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Abstract In the Anthropocene, watershed chemical

transport is increasingly dominated by novel combi-

nations of elements, which are hydrologically linked

together as ‘chemical cocktails.’ Chemical cocktails

are novel because human activities greatly enhance

elemental concentrations and their probability for

biogeochemical interactions and shared transport

along hydrologic flowpaths. A new chemical cocktail

approach advances our ability to: trace contaminant

mixtures in watersheds, develop chemical proxies

with high-resolution sensor data, and manage multiple

water quality problems. We explore the following

questions: (1) Can we classify elemental transport in

watersheds as chemical cocktails using a new

approach? (2) What is the role of climate and land

use in enhancing the formation and transport of

chemical cocktails in watersheds? To address these

questions, we first analyze trends in concentrations of

carbon, nutrients, metals, and salts in fresh waters over

100 years. Next, we explore how climate and land use

enhance the probability of formation of chemical

cocktails of carbon, nutrients, metals, and salts.
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Ultimately, we classify transport of chemical cocktails

based on solubility, mobility, reactivity, and dominant

phases: (1) sieved chemical cocktails (e.g., particulate

forms of nutrients, metals and organic matter); (2)

filtered chemical cocktails (e.g., dissolved organic

matter and associated metal complexes); (3) chro-

matographic chemical cocktails (e.g., ions eluted from

soil exchange sites); and (4) reactive chemical cock-

tails (e.g., limiting nutrients and redox sensitive

elements). Typically, contaminants are regulated and

managed one element at a time, even though combi-

nations of elements interact to influence many water

quality problems such as toxicity to life, eutrophica-

tion, infrastructure corrosion, and water treatment. A

chemical cocktail approach significantly expands

evaluations of water quality signatures and impacts

beyond single elements to mixtures. High-frequency

sensor data (pH, specific conductance, turbidity, etc.)

can serve as proxies for chemical cocktails and

improve real-time analyses of water quality violations,

identify regulatory needs, and track water quality

recovery following storms and extreme climate

events. Ultimately, a watershed chemical cocktail

approach is necessary for effectively co-managing

groups of contaminants and provides a more holistic

approach for studying, monitoring, and managing

water quality in the Anthropocene.

Keywords Storms � Floods � Droughts �
Eutrophication � Acidification � Salinization

Introduction

The Anthropocene has typically been characterized by

an acceleration of climatic, biological, and geochem-

ical signatures of human activity preserved in the

geologic record beginning in the mid 20th century

(Waters et al. 2016). While the term Anthropocene is

widely used, it is still being debated in the scientific

community as to whether it is a distinct geological

epoch and exactly when it begins. The Anthropocene

can be characterized by an increase in the transport of

novel combinations of inorganic and organic chemi-

cals (i.e., chemical cocktails) in fresh waters over time

(Bernhardt et al. 2017a; Kaushal et al. 2018). For

example, nonpoint source pollution in human-im-

pacted watersheds has increased in recent decades

resulting in trends in concentrations of carbon, nutri-

ents, salts, and metals (Foley et al. 2005; Kaushal et al.

2005; Raymond et al. 2008; Sinha et al. 2017;

Seitzinger and Phillips 2017; Dugan et al. 2017;

Kaushal et al. 2017). In addition to increased nonpoint

source pollution, the frequency of floods and droughts

has increased (Mallakpour and Villarini 2015;
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Archfield et al. 2016). The interaction between

nonpoint source pollution and climate variability

(Milly et al. 2008) amplifies watershed storage and

release of most inorganic and organic chemicals,

which can be observed in water quality records (e.g.,

Kaushal et al. 2014a, b; Loecke et al. 2017). Yet, the

transport behaviors of distinct chemical mixtures

within watersheds is controlled by a complex suite

of hydrologic interactions between atmospheric depo-

sition, geology, landscape modification, and water

management (e.g., Bernal et al. 2012; Kaushal and

Belt 2012; Likens 2013). Human interactions sim-

plify drainage networks, amplify stormwater pulses,

accelerate chemical weathering, and magnify fluctu-

ations in redox potentials across soil/sediment-water

interfaces. All of these interactions enhance the

formation of novel elemental combinations in water-

sheds, which we herein define as ‘chemical cocktails’.

These chemical cocktails are novel because human

activities significantly: (1) enhance elemental concen-

trations above natural background conditions and (2)

increase the probability for biogeochemical interac-

tions and/or shared transport of elements along

hydrologic flowpaths.

A watershed chemical cocktail approach accounts

for converging sources, flowpaths, and reactivity of

novel combinations of elements in the Anthropocene.

Most studies in watershed science have focused on the

dynamics of one or only a few elements in isolation

rather than the synergistic behavior of combinations of

elements (e.g., Burns et al. 1998; Kaushal et al. 2008,

and many other biogeochemical studies). Here, we

propose that interactions between landscape modifi-

cations and climate enhance formation of novel

combinations of elements, or chemical cocktails,

depending upon their physical and biogeochemical

properties (e.g., particle size, solubility, charge, and

reactivity) across both short and long-term temporal

scales. There is a need to move beyond the ‘black box’

approach of watershed mass balances for individual

elements to simultaneous examination of multiple

element cycles. A watershed chemical cocktail

approach allows for the characterization of distinct

water quality signatures and sources for multiple

elements across land use, underlying geology, atmo-

spheric deposition, and climate, which has not been

fully considered in watershed science. A watershed

chemical cocktail approach can also be applied to

high-frequency sensor data to develop surrogates and

proxies (e.g., turbidity, specific conductance, pH,

nitrate, etc.) for characterizing complex chemical

mixtures transported in watersheds. Chemical cock-

tails can also be used to diagnose interactive effects of

emerging contaminants on ecosystem functions and

services and comprehensively evaluate unintended

consequences or multiple benefits of watershed

restoration. Elemental transport and transformations

don’t function in isolation in nature, and we demon-

strate that this is particularly the case for chemical

cocktails throughout this paper.

Climate and land use change mobilize different

chemical cocktails during hydrologic events due to

increasingly pulsed mixing of water and chemical

reactants in soils and aquatic ecosystems (Kaushal

et al. 2014a, b; Loecke et al. 2017). Drainage

simplification, increasingly pulsed hydrology, and an

increased probability of biogeochemical interactions

warrant a reconceptualization of watershed transport

and transformation processes based on natural condi-

tions (e.g., Vannote et al. 1980). Widespread drainage

of wetlands and stream channelization decreases

hydrologic storage and groundwater—surface water

interactions, which exacerbates drying of soils and

oxidation of chemical species during droughts. As a

result, multiple oxidation by-products (sulfate, nitrate,

Fe oxides, Mn oxides) accumulate during oxic events,

and are then flushed together either as dissolved,

colloidal or sediment bound chemical cocktails during

storms (Burgin et al. 2011; Jenne 1968; Lupon et al.

