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ABSTRACT
In this paper, we use continuum mechanics to develop an analytic treatment of elastic wave scattering from an

embedded cylinder and show that a classic treatise on the subject contains important errors for oblique angles of
incidence, which we correct. We also develop missing equations for the scattering cross section at oblique angles
and study the sensitivity of the scattering cross section as a function of elastodynamic contrast mechanisms. We find
that in the Mie scattering regime for oblique angles of incidence, both elastic and density contrast are important
mechanisms by which scattering can be controlled, but that their effects can offset one another, similar to the theory
of reflection at flat interfaces. In comparison, we find that in the Rayleigh scattering regime elastic and density
contrast are always complimentary toward increasing scattering cross section, but for sufficiently high density
contrast, the scattering cross section for incident compressional and y-transverse modes is nearly independent
of elastic contrast. The solution developed captures the scattering physics for all possible incident elastic wave
orientations, polarizations and wavelengths including the transition from Rayleigh to geometric scattering regimes,
so long as the continuum approximation holds. The method could for example enable calculation of the thermal
conductivity tensor from microscopic principles which requires knowledge of the scattering cross section spanning
all possible incident elastic wave orientations and polarizations at thermally excited wavelengths.

Nomenclature
â Incident wavevector directional unit vector
a Radius of embedded cylinder [m]
φi Compression wave propagation angle [rad]. Subscript denotes Region 1 or 2.
ψi Transverse wave propagation angle [rad]. Subscript denotes Region 1 or 2.
ũ Total displacement field [m]
t time [s]
ρ Density [kg/m3-s]
µi 1st Lamé constant [Pa], Subscript denotes Region 1 or 2.
λi 2nd Lamé constant [Pa], Subscript denotes Region 1 or 2.
Ci j Components of the linear elastic tensor (i, j = 1−6) [Pa]
Ũ Spatial portion of displacement field [m]
ω Wave frequency [rad/s]
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u0 Displacement amplitude [m]
Φi Generating function for incident (i = inc) or scattered compressional spatial wave displacements in Region 1 (i = 1) or

2 (i = 2).
Θi Generating functions for incident (i = inc) or scattered y-transverse spatial wave displacements.
χi Generating functions for incident (i = inc) or scattered quasi z-transverse spatial wave displacements.
ki Wavenumber [m−1]. Subscript denotes wavetype and medium: i = 1 (compressional in Region 1), i = 2 (compressional

in Region 2), i = I (transverse in Region 1), i = II (transverse in Region 2), i = S (transverse wave in a generic medium).
k′i Projection of ki onto the x axis.
K Amplitude of wavevector projected onto z-axis [m−1].
L̃i Compressional spatial portion of wave displacement [m]. Subscript denotes incident (i = inc) or scattered wave compo-

nents in the Region 1 (i = 1) or Region 2 (i = 2)
M̃i y-transverse spatial portion of wave displacement [m]. Subscript denotes incident (i = inc) or scattered wave compo-

nents in either Region 1 (i = 1) or Region 2 (i = 2)
Ñi Quasi z-transverse spatial portion of wave displacement [m]. Subscript denotes incident (i = inc) or scattered wave

components in either Region 1 (i = 1) or Region 2 (i = 2)
ci Speed of sound [m/s]. Subscript denotes wavetype and medium: i = 1 (compressional, Region 1), i = 2 (compressional,

Region 2), i = I (transverse, Region 1), i = II (transverse, Region 2).
xi Non-dimensional wavenumber. Subscript denotes wavetype and medium: i = 1 (compressional, Region 1), i = 2 (com-

pressional, Region 2), i = I (transverse, Region 1), i = II (transverse, Region 2).
x′i Non-dimensional projected wavenumber. Subscript denotes wavetype and medium: i = 1 (compressional, Region 1),

i = 2 (compressional, Region 2), i = I (transverse, Region 1), i = II (transverse, Region 2).
Ti j Spatial portion of the stress tensor [Pa]
βn Non-dimensional expansion coefficients for generation of incident waves
An Non-dimensional expansion coefficients for L̃2

Bn Non-dimensional expansion coefficients for M̃2

Cn Non-dimensional expansion coefficients for Ñ2

Dn Non-dimensional expansion coefficients for L̃1

En Non-dimensional expansion coefficients for M̃1

Fn Non-dimensional expansion coefficients for L̃1

σi j Stress tensor [Pa]
F Time-averaged energy flow [W]
W Time-averaged energy flux [W/m2]
P Time-averaged scattered energy flow [W]
dAi Differential area vector [m2]
Q Total scattering cross section [m]
Qxy Polarization resolved components of scattering cross section [m]. x denotes incident wave polarization: compressional

(x =C) or transverse (x = S). y denotes scattered polarization: compressional (x =C), y-transverse (x = Sy), or quasi-z
transverse (x = Sz).

γ Scattering efficiency, non-dimensional
α Scattering efficiency scaling factor in Rayleigh regime.

