005.50.4.1300)

149. Skene T, Oades J, Clarke P, Skjemstad J. 1997 The influence of inorganic matrices on the decomposition of *Eucalyptus* litter. *Aust. J. Soil Res.* **35**, 73–87. (doi:10.1071/S96035)

150. McGlynn BL, McDonnell JJ. 2003 Role of discrete landscape units in controlling catchment dissolved organic carbon dynamics. *Water Resour. Res.* **39**, 1–18. (doi:10.1029/2002WR001525)

151. Nakano S, Miyasaka H, Kuhara N. 1999 Terrestrial-aquatic linkages: riparian arthropod inputs alter trophic cascades in a stream food web. *Ecology* **80**, 2435–2441.

152. Davis JM, Rosemond AD, Small GE. 2011 Increasing donor ecosystem productivity decreases terrestrial consumer reliance on a stream resource subsidy. *Oecologia* **167**, 821–834. (doi:10.1007/s00442-011-2026-9)

153. Wesner JS, Kraus JM, Schmidt TS, Walters DM, Clements WH. 2014 Metamorphosis enhances the effects of metal exposure on the mayfly, *Centroptilum triangulifer*. *Environ. Sci. Technol.* **48**, 10 415–10 422. (doi:10.1021/es501914y)

154. Chumchal MM, Drenner RW, Hall MN, Polk DK, Williams EB, Ortega-Rodriguez CL, Kennedy JH. 2018 Seasonality of dipteran-mediated methylmercury flux from ponds. *Environ. Toxicol. Chem.* **37**, 1846–1851. (doi:10.1002/etc.4134)

155. Walters DM, Raikow DF, Hammerschmidt CR, Mehling MG, Kovach A, Oris JT. 2015 Methylmercury bioaccumulation in stream food webs declines with increasing primary production. *Environ. Sci. Technol.* **49**, 7762–7769. (doi:10.1021/acs.est.5b00911)

156. Craig LS *et al.* 2017 Meeting the challenge of interacting threats in freshwater ecosystems: a call to scientists and managers. *Elem. Sci. Anth.* **5**, 72. (doi:10.1525/elementa.256)

157. Kaushal SS *et al.* 2019 Novel ‘chemical cocktails’ in inland waters are a consequence of the freshwater salinization syndrome. *Phil. Trans. R. Soc. B* **374**, 20180017. (doi:10.1098/rstb.2018.0017)

158. Stoler AB, Burke DJ, Relyea RA. 2016 Litter chemistry and chemical diversity drive ecosystem processes in forest ponds. *Ecology* **97**, 1783–1795. (doi:10.1890/15-1786.1)