2016; Hartland et al. 2015). Engineered drainage

networks designed to efficiently move water down-

stream accelerate combined transport of dissolved

carbon, nutrients, and sediment-bound chemical cock-

tails of metals (Helsel et al. 1979). In contrast,

wetlands and stormwater management slow runoff,

reduce dissolved O2 during inundation, enhance

microbial reduction events, dissolution, and mobiliza-

tion of iron, manganese, phosphorus, and arsenic

cocktails (Jenne 1968; Hartland et al. 2015). Human-

accelerated weathering (such as carbonate dissolution

from impervious surfaces) enhances formation of

novel combinations of major ions (Kaushal et al.

2013, 2017; Haq et al. this issue). Finally, atmospheric

deposition interacts with climate and land use to affect

sorption and formation of organic carbon cocktails

transported to streams and rivers (Monteith et al. 2007;

Duan and Kaushal 2013).
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In this paper, we propose a new watershed chemical

cocktail approach based on a review and analysis of

evidence from previously published case studies that

trace mechanisms of shared sources, hydrologic

flowpaths, formation, and reactivity of elements along

the terrestrial-aquatic continuum. We explore the

following two questions: (1) can we classify elemental

transport in watersheds as chemical cocktails using a

new conceptual approach? (2) what is the role of

climate and land use in enhancing the formation and

transport of watershed chemical cocktails in the

Anthropocene? We also explore the potential impacts

of an increase in frequency, magnitude, and speed of

drying-rewetting cycles on the short-term and long-

term evolution of chemical cocktails.

Reconceptualizing watersheds as sieves, filters,

chromatographic columns, and reactors

We propose an approach that classifies both the

formation and transport behaviors of novel combina-

tions of elements into distinct chemical cocktails

based on their solubility, reactivity, binding capacity,

and dominant phases during hydrologic events. These

physical and biogeochemical properties influence the

formation and transport mobility of groups of ele-

ments within watersheds, and thus, the timing of the

chemical pulse in streams and rivers during storms

(vertical axis in Fig. 1) and their chemical transport

distance downstream (horizontal axis in Fig. 1). Note

that the same element can show multiple transport and

transformation behaviors depending upon redox con-

ditions, biological demand, solubility and other envi-

ronmental factors (Fig. 2). All of these factors

fluctuate significantly during drying-wetting cycles

(Fig. 2). For example, nitrate and sulfate can show

chromatographic transport behavior or reactive trans-

port behavior depending upon the degree of ion

exchange, biological demand, and redox conditions.

Similarly, metals can show chromatographic transport

behavior when mobilized from ion exchange sites or

they can show sieved and filtered transport behavior

when they form organometallic complexes or are

present in mineral colloid and particulate forms. Thus,

examples of chemical cocktails described below only

represent a typology or spectrum of potential transport

behaviors of different elemental combinations and

mixtures.

Watersheds as sieves: particulate organic matter,

mineral solids, and sorption of metal

oxyhydroxides

Particulate bound or ‘sieved’ chemical cocktail trans-

port behavior describes when particulate organic

matter (POM), nitrogen, and phosphorus of biogenic

origin, iron, aluminum, and manganese oxyhydrox-

ides and elements associated with aluminosilicate

species (as aggregates and coatings, and various other

organometallic complexes) are rapidly flushed during

storms. These particulate chemical cocktails settle out

in response to changes in flow velocities or are

‘sieved’ out as water flows through soils and sediments

(largely physical and mechanical separation based on

size and density). Therefore, suspended solids and

particulate bound elements are mobilized in an initial

chemical pulse during storms in streams and rivers

(e.g., Mulholland et al. 1990), typically showing a

rapid increase during the ascending limb of the

hydrograph and rapid decrease on the falling limb,

although there can be exceptions in timing and

hysteresis based on locations of sediment sources

(Hamshaw et al. 2018). Sediment mobilization is also

represented by an increase in turbidity, which can

serve as a proxy or surrogate for suspended sediment

concentrations, on the ascending limb of the storm

hydrograph (Fig. 3). The magnitude of this particu-

late-bound cocktail pulse and its transport downstream

is influenced by sedimentation and adsorption rates,

while insoluble elements become adsorbed onto clay

particles and other organic, mineral, and sediment

surfaces (Chiarenzelli et al. 2012). Overall, the

location of watershed sediment sources (stream chan-

nel, riparian zone, floodplains, vs. uplands) impacts

the composition, timing, duration, and travel distance

of downstream particulate-bound pulses before they

are sieved by soils and sediments, through mechanical

and physical separation based on size, density, and

changing particle velocities (e.g., Hamshaw et al.

2018) (Fig. 1).

Watersheds as filters: colloidal and dissolved

organometallic complexes

Transport of sieved and filtered chemical cocktails

varies primarily based on particle size (particulate vs.

dissolved), and the smaller sized colloids and dis-

solved organic matter are further ‘filtered’
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mechanically and chemically based on size, density,

hydrophobicity, and charge as water flows through

soils and sediments. Dissolved organic matter (DOM)

and associated elements bound to DOM molecules

represent a secondary pulse of chemical cocktails

mobilized during floods following coarser particu-

lates. Typically, the pulse in DOM is initiated later in a

hydrologic event than the pulse in sediment bound

chemicals, which can be represented by turbidity as a

surrogate or proxy. However, the proportional rela-

tionships between total suspended solids and turbidity

and DOC and turbidity can be different (Fig. 3).

Similar to coarser particulate matter, finer colloidal

and dissolved organic matter form complexes with

metals (iron, copper, lead, zinc, mercury), and their

binding capacity depends on different size fractions,

hydrophobic versus hydrophilic chemical fractions of

DOM, and sorption potential (Kaushal and Lewis

2005). In response to storms, the DOM pulse (and

associated elements) is more persistent than the POM

pulse over time (Fig. 3). Firstly, this is because POM

typically originates from near stream sources while

DOM can be flushed through the catchment from

sources further away. Secondly, this is because during

the recession limb of the hydrograph, coarser particles

settle out rapidly while the finer size fractions of DOM

can still be mobilized and travel further downstream,

until they are filtered through smaller pores in soils and

sediments.

Watersheds as chromatographic columns: ions are

eluted from soil and sediment exchange sites

Ions represented by ‘chromatographic’ transport

behaviors include H?, Ca2?, Mg2?, Na?, and Cl-.

These ions can be rapidly flushed in a primary pulse, or
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Fig. 1 Conceptual model illustrating how groups of elements

can be hydrologically linked as ‘chemical cocktails’ and

transported along fluvial networks of the Anthropocene

depending on the timing of the peak (before or after the

hydrograph peak), and the distance travelled along the fluvial

network. Chemicals showing ‘sieved’ behavior such as mineral

solids, particulate organic matter (POM) and organometallic

complexes usually lead to primary pulses because sources are in

surficial soil layers; they travel short distances due to

sedimentation and adsorption or ‘sieving’ through soils and

sediments. Secondary pulses correspond to elements showing

‘filtered’ transport behavior such as colloids, dissolved organic

matter (DOM) and bound metals. These have a smaller particle

size as dissolved chemicals compared to sieved transport.