1 INTRODUCTION
Continuum mechanics is capable of yielding exact solutions to elastic wave scattering from isolated embedded particles

for simple geometries like cylinders and spheres, where the embedded scatterer conforms to the coordinate axes. Such
solutions can give polarization-specific scattering cross sections, take into account all sources of elastodynamic scattering
contrast, do not rely on perturbation theory, and give results for arbitrary wavevector. White has reported an approach to
calculate the scattered wave displacements for obliquely incident elastic waves from 3 dimensional embedded cylinders [1],
and has experimentally validated the model in 2D (i.e. for wavevectors perpendicular to a cylinder axis). However, we will
demonstrate that there are important errors when applying the equations developed by White to oblique angles of incidence.
In addition, this classic treatise is missing the necessary equations to calculate the scattering cross section at oblique angles
of incidence.

The objective of this manuscript is to redevelop the equations governing the scattered field such that they are corrected,
to provide additional equations which allow the calculation of scattering cross section at oblique angles of incidence, and to
study the polarization-dependant sensitivity of the scattering cross section as a function of elastodynamic contrast mecha-
nisms and angle of incidence.
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2 PROBLEM DEFINITION
Consider the scattering of a plane compressional or shear wave of a single frequency obliquely incident on an infinitely

long isotropically elastic cylindrical discontinuity (medium 2) embedded in a different isotropic elastic medium (medium 1).
Figure 1 shows the orientation of the cylinder and the incident wave with coordinate axes. The incident wave approaches
with propagation direction in the x-z plane, defined by a wavevector along unit vector â ,which has an oblique incidence
relative to the x-y plane. The angle between â and the x-y plane is denoted by φ2, for incident compressional waves or by
ψ2 for shear waves. The incident wave encounters a cylindrical scattering medium with radius a from the z-axis denoted
as region 1. This both produces a scattered wave in medium 2 and excites an internal wave in region 1. The total wave
displacement in region 2 is a superposition of the incident and scattered waves. For continuity, both the displacements and
the traction must be continuous at the interface between regions 1 and 2. If both media are linearly elastic with isotropic
elastic tensors, then the equations of motion inside each medium are

ρ
∂2ũ
∂t2 = (λ+2µ)∇(∇ · ũ)−µ(∇×∇× ũ) (1)

Where ρ is the density of the material, and λ and µ are the Lamé constants. The Lamé constants are easily connected to the
elastic constants: C11 = λ+2µ and C44 = µ. Considering displacements that are temporally sinusoidal (ũ = Ũ(x,y,z)e−iωt ),
any spatial portion of the displacement field, Ũ(x,y,z), for which ũ satisfies Eq. 1 can be expressed as the superposition
of displacements derived from scalar functions (Φ, Θ, and χ) which satisfy scalar Helmholtz equations. In particular (1) if
(∇2 + k2)Φ = 0 then L̃ = ∇Φ is a solution representing a longitudinal wave, (2) if (∇2 + kS

2)Θ = 0 then M̃ = ∇× (ẑΘ) is
a solution representing a transverse wave with displacements polarized along the ẑ× â direction, which is coincident with ŷ
and thus referred to a y-transverse wave from here on. (3) if (∇2 + kS

2)χ = 0 then Ñ = (1/kS)∇×∇× (ẑχ) is a transverse
wave with displacements polarized along ẑ× â× â. These displacements are orthogonal to both L̃ and M̃-type waves and
will be referred to as quasi-z transverse waves because the displacements are in the ẑ direction for waves at ψ2 = 0 (normal
incidence).

2.1 Incident Wave Expressions
The spatial portion of displacement for an incident compressional plane wave is of the form

L̃inc = âu0eik2(xcosφ2+zsinφ2) (2)

which can be derived from the scalar potential Φinc as L̃inc = ∇Φinc where

Φinc =
u0

ik2
eik2(xcosφ2+zsinφ2) (3)

where k2 = ω/c2 and c2 =
√

(λ2 +2µ2)/ρ2 is the sound speed of the compressional wave through region 2. This can be
expressed in cylindrical coordinates as

Φinc =
u0

ik2

∞

∑
n=0

eiKzen(i)
nJn(k2

′r)cos(nθ) (4)

where

en =

{
1 : n = 0
2 : n> 0 (5)

and K ≡ k2 sin(φ2), and k2
′ ≡ k2 cos(φ2).

The displacements due to transverse incident plane waves can be derived from scalar potentials in a similar manner. The
potential

Θinc =
u0

ikII

∞

∑
n=0

eiKzen(i)
nJn(kII

′r)cos(nθ) (6)
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generates a plane y-transverse incident wave via the operation M̃inc = ∇× (ẑΘinc). Note that throughout the paper we denote
the properties of transverse waves using roman numeral subscripts (i.e. kII refers to the wavevector of a transverse wave in
region 2), whereas properties of compressive waves are referred to using arabic subscripts (i.e. k2 refers to the wavevector of
a compressive wave in region 2). Thus, kII = ω/cII and cII =

√
µ2/ρ2 is the sound speed of a shear wave through region 2.

The scalar potential

χinc =− u0

kII

∞

∑
n=0

eiKzen(i)
nJn(kII

′r)cos(nθ) (7)

generates a plane quasi-z-transverse incident wave with displacements along the direction ẑ× â× â via the operation Ñinc =
1/kII[∇×∇× (ẑχinc)].