Consequently, they are more persistent, and can travel longer

distances than sieved transport before eventually being filtered

through soils and sediments based on size, hydrophobicity, and

sorption. Chemicals showing chromatographic transport behav-

ior such as cations and anions can have the highest mobility as

they are either eluted or diluted from different catchment pools.

The timing of transport from these pulses will depend on the size

and location of sources within watersheds and on the soil ion-

exchange capacity. The pulse and mobility of reactive chemical

cocktails, mostly biologically essential and limiting nutrients

and redox sensitive elements, further depend on biogeochemical

transformations and biological assimilation within watersheds

and fluvial networks. Thus, reactive chemical cocktails can

exhibit shorter travel distances than pure chromatographic

transport behaviors of elements
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‘first flush’, if they have accumulated in near surface

environments (e.g., acid rain, urban road salts, agri-

cultural liming). However, significant pools of these

ions are also typically located deeper in soil profiles

due to chemical weathering of bedrock or mobile ion

effects leading to rapid transport through the soil

profile and eventual accumulation in ground water

(Fig. 1). Therefore, many of these ions show differ-

ences in their chromatographic transport behaviors

based on shallower versus deeper hydrologic flow-

paths. Along deeper hydrologic flowpaths, chemical

cocktails exhibiting chromatographic transport are

diluted on the ascending limb of the hydrograph, and

there is increased transport during the recession limb

from groundwater recharge forming a tertiary pulse

during storm hydrographs that follows the pulses of

particulates (sieved) and dissolved organic matter

(filtered) chemical cocktails. Specific conductance can

serve as a proxy or surrogate for most major ions and

tends to peak on the receding limb of the hydrograph

along with nitrate, following pulses in sediment-bound

chemicals (represented by turbidity) and DOM

(Fig. 3). As an example, chloride and base cations

typically peak on the recession limb of hydrographs

Fig. 2 Conceptual model illustrating how reactive chemical

cocktails vary in formation and transport along the drying-

rewetting cycle with water table, pre versus post precipitation

conditions, and soil redox conditions. Sources and sinks of

reactive chemical cocktails are stratified vertically along the soil

profile and longitudinally along the drainage network as water

moves along elevation gradients (Grimm et al. 2003). During

floods, peaks in greenhouse gas production may occur due to

inundation and decreases in redox potential. During hydrologic

contractions, the riparian groundwater table can become

vertically disconnected from superficial soil layers. As the

groundwater table lowers, previously reducing zones become

oxidized and rates of mineralization increase, which produces

an abundance of oxidized products such as nitrate, sulfate, iron

and manganese oxides, and others. As soils rewet, anaerobic

greenhouse gas production increases again and oxidized

products and DOM can be quickly mobilized (DOC, NO3
-,

SO4
2-, PO4

2-, Fe and Mn oxides, etc.). During rewetting

periods, old water enriched with reduced forms of elements

(e.g., Fe, Mn), weathering products (e.g., Ca, Mg, K, Na), and

solutes concentrated by evapotranspiration are also pushed out

laterally in ground water. Thus, elements are sequentially

reduced or oxidized while moving from uplands to streams,

starting the drying-rewetting cycle over and over again
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due to accumulation and recharge from deeper

groundwater flowpaths. In contrast, hydrogen ions

accumulate in upper surficial soil horizons from acid

rain and peak on the ascending limb of the hydrograph

due to ion exchange and rapid flushing, which causes a

rapid decline in pH resulting in episodic acidification

(Fig. 3). The potential for flushing versus dilution of

chromatographic chemical cocktails is based on pool

sizes, storage during preceding drying periods, and

deeper versus shallower hydrologic flow paths. When

dominant pools are mobilized along deeper hydrologic

flowpaths, chromatographic chemical cocktails pro-

duce longer sustained pulses downstream than sieved

and filtered chemical cocktails before undergoing ion

exchange in soils and sediments.

Watersheds as reactors: redox sensitive elements

and limiting nutrients

Reactive transport behavior of chemical cocktails such

as ammonium, nitrate, phosphate and sulfate is

strongly influenced by biogeochemical processes

occurring throughout drying/rewetting cycles

(Fig. 1). Biological demand and redox conditions

within the watershed and along the drainage network

influence pulse magnitude as well as the transport

distance of these bioreactive ions (Lupon et al. 2016).

The importance of ecosystem metabolism as a regu-

lator of chemical transport during baseflow conditions

in human-impacted watersheds can be lost transitorily

after storms. For example, there is initial scouring of

stream microbial biofilms during extreme storms, but

photoautotrophic biofilms and chlorophyll a can

exhibit a rapid recovery (Fig. 3). However, stream

metabolism and diurnal fluctuations of oxygen,

nitrate, and other chemicals can recover over weeks

Fig. 3 Changes in water quality during Hurricane Patricia in

the Passaic River, New Jersey, USA. The responses in water

quality are typical of urban streams and rivers in the Mid-

Atlantic U.S. region. Sediment bound chemicals and dissolved

organic matter form a primary pulse before they are retained by

being ‘sieved’ and ‘filtered’ as they pass through soils and

sediments. Reactive chemical cocktails are highly influenced by

stream metabolism and redox conditions. Microbial biofilms are

scoured during floods and then gradually recover afterwards

contributing to increasing amplitudes in diurnal cycles of

oxygen and nitrate. Chromatographic chemical cocktails are

typically diluted during the peak in the hydrograph and then

increase on the receding limb as groundwater recharge increases

in importance. An exception can be H? ion, which can be

rapidly flushed from soil exchange sites and contribute to

episodic acidification and a decrease in pH during storms. Data

are courtesy of USGS gauge 1389005
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following disturbances (Smith and Kaushal 2015;

Reisinger et al. 2017) (Fig. 3). Biological activity

contributes to remove essential and limiting nutrients

that support life from soil water and ground water, and

to dynamically transform chemical phases from dis-

solved to particulate to gas. For example, elements

such as C, N, and S can be ‘‘lost’’ from watersheds as

gases due to aerobic respiration, methanogenesis,

hydrogen sulfide formation, and denitrification

(Fig. 2). Moreover, they can be retained and stored

in biomass or in soils as particulate organic matter due

to biological assimilation and microbial decomposi-

tion. This organic matter can then be decomposed and

mineralized into soluble C, N, P, and S ions.

As mentioned previously, elements can show

multiple transport behaviors as chemical cocktails

depending upon environmental conditions. For exam-

ple, iron and manganese can show reactive transport

behavior depending on redox conditions and their

presence as dissolved versus particulate forms

(Fig. 2). Ultimately, reactive transformations such as

organic matter mineralization, biological uptake, and

abiotic/biotic oxidation-reduction reactions (in the

context of metals, sulfur, and other elements) form

pools of elements that are sieved, filtered, diluted, or

eluted before being transformed again in response to

drying-rewetting cycles (Fig. 2). There have been

synergistic increases in nutrients such as nitrate and

dissolved organic carbon in many fresh waters over

the long-term, which suggests a potential increase in

the global significance of biologically reactive chem-

ical cocktails (Fig. 4). In succession, an increase in

long-term total and dissolved organic carbon concen-

trations can also influence transport of complexed

metals in fresh waters (sieved and filtered chemical

cocktails). Below, we discuss examples of formation

and different transport behaviors of chemical cocktails

in watersheds. We use chemical abbreviations for

brevity in some cases, particularly for ions.

Chemical cocktails illustrating sieved and filtered

transport behavior: organic C, N, and P

and organometallic complexes

Organic matter represents a diversity of chemical

mixtures, which transport organic nutrients and com-

plexed metals (Buffam et al. 2001; Inamdar and

Mitchell 2007; Raymond and Saiers 2010; Wilson

et al. 2013) that are both sieved and filtered through

soils and sediments. Changes in DOM cocktails [e.g.,

dissolved organic carbon (DOC), nitrogen (DON),

phosphorus (DOP)] and their chemical composition

occur with increasing discharge and are associated

with a shift to shallower flow paths through near

surface soils, riparian soils, and wetlands with high

organic matter content (Boyer et al. 1996; Mei et al.

2014; Wilson et al. 2016; McGlynn and McDonnell

2003; Inamdar et al. 2011). Under flushing conditions

characterized by high flow and high concentration, a

shift toward the export of more carbon rich DOM

(higher C:N), higher molecular weight, and more

aromatic material has frequently been observed in

headwater systems (Hood et al. 2006; Vidon et al.

2008; Wilson and Xenopoulos 2009; Wilson et al.

2016). Accompanying these compositional changes,

amounts and proportions of labile DOM cocktails can

also increase because recently flushed aromatic com-

pounds have been identified as more bioreactive and

photoreactive (greater %DOC reactive to biodegrada-

tion and photodegradation) than those exported during

baseflow (Kaushal and Lewis 2005; Fellman et al.

2010; Fasching and Battin 2012; Lu et al. 2013;

McLaughlin and Kaplan 2013; Coble et al. 2016;

Wilson et al. 2016). The magnitude, persistence, and

transport distance of aromatic compounds increases

with storm magnitude (Raymond and Spencer 2015;

Creed et al. 2015), which has implications for

associated organic nutrients and complexed metals.

Many trace metals share similar modes of transport

and transformation associated with chemical cocktails

of DOM and colloids, inorganic clays, or particulates

as ligands or metal oxides and hydroxides. The close

association between organic and inorganic particu-

lates and colloids, and metals fosters the formation of

chemical cocktails of organometallic complexes in

watersheds (Fig. 1). For example, there are significant

positive relationships between iron and DOC concen-

trations during storms in urban watersheds (Fig. 5).

Rapid pulses in total iron and aluminum concentra-

tions during storms in urban watersheds suggest

chemical transport as oxyhydroxide particulates from

surface soils and near stream environments more

similar to POM and DOM responses rather than deeper

flowpaths typical of nitrate and calcium ions (Fig. 5).

Concentrations of dissolved trace elements such as

iron, aluminum, manganese, and zinc all show corre-

lations with pH and DOC concentrations in aquatic
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Fig. 4 There has been an increase in chemical cocktails of

nutrients and organic carbon in global fresh waters during the

Anthropocene. (Top panel) Nitrate concentrations (N-NO3
- in

mg/L) from rivers around the world from 1902 to 2014. Before

the 1950s these records show concentrations below 2 mg/L.

After 1950, nitrate concentrations increased coinciding with

events such as the production of chemical fertilizers for modern

agricultural practices (US EPA 2015). North American datasets

include the Potomac River, USA, Delaware River, USA,

Schuylkill River, USA (Jaworski, unpublished data), and the

Mississippi River, USA (Goolsby and Battaglin 2001). Euro-

pean datasets include the Loire River, France (Minaudo et al.

2015), Seine River, France (Meybeck et al. 2016; Romero et al.

2016), Rhine at Bimmen/Lobith, Germany (European Environ-

ment Agency 2012), River Ythan, Scotland (European

Environment Agency 2012), and River Tyne, England (Euro-

pean Environment Agency 2012). Asian datasets include the

Lower Changjiang River at Hankou and at Lake Dongting,

China (Duan et al. 2007). (Bottom Panel) Monthly and seasonal

organic carbon concentrations (in mg/L) from surface waters in

the northeastern United States and United Kingdom from 1988

to 2003. United Kingdom datasets of upland catchments show

significant upward trends potentially resulting from changes in

discharge, increased temperatures, and changes in land man-

agement (Worrall et al. 2004). Hudson River data also

demonstrate upward DOC and DOM teens (Findlay 2005),

potentially linked to changes in temperature, rainfall, land-use,

nitrogen, and CO2 enrichment (Evans et al. 2005). WebPlotDig-

itizer was used to extract data from graphs when it was not

available in text form (Rohatgi 2017)
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environments, which affects solubility and potential

for watershed sieving and filtering (Gaillardet et al.

2003). In particular, trace metal ions complex with the

negatively-charged surfaces of organic colloids within

the pH range of natural waters, at 4–8 (Dupre et al.

1999). As such, organic colloids are important carriers
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Fig. 5 (Top panel)

Relationships between total

iron concentrations

(particulate plus dissolved)

and dissolved organic

carbon (DOC) following

Superstorm Sandy in

urbanized streams of the

Baltimore Long-Term

Ecological Research site.

(Middle panel)

Relationships between total

dissolved nitrogen and

dissolved organic carbon

(DOC) following

Superstorm Sandy in

urbanized streams of the

Baltimore Long-Term

Ecological Research site.

GFGL and GFGB are

suburban watersheds and

GFVN and GFCP are urban

watersheds. (Bottom panel)

Changes in elemental

exports in the Gwynns Falls

watershed at the Baltimore

Long-Term Ecological

Research site following

Superstorm Sandy. Fe and

Al fluxes are attenuated

more rapidly than base

cations likely due to settling

and ‘sieving’ of particulate

Fe and Al oxyhydroxides as

water passes through soils

and sediments
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of a variety of low-mobility trace metals (beyond just

iron) in riverine waters and therefore influence cou-

pled geochemical transport and transformation (Gail-

lardet et al. 2003). Because clay and/or DOC content

can increase during high-flow events, the concentra-

tions of trace elements in the stream water also

increase during floods (Mohiuddin et al. 2010), and

copper, cobalt, manganese, chromium, and vanadium

all exhibit positive linear relationships with the

proportion of colloidal DOC in fresh waters.

Inorganic colloids are also important in the forma-

tion of chemical cocktails with trace metals, which are

sieved and filtered through soils and sediments.

Inorganic colloids can be enhanced during extreme

climate events by: (1) reduction and dissolution of iron

oxides during wetting; (2) precipitation of iron and

other metal oxides (manganese) at the oxic riparian

stream interface; and (3) sorption of DOM by hydrous

iron and aluminum oxides in oxic stream water

(McKnight and Bencala 1990). Metallic oxyhydrox-

ides—especially those composed of iron, aluminum,

and manganese—are the most common mineral col-

loids in streams and rivers (Gaillardet et al. 2003).