Given the potential functions, both the spatial portions of the incident wave displacement and stress field can be calcu-
lated. In particular, the radial components of the stress tensor can be obtained in cylindrical coordinates from the displace-
ments using

Trr = λ(∇ ·Ũ)+2µ
∂Ur

∂r
(8)

Trθ = µ
(

r
∂

∂r

(
Uθ

r

)
+

1
r

∂Ur

∂θ

)
(9)

Trz = µ
(

∂Uz

∂r
+

∂Ur

∂z

)
(10)

The calculated displacement and stress fields are given in Tables 2-4 for the three possible polarizations of incident
waves. Table 1 gives the definition of βn, used in Tables 2-4, for each of the three incident polarizations. In some cases, such
as in the calculation of Trr, writing the simplified expressions in Tables 2-4 requires use of the recurrence relations for Bessel
functions to eliminate first order derivatives (see Eq. 9.1.27 in Ref. 2). For convenience we define several non-dimensional
parameters in Eqs. 11-14, so that displacements and stresses may be written on a non-dimensional basis.

x2 = k2r (11)
x2

′ = k2r cos(φ2) (12)
xII = kIIr (13)

xII
′ = kIIr cos(ψ2) (14)

2.2 Scattered Wave Expressions
The scattered wave displacement fields in both region 1 and region 2 can be constructed as the superposition of com-

pressional and shear waves. In region 2, the displacement field can be expressed as

Ũscat,2 = L̃2 + M̃2 + Ñ2 (15)

where

L̃2 = ∑
n=0

An(∇Φn) (16)

M̃2 = ∑
n=0

Bn(∇× (ẑΘn)) (17)
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Ñ2 = 1/kII ∑
n=0

Cn(∇×∇× (ẑχn)) (18)

The permitted scalar functions Φn, Θn, and χn satisfy the scalar Helmholtz equation, and must be chosen to be compatible
with the incident wavevector/polarization at the interface of the cylindrical discontinuity. In region 2, the relevant potentials
are

Φn(r,θ,z) = eiKzHn(k2 cos(φ2)r)
cos(nθ)
sin(nθ)

(19)

Θn(r,θ,z) = eiKzHn(kII cos(ψ2)r)
sin(nθ)
cos(nθ)

(20)

χn(r,θ,z) = eiKzHn(kII cos(ψ2)r)
cos(nθ)
sin(nθ)

(21)

The choice of upper or lower trigonometric function depends on whether the incident wave is longitudinal (upper function)
or transverse (lower function). The wavenumbers must be choosen to have the same frequency as the incident wave, ω =
c2k2 = cIIkII. In region 2, the Hankel function of the first kind, Hn ≡ Jn+ iYn, is chosen because it represents a traveling wave
carrying energy away from the cylinder as opposed to H(2)

n ≡ Jn − iYn which carries energy toward the cylinder, or Jn and
Yn which individually represent standing waves. Analogous arguments can be made to construct the scattered displacement
field in region 1, however in region 1 the displacement field must be finite at the origin. The relevant expansion can be
obtained using Eqs. 15-21, but with a different set of expansion coefficients, using Bessel functions of the first kind, and by
using wavenumber/angles that correspond to region 1. These substitutions are summarized in Table 5 and yield the following
generating potentials for region 1

Φn(r,θ,z) = eiKzJn(k1 cos(φ1)r)
cos(nθ)
sin(nθ)

(22)

Θn(r,θ,z) = eiKzJn(kI cos(ψ1)r)
sin(nθ)
cos(nθ)

(23)

χn(r,θ,z) = eiKzJn(kI cos(ψ1)r)
cos(nθ)
sin(nθ)

(24)

where again the wavenumbers are choosen to allow temporal phase-matching with the incident wave, so that the frequency,
ω = c1k1 = cIkI . The values of K = k2 sin(φ2) = kII sin(ψ2) = k1 sin(φ1) = kI sin(ψ1) must be the same in Eqs. 19-24 in order
for the spatial phase of waves to be matched at the interface of the cylinder, which gives rise to an elastic analog to Snell’s
law.

sinφ1

c1
=

sinψ1

cI
=

sinφ2

c2
=

sinψ2

cII
(25)

Thus, one uses the known angle of incidence (either φ2 or ψ2) to calculate the the remaining three angles from Eqs. 25.
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2.3 Matching Conditions
The displacement and stress tensor fields at the boundary of the cylinder must be continuous at the interface between

region 1 and region 2. This gives the closure necessary to solve for the unknown expansion coefficients An, Bn, Cn, Dn, En,
and Fn defining the scattered waves. At each value n of the summation (n = 0,1,2, · · · ,∞), the matching conditions define a
set of 6 linear algebraic equations to be solved. These can be summarized as

(Ui)
n
L2
+(Ui)

n
M2

+(Ui)
n
N2

+ · · ·
−(Ui)

n
L1
− (Ui)

n
M1

− (Ui)
n
N1

= −(Ui)
n
inc (26)

and

(Tir)
n
L2
+(Tir)

n
M2

+(Tir)
n
N2

+ · · ·
−(Tir)

n
L1
− (Tir)

n
M1

− (Tir)
n
N1

= −(Tir)
n
inc (27)

where in both Eq. 26 and 27 the index, i = r, θ, or z refers to the cylindrical directional component evaluated at the cylinder
surface, and n refers to the index of the summand (not an algebraic power). The displacement expressions for each term
can be obtained by performing the operations in Eq. 16-18 on the potential functions 19-21. The resulting expressions for
the displacements and stresses are given in Tables 6-8 for the scattered wave in region 2. To save space, the expressions
associated with region 1 are not explicitly shown but are easily obtained by the substitutions in Table 5.