Inorganic colloids often occur in close association

with organic colloids, and also with clay particles in

the water column. As such, DOC is a useful index of

both inorganic and organic colloidal chemical cock-

tails as suggested by the positive relationships

between trace element contamination and colloid

concentrations in streams worldwide (e.g., Dupre

et al. 1999; Viers et al. 1997). However, it is important

to note that mineral colloids can track sediment pulses

in some cases. Ultimately, the transport behavior of

inorganic colloids as sieved or filtered chemical

cocktails depends largely on their provenance and

surface chemistry.

How do land use and climate alter elemental

responses and give rise to novel combinations?

DOM exported from agricultural and urban water-

sheds exhibits a greater prevalence of microbially

derived and protein- like DOM (Baker and Spencer

2004; Wilson and Xenopoulos 2008, 2009; Petrone

et al. 2011; Hosen et al. 2014; Kaushal et al.

2014a, b, c; Lu et al. 2014; Williams et al. 2016).

These chemical fractions of organic matter are

important for transport of DOC, DON, and DOP in

sieved chemical cocktails, which can eventually

contribute to eutrophication and hypoxia in receiving

waters. These changes in DOM quality have been

attributed to reduction of the relative input of more

aromatic DOM from terrestrial sources and increased

in-stream DOM production and processing due to

increased loading of N and P primarily during

baseflow (Wilson and Xenopoulos 2009; Hosen et al.

2014; Lu et al. 2013, 2014; Kaushal et al. 2014a, b;

Butman et al. 2015; Williams et al. 2016). Pulses of

aromatic DOM with high binding capacity for metals

are amplified in urban and agricultural watersheds

during storm events (Kaushal et al. 2014a, b, c; Smith

and Kaushal 2015), and this affects chemical cocktails

of DOM, organic N and P, and complexed metals

(Frost et al. 2015). There are also pulses of aromatic

DOM and POM from human sources (e.g., polycyclic

aromatic hydrocarbons), which are rapidly flushed

during storms across land use (Fig. 6).

Changes in the chemical cocktails of POM, DOM,

and inorganic particulates associated with urbaniza-

tion and agriculture alter timing, duration, and trans-

port distance of metals during storms (copper, zinc,

iron, etc.) (Characklis and Wiesner 1997). Both urban

and agricultural lands experience elevated levels of

POM and labile DOM from nonpoint sources (Kaushal

et al. 2014a, b, c), which are associated with a

significant fraction of metals loads in streams. Ripar-

ian zones, streambeds, stormwater ponds, and wet-

lands can also be important sources or sinks of

particulate matter and associated copper, zinc, lead,

and cadmium chemical cocktails depending on

streamflow; thus, hydrological and structural alter-

ations of these landscape components influence the

formation and transport of different organometallic

chemical cocktails (Bain et al. 2012; Kuusisto-Hjort

and Hjort 2013; Frost et al. 2015).

Chemical cocktails illustrating reactive transport

behavior: Fe and S compounds

Iron behaves as a transport vector or agent of

sequestration for sieved and filtered chemical cock-

tails (as described above), but it can also contribute to

formation and transport of reactive chemical cocktails

(Rosenberg and Schroth 2017). While the majority of

iron exported to coastal zones from rivers is in the

particulate or suspended sediment form (Martin and

Meybeck 1979; Poulton and Raiswell 2002; Schroth
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et al. 2011), the speciation and reactivity of iron in the

suspended sediment load is driven by iron mineralogy

(Poulton and Raiswell 2002; Raiswell and Canfield

2012). Changes in chemical speciation of

Fe(III)(oxy)hydroxides and organics regulate the

chemical and biological reactivity of chemical cock-

tails coupled with iron, which influence nitrogen,

phosphorus, arsenic, carbon, and trace metal cycles in

coastal waters (sensu Tagliabue et al. 2017). Iron and

sulfur chemical cocktails are also coupled during

drying-rewetting cycles through the formation and

oxidation of iron sulfides (Burgin et al. 2011;

Schoepfer et al. 2014) (Fig. 2), which sorb other

metals and arsenic and co-occur with other metal

sulfides such as zinc and copper. These iron sulfides

accumulate through ‘sulfidization,’ a microbially

driven process in which sulfate-S is converted to

sulfide-S during organic matter decomposition. This

produces hydrogen sulfide and bisulfide, which react

with iron to precipitate minerals eventually forming

FeS2 (pyrite), creating chemical cocktails associated

with mineral sorption (Fanning and Fanning 1989;

Leventhal and Taylor 1990).

Drying events contribute to increases in watershed

transport of sulfate and acidity to streams during re-

wetting due to sulfide oxidation or ‘sulfuricization’

(Kerr et al. 2012). Sulfuricization produces sulfuric

acid while releasing metal chemical cocktails that

were previously sequestered as trace components of

the soil minerals (Fanning and Fanning 1989).

Furthermore, the decrease in pH causes dissolution

of aluminum, leading to groundwater and drainage

concentrations, which may be high enough to cause

toxicity to aquatic organisms (Muhrizal et al. 2003;

Demas et al. 2004). The pyrite in exposed soils and

sediments can oxidize depending on drying conditions

and droughts, and an oxidation front may advance into

unoxidized materials along the vertical soil profile

(Rabenhorst and Valladares 2005). During droughts,

sediments containing iron sulfide can be exposed to air

and oxidized to form ‘active acid sulfate soils,’ which

increase acidity to pH\ 4 and have the potential to

dissolve chemical cocktails of metals (Creeper et al.

2013; Mosley et al. 2017). Thus, the formation and

dominant transport modes of reactive chemical cock-

tails of iron and sulfur are driven by both the amount of

Fig. 6 Anthropogenic sources can also contribute to chemical

cocktails of organic matter. Polycyclic aromatic hydrocarbons

(PAHs) vary in streams across a land use gradient at the

Baltimore Long-Term Ecological Research site. BARN is forest

dominated with low residential development, and sites are

described in Kaushal et al. (2008). Automated samplers were

used to capture the first flush of organic contaminants during

storms and to also characterize baseflow concentrations.

Concentrations of PAHs increased in streams with increasing

watershed urbanization, and they also increased rapidly during

the first flush of storms
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time a soil spends in either saturated or unsaturated

conditions and the time-period between drying and

rewetting events (Fig. 2).

How do land use and climate alter elemental

responses and give rise to novel combinations?

In the Anthropocene, the most biologically reactive

iron pool in floods is likely associated with col-

loidal/nano-colloidal size fractions (Raiswell 2011),

much of which is complexed to various components of

the DOM pool including phosphorus, arsenic, and

trace metals (Hassellov and von der Kammer 2008;

Warren and Haack 2001). Altered hydrology in

human-impacted watersheds can also amplify redox

extremes and tighten the coupling of iron and sulfur

cycles and formation and transformation of reactive

chemical cocktails during baseflow. For example,

agricultural and urban drainage promote the oxidation

of reduced species including iron-sulfides (Boman

et al. 2008). Groundwater levels are altered by ditches

or channel incision in agricultural and urban water-

sheds, causing hydrologic drought and sulfuricization

or production of sulfuric acid in soils (Boman et al.