Importantly, a number of non-trivial discrepancies are found when the expressions in Tables 6-8 are compared with
those given in Ref. 1 at non-zero angles of incidence. In particular, the expression given for Trr in Table I.A. of Ref. 1, as
well as all six expressions associated with Cn for the stress and displacement components in Table I.B. of that reference are
given incorrectly. In spite of these errors, the expressions in Ref. 1 will still give correct results in the special case where the
angle of incidence is zero. However, in the more general case of oblique incidence, the expressions in the current manuscript
must be used.

3 CALCULATION OF SCATTERING CROSS SECTION
The expansion coefficients of the scattered waves An, Bn, Cn, Dn, En, and Fn, corresponding to any incident wave

of arbitrary polarization and angle of incidence, can be determined by applying the matching conditions, Eqs. 26 and 27,
separated for each index of the summand. However, the displacements/stresses of scattered fields are typically of less direct
importance than the rate that energy is scattered from an embedded object. This is quantified through the scattering cross
section, Q, defined as the rate at which energy is scattered from an embedded object, P, relative to the energy intensity
propagated by the incident plane wave, W . For an embedded cylinder of infinite extent, the units for P are given on a per unit
length basis [W/m], and the units for W are [W/m2]; thus, for a cylinder Q has units of meters [m]. Note that for a sphere, the
units for Q are different, [m2], because then P has units [W]. White has previously given expressions for the scattering cross
section for a cylindrically embedded scatterer subject to an incident elastic wave at normal incidence[1]. Here we develop
expressions for the more general case of oblique angles of incidence; these are required, for example, in applications such as
calculating thermal transport properties due to phonon transport.

The time-averaged energy flow through a surface can be calculated from the time dependent displacements, u j(r,θ,z, t),
and stresses, σi j(r,θ,z, t), as

F =

⟨∫∫ [
σi j(r,θ,z, t) ·

∂u j(r,θ,z, t)
∂t

]
·dAi

⟩
t

(28)

where the outer bracket denotes a time-average. Up until now displacement and stress have been treated as complex quan-
tities, but for calculation of energy flow we are interested in real displacements leading to real stresses. To obtain results in
their real form, complex conjugates of the solutions are added.

σi j(r,θ,z, t) =
1
2

[(
Ti je−iωt)+ (Ti je−iωt)∗] (29)

u j(r,θ,z, t) =
1
2

[(
U je−iωt)+ (U je−iωt)∗] (30)
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Carrying out the time-averaging operation gives an average energy flow

F =
iω
4

∫∫
[(T ∗

i jU j)−(Ti jU∗
j )] ·dAi (31)

The energy flux [W/m2] carried by an incident plane wave, W, can be obtained from this by considering a planar area
perpendicular to the direction of travel, in which case the incident power/area is just the prefactor and integrand of Eq. 31
projected onto the direction of travel.

W =
iω
4
[
(T ∗

i jU j)− (Ti jU∗
j )
]
· âi (32)

After some manipulation it can be shown that the energy flux for incident longitudinal and both transverse polarization are
respectively given by

Wlong =
(λ2 +2µ2)u0

2k2ω

2
(33)

Wtrans =
µ2u0

2kIIω

2
(34)

Simple expressions for the scattered energy can be obtained by applying Eq. 31 on an imaginary cylinder of radius b ≫ a.
In that case the Hankel function takes on the limiting behavior [2]

Hn(x′)→
(

2
πx′

)1/2

ei(x′−(n+1/2)π/2). (35)

Using Hn
′(x′)→ iHn and Hn

′′(x′)→−Hn and taking b → ∞, gives the limiting behavior of wave energy carried by the L, M,
N scattered waves as

PL =
∞

∑
n=0

AnA∗
n (2µ2 +λ2)

(
ωk2

2) (36)

PM =
∞

∑
n=0

BnB∗
n
(
µcos2

ψ2
)(

ωkII
2) (37)

PN =
∞

∑
n=0

CnC∗
n(µcos2

ψ2)
(
ωk2

II
)

(38)

Equations 36-38 are correct regardless of the polarization of incident wave. The scattering cross section for incident waves
of type i (i =compressional (C), y-transverse (Sy) or quasi z-transverse (Sz)) into scattered waves of polarization j is then

Qi j = Pj/Wi (39)

For incident compression waves, these become

QCC =
2
k2

(
2∥A0∥2 +

∞

∑
n=1

∥An∥2

)
(40)
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QCSy =
2
k2

cos2
ψ2

(
2∥B0∥2 +

∞

∑
n=1

∥Bn∥2

)
(41)

QCSz =
2
k2

cos2
ψ2

(
2∥C0∥2 +

∞

∑
n=1

∥Cn∥2

)
(42)

For incident shear waves of either polarization, these become

QSC =
2
kII

(
2∥A0∥2 +

∞

∑
n=1

∥An∥2

)
(43)

QSSy =
2
kII

cos2
ψ2

(
2∥B0∥2 +

∞

∑
n=1

∥Bn∥2

)
(44)

QSSz =
2
kII

cos2
ψ2

(
2∥C0∥2 +

∞

∑
n=1

∥Cn∥2

)
(45)

In the case of obliquely incident shear waves, these expressions differ by a factor of cos2(ψ2) from those derived in Ref [1].
One other important physical aspect of calculating the scattering cross section is that due to Snell’s Law (Eq. 25)

some of the internal and external scattered modes may be evanescent waves. In the case of external scattered modes, this
always happens when a transverse phonon with angle, ψ> sin−1(cT/cL), is incident on a cylinder, producing an evanescent
compressional mode. Evanescent modes can propagate no energy, yet in our formulation, the complex scattering coefficients,
∥An∥, are generally still non-zero. This is because the expansion in Eqn. 35 is not the correct one for imaginary arguments
and does not lead to the form given in Eq. 43, but rather QSC = 0 in that case. Therefore, we set QSC = 0 if Im(φ) < 0.
Otherwise, the math in the preceding sections is correct and requires no special considerations to account for evanescent
modes.

One final practical consideration is the number of terms to be evaluated. In principle, there are an infinite number of
expansion coefficients, An, Bn, Cn, Dn, En, and Fn since n = 0,1,2, · · · ,∞. In the Rayleigh regime, usually only one or two of
the lowest order terms are required for accurate results. However, in the geometric regime a large number of terms (often hun-
dreds or thousands) are required for convergence and accuracy. Thus, we continue the calculation of expansion coefficients
until a relative convergence tolerance for the scattering cross section is met. An open-source MATLAB implementation of
the algorithm described in this manuscript has been made available via GitHub [3].

4 RESULTS AND DISCUSSION
Using the results of the previous section, we now investigate the scattering behavior of elastically embedded cylinders.

In general the scattering cross section of an embedded cylinder is a function of up to 9 geometric and materials parameters:

Q = Q(a,k2 or kII,φ2 or ψ2,λ1,λ2,ρ1,ρ2,µ1,µ2) (46)

Dimensional analysis can reduce the dependence to 6 non-dimensional variables. A convenient choice in the case of incident
compressional waves is

γ = γ

(
k2a,φ2,

ρ1−ρ2

ρ2
,
C11,1−C11,2

C11,2
,
C44,1−C44,2

C44,2
,
C11,2

C44,2

)
. (47)
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A similarly convenient choice in the case of either polarization of incident transverse waves is

γ = γ

(
kIIa,ψ2,

ρ1−ρ2

ρ2
,
C11,1−C11,2

C11,2
,
C44,1−C44,2

C44,2
,
C11,2

C44,2

)
(48)

Here γ ≡ Q
2a is the dimensionless scattering efficiency in 2D, representing the ratio of the scattering cross section relative to

the cylinder’s geometric cross section. ka is called the scattering parameter. The 3rd term is the fractional density contrast
and the 4th and 5th terms are the fractional longitudinal and shear elastic contrast of the two media respectively. The final
terms is the ratio of the longitudinal to shear elastic constants C11/C44 = (λ+2µ)/µ; For group IV and III-V semiconductors
this spans a small range (1.8 <C11/C44 < 2.2 for Si, Ge, GaP, GaAs, InAs, GaSb, InSb, InP). However, most other classes
of cubic materials have higher C11/C44, with some as high as 9 (PbTe = 8.2, PbSe = 7.8, Nb = 8.6). Thus, when embedding
particles with similar crystal structure and bonding chemistry, ∆C11/C11 ≈ ∆C44/C44, but this is generally not true otherwise.
At this point, we should caution that the model developed in the preceding sections is strictly valid only for isotropic media,
which is not the case for single crystals regardless of whether they have cubic crystal structure. However, the degree of
anisotropy is not large in many cubic crystals (in Si for example the longitudinal sound speed in the [111] direction differs
from [100] by about 10%), so it is hoped that the insights from the present model will still prove useful. To understand some
general predictions of the model, we will now explore the scattering efficiency, γ, for some illuminating cases.

In Figure 2, scattering efficiency for phonons at normal incidence angle (ψ2 = 0) is plotted for a NiSi2 cylindrical
discontinuity embedded in a Si0.5Ge0.5 matrix for size parameters ranging from the Rayleigh regime up to the geometric
regime. The properties for these materials are given in Table 9. Some basic features are evident: (1) in the Rayleigh regime,
scattering efficiency scales as γ ∼ (ka)3. Note that this is a different behavior than scattering from embedded spheres, where
γsph ∼ (ka)4 (2) In the geometric regime, γ oscillates about 2. (3) In the intermediate regime, Mie oscillations exist and these
may persist for several orders of magnitude before and after ka = 1.