2008). In addition, production of sulfuric acid can also

occur when marine soils (high in sulfate) are diked and

drained for agricultural production and development

(Pons and Vandermo 1973). The formation of reactive

iron and sulfur chemical cocktails (and associated

metals and arsenic) eventually becomes increasingly

coupled during floods in agricultural and urban

watersheds as water tables rise and reducing condi-

tions dominate. As agricultural and urban waterways

become eutrophic, organic matter increases, O2 is

depleted by microbial metabolism, and sulfide miner-

als accumulate (Valdemarsen et al. 2010). These iron

sulfides are then vulnerable to another repeated cycle

of oxidation during drying in soils and oxic conditions.

An increase in iron and associated chemical cocktails

transported in watersheds can have implications for

increased nutrient and contaminant loads to coastal

receiving waters (sensu Schroth et al. 2014).

Chemical cocktails illustrating chromatographic

transport behavior: cations and anions

Cations and anions are paired in fresh waters to

maintain electroneutrality and form distinct watershed

chemical cocktails based on underlying geology, land

use, and atmospheric deposition. During storms,

chemical cocktails of major ions observed within

streams and rivers change with respect to baseflow

composition either through dilution or concentration

of multiple paired ions to maintain electroneutrality

and charge balance. The major ion composition of

ground water is controlled by the ion exchange

capacity of the soil (shallower) and mineral dissolu-

tion (deeper). In general, overland and shallow

subsurface flow during storm events dilute concentra-

tions of major ions in stream (Burns et al. 1998), with

the exception of chromatographic chemical cocktails

vulnerable to flushing (e.g., nitrate and sulfate and

base cations are mobilized by road salts and ion

exchange). For example, nitrate and phosphate con-

centrations can peak on the descending limb of the

hydrograph during storms in agricultural watersheds

in the Northeastern U.S. due to increased groundwater

contributions, except where artificial tile drainage

enhances rapid runoff (Fig. 7). Nitrate dilution and

hysteresis also occurs across urban streamflow due to

high groundwater nitrate sources (e.g., Kaushal et al.

2008; Koenig et al. 2017; Vaughan et al. 2017;

Wollheim et al. 2017). However, hysteresis patterns

can also be quite variable across hydrologic events

based on the advent of continuous high-frequency

measurements of solutes (Vaughan et al. 2017), and

such data could be useful in further calibrating the

chemical cocktail approach for different watersheds in

the future. On the other hand, concentrations of base

cations show strong relationships to specific conduc-

tance as a proxy (Fig. 8). Multiple base cations can

also rapidly increase during snowmelt events in urban

watersheds of the Northeastern U.S. (Kaushal et al.

2017); Na? increases from road salt and Ca2? and

Mg2? can increase from deicer inputs and/or rapid ion

exchange in urban soils (Kaushal et al. 2017, Haq et al.

this issue). In addition, concentrations of some metal

cations also peak and are also mobilized during

snowmelt due to ion exchange induced by Na? in

road salts (Fig. 8).

Although exceptions do exist, concentrations of H?

increase during rain storms in human-impacted water-

sheds whereas concentrations of NO3
-, SO4

2-, Ca2?,

Mg2?, Na?, DIC, Cl- are typically diluted as chro-

matographic chemical cocktails. However, differen-

tial responses to rain storms are due to the magnitude

and duration of the storm, antecedent precipitation
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patterns, and relative contributions of different hydro-

logic pathways. In contrast to the other base cations,

concentrations of K? can peak along with DOM

during storms, even though K? is under biotic control

(Tripler et al. 2006; Hood et al. 2006; Vidon et al.

2008). Therefore, base cations increase or decrease as

discharge increases depending on geology and supply

versus biotic demand in watersheds draining natural

land cover.

How do land use and climate alter elemental

responses and give rise to novel combinations?

Human activities have significantly altered the com-

position of chemical cocktails of major ions on a

global scale. Freshwater salinization syndrome due to

acid rain, land-use change, and climate change has

altered chromatographic chemical cocktails of Na?,

Ca2?, Mg2?, K?, Cl-, HCO3
- and H? across North

America, particularly in the Eastern U.S. (e.g.,

Kaushal et al. 2013, 2018; Dugan et al. 2017).

Widespread deforestation has resulted in increased

ion exports to streams including NO3
-, Cl- and K?

salts (Likens et al. 1994; Jayawickreme et al. 2011).

Interestingly, SO4
2- leaching has decreased in

response to deforestation because the associated

decrease in soil pH increases SO4
2- retention by soils

(Nodvin et al. 1986; Welsch et al. 2004). Thus,

increased NO3
- from nitric acid in precipitation and

microbial nitrification in soils is the primary driver of

acidification and can mobilize Al to toxic levels

(Burns and Murdoch 2005; Baldigo et al. 2005).

Human activities synergistically enhance formation

of chromatographic chemical cocktails and transport

of major ions in streams and rivers (Aquilina et al.

2012; Kaushal et al. 2017). Soil acidification from

increased soil respiration, fertilizer application and

ammonia oxidation, and evaporative concentration of

irrigation waters are all mechanisms that contribute to

formation of chemical cocktails of base cations in

agricultural lands. Agriculture has led to a 50-year

increase in chemical cocktails of base cations in rivers

in France due to accelerated silicate weathering from

fertilizer use (Aquilina et al. 2012). Similarly, salin-

ization from human-accelerated weathering of geo-

logic materials and impervious surfaces and salt

pollution has synergistically increased chromato-

graphic chemical cocktails of major ions over almost

a century in rivers in the U.S. (Fig. 9) (Kaushal et al.

2005, 2017). Mobile anions from acid rain and salt

pollution (SO4
2-, NO3

-, and Cl-) further contribute

to increased mobilization of base cations via mainte-

nance of charge balance through ion pairing and

electroneutrality (Mitchell et al. 2006; Kaushal et al.

Fig. 7 Changes in water

quality during storms in the

Maidford River, which

drains an agricultural

watershed in Rhode Island,

USA. High frequency data

were obtained from a

combination of sensor data

and grab samples for

streamwater chemistry

analyses throughout the

duration of the storm.

Mobile anions were flushed

after the peak in discharge as

groundwater contributions

increased in importance
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2017). Long-term changes in pH can also influence ion

exchange capacity of soils, hence mobilizing different

chemical cocktails of ions (Duan and Kaushal 2015;

Kaushal et al. 2018; Haq et al. this issue). Ultimately,

formation and transport of chromatographic cocktails

are enhanced by cation-anion pairing in waters, ion

exchange in soils, salt pollution, and accelerated

chemical weathering (Kaushal et al. 2013, 2018).