Figure 3 shows the scattering efficiency as a function of angle-of-incidence for low and high scattering parameter, and
shows how the polarization makeup of the scattered wave changes with angle. Intuitively, based on geometric thinking,
one might expect that scattering would be weaker for waves traveling parallel to the cylinder axis. While this intuition
is confirmed in the geometric limit, it fails for long wavelength compressional waves which are strongly scattered into
transverse waves even for parallel travel; in fact, in the Rayleigh regime compressional waves traveling parallel to the
cylinder scatter more strongly than waves with normal incidence. Similar behavior is not observed for incident transverse
waves, in part because compressional scattered modes are evanescent and carry no energy, while according to Snell’s law,
transverse waves scattering into transverse waves would carry energy along the axis of the cylinder. Thus no energy is
scattered away from the cylinder for transverse waves coincident with the cylinder axis for any wavelength.

The limits of continuum theory as applied to scattering of thermal wavelength vibrations (i.e. phonons) warrant further
discussion. Kakodkar [4] has recently compared the exact continuum model developed in this manuscript to an atomistically
resolved computational model of phonon scattering for embedded cylinders with diameters between 2nm-9nm and for inci-
dent phonon wavelengths spanning the entire Brillouin zone. Kakodkar found excellent agreement between continuum and
atomistically resolved theory for acoustic phonons in the first quarter of the Brillouin zone, which in the case of Ge embed-
ded in Si was sufficient to capture the first Mie scattering oscillation in the toughest case of 2nm cylinder diameters or about
8 atoms wide [4]. However, we should note that in weaker scatterers, the first peak in the Mie oscillations generally occurs
at higher wavenumber (see the longitudinal case in Fig. 2, for example), in which case the continuum model will correctly
predict the lull before the first Mie peak, but will inaccurately describe physics near and above the first Mie oscillation. For
wavevectors k ≳ 0.25kmax continuum theory will fail, and in particular will miss important physical effects such as phonon
dispersion, evanescent modes associated with phonon band gaps or maximum frequencies in the scattering medium, optical
vibration modes, and the edge of the first Brillouin zone [4]. The current method also cannot model scattering of optical
modes by nanostructures since optical modes are not predicted by continuum mechanics. However, the theory developed in
the current manuscript may still of significant use for enabling thermal transport property estimation in fibrous nanocom-
posites because embedded nanostructures in thermal applications are typically designed to scatter long wavelength acoustic
phonons, while other mechanisms such as phonon-phonon and point defect scattering are dominant at high wavevector and
for optical modes. This warrants further investigation but is beyond the scope of this paper.

4.1 Contrast Mechanisms in the Mie and Rayleigh Regimes
The goal of this section is to determine which materials parameters or combinations have the greatest influence on the

scattering efficiency. In the geometric limit, geometry alone determines the scattering efficiency, and thus the materials
parameters are expected to have no influence. However, as shown in Fig. 2, transition to the geometric limit sometimes
requires very large scattering parameter.

On the other hand, in the Mie and Rayleigh regimes the materials properties have great influence on the scattering
cross section. Mie oscillations occur due to wave interference, the degree of which is determined both by geometry and
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phase speed. The later depends on materials properties such as the speed of sound. In order to understand the transition
from Rayleigh to geometric behavior, it is particularly important to understand how the first scattering efficiency peak (at
low scattering parameter) is related to the matrix/particle materials properties. Figure 4 shows a psuedocolor image of the
scattering efficiency as a function of both the relative elastic contrast and density contrast in the Mie regime, using either
k2a = 2 or kIIa = 2 for longitudinal or transverse waves respectively. The evaluation is done at an angle of incidence of either
φ2 = 35◦(longitudinal) or ψ2 = 35◦ (transverse) rather than normal incidence because because elastic waves at this angle
have the maximum differential contribution to thermal vibrational energy flow perpendicular to the axis of the cylinder in the
BTE-derived thermal conductivity integral (k =

∫
k(φ)dφ where k(φ)∼ sin(φ)cos2(φ)); thus, scattering effects at this angle

are of great interest to heat transfer applications.
Figure 4 shows that the scattering efficiency is highly dependent on both density contrast, ∆ρ/ρ and elastic contrast

∆C11/C11 or ∆C44/C44 in the early Mie regime, and in particular, it shows that if the sound speed of the embedded cylinder is
the same as that of the matrix, then the scattering efficiency is greatly suppressed, regardless of whether there is large density
and/or elastic contrast. Fig. 4 also shows that large density contrast (in the absence of increased stiffness) is generally more
effective at increasing scattering cross section than similar levels of elastic contrast. Alternatively, embedding a lower elastic
constant material in the absence of density contrast is nearly as effective. Note that the scattering cross section does not
monotonically rise with increasing contrast, though. This is in stark contrast to behavior in the Rayleigh regime (ka ≪ 1).

In the Rayleigh regime, the scattering efficiency scales as Q/2a = α(ka)3. The scaling factor, α, depends on elastody-
namic contrast mechanisms as well as the incidence angle.

α = α

(
φ2,

ρ1 −ρ2

ρ2
,
C11,1 −C11,2

C11,2
,
C44,1 −C44,2

C44,2
,
C11,2

C44,2

)
. (49)

For a given matrix material (i.e. fixed C11,2/C44,2), we can then therefore more universally capture results in the Rayleigh
regime by plotting α. If there is no contrast (i.e. C11,2−C11,1

C11,2
=

C44,2−C44,1
C44,2

= ρ2−ρ1
ρ2

= 0) then Q must be zero, and since Q ≥ 0,
the function α must also be a local minimum.