Chemical cocktails illustrating reactive transport

behavior: C, N, and greenhouse gases

Production and transport of greenhouse gases (GHG)

and reactive chemical cocktails during hydrologic

events in human-impacted watersheds are related to

temperature, organic matter availability, nutrient sta-

tus, oxygen availability, and redox status (Kaushal

et al. 2014a, b). The consumption and production of

GHG (GHG: CO2, N2O, CH4) is fundamentally linked

to C and nutrient cycles and dominant heterotrophic

processes in soils (Hedin et al. 1998). For instance,

aerobic respiration produces CO2, while nitrification

can lead to N2O production (Naiman et al. 2005).

Denitrification, or the reduction of NO3
- to N2 gas,

can also lead to the production of N2O gas when

denitrification is incomplete due to low pH, fluctuating

water tables, and limited pools of labile soil organic C

(Reddy and DeLaune 2008). Under aerobic condi-

tions, methane oxidation can consume CH4 in soils,

while under anoxic conditions methanogenesis pro-

duces CH4 (Castro et al. 1995; Morse et al. 2012).

Fig. 8 (Top panels and bottom left panel) Mobilization of

chromatographic chemical cocktails from soil exchange sites

and relationships between specific conductance and base

cations. Specific conductance can serve as as a proxy and

surrogate for chromatographic chemical cocktails in watersheds

of the Baltimore Long-Term Ecological Research (LTER) site.

(Bottom right panel) Pulses in cation concentrations following

road salt applications suggest the importance of ion exchange in

response to sodium chloride inputs in urban watersheds and

streams of the Baltimore-Washington DC metropolitan region
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Redox conditions, electron acceptors’ and donors’

availability, temperature, and moisture also impact

water quality and reactive chemical cocktails by

influencing NO3
- removal by denitrification, PO4

3-

release when iron oxides become unstable under

anoxic conditions, and methylmercury production

when sulfate reduction actively occurs.
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Environmental conditions also influence the diffu-

sion of N2O, CO2, and CH4 through the soil surface.

Under dry conditions, large pores tend to be aerated,

which facilitates not only the diffusion of oxygen from

the atmosphere into the soil, but also the release of

GHG produced at depth in the saturated zone out to the

atmosphere. High CO2, CH4, and N2O fluxes can be

observed at the soil-atmosphere interface of riparian

zones when the water table drops due to a combination

of O2 diffusion and stimulation of aerobic microbial

respiration in upper soils and anoxic conditions

occurring in deeper soils (Vidon et al.

2014a, b, 2017). This illustrates the formation of

different GHG cocktails across soil depths and their

transport through soil pores to the atmosphere (Groff-

man et al. 2009; Vidon et al. 2010; Bernhardt et al.

2017b) (Fig. 2).

How do land use and climate alter elemental

responses and give rise to novel combinations?

GHG cocktails are shifting towards more pulsed

transport in the Anthropocene. In human modified

landscapes, organic matter reactivity, redox extremes,

temperature, and nutrient availability all increase

synergistically (Kaushal et al. 2014a, b). Precipitation

events stimulate N2O and CH4 pulses in riparian

zones, streams, and rivers affected by both agricultural

and urban land uses (Kim et al. 2010, 2012; Jacinthe

et al. 2012; 2015; Sieczko et al. 2016). Engineered and

artificial drainage lead to more rapid (and less

seasonal) water table fluctuations and associated

solute flushes and pulses (Kaushal et al. 2017b).

These hydrologic changes alter GHGs production and

their subsequent flushing to streams (Kaushal et al.

2017b). Pulsed transport of GHG cocktails through

stream and river channels may be significant unrec-

ognized components of watershed N and C mass

balances (Beaulieu et al. 2011; Butman and Raymond

2011; Smith et al. 2017). The role of stream channels

as ‘vents’ from the soil critical zone to the atmosphere

warrants further research (Smith et al. 2017; Gardner

et al. 2016). Further, we hypothesize that headwater

areas may be more sensitive to GHG fluxes in the

Anthropocene because of increased potential for

drying-rewetting cycles compared to the mainstem

of rivers where perennial flow predominates. Given

that headwaters drain a large area of landmass that

aggregates over space, their role in regulating GHG

fluxes could become more prevalent on a continental

scale.

The chemical cocktail approach as a tool

for advancing watershed science

Developing a unified concept for chemical

transport in catchments in response to hydrological

events

Analyzing how chemical cocktails respond similarly

or differently over time can allow us to formulate a

unified concept for catchment chemical transport in

response to hydrologic events (e.g., based on common

modes of transport, mobility, and reactivity for carbon,

nutrients, redox sensitive metals, and ionic salts). For

example, NO3
-, DOC, and turbidity dynamics all

bFig. 9 There have been significant changes in sieved, filtered,

reactive, and chromatographic transport behaviors of chemical

cocktails due to climate and land use change over the past

century. (Top Panel) In the mid-20th century, the ‘‘Great

Acceleration’’ of the Anthropocene was marked by significant

increases in rates of change in global population, urban

population (World Bank data, Steffen et al. 2015), and

atmospheric CO2 (NASA.gov data). (Middle Panel) In the

mid-20th century, global population, agriculture, and industri-

alization increased watershed inputs of highly reactive elements

and chromatographic elements such as salts (World Bank data,

US EPA data, Steffen et al. 2015; Anning and Flynn 2014;

USGS Mineral Resources). Land development Querydecreased

the amount of pristine sediment and increased anthropogenic

sediment loads overwhelming watershed sieves (Syvitski and

Kettner 2011). (Bottom panel) During the Anthropocene, there

has been an increase in: (1) highly reactive chemical cocktails

containing nitrate-N (annual mean concentrations in global

rivers are estimated from Bührer and Ambühl 2001; Goolsby

and Battaglin 2001; Duan et al. 2007; Friedrich and Pohlmann

2009; Bouraoui and Grizzetti 2011; EEA 2012; Kelly et al.

2015; Minaudo et al. 2015; Jaworski, unpublished data;

Meybeck et al. 2016; Romero et al. 2016). (2) Sieved and

filtered chemical cocktails containing organic carbon (annual

mean concentrations are estimated from temperate and boreal

rivers analyzed in Worrall et al. 2004; Evans et al. 2005;

Kritzberg and Ekstrom 2012; Sarkkola et al. 2013); (3) sieved

and filtered chemical cocktails containing iron (annual mean

concentrations are estimated from rivers and groundwater wells

in forested and urban areas in the United States and Europe

analyzed in Sloto 2003; Kritzberg and Ekstrom 2012; Sarkkola

et al. 2013; Kritzberg et al. 2014); (4) chromatographic chemical

cocktails containing Cl- (annual mean concentrations are

estimated from global rivers and lakes in studies reviewed

previously by Kaushal et al. (2014a, b) and Kaushal (2016)
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change simultaneously during storms and are linked to

hydrologic flowpaths and watershed source areas, but

chemical species can have different response times

(Fovet et al. 2018). A unified conceptual model (like

the one proposed here) can allow us to include novel

combinations of elements and how they are formed,

transformed, and transported across the hydrograph

through shallow ground water, deep ground water,

riparian corridors, and uplands. Testable hypotheses

can investigate the relative importance of hydrologic

versus biological drivers on formation, transport, and

transformation of different chemical cocktails across

gradients of land use, climate, geology, and atmo-

spheric deposition.