Fig. 5 shows a contour plot of α as a function of elastic and density contrast for a group IV matrix material (C11,2/C44,2 =
2) such as Si1−xGex subject to obliquely incident waves (φ2 = 35◦(longitudinal) or ψ2 = 35◦ (transverse)). In the Rayleigh
limit, α and, by extension, the scattering cross section show sensitivity to both density and elastic contrast for weak levels
of contrast. However, for longitudinal and y-transverse incidence polarizations, the scattering cross-section becomes nearly
independent of elastic contrast once the density contrast is sufficiently large (∆ρ/ρ2 ≳ 1); The scattering cross section of
z-transverse polarization waves is co-dependent on density and elastic contrast over the entire range studied.

5 Conclusions
In summary, we have developed a continuum model for scattering of plane elastic waves of arbitrary angle of incidence

and polarization from an elastic cylindrical discontinuity in isotropic media. The model fixes several deficiencies that were
present in a classic treatise on the subject [1] that enable it to make accurate predictions at oblique angles of incidence.

This manuscript provides insights as to which mechanisms of contrast are responsible for control of the scattering
cross section in both the Mie and Rayleigh scattering regimes. In particular we find that in the early Mie regime, scattering
efficiency is strongly influenced both elastic and density contrast. While either mechanisms can be used to raise the scattering
cross section, there contributions are not always complimentary. In particular, choosing matrix/embedded materials with
similar sound speed greatly suppresses scattering cross section in the Mie regime. In the Rayleigh regime, density contrast
is found to be the most effective mechanism of scattering contrast for longitudinal waves and for transverse waves polarized
perpendicular to the cylinder axis (y-transverse). For quasi-z transverse waves at oblique angles of incidence, elastic and
density contrast mechanisms have similar effectiveness.

Thus, the current model predicts the mode-resolved scattering cross section for all acoustic waves in isotropic elastic
media with embedded elastic cylinders, over all scattering regimes without resorting to perturbation theory. The model is
quite general and can to be applied to a diverse set of engineering applications. In particular, we envision that it will be useful
in supporting rapid calculations of the anisotropic thermal conductivity tensor for composites with embedded cylinders using
Boltzmann transport theory, which requires mode resolved scattering cross section information at all angle of incidence.
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Fig. 4. Scattering efficiency as a function of relative elastic and density contrast in the Mie regime (ka = 2) at an oblique angle of incidence,
φ2 = 35◦(longitudinal) or ψ2 = 35◦(transverse).
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Table 1. Definition of βn for the three polarizations of incident plane waves.

Polarization Vector Mode Name βn

â longitudinal u0enin−1/(k2)

ẑ× â y-transverse u0enin−1/(kII)

ẑ× â× â quasi-z-transverse u0enin−2/(kII)
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Table 2. Displacement and stress components for an incident longitudinal wave

Component Expression

Ur/(1/r)
∞

∑
n=0

βneiKz [−x2
′Jn

′(x2
′)]cos(nθ)

Uθ/(1/r)
∞

∑
n=0

βneiKz [nJn(x2
′)]sin(nθ)

Uz/(1/r)
∞

∑
n=0

βneiKz [−i(Kr)Jn(x2
′)]cos(nθ)

Trr/(µ2/r2)
∞

∑
n=0

βneiKz
[
−2(x2

′)2
(

Jn
′′(x2

′)−
(

x2
x2 ′

)2(
λ2
2µ2

)
Jn(x2

′)

)]
cos(nθ)

Trθ/(µ2/r2)
∞

∑
n=0

βneiKz [2n((x2
′)Jn

′(x2
′)− Jn(x2

′))]sin(nθ)

Trz/(µ2/r2)
∞

∑
n=0

βneiKz [−2 i(x2
′)(Kr)Jn

′(x2
′)]cos(nθ)
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Table 3. Displacement and stress components for a y-transverse incident wave

Component Expression

Ur/(1/r)
∞

∑
n=0

βneiKz [−nJn (xII
′)]cos(nθ)

Uθ/(1/r)
∞

∑
n=0

βneiKz
[
−
(
kII

′r
)

Jn
′ (xII

′)
]

sin(nθ)

Uz/(1/r) 0

Trr/(µ2/r2)
∞

∑
n=0

βneiKz [−2n (xII
′Jn

′ (xII
′)− Jn (xII

′))]cos(nθ)

Trθ/(µ2/r2)
∞

∑
n=0

βneiKz
[
−(xII

′)2 (2Jn
′′ (xII

′)+ Jn (xII
′))
]

sin(nθ)

Trz/(µ2/r2)
∞

∑
n=0

βneiKz (Kr) [−inJn(xII
′)]cos(nθ)
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Table 4. Displacement and stress components for a quasi-z transverse incident wave

Component Expression

Ur/(1/r)
∞

∑
n=0

βneiKz
[
i(Kr)

(
xII′

′

xII′

)
Jn

′(xII′
′)
]

cos(nθ)