Developing sensor data as proxies

for characterizing pulses of chemical cocktails

There has been growing research on applications of

in situ water quality sensors, but not all chemicals of

interest can be measured continuously. Proxies can be

developed based on statistical relationships between

continuous sensor data in the field and water quality

measurements in the laboratory at a less expensive

cost and higher resolution than more intensive sam-

pling. For example, specific ultra violet absorbance at

254 nm (SUVA) can be measured in the field with a

spectrophotometer at higher frequency, and may be a

robust surrogate or proxy for Hg and methylmercury

in some watersheds along with fluorescent dissolved

organic matter (FDOM) (Burns et al. 2013, Vidon

et al. 2014b). Specific conductance data can be a

robust proxy for chromatographic chemical cocktails

such as Cl-, Ca2?, Mg2?, Na?, etc. (Fig. 8), while

turbidity can be a proxy for heavy metals in

organometallic complexes and organic contaminants.

All surrogates and proxies need to be individually

calibrated based on changes in relationships across

streamflow and watershed state factors such as

climate, underlying geology, topography, human

activities, and time. High frequency characterization

of elemental peaks, times of concentration, recession

curves, and fluxes for different chemical cocktails can

reveal changes in sources, transport, and transforma-

tion within watersheds. The magnitude, frequency,

and persistence of different chemical cocktail pulses

are still unknown for many watersheds at finer

temporal scales. This information is critical for

identifying water quality violations, characterizing

ecosystem resilience and recovery from extreme

events, and evaluating the success of watershed

management and restoration outcomes.

How do watershed chemical cocktails interact

to influence ecosystems and water quality

problems?

Interactions between chemical cocktails often produce

environmental effects greater than the sum of indi-

vidual elements, and watershed chemical cocktails can

be linked to the most pressing problems in modern

water quality. However, the causes and consequences

of water quality problems often focus on one or a few

elements, and they are considered in isolation of

potential interactions with other groups of elements.

For example, chemical cocktails showing sieved and

filtered transport behaviors (such as POM and DOM)

can be linked to brownification and transport of heavy

metals and organic contaminants (sensu Kritzberg and

Ekstrom 2012; Sarkkola et al. 2013; Kritzberg et al.

2014). Chemical cocktails showing chromatographic

transport behavior can be linked to salinization and

influence acid-base status of fresh waters (acidification

vs. alkalinization) based on different ion mixtures

(Kaushal et al. 2013, 2018). Finally, reactive chemical

cocktails can be linked to eutrophication, hypoxia, and

increased solubility of mineral oxyhydroxides and

mobilization of associated contaminants. By recog-

nizing novel combinations of elements holistically as

chemical cocktails, we gain an understanding of how

water quality problems relate to each other and how

increases in one chemical cocktail (e.g. combinations

of elements influenced by salinization) can affect

mobilization of another (e.g. combinations of ele-

ments influenced by brownification or eutrophication)

(Duan and Kaushal 2013; Haq et al. this issue).

Managing multiple chemical cocktails

and contaminants in a changing environment

Managing multiple water quality problems presents

trade-offs because no single best management practice

is a panacea in the Anthropocene. In fact, one form of

water quality management can exacerbate manage-

ment of another due to differences in fate and

transformation. For example, anoxic conditions and

organic matter are needed to foster denitrification and

nitrate removal in riparian zones, but anoxic
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conditions and low redox potential enhance desorption

of P from Fe and Mn oxyhydroxides (sensu Duan et al.

2016). Similarly, wetlands are effective at denitrifica-

tion, but they are also hot spots of methylmercury

production (St. Louis et al. 1994). Finally, imbalances

in pollution management strategies targeting only one

element can influence changes in elemental ratios of

N:P:Si:Fe and harmful algal blooms (Paerl 1997). The

watershed chemical cocktail concept implies manag-

ing novel combinations of elements based on their

potential for transport and transformation in relation-

ship to environmental conditions. Water quality

management can be optimized for chemical cocktails

instead of individual compounds based on knowledge

of shared sources, outcomes, and trade-offs. Models of

contaminant toxicity can explicitly consider chemical

cocktails and their interactive effects. Finally, ecosys-

tem restoration strategies can consider managing

chemical cocktails instead of individual elements,

and anticipate effects of contrasting watershed man-

agement on transport and transformation of chemical

cocktails.

Formation, transport, and transformation

of watershed chemical cocktails

in the Anthropocene

Overall, a watershed chemical cocktail approach

suggests that novel combinations of elements have

transformed the chemistry of fresh waters in the

Anthropocene. Over the past 100 years, there have

been trends in novel combinations of elements show-

ing different transport behaviors in fresh waters

(Fig. 9). Long-term increases in organic carbon and

metals concentrations (e.g., sieved and filtered trans-

port) provide information about the effects of chang-

ing atmospheric deposition, climate change, and/or

changing ecosystem retention functions of floodplains

and riparian zones. In headwaters, watershed retention

processes such as sieving and filtering can be

overwhelmed during storm flow when there is a high

degree of hydrologic connectivity between landscapes

and aquatic systems, and chemicals pass through

watersheds faster than they can react. Further down-

stream, sediment fluxes from land to aquatic networks

have increased, but much of this sediment is often held

on the continents behind dams shifting sieving and

filtering functions downstream along fluvial networks

and establishing new reactive surfaces (effects of

dams on sediment transport have been discussed

extensively in other publications). As impoundments

fill with sediment, mobilization may occur during

large storms, representing a shift in behavior of

sediment-associated elements and sieved chemical

cocktail transport behavior along river networks

(Zhang et al. 2013). Furthermore, a shift towards

more reactive DOM in human-impacted streams alters

their role as bioreactors, and stimulates microbial

metabolism and formation of reactive GHG chemical

cocktails. Finally, increased chromatographic trans-

port behavior occurs due to freshwater salinization

syndrome and human-accelerated weathering

(Kaushal et al. 2018) (Fig. 9). These coupled transport

and transformation dynamics help advance and rede-

fine our understanding beyond minimally disturbed

river networks (Vannote et al. 1980).

Many questions still remain regarding how land use

and climate change will modify the formation, trans-

port, transformation, and ecological stoichiometry of

different chemical cocktails and ecosystem impacts.

Chemical cocktails in fresh waters are likely reflecting

a warming climate over large geographic scales and

temperature influences biological and weathering

reaction rates. Increasing water temperatures, increas-

ing solutes, increasing dissolved inorganic carbon, and

increasing pH can shift the role of inland waters as

sources and sinks of CO2 and other greenhouse gases

(Kaushal et al. 2010, 2018). Characterizing concen-

trations, compositions, and consequences of varying

chemical cocktails across local, regional, and global

scales allows us to develop more coordinated research,

management, and monitoring approaches. A recon-

ceptualization of watershed transport and transforma-

tion processes as chemical cocktails is critical to

holistically managing freshwater ecosystems in the

Anthropocene.
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