Uθ/(1/r)
∞

∑
n=0

βneiKz
[

in
(

Kr
xII′

)
Jn(xII′

′)
]

sin(nθ)

Uz/(1/r)
∞

∑
n=0

βneiKz
[
(xII

′)2Jn(xII
′)

xII

]
cos(nθ)

Trr/(µ2/r2)
∞

∑
n=0

βneiKz
[
2i(xII

′)2
(

Kr
xII

)
Jn

′′(xII
′)
]

cos(nθ)

Trθ/(µ2/r2)
∞

∑
n=0

βneiKz
[
2in Kr

xII
(xII

′Jn
′(xII

′)− Jn(xII
′))
]

sin(nθ)

Trz/(µ2/r2)
∞

∑
n=0

βneiKz
[

2(xII
′)3Jn

′(xII
′)

xII

(
1− 1

2cos2ψ2

)]
cos(nθ)
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Table 5. To obtain the scattered wave field in region 1, the following substitutions are needed in Eqs. 15-21.

Region 2 Region 1

An Dn

Bn En

Cn Fn

Hn(z) Jn(z)

Subscript 2 Subscript 1

Subscript II Subscript I

Table 6. Displacement and Stress Tensor Components associated with scattered wave L2; to obtain the analogous expressions in medium
1, make the substitutions in Table 5

Component Expression

(Ur)L2
(1/a)

∞

∑
n=0

AneiKz [−x2
′Hn

′(x2
′)]

cos(nθ)

sin(nθ)

(Uθ)L2
(1/a)

∞

∑
n=0

AneiKz [±nHn(x2
′)]

sin(nθ)

cos(nθ)

(Uz)L2
(1/a)

∞

∑
n=0

AneiKz [−i(Kr)Hn(x2
′)]

cos(nθ)

sin(nθ)

(Trr)L2
(µ2/a2)

∞

∑
n=0

AneiKz
[
−2(x2

′)2
(

Hn
′′(x2

′)−
(

x2
x2 ′

)2(
λ2
2µ2

)
Hn(x2

′)

)]
cos(nθ)

sin(nθ)

(Trθ)L2
(µ2/a2)

∞

∑
n=0

AneiKz [±2n((x2
′)Hn

′(x2
′)−Hn(x2

′))]
sin(nθ)

cos(nθ)

(Trz)L2
(µ2/a2)

∞

∑
n=0

AneiKz [−2 i(x2
′)(Kr)Hn

′(x2
′)]

cos(nθ)

sin(nθ)
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Table 7. Displacement and Stress Tensor Components associated with scattered wave M2; to obtain the analogous expressions in medium
1, make the substitutions in Table 5

Component Expression

(Ur)M2
(1/a)

∞

∑
n=0

BneiKz(±nHn
(
kII

′r
)
)
cos(nθ)

sin(nθ)

(Uθ)M2
(1/a)

∞

∑
n=0

BneiKz(−
(
kII

′r
)

Hn
′ (kII

′r
)
)
sin(nθ)

cos(nθ)
(Uz)M2
(1/a) 0

(Trr)M2
(µ2/a2)

∞

∑
n=0

BneiKz [±2n (xII
′Hn

′ (xII
′)−Hn (xII

′))]
cos(nθ)

sin(nθ)

(Trθ)M2
(µ2/a2)

∞

∑
n=0

BneiKz
[
−(xII

′)2 (2Hn
′′ (xII

′)+Hn (xII
′))
] sin(nθ)

cos(nθ)

(Trz)M2
(µ2/a2)

∞

∑
n=0

BneiKz (Kr) [±inHn(xII
′)]

cos(nθ)

sin(nθ)

Table 8. Displacement and Stress Tensor Components associated with scattered wave N2; to obtain the analogous expressions in medium
1, make the substitutions in Table 5

Component Expression

(Ur)N2
(1/a)

∞

∑
n=0

CneiKz
[
i(Kr)

(
xII

′

xII

)
Hn′(xII′)

]cos(nθ)

sin(nθ)

(Uθ)N2
(1/a)

∞

∑
n=0

CneiKz
[
∓in

(
Kr
xII

)
Hn(xII′)

] sin(nθ)

cos(nθ)

(Uz)N2
(1/a)

∞

∑
n=0

CneiKz
[(

(xII
′)2

xII

)
Hn(xII′)

]cos(nθ)

sin(nθ)

(Trr)N2
(µ2/a2)

∞

∑
n=0

CneiKz
[
2i(xII

′)2
(

Kr
xII

)
Hn

′′(xII
′)
] cos(nθ)

sin(nθ)

(Trθ)N2
(µ2/a2)

∞

∑
n=0

CneiKz
[
∓2in Kr

xII
(xII

′Hn
′(xII

′)−Hn(xII
′))
] sin(nθ)

cos(nθ)

(Trz)N2
(µ2/a2)

∞

∑
n=0

CneiKz
[

2(xII
′)3Hn

′(xII
′)

xII

(
1− 1

2cos2ψ2

)]cos(nθ)

sin(nθ)
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Table 9. Parameters used to generate figures 2 and 3

Parameter Si0.5Ge0.5 NiSi2

ρ [kg/m3] 3826 4803

C11 [GPa] 146 199

C44 [GPa] 74 53